packet.hh revision 11286:2071db8f864b
1/*
2 * Copyright (c) 2012-2015 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2006 The Regents of The University of Michigan
15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Ron Dreslinski
42 *          Steve Reinhardt
43 *          Ali Saidi
44 *          Andreas Hansson
45 */
46
47/**
48 * @file
49 * Declaration of the Packet class.
50 */
51
52#ifndef __MEM_PACKET_HH__
53#define __MEM_PACKET_HH__
54
55#include <bitset>
56#include <cassert>
57#include <list>
58
59#include "base/cast.hh"
60#include "base/compiler.hh"
61#include "base/flags.hh"
62#include "base/misc.hh"
63#include "base/printable.hh"
64#include "base/types.hh"
65#include "mem/request.hh"
66#include "sim/core.hh"
67
68class Packet;
69typedef Packet *PacketPtr;
70typedef uint8_t* PacketDataPtr;
71typedef std::list<PacketPtr> PacketList;
72
73class MemCmd
74{
75    friend class Packet;
76
77  public:
78    /**
79     * List of all commands associated with a packet.
80     */
81    enum Command
82    {
83        InvalidCmd,
84        ReadReq,
85        ReadResp,
86        ReadRespWithInvalidate,
87        WriteReq,
88        WriteResp,
89        WritebackDirty,
90        WritebackClean,
91        CleanEvict,
92        SoftPFReq,
93        HardPFReq,
94        SoftPFResp,
95        HardPFResp,
96        WriteLineReq,
97        UpgradeReq,
98        SCUpgradeReq,           // Special "weak" upgrade for StoreCond
99        UpgradeResp,
100        SCUpgradeFailReq,       // Failed SCUpgradeReq in MSHR (never sent)
101        UpgradeFailResp,        // Valid for SCUpgradeReq only
102        ReadExReq,
103        ReadExResp,
104        ReadCleanReq,
105        ReadSharedReq,
106        LoadLockedReq,
107        StoreCondReq,
108        StoreCondFailReq,       // Failed StoreCondReq in MSHR (never sent)
109        StoreCondResp,
110        SwapReq,
111        SwapResp,
112        MessageReq,
113        MessageResp,
114        MemFenceReq,
115        MemFenceResp,
116        // Error responses
117        // @TODO these should be classified as responses rather than
118        // requests; coding them as requests initially for backwards
119        // compatibility
120        InvalidDestError,  // packet dest field invalid
121        BadAddressError,   // memory address invalid
122        FunctionalReadError, // unable to fulfill functional read
123        FunctionalWriteError, // unable to fulfill functional write
124        // Fake simulator-only commands
125        PrintReq,       // Print state matching address
126        FlushReq,      //request for a cache flush
127        InvalidateReq,   // request for address to be invalidated
128        InvalidateResp,
129        NUM_MEM_CMDS
130    };
131
132  private:
133    /**
134     * List of command attributes.
135     */
136    enum Attribute
137    {
138        IsRead,         //!< Data flows from responder to requester
139        IsWrite,        //!< Data flows from requester to responder
140        IsUpgrade,
141        IsInvalidate,
142        NeedsWritable,  //!< Requires writable copy to complete in-cache
143        IsRequest,      //!< Issued by requester
144        IsResponse,     //!< Issue by responder
145        NeedsResponse,  //!< Requester needs response from target
146        IsEviction,
147        IsSWPrefetch,
148        IsHWPrefetch,
149        IsLlsc,         //!< Alpha/MIPS LL or SC access
150        HasData,        //!< There is an associated payload
151        IsError,        //!< Error response
152        IsPrint,        //!< Print state matching address (for debugging)
153        IsFlush,        //!< Flush the address from caches
154        NUM_COMMAND_ATTRIBUTES
155    };
156
157    /**
158     * Structure that defines attributes and other data associated
159     * with a Command.
160     */
161    struct CommandInfo
162    {
163        /// Set of attribute flags.
164        const std::bitset<NUM_COMMAND_ATTRIBUTES> attributes;
165        /// Corresponding response for requests; InvalidCmd if no
166        /// response is applicable.
167        const Command response;
168        /// String representation (for printing)
169        const std::string str;
170    };
171
172    /// Array to map Command enum to associated info.
