packet.hh revision 11256:65db40192591
1/*
2 * Copyright (c) 2012-2015 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2006 The Regents of The University of Michigan
15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Ron Dreslinski
42 *          Steve Reinhardt
43 *          Ali Saidi
44 *          Andreas Hansson
45 */
46
47/**
48 * @file
49 * Declaration of the Packet class.
50 */
51
52#ifndef __MEM_PACKET_HH__
53#define __MEM_PACKET_HH__
54
55#include <bitset>
56#include <cassert>
57#include <list>
58
59#include "base/cast.hh"
60#include "base/compiler.hh"
61#include "base/flags.hh"
62#include "base/misc.hh"
63#include "base/printable.hh"
64#include "base/types.hh"
65#include "mem/request.hh"
66#include "sim/core.hh"
67
68class Packet;
69typedef Packet *PacketPtr;
70typedef uint8_t* PacketDataPtr;
71typedef std::list<PacketPtr> PacketList;
72
73class MemCmd
74{
75    friend class Packet;
76
77  public:
78    /**
79     * List of all commands associated with a packet.
80     */
81    enum Command
82    {
83        InvalidCmd,
84        ReadReq,
85        ReadResp,
86        ReadRespWithInvalidate,
87        WriteReq,
88        WriteResp,
89        WritebackDirty,
90        WritebackClean,
91        CleanEvict,
92        SoftPFReq,
93        HardPFReq,
94        SoftPFResp,
95        HardPFResp,
96        WriteLineReq,
97        UpgradeReq,
98        SCUpgradeReq,           // Special "weak" upgrade for StoreCond
99        UpgradeResp,
100        SCUpgradeFailReq,       // Failed SCUpgradeReq in MSHR (never sent)
101        UpgradeFailResp,        // Valid for SCUpgradeReq only
102        ReadExReq,
103        ReadExResp,
104        ReadCleanReq,
105        ReadSharedReq,
106        LoadLockedReq,
107        StoreCondReq,
108        StoreCondFailReq,       // Failed StoreCondReq in MSHR (never sent)
109        StoreCondResp,
110        SwapReq,
111        SwapResp,
112        MessageReq,
113        MessageResp,
114        MemFenceReq,
115        MemFenceResp,
116        // Error responses
117        // @TODO these should be classified as responses rather than
118        // requests; coding them as requests initially for backwards
119        // compatibility
120        InvalidDestError,  // packet dest field invalid
121        BadAddressError,   // memory address invalid
122        FunctionalReadError, // unable to fulfill functional read
123        FunctionalWriteError, // unable to fulfill functional write
124        // Fake simulator-only commands
125        PrintReq,       // Print state matching address
126        FlushReq,      //request for a cache flush
127        InvalidateReq,   // request for address to be invalidated
128        InvalidateResp,
129        NUM_MEM_CMDS
130    };
131
132  private:
133    /**
134     * List of command attributes.
135     */
136    enum Attribute
137    {
138        IsRead,         //!< Data flows from responder to requester
139        IsWrite,        //!< Data flows from requester to responder
140        IsUpgrade,
141        IsInvalidate,
142        NeedsExclusive, //!< Requires exclusive copy to complete in-cache
143        IsRequest,      //!< Issued by requester
144        IsResponse,     //!< Issue by responder
145        NeedsResponse,  //!< Requester needs response from target
146        IsEviction,
147        IsSWPrefetch,
148        IsHWPrefetch,
149        IsLlsc,         //!< Alpha/MIPS LL or SC access
150        HasData,        //!< There is an associated payload
151        IsError,        //!< Error response
152        IsPrint,        //!< Print state matching address (for debugging)
153        IsFlush,        //!< Flush the address from caches
154        NUM_COMMAND_ATTRIBUTES
155    };
156
157    /**
158     * Structure that defines attributes and other data associated
159     * with a Command.
160     */
161    struct CommandInfo
162    {
163        /// Set of attribute flags.
164        const std::bitset<NUM_COMMAND_ATTRIBUTES> attributes;
165        /// Corresponding response for requests; InvalidCmd if no
166        /// response is applicable.
167        const Command response;
168        /// String representation (for printing)
169        const std::string str;
170    };
171
172    /// Array to map Command enum to associated info.