173    static const CommandInfo commandInfo[];
174
175  private:
176
177    Command cmd;
178
179    bool
180    testCmdAttrib(MemCmd::Attribute attrib) const
181    {
182        return commandInfo[cmd].attributes[attrib] != 0;
183    }
184
185  public:
186
187    bool isRead() const            { return testCmdAttrib(IsRead); }
188    bool isWrite() const           { return testCmdAttrib(IsWrite); }
189    bool isUpgrade() const         { return testCmdAttrib(IsUpgrade); }
190    bool isRequest() const         { return testCmdAttrib(IsRequest); }
191    bool isResponse() const        { return testCmdAttrib(IsResponse); }
192    bool needsWritable() const     { return testCmdAttrib(NeedsWritable); }
193    bool needsResponse() const     { return testCmdAttrib(NeedsResponse); }
194    bool isInvalidate() const      { return testCmdAttrib(IsInvalidate); }
195    bool isEviction() const        { return testCmdAttrib(IsEviction); }
196
197    /**
198     * A writeback is an eviction that carries data.
199     */
200    bool isWriteback() const       { return testCmdAttrib(IsEviction) &&
201                                            testCmdAttrib(HasData); }
202
203    /**
204     * Check if this particular packet type carries payload data. Note
205     * that this does not reflect if the data pointer of the packet is
206     * valid or not.
207     */
208    bool hasData() const        { return testCmdAttrib(HasData); }
209    bool isLLSC() const         { return testCmdAttrib(IsLlsc); }
210    bool isSWPrefetch() const   { return testCmdAttrib(IsSWPrefetch); }
211    bool isHWPrefetch() const   { return testCmdAttrib(IsHWPrefetch); }
212    bool isPrefetch() const     { return testCmdAttrib(IsSWPrefetch) ||
213                                         testCmdAttrib(IsHWPrefetch); }
214    bool isError() const        { return testCmdAttrib(IsError); }
215    bool isPrint() const        { return testCmdAttrib(IsPrint); }
216    bool isFlush() const        { return testCmdAttrib(IsFlush); }
217
218    const Command
219    responseCommand() const
220    {
221        return commandInfo[cmd].response;
222    }
223
224    /// Return the string to a cmd given by idx.
225    const std::string &toString() const { return commandInfo[cmd].str; }
226    int toInt() const { return (int)cmd; }
227
228    MemCmd(Command _cmd) : cmd(_cmd) { }
229    MemCmd(int _cmd) : cmd((Command)_cmd) { }
230    MemCmd() : cmd(InvalidCmd) { }
231
232    bool operator==(MemCmd c2) const { return (cmd == c2.cmd); }
233    bool operator!=(MemCmd c2) const { return (cmd != c2.cmd); }
234};
235
236/**
237 * A Packet is used to encapsulate a transfer between two objects in
238 * the memory system (e.g., the L1 and L2 cache).  (In contrast, a
239 * single Request travels all the way from the requester to the
240 * ultimate destination and back, possibly being conveyed by several
241 * different Packets along the way.)
242 */
243class Packet : public Printable
244{
245  public:
246    typedef uint32_t FlagsType;
247    typedef ::Flags<FlagsType> Flags;
248
249  private:
250
251    enum : FlagsType {
252        // Flags to transfer across when copying a packet
253        COPY_FLAGS             = 0x0000000F,
254
255        // Does this packet have sharers (which means it should not be
256        // considered writable) or not. See setHasSharers below.
257        HAS_SHARERS            = 0x00000001,
258
259        // Special control flags
260        /// Special timing-mode atomic snoop for multi-level coherence.
261        EXPRESS_SNOOP          = 0x00000002,
262
263        /// Allow a responding cache to inform the cache hierarchy
264        /// that it had a writable copy before responding. See
265        /// setResponderHadWritable below.
266        RESPONDER_HAD_WRITABLE = 0x00000004,
267
268        // Snoop co-ordination flag to indicate that a cache is
269        // responding to a snoop. See setCacheResponding below.
270        CACHE_RESPONDING       = 0x00000008,
271
272        /// Are the 'addr' and 'size' fields valid?
273        VALID_ADDR             = 0x00000100,
274        VALID_SIZE             = 0x00000200,
275
276        /// Is the data pointer set to a value that shouldn't be freed
277        /// when the packet is destroyed?
278        STATIC_DATA            = 0x00001000,
279        /// The data pointer points to a value that should be freed when
280        /// the packet is destroyed. The pointer is assumed to be pointing
281        /// to an array, and delete [] is consequently called
282        DYNAMIC_DATA           = 0x00002000,
283
284        /// suppress the error if this packet encounters a functional
285        /// access failure.
286        SUPPRESS_FUNC_ERROR    = 0x00008000,
287
288        // Signal block present to squash prefetch and cache evict packets
289        // through express snoop flag
290        BLOCK_CACHED          = 0x00010000
291    };
292
293    Flags flags;
294
295  public:
296    typedef MemCmd::Command Command;
297
298    /// The command field of the packet.
299    MemCmd cmd;
300
301    /// A pointer to the original request.
302    const RequestPtr req;
303
304  private:
305   /**
306    * A pointer to the data being transfered.  It can be differnt
307    * sizes at each level of the heirarchy so it belongs in the
308    * packet, not request. This may or may not be populated when a
309    * responder recieves the packet. If not populated it memory should
310    * be allocated.
311    */
312    PacketDataPtr data;
313
314    /// The address of the request.  This address could be virtual or
315    /// physical, depending on the system configuration.
316    Addr addr;
317
318    /// True if the request targets the secure memory space.
319    bool _isSecure;
320
321    /// The size of the request or transfer.
322    unsigned size;
323
324    /**
325     * Track the bytes found that satisfy a functional read.
326     */
327    std::vector<bool> bytesValid;
328
329  public:
330
331    /**
332     * The extra delay from seeing the packet until the header is
333     * transmitted. This delay is used to communicate the crossbar
334     * forwarding latency to the neighbouring object (e.g. a cache)
335     * that actually makes the packet wait. As the delay is relative,
336     * a 32-bit unsigned should be sufficient.
337     */
338    uint32_t headerDelay;
339
340    /**
341     * Keep track of the extra delay incurred by snooping upwards
342     * before sending a request down the memory system. This is used
343     * by the coherent crossbar to account for the additional request
344     * delay.
345     */
346    uint32_t snoopDelay;
347
348    /**
349     * The extra pipelining delay from seeing the packet until the end of
350     * payload is transmitted by the component that provided it (if
351     * any). This includes the header delay. Similar to the header
352     * delay, this is used to make up for the fact that the
353     * crossbar does not make the packet wait. As the delay is
354     * relative, a 32-bit unsigned should be sufficient.
355     */
356    uint32_t payloadDelay;
357
358    /**
359     * A virtual base opaque structure used to hold state associated
360     * with the packet (e.g., an MSHR), specific to a MemObject that
361     * sees the packet. A pointer to this state is returned in the
362     * packet's response so that the MemObject in question can quickly
363     * look up the state needed to process it. A specific subclass
364     * would be derived from this to carry state specific to a
365     * particular sending device.
366     *
367     * As multiple MemObjects may add their SenderState throughout the
368     * memory system, the SenderStates create a stack, where a
369     * MemObject can add a new Senderstate, as long as the
370     * predecessing SenderState is restored when the response comes
371     * back. For this reason, the predecessor should always be
372     * populated with the current SenderState of a packet before
373     * modifying the senderState field in the request packet.
374     */
375    struct SenderState
376    {
377        SenderState* predecessor;
378        SenderState() : predecessor(NULL) {}
379        virtual ~SenderState() {}
380    };
381
382    /**
383     * Object used to maintain state of a PrintReq.  The senderState
384     * field of a PrintReq should always be of this type.
385     */
386    class PrintReqState : public SenderState
387    {
388      private:
389        /**
390         * An entry in the label stack.
391         */
392        struct LabelStackEntry
393        {
394            const std::string label;
395            std::string *prefix;
396            bool labelPrinted;
397            LabelStackEntry(const std::string &_label, std::string *_prefix);
398        };
399
400        typedef std::list<LabelStackEntry> LabelStack;
401        LabelStack labelStack;
402
403        std::string *curPrefixPtr;
404
405      public:
406        std::ostream &os;
407        const int verbosity;
408
409        PrintReqState(std::ostream &os, int verbosity = 0);
410        ~PrintReqState();
411
412        /**
413         * Returns the current line prefix.
414         */
415        const std::string &curPrefix() { return *curPrefixPtr; }
416
417        /**
418         * Push a label onto the label stack, and prepend the given
419         * prefix string onto the current prefix.  Labels will only be
420         * printed if an object within the label's scope is printed.
421         */
422        void pushLabel(const std::string &lbl,
423                       const std::string &prefix = "  ");
424
425        /**
426         * Pop a label off the label stack.
427         */
428        void popLabel();
429
430        /**
431         * Print all of the pending unprinted labels on the
432         * stack. Called by printObj(), so normally not called by
433         * users unless bypassing printObj().
434         */
435        void printLabels();
436
437        /**
438         * Print a Printable object to os, because it matched the
439         * address on a PrintReq.
440         */
441        void printObj(Printable *obj);
442    };
443
444    /**
445     * This packet's sender state.  Devices should use dynamic_cast<>
446     * to cast to the state appropriate to the sender.  The intent of
447     * this variable is to allow a device to attach extra information
448     * to a request. A response packet must return the sender state
449     * that was attached to the original request (even if a new packet
450     * is created).
451     */
452    SenderState *senderState;
453
454    /**
455     * Push a new sender state to the packet and make the current
456     * sender state the predecessor of the new one. This should be
457     * prefered over direct manipulation of the senderState member
458     * variable.