173    static const CommandInfo commandInfo[];
174
175  private:
176
177    Command cmd;
178
179    bool
180    testCmdAttrib(MemCmd::Attribute attrib) const
181    {
182        return commandInfo[cmd].attributes[attrib] != 0;
183    }
184
185  public:
186
187    bool isRead() const            { return testCmdAttrib(IsRead); }
188    bool isWrite() const           { return testCmdAttrib(IsWrite); }
189    bool isUpgrade() const         { return testCmdAttrib(IsUpgrade); }
190    bool isRequest() const         { return testCmdAttrib(IsRequest); }
191    bool isResponse() const        { return testCmdAttrib(IsResponse); }
192    bool needsExclusive() const    { return testCmdAttrib(NeedsExclusive); }
193    bool needsResponse() const     { return testCmdAttrib(NeedsResponse); }
194    bool isInvalidate() const      { return testCmdAttrib(IsInvalidate); }
195    bool isEviction() const        { return testCmdAttrib(IsEviction); }
196
197    /**
198     * A writeback is an eviction that carries data.
199     */
200    bool isWriteback() const       { return testCmdAttrib(IsEviction) &&
201                                            testCmdAttrib(HasData); }
202
203    /**
204     * Check if this particular packet type carries payload data. Note
205     * that this does not reflect if the data pointer of the packet is
206     * valid or not.
207     */
208    bool hasData() const        { return testCmdAttrib(HasData); }
209    bool isLLSC() const         { return testCmdAttrib(IsLlsc); }
210    bool isSWPrefetch() const   { return testCmdAttrib(IsSWPrefetch); }
211    bool isHWPrefetch() const   { return testCmdAttrib(IsHWPrefetch); }
212    bool isPrefetch() const     { return testCmdAttrib(IsSWPrefetch) ||
213                                         testCmdAttrib(IsHWPrefetch); }
214    bool isError() const        { return testCmdAttrib(IsError); }
215    bool isPrint() const        { return testCmdAttrib(IsPrint); }
216    bool isFlush() const        { return testCmdAttrib(IsFlush); }
217
218    const Command
219    responseCommand() const
220    {
221        return commandInfo[cmd].response;
222    }
223
224    /// Return the string to a cmd given by idx.
225    const std::string &toString() const { return commandInfo[cmd].str; }
226    int toInt() const { return (int)cmd; }
227
228    MemCmd(Command _cmd) : cmd(_cmd) { }
229    MemCmd(int _cmd) : cmd((Command)_cmd) { }
230    MemCmd() : cmd(InvalidCmd) { }
231
232    bool operator==(MemCmd c2) const { return (cmd == c2.cmd); }
233    bool operator!=(MemCmd c2) const { return (cmd != c2.cmd); }
234};
235
236/**
237 * A Packet is used to encapsulate a transfer between two objects in
238 * the memory system (e.g., the L1 and L2 cache).  (In contrast, a
239 * single Request travels all the way from the requester to the
240 * ultimate destination and back, possibly being conveyed by several
241 * different Packets along the way.)
242 */
243class Packet : public Printable
244{
245  public:
246    typedef uint32_t FlagsType;
247    typedef ::Flags<FlagsType> Flags;
248
249  private:
250
251    enum : FlagsType {
252        // Flags to transfer across when copying a packet
253        COPY_FLAGS             = 0x0000000F,
254
255        SHARED                 = 0x00000001,
256        // Special control flags
257        /// Special timing-mode atomic snoop for multi-level coherence.
258        EXPRESS_SNOOP          = 0x00000002,
259        /// Does supplier have exclusive copy?
260        /// Useful for multi-level coherence.
261        SUPPLY_EXCLUSIVE       = 0x00000004,
262        // Snoop response flags
263        MEM_INHIBIT            = 0x00000008,
264
265        /// Are the 'addr' and 'size' fields valid?
266        VALID_ADDR             = 0x00000100,
267        VALID_SIZE             = 0x00000200,
268
269        /// Is the data pointer set to a value that shouldn't be freed
270        /// when the packet is destroyed?
271        STATIC_DATA            = 0x00001000,
272        /// The data pointer points to a value that should be freed when
273        /// the packet is destroyed. The pointer is assumed to be pointing
274        /// to an array, and delete [] is consequently called
275        DYNAMIC_DATA           = 0x00002000,
276
277        /// suppress the error if this packet encounters a functional
278        /// access failure.
279        SUPPRESS_FUNC_ERROR    = 0x00008000,
280
281        // Signal block present to squash prefetch and cache evict packets
282        // through express snoop flag
283        BLOCK_CACHED          = 0x00010000
284    };
285
286    Flags flags;
287
288  public:
289    typedef MemCmd::Command Command;
290
291    /// The command field of the packet.