459     *
460     * @param sender_state SenderState to push at the top of the stack
461     */
462    void pushSenderState(SenderState *sender_state);
463
464    /**
465     * Pop the top of the state stack and return a pointer to it. This
466     * assumes the current sender state is not NULL. This should be
467     * preferred over direct manipulation of the senderState member
468     * variable.
469     *
470     * @return The current top of the stack
471     */
472    SenderState *popSenderState();
473
474    /**
475     * Go through the sender state stack and return the first instance
476     * that is of type T (as determined by a dynamic_cast). If there
477     * is no sender state of type T, NULL is returned.
478     *
479     * @return The topmost state of type T
480     */
481    template <typename T>
482    T * findNextSenderState() const
483    {
484        T *t = NULL;
485        SenderState* sender_state = senderState;
486        while (t == NULL && sender_state != NULL) {
487            t = dynamic_cast<T*>(sender_state);
488            sender_state = sender_state->predecessor;
489        }
490        return t;
491    }
492
493    /// Return the string name of the cmd field (for debugging and
494    /// tracing).
495    const std::string &cmdString() const { return cmd.toString(); }
496
497    /// Return the index of this command.
498    inline int cmdToIndex() const { return cmd.toInt(); }
499
500    bool isRead() const              { return cmd.isRead(); }
501    bool isWrite() const             { return cmd.isWrite(); }
502    bool isUpgrade()  const          { return cmd.isUpgrade(); }
503    bool isRequest() const           { return cmd.isRequest(); }
504    bool isResponse() const          { return cmd.isResponse(); }
505    bool needsWritable() const       { return cmd.needsWritable(); }
506    bool needsResponse() const       { return cmd.needsResponse(); }
507    bool isInvalidate() const        { return cmd.isInvalidate(); }
508    bool isEviction() const          { return cmd.isEviction(); }
509    bool isWriteback() const         { return cmd.isWriteback(); }
510    bool hasData() const             { return cmd.hasData(); }
511    bool hasRespData() const
512    {
513        MemCmd resp_cmd = cmd.responseCommand();
514        return resp_cmd.hasData();
515    }
516    bool isLLSC() const              { return cmd.isLLSC(); }
517    bool isError() const             { return cmd.isError(); }
518    bool isPrint() const             { return cmd.isPrint(); }
519    bool isFlush() const             { return cmd.isFlush(); }
520
521    //@{
522    /// Snoop flags
523    /**
524     * Set the cacheResponding flag. This is used by the caches to
525     * signal another cache that they are responding to a request. A
526     * cache will only respond to snoops if it has the line in either
527     * Modified or Owned state. Note that on snoop hits we always pass
528     * the line as Modified and never Owned. In the case of an Owned
529     * line we proceed to invalidate all other copies.
530     *
531     * On a cache fill (see Cache::handleFill), we check hasSharers
532     * first, ignoring the cacheResponding flag if hasSharers is set.
533     * A line is consequently allocated as:
534     *
535     * hasSharers cacheResponding state
536     * true       false           Shared
537     * true       true            Shared
538     * false      false           Exclusive
539     * false      true            Modified
540     */
541    void setCacheResponding()
542    {
543        assert(isRequest());
544        assert(!flags.isSet(CACHE_RESPONDING));
545        flags.set(CACHE_RESPONDING);
546    }
547    bool cacheResponding() const { return flags.isSet(CACHE_RESPONDING); }
548    /**
549     * On fills, the hasSharers flag is used by the caches in
550     * combination with the cacheResponding flag, as clarified
551     * above. If the hasSharers flag is not set, the packet is passing
552     * writable. Thus, a response from a memory passes the line as
553     * writable by default.
554     *
555     * The hasSharers flag is also used by upstream caches to inform a
556     * downstream cache that they have the block (by calling
557     * setHasSharers on snoop request packets that hit in upstream
558     * cachs tags or MSHRs). If the snoop packet has sharers, a
559     * downstream cache is prevented from passing a dirty line upwards
560     * if it was not explicitly asked for a writable copy. See
561     * Cache::satisfyCpuSideRequest.