292    MemCmd cmd;
293
294    /// A pointer to the original request.
295    const RequestPtr req;
296
297  private:
298   /**
299    * A pointer to the data being transfered.  It can be differnt
300    * sizes at each level of the heirarchy so it belongs in the
301    * packet, not request. This may or may not be populated when a
302    * responder recieves the packet. If not populated it memory should
303    * be allocated.
304    */
305    PacketDataPtr data;
306
307    /// The address of the request.  This address could be virtual or
308    /// physical, depending on the system configuration.
309    Addr addr;
310
311    /// True if the request targets the secure memory space.
312    bool _isSecure;
313
314    /// The size of the request or transfer.
315    unsigned size;
316
317    /**
318     * Track the bytes found that satisfy a functional read.
319     */
320    std::vector<bool> bytesValid;
321
322  public:
323
324    /**
325     * The extra delay from seeing the packet until the header is
326     * transmitted. This delay is used to communicate the crossbar
327     * forwarding latency to the neighbouring object (e.g. a cache)
328     * that actually makes the packet wait. As the delay is relative,
329     * a 32-bit unsigned should be sufficient.
330     */
331    uint32_t headerDelay;
332
333    /**
334     * Keep track of the extra delay incurred by snooping upwards
335     * before sending a request down the memory system. This is used
336     * by the coherent crossbar to account for the additional request
337     * delay.
338     */
339    uint32_t snoopDelay;
340
341    /**
342     * The extra pipelining delay from seeing the packet until the end of
343     * payload is transmitted by the component that provided it (if
344     * any). This includes the header delay. Similar to the header
345     * delay, this is used to make up for the fact that the
346     * crossbar does not make the packet wait. As the delay is
347     * relative, a 32-bit unsigned should be sufficient.
348     */
349    uint32_t payloadDelay;
350
351    /**
352     * A virtual base opaque structure used to hold state associated
353     * with the packet (e.g., an MSHR), specific to a MemObject that
354     * sees the packet. A pointer to this state is returned in the
355     * packet's response so that the MemObject in question can quickly
356     * look up the state needed to process it. A specific subclass
357     * would be derived from this to carry state specific to a
358     * particular sending device.
359     *
360     * As multiple MemObjects may add their SenderState throughout the
361     * memory system, the SenderStates create a stack, where a
362     * MemObject can add a new Senderstate, as long as the
363     * predecessing SenderState is restored when the response comes
364     * back. For this reason, the predecessor should always be
365     * populated with the current SenderState of a packet before
366     * modifying the senderState field in the request packet.
367     */
368    struct SenderState
369    {
370        SenderState* predecessor;
371        SenderState() : predecessor(NULL) {}
372        virtual ~SenderState() {}
373    };
374
375    /**
376     * Object used to maintain state of a PrintReq.  The senderState
377     * field of a PrintReq should always be of this type.
378     */
379    class PrintReqState : public SenderState
380    {
381      private:
382        /**
383         * An entry in the label stack.
384         */
385        struct LabelStackEntry
386        {
387            const std::string label;
388            std::string *prefix;
389            bool labelPrinted;
390            LabelStackEntry(const std::string &_label, std::string *_prefix);
391        };
392
393        typedef std::list<LabelStackEntry> LabelStack;
394        LabelStack labelStack;
395
396        std::string *curPrefixPtr;
397
398      public:
399        std::ostream &os;
400        const int verbosity;
401
402        PrintReqState(std::ostream &os, int verbosity = 0);
403        ~PrintReqState();
404
405        /**
406         * Returns the current line prefix.
407         */
408        const std::string &curPrefix() { return *curPrefixPtr; }
409
410        /**
411         * Push a label onto the label stack, and prepend the given
412         * prefix string onto the current prefix.  Labels will only be
413         * printed if an object within the label's scope is printed.
414         */
415        void pushLabel(const std::string &lbl,
416                       const std::string &prefix = "  ");
417
418        /**
419         * Pop a label off the label stack.
420         */
421        void popLabel();
422
423        /**
424         * Print all of the pending unprinted labels on the
425         * stack. Called by printObj(), so normally not called by
426         * users unless bypassing printObj().
427         */
428        void printLabels();
429
430        /**
431         * Print a Printable object to os, because it matched the
432         * address on a PrintReq.
433         */
434        void printObj(Printable *obj);
435    };
436
437    /**
438     * This packet's sender state.  Devices should use dynamic_cast<>
439     * to cast to the state appropriate to the sender.  The intent of
440     * this variable is to allow a device to attach extra information
441     * to a request. A response packet must return the sender state
442     * that was attached to the original request (even if a new packet
443     * is created).
444     */
445    SenderState *senderState;
446
447    /**
448     * Push a new sender state to the packet and make the current
449     * sender state the predecessor of the new one. This should be
450     * prefered over direct manipulation of the senderState member
451     * variable.
452     *
453     * @param sender_state SenderState to push at the top of the stack
454     */
455    void pushSenderState(SenderState *sender_state);
456
457    /**
458     * Pop the top of the state stack and return a pointer to it. This
459     * assumes the current sender state is not NULL. This should be
460     * preferred over direct manipulation of the senderState member
461     * variable.
462     *
463     * @return The current top of the stack
464     */
465    SenderState *popSenderState();
466
467    /**
468     * Go through the sender state stack and return the first instance
469     * that is of type T (as determined by a dynamic_cast). If there
470     * is no sender state of type T, NULL is returned.
471     *
472     * @return The topmost state of type T
473     */
474    template <typename T>
475    T * findNextSenderState() const
476    {
477        T *t = NULL;
478        SenderState* sender_state = senderState;
479        while (t == NULL && sender_state != NULL) {
480            t = dynamic_cast<T*>(sender_state);
481            sender_state = sender_state->predecessor;
482        }
483        return t;
484    }
485
486    /// Return the string name of the cmd field (for debugging and
487    /// tracing).
488    const std::string &cmdString() const { return cmd.toString(); }
489
490    /// Return the index of this command.
491    inline int cmdToIndex() const { return cmd.toInt(); }
492
493    bool isRead() const              { return cmd.isRead(); }
494    bool isWrite() const             { return cmd.isWrite(); }
495    bool isUpgrade()  const          { return cmd.isUpgrade(); }
496    bool isRequest() const           { return cmd.isRequest(); }
497    bool isResponse() const          { return cmd.isResponse(); }
498    bool needsExclusive() const      { return cmd.needsExclusive(); }
499    bool needsResponse() const       { return cmd.needsResponse(); }
500    bool isInvalidate() const        { return cmd.isInvalidate(); }
501    bool isEviction() const          { return cmd.isEviction(); }
502    bool isWriteback() const         { return cmd.isWriteback(); }
503    bool hasData() const             { return cmd.hasData(); }
504    bool isLLSC() const              { return cmd.isLLSC(); }
505    bool isError() const             { return cmd.isError(); }
506    bool isPrint() const             { return cmd.isPrint(); }
507    bool isFlush() const             { return cmd.isFlush(); }
508
509    // Snoop flags
510    void assertMemInhibit()
511    {
512        assert(isRequest());
513        assert(!flags.isSet(MEM_INHIBIT));
514        flags.set(MEM_INHIBIT);
515    }
516    bool memInhibitAsserted() const { return flags.isSet(MEM_INHIBIT); }
517    void assertShared()             { flags.set(SHARED); }
518    bool sharedAsserted() const     { return flags.isSet(SHARED); }
519
520    // Special control flags
521    void setExpressSnoop()          { flags.set(EXPRESS_SNOOP); }
522    bool isExpressSnoop() const     { return flags.isSet(EXPRESS_SNOOP); }
523    void setSupplyExclusive()       { flags.set(SUPPLY_EXCLUSIVE); }
524    bool isSupplyExclusive() const  { return flags.isSet(SUPPLY_EXCLUSIVE); }
525    void setSuppressFuncError()     { flags.set(SUPPRESS_FUNC_ERROR); }
526    bool suppressFuncError() const  { return flags.isSet(SUPPRESS_FUNC_ERROR); }
527    void setBlockCached()          { flags.set(BLOCK_CACHED); }
528    bool isBlockCached() const     { return flags.isSet(BLOCK_CACHED); }
529    void clearBlockCached()        { flags.clear(BLOCK_CACHED); }
530
531    // Network error conditions... encapsulate them as methods since
532    // their encoding keeps changing (from result field to command
533    // field, etc.)