562     *
563     * The hasSharers flag is also used on writebacks, in
564     * combination with the WritbackClean or WritebackDirty commands,
565     * to allocate the block downstream either as:
566     *
567     * command        hasSharers state
568     * WritebackDirty false      Modified
569     * WritebackDirty true       Owned
570     * WritebackClean false      Exclusive
571     * WritebackClean true       Shared
572     */
573    void setHasSharers()    { flags.set(HAS_SHARERS); }
574    bool hasSharers() const { return flags.isSet(HAS_SHARERS); }
575    //@}
576
577    /**
578     * The express snoop flag is used for two purposes. Firstly, it is
579     * used to bypass flow control for normal (non-snoop) requests
580     * going downstream in the memory system. In cases where a cache
581     * is responding to a snoop from another cache (it had a dirty
582     * line), but the line is not writable (and there are possibly
583     * other copies), the express snoop flag is set by the downstream
584     * cache to invalidate all other copies in zero time. Secondly,
585     * the express snoop flag is also set to be able to distinguish
586     * snoop packets that came from a downstream cache, rather than
587     * snoop packets from neighbouring caches.
588     */
589    void setExpressSnoop()      { flags.set(EXPRESS_SNOOP); }
590    bool isExpressSnoop() const { return flags.isSet(EXPRESS_SNOOP); }
591
592    /**
593     * On responding to a snoop request (which only happens for
594     * Modified or Owned lines), make sure that we can transform an
595     * Owned response to a Modified one. If this flag is not set, the
596     * responding cache had the line in the Owned state, and there are
597     * possibly other Shared copies in the memory system. A downstream
598     * cache helps in orchestrating the invalidation of these copies
599     * by sending out the appropriate express snoops.
600     */
601    void setResponderHadWritable()
602    {
603        assert(cacheResponding());
604        flags.set(RESPONDER_HAD_WRITABLE);
605    }
606    bool responderHadWritable() const
607    { return flags.isSet(RESPONDER_HAD_WRITABLE); }
608
609    void setSuppressFuncError()     { flags.set(SUPPRESS_FUNC_ERROR); }
610    bool suppressFuncError() const  { return flags.isSet(SUPPRESS_FUNC_ERROR); }
611    void setBlockCached()          { flags.set(BLOCK_CACHED); }
612    bool isBlockCached() const     { return flags.isSet(BLOCK_CACHED); }
613    void clearBlockCached()        { flags.clear(BLOCK_CACHED); }
614
615    // Network error conditions... encapsulate them as methods since
616    // their encoding keeps changing (from result field to command
617    // field, etc.)
618    void
619    setBadAddress()
620    {
621        assert(isResponse());
622        cmd = MemCmd::BadAddressError;
623    }
624
625    void copyError(Packet *pkt) { assert(pkt->isError()); cmd = pkt->cmd; }
626
627    Addr getAddr() const { assert(flags.isSet(VALID_ADDR)); return addr; }
628    /**
629     * Update the address of this packet mid-transaction. This is used
630     * by the address mapper to change an already set address to a new
631     * one based on the system configuration. It is intended to remap
632     * an existing address, so it asserts that the current address is
633     * valid.
634     */
635    void setAddr(Addr _addr) { assert(flags.isSet(VALID_ADDR)); addr = _addr; }
636
637    unsigned getSize() const  { assert(flags.isSet(VALID_SIZE)); return size; }
638
639    Addr getOffset(unsigned int blk_size) const
640    {
641        return getAddr() & Addr(blk_size - 1);
642    }
643
644    Addr getBlockAddr(unsigned int blk_size) const
645    {
646        return getAddr() & ~(Addr(blk_size - 1));
647    }
648
649    bool isSecure() const
650    {
651        assert(flags.isSet(VALID_ADDR));
652        return _isSecure;
653    }
654
655    /**
656     * It has been determined that the SC packet should successfully update
657     * memory. Therefore, convert this SC packet to a normal write.
658     */
659    void
660    convertScToWrite()
661    {
662        assert(isLLSC());
663        assert(isWrite());
664        cmd = MemCmd::WriteReq;
665    }
666
667    /**
668     * When ruby is in use, Ruby will monitor the cache line and the
669     * phys memory should treat LL ops as normal reads.
670     */
671    void
672    convertLlToRead()
673    {
674        assert(isLLSC());
675        assert(isRead());
676        cmd = MemCmd::ReadReq;
677    }
678
679    /**
680     * Constructor. Note that a Request object must be constructed
681     * first, but the Requests's physical address and size fields need
682     * not be valid. The command must be supplied.
683     */
684    Packet(const RequestPtr _req, MemCmd _cmd)
685        :  cmd(_cmd), req(_req), data(nullptr), addr(0), _isSecure(false),
686           size(0), headerDelay(0), snoopDelay(0), payloadDelay(0),
687           senderState(NULL)
688    {
689        if (req->hasPaddr()) {
690            addr = req->getPaddr();
691            flags.set(VALID_ADDR);
692            _isSecure = req->isSecure();
693        }
694        if (req->hasSize()) {
695            size = req->getSize();
696            flags.set(VALID_SIZE);
697        }
698    }
699
700    /**
701     * Alternate constructor if you are trying to create a packet with
702     * a request that is for a whole block, not the address from the
703     * req.  this allows for overriding the size/addr of the req.