534    void
535    setBadAddress()
536    {
537        assert(isResponse());
538        cmd = MemCmd::BadAddressError;
539    }
540
541    void copyError(Packet *pkt) { assert(pkt->isError()); cmd = pkt->cmd; }
542
543    Addr getAddr() const { assert(flags.isSet(VALID_ADDR)); return addr; }
544    /**
545     * Update the address of this packet mid-transaction. This is used
546     * by the address mapper to change an already set address to a new
547     * one based on the system configuration. It is intended to remap
548     * an existing address, so it asserts that the current address is
549     * valid.
550     */
551    void setAddr(Addr _addr) { assert(flags.isSet(VALID_ADDR)); addr = _addr; }
552
553    unsigned getSize() const  { assert(flags.isSet(VALID_SIZE)); return size; }
554
555    Addr getOffset(unsigned int blk_size) const
556    {
557        return getAddr() & Addr(blk_size - 1);
558    }
559
560    Addr getBlockAddr(unsigned int blk_size) const
561    {
562        return getAddr() & ~(Addr(blk_size - 1));
563    }
564
565    bool isSecure() const
566    {
567        assert(flags.isSet(VALID_ADDR));
568        return _isSecure;
569    }
570
571    /**
572     * It has been determined that the SC packet should successfully update
573     * memory. Therefore, convert this SC packet to a normal write.
574     */
575    void
576    convertScToWrite()
577    {
578        assert(isLLSC());
579        assert(isWrite());
580        cmd = MemCmd::WriteReq;
581    }
582
583    /**
584     * When ruby is in use, Ruby will monitor the cache line and the
585     * phys memory should treat LL ops as normal reads.
586     */
587    void
588    convertLlToRead()
589    {
590        assert(isLLSC());
591        assert(isRead());
592        cmd = MemCmd::ReadReq;
593    }
594
595    /**
596     * Constructor. Note that a Request object must be constructed
597     * first, but the Requests's physical address and size fields need
598     * not be valid. The command must be supplied.
599     */
600    Packet(const RequestPtr _req, MemCmd _cmd)
601        :  cmd(_cmd), req(_req), data(nullptr), addr(0), _isSecure(false),
602           size(0), headerDelay(0), snoopDelay(0), payloadDelay(0),
603           senderState(NULL)
604    {
605        if (req->hasPaddr()) {
606            addr = req->getPaddr();
607            flags.set(VALID_ADDR);
608            _isSecure = req->isSecure();
609        }
610        if (req->hasSize()) {
611            size = req->getSize();
612            flags.set(VALID_SIZE);
613        }
614    }
615
616    /**
617     * Alternate constructor if you are trying to create a packet with
618     * a request that is for a whole block, not the address from the
619     * req.  this allows for overriding the size/addr of the req.
620     */
621    Packet(const RequestPtr _req, MemCmd _cmd, int _blkSize)
622        :  cmd(_cmd), req(_req), data(nullptr), addr(0), _isSecure(false),
623           headerDelay(0), snoopDelay(0), payloadDelay(0),
624           senderState(NULL)
625    {
626        if (req->hasPaddr()) {
627            addr = req->getPaddr() & ~(_blkSize - 1);
628            flags.set(VALID_ADDR);
629            _isSecure = req->isSecure();
630        }
631        size = _blkSize;
632        flags.set(VALID_SIZE);
633    }
634
635    /**
636     * Alternate constructor for copying a packet.  Copy all fields
637     * *except* if the original packet's data was dynamic, don't copy
638     * that, as we can't guarantee that the new packet's lifetime is
639     * less than that of the original packet.  In this case the new
640     * packet should allocate its own data.
641     */
642    Packet(const PacketPtr pkt, bool clear_flags, bool alloc_data)
643        :  cmd(pkt->cmd), req(pkt->req),
644           data(nullptr),
645           addr(pkt->addr), _isSecure(pkt->_isSecure), size(pkt->size),
646           bytesValid(pkt->bytesValid),
647           headerDelay(pkt->headerDelay),
648           snoopDelay(0),
649           payloadDelay(pkt->payloadDelay),
650           senderState(pkt->senderState)
651    {
652        if (!clear_flags)
653            flags.set(pkt->flags & COPY_FLAGS);
654
655        flags.set(pkt->flags & (VALID_ADDR|VALID_SIZE));
656
657        // should we allocate space for data, or not, the express
658        // snoops do not need to carry any data as they only serve to
659        // co-ordinate state changes
660        if (alloc_data) {
661            // even if asked to allocate data, if the original packet
662            // holds static data, then the sender will not be doing
663            // any memcpy on receiving the response, thus we simply
664            // carry the pointer forward
665            if (pkt->flags.isSet(STATIC_DATA)) {
666                data = pkt->data;
667                flags.set(STATIC_DATA);
668            } else {
669                allocate();
670            }
671        }
672    }
673
674    /**
675     * Generate the appropriate read MemCmd based on the Request flags.