704     */
705    Packet(const RequestPtr _req, MemCmd _cmd, int _blkSize)
706        :  cmd(_cmd), req(_req), data(nullptr), addr(0), _isSecure(false),
707           headerDelay(0), snoopDelay(0), payloadDelay(0),
708           senderState(NULL)
709    {
710        if (req->hasPaddr()) {
711            addr = req->getPaddr() & ~(_blkSize - 1);
712            flags.set(VALID_ADDR);
713            _isSecure = req->isSecure();
714        }
715        size = _blkSize;
716        flags.set(VALID_SIZE);
717    }
718
719    /**
720     * Alternate constructor for copying a packet.  Copy all fields
721     * *except* if the original packet's data was dynamic, don't copy
722     * that, as we can't guarantee that the new packet's lifetime is
723     * less than that of the original packet.  In this case the new
724     * packet should allocate its own data.
725     */
726    Packet(const PacketPtr pkt, bool clear_flags, bool alloc_data)
727        :  cmd(pkt->cmd), req(pkt->req),
728           data(nullptr),
729           addr(pkt->addr), _isSecure(pkt->_isSecure), size(pkt->size),
730           bytesValid(pkt->bytesValid),
731           headerDelay(pkt->headerDelay),
732           snoopDelay(0),
733           payloadDelay(pkt->payloadDelay),
734           senderState(pkt->senderState)
735    {
736        if (!clear_flags)
737            flags.set(pkt->flags & COPY_FLAGS);
738
739        flags.set(pkt->flags & (VALID_ADDR|VALID_SIZE));
740
741        // should we allocate space for data, or not, the express
742        // snoops do not need to carry any data as they only serve to
743        // co-ordinate state changes
744        if (alloc_data) {
745            // even if asked to allocate data, if the original packet
746            // holds static data, then the sender will not be doing
747            // any memcpy on receiving the response, thus we simply
748            // carry the pointer forward
749            if (pkt->flags.isSet(STATIC_DATA)) {
750                data = pkt->data;
751                flags.set(STATIC_DATA);
752            } else {
753                allocate();
754            }
755        }
756    }
757
758    /**
759     * Generate the appropriate read MemCmd based on the Request flags.
760     */
761    static MemCmd
762    makeReadCmd(const RequestPtr req)
763    {
764        if (req->isLLSC())
765            return MemCmd::LoadLockedReq;
766        else if (req->isPrefetch())
767            return MemCmd::SoftPFReq;
768        else
769            return MemCmd::ReadReq;
770    }
771
772    /**
773     * Generate the appropriate write MemCmd based on the Request flags.
774     */
775    static MemCmd
776    makeWriteCmd(const RequestPtr req)
777    {
778        if (req->isLLSC())
779            return MemCmd::StoreCondReq;
780        else if (req->isSwap())
781            return MemCmd::SwapReq;
782        else
783            return MemCmd::WriteReq;
784    }
785
786    /**
787     * Constructor-like methods that return Packets based on Request objects.
788     * Fine-tune the MemCmd type if it's not a vanilla read or write.
789     */
790    static PacketPtr
791    createRead(const RequestPtr req)
792    {
793        return new Packet(req, makeReadCmd(req));
794    }
795
796    static PacketPtr
797    createWrite(const RequestPtr req)
798    {
799        return new Packet(req, makeWriteCmd(req));
800    }
801
802    /**
803     * clean up packet variables
804     */
805    ~Packet()
806    {
807        // Delete the request object if this is a request packet which
808        // does not need a response, because the requester will not get
809        // a chance. If the request packet needs a response then the
810        // request will be deleted on receipt of the response
811        // packet. We also make sure to never delete the request for
812        // express snoops, even for cases when responses are not
813        // needed (CleanEvict and Writeback), since the snoop packet
814        // re-uses the same request.
815        if (req && isRequest() && !needsResponse() &&
816            !isExpressSnoop()) {
817            delete req;
818        }
819        deleteData();
820    }
821
822    /**
823     * Take a request packet and modify it in place to be suitable for
824     * returning as a response to that request.
825     */
826    void
827    makeResponse()
828    {
829        assert(needsResponse());
830        assert(isRequest());
831        cmd = cmd.responseCommand();
832
833        // responses are never express, even if the snoop that
834        // triggered them was
835        flags.clear(EXPRESS_SNOOP);
836    }
837
838    void
839    makeAtomicResponse()
840    {
841        makeResponse();
842    }
843
844    void
845    makeTimingResponse()
846    {
847        makeResponse();
848    }
849
850    void
851    setFunctionalResponseStatus(bool success)
852    {
853        if (!success) {
854            if (isWrite()) {
855                cmd = MemCmd::FunctionalWriteError;
856            } else {
857                cmd = MemCmd::FunctionalReadError;
858            }
859        }
860    }
861
862    void
863    setSize(unsigned size)
864    {
865        assert(!flags.isSet(VALID_SIZE));
866
867        this->size = size;
868        flags.set(VALID_SIZE);
869    }
870
871
872  public:
873    /**
874     * @{
875     * @name Data accessor mehtods
876     */
877
878    /**
879     * Set the data pointer to the following value that should not be
880     * freed. Static data allows us to do a single memcpy even if
881     * multiple packets are required to get from source to destination
882     * and back. In essence the pointer is set calling dataStatic on
883     * the original packet, and whenever this packet is copied and
884     * forwarded the same pointer is passed on. When a packet
885     * eventually reaches the destination holding the data, it is
886     * copied once into the location originally set. On the way back
887     * to the source, no copies are necessary.
888     */
889    template <typename T>
890    void
891    dataStatic(T *p)
892    {
893        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
894        data = (PacketDataPtr)p;
895        flags.set(STATIC_DATA);
896    }
897
898    /**
899     * Set the data pointer to the following value that should not be
900     * freed. This version of the function allows the pointer passed
901     * to us to be const. To avoid issues down the line we cast the
902     * constness away, the alternative would be to keep both a const
903     * and non-const data pointer and cleverly choose between
904     * them. Note that this is only allowed for static data.
905     */
906    template <typename T>
907    void
908    dataStaticConst(const T *p)
909    {
910        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
911        data = const_cast<PacketDataPtr>(p);
912        flags.set(STATIC_DATA);
913    }
914
915    /**
916     * Set the data pointer to a value that should have delete []
917     * called on it. Dynamic data is local to this packet, and as the
918     * packet travels from source to destination, forwarded packets
919     * will allocate their own data. When a packet reaches the final
920     * destination it will populate the dynamic data of that specific
921     * packet, and on the way back towards the source, memcpy will be
922     * invoked in every step where a new packet was created e.g. in
923     * the caches. Ultimately when the response reaches the source a
924     * final memcpy is needed to extract the data from the packet
925     * before it is deallocated.
926     */
927    template <typename T>
928    void
929    dataDynamic(T *p)
930    {
931        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
932        data = (PacketDataPtr)p;
933        flags.set(DYNAMIC_DATA);
934    }
935
936    /**
937     * get a pointer to the data ptr.
938     */
939    template <typename T>
940    T*
941    getPtr()
942    {
943        assert(flags.isSet(STATIC_DATA|DYNAMIC_DATA));
944        return (T*)data;
945    }
946
947    template <typename T>
948    const T*
949    getConstPtr() const
950    {
951        assert(flags.isSet(STATIC_DATA|DYNAMIC_DATA));
952        return (const T*)data;
953    }
954
955    /**
956     * Get the data in the packet byte swapped from big endian to
957     * host endian.
958     */
959    template <typename T>
960    T getBE() const;
961
962    /**
963     * Get the data in the packet byte swapped from little endian to
964     * host endian.
965     */
966    template <typename T>
967    T getLE() const;
968
969    /**
970     * Get the data in the packet byte swapped from the specified
971     * endianness.
972     */
973    template <typename T>
974    T get(ByteOrder endian) const;
975
976    /**
977     * Get the data in the packet byte swapped from guest to host
978     * endian.
979     */
980    template <typename T>
981    T get() const;
982
983    /** Set the value in the data pointer to v as big endian. */
984    template <typename T>
985    void setBE(T v);
986
987    /** Set the value in the data pointer to v as little endian. */
988    template <typename T>
989    void setLE(T v);
990
991    /**
992     * Set the value in the data pointer to v using the specified
993     * endianness.
994     */
995    template <typename T>
996    void set(T v, ByteOrder endian);
997
998    /** Set the value in the data pointer to v as guest endian. */
999    template <typename T>
1000    void set(T v);
1001
1002    /**
1003     * Copy data into the packet from the provided pointer.
1004     */
1005    void
1006    setData(const uint8_t *p)
1007    {
1008        // we should never be copying data onto itself, which means we
1009        // must idenfity packets with static data, as they carry the
1010        // same pointer from source to destination and back
1011        assert(p != getPtr<uint8_t>() || flags.isSet(STATIC_DATA));
1012
1013        if (p != getPtr<uint8_t>())
1014            // for packet with allocated dynamic data, we copy data from
1015            // one to the other, e.g. a forwarded response to a response
1016            std::memcpy(getPtr<uint8_t>(), p, getSize());
1017    }
1018
1019    /**
1020     * Copy data into the packet from the provided block pointer,
1021     * which is aligned to the given block size.
1022     */
1023    void
1024    setDataFromBlock(const uint8_t *blk_data, int blkSize)
1025    {
1026        setData(blk_data + getOffset(blkSize));
1027    }
1028
1029    /**
1030     * Copy data from the packet to the provided block pointer, which
1031     * is aligned to the given block size.
1032     */
1033    void
1034    writeData(uint8_t *p) const
1035    {
1036        std::memcpy(p, getConstPtr<uint8_t>(), getSize());
1037    }
1038
1039    /**
1040     * Copy data from the packet to the memory at the provided pointer.
1041     */
1042    void
1043    writeDataToBlock(uint8_t *blk_data, int blkSize) const
1044    {
1045        writeData(blk_data + getOffset(blkSize));
1046    }
1047
1048    /**
1049     * delete the data pointed to in the data pointer. Ok to call to
1050     * matter how data was allocted.
1051     */
1052    void
1053    deleteData()
1054    {
1055        if (flags.isSet(DYNAMIC_DATA))
1056            delete [] data;
1057
1058        flags.clear(STATIC_DATA|DYNAMIC_DATA);
1059        data = NULL;
1060    }
1061
1062    /** Allocate memory for the packet. */
1063    void
1064    allocate()
1065    {
1066        // if either this command or the response command has a data
1067        // payload, actually allocate space
1068        if (hasData() || hasRespData()) {
1069            assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
1070            flags.set(DYNAMIC_DATA);
1071            data = new uint8_t[getSize()];
1072        }
1073    }
1074
1075    /** @} */
1076
1077  private: // Private data accessor methods
1078    /** Get the data in the packet without byte swapping. */
1079    template <typename T>
1080    T getRaw() const;
1081
1082    /** Set the value in the data pointer to v without byte swapping. */
1083    template <typename T>
1084    void setRaw(T v);
1085
1086  public:
1087    /**
1088     * Check a functional request against a memory value stored in
1089     * another packet (i.e. an in-transit request or
1090     * response). Returns true if the current packet is a read, and
1091     * the other packet provides the data, which is then copied to the
1092     * current packet. If the current packet is a write, and the other
1093     * packet intersects this one, then we update the data
1094     * accordingly.
1095     */
1096    bool
1097    checkFunctional(PacketPtr other)
1098    {
1099        // all packets that are carrying a payload should have a valid
1100        // data pointer
1101        return checkFunctional(other, other->getAddr(), other->isSecure(),
1102                               other->getSize(),
1103                               other->hasData() ?
1104                               other->getPtr<uint8_t>() : NULL);
1105    }
1106
1107    /**
1108     * Does the request need to check for cached copies of the same block
1109     * in the memory hierarchy above.
1110     **/
1111    bool
1112    mustCheckAbove() const
1113    {
1114        return cmd == MemCmd::HardPFReq || isEviction();
1115    }
1116
1117    /**
1118     * Is this packet a clean eviction, including both actual clean
1119     * evict packets, but also clean writebacks.
1120     */
1121    bool
1122    isCleanEviction() const
1123    {
1124        return cmd == MemCmd::CleanEvict || cmd == MemCmd::WritebackClean;
1125    }
1126
1127    /**
1128     * Check a functional request against a memory value represented
1129     * by a base/size pair and an associated data array. If the
1130     * current packet is a read, it may be satisfied by the memory
1131     * value. If the current packet is a write, it may update the
1132     * memory value.
1133     */
1134    bool
1135    checkFunctional(Printable *obj, Addr base, bool is_secure, int size,
1136                    uint8_t *_data);
1137
1138    /**
1139     * Push label for PrintReq (safe to call unconditionally).
1140     */
1141    void
1142    pushLabel(const std::string &lbl)
1143    {
1144        if (isPrint())
1145            safe_cast<PrintReqState*>(senderState)->pushLabel(lbl);
1146    }
1147
1148    /**
1149     * Pop label for PrintReq (safe to call unconditionally).
1150     */
1151    void
1152    popLabel()
1153    {
1154        if (isPrint())
1155            safe_cast<PrintReqState*>(senderState)->popLabel();
1156    }
1157
1158    void print(std::ostream &o, int verbosity = 0,
1159               const std::string &prefix = "") const;
1160
1161    /**
1162     * A no-args wrapper of print(std::ostream...)
1163     * meant to be invoked from DPRINTFs
1164     * avoiding string overheads in fast mode
1165     * @return string with the request's type and start<->end addresses
1166     */
1167    std::string print() const;
1168};
1169
1170#endif //__MEM_PACKET_HH
1171