676     */
677    static MemCmd
678    makeReadCmd(const RequestPtr req)
679    {
680        if (req->isLLSC())
681            return MemCmd::LoadLockedReq;
682        else if (req->isPrefetch())
683            return MemCmd::SoftPFReq;
684        else
685            return MemCmd::ReadReq;
686    }
687
688    /**
689     * Generate the appropriate write MemCmd based on the Request flags.
690     */
691    static MemCmd
692    makeWriteCmd(const RequestPtr req)
693    {
694        if (req->isLLSC())
695            return MemCmd::StoreCondReq;
696        else if (req->isSwap())
697            return MemCmd::SwapReq;
698        else
699            return MemCmd::WriteReq;
700    }
701
702    /**
703     * Constructor-like methods that return Packets based on Request objects.
704     * Fine-tune the MemCmd type if it's not a vanilla read or write.
705     */
706    static PacketPtr
707    createRead(const RequestPtr req)
708    {
709        return new Packet(req, makeReadCmd(req));
710    }
711
712    static PacketPtr
713    createWrite(const RequestPtr req)
714    {
715        return new Packet(req, makeWriteCmd(req));
716    }
717
718    /**
719     * clean up packet variables
720     */
721    ~Packet()
722    {
723        // Delete the request object if this is a request packet which
724        // does not need a response, because the requester will not get
725        // a chance. If the request packet needs a response then the
726        // request will be deleted on receipt of the response
727        // packet. We also make sure to never delete the request for
728        // express snoops, even for cases when responses are not
729        // needed (CleanEvict and Writeback), since the snoop packet
730        // re-uses the same request.
731        if (req && isRequest() && !needsResponse() &&
732            !isExpressSnoop()) {
733            delete req;
734        }
735        deleteData();
736    }
737
738    /**
739     * Take a request packet and modify it in place to be suitable for
740     * returning as a response to that request.
741     */
742    void
743    makeResponse()
744    {
745        assert(needsResponse());
746        assert(isRequest());
747        cmd = cmd.responseCommand();
748
749        // responses are never express, even if the snoop that
750        // triggered them was
751        flags.clear(EXPRESS_SNOOP);
752    }
753
754    void
755    makeAtomicResponse()
756    {
757        makeResponse();
758    }
759
760    void
761    makeTimingResponse()
762    {
763        makeResponse();
764    }
765
766    void
767    setFunctionalResponseStatus(bool success)
768    {
769        if (!success) {
770            if (isWrite()) {
771                cmd = MemCmd::FunctionalWriteError;
772            } else {
773                cmd = MemCmd::FunctionalReadError;
774            }
775        }
776    }
777
778    void
779    setSize(unsigned size)
780    {
781        assert(!flags.isSet(VALID_SIZE));
782
783        this->size = size;
784        flags.set(VALID_SIZE);
785    }
786
787
788  public:
789    /**
790     * @{
791     * @name Data accessor mehtods
792     */
793
794    /**
795     * Set the data pointer to the following value that should not be
796     * freed. Static data allows us to do a single memcpy even if
797     * multiple packets are required to get from source to destination
798     * and back. In essence the pointer is set calling dataStatic on
799     * the original packet, and whenever this packet is copied and
800     * forwarded the same pointer is passed on. When a packet
801     * eventually reaches the destination holding the data, it is
802     * copied once into the location originally set. On the way back
803     * to the source, no copies are necessary.
804     */
805    template <typename T>
806    void
807    dataStatic(T *p)
808    {
809        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
810        data = (PacketDataPtr)p;
811        flags.set(STATIC_DATA);
812    }
813
814    /**
815     * Set the data pointer to the following value that should not be
816     * freed. This version of the function allows the pointer passed
817     * to us to be const. To avoid issues down the line we cast the
818     * constness away, the alternative would be to keep both a const
819     * and non-const data pointer and cleverly choose between
820     * them. Note that this is only allowed for static data.
821     */
822    template <typename T>
823    void
824    dataStaticConst(const T *p)
825    {
826        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
827        data = const_cast<PacketDataPtr>(p);
828        flags.set(STATIC_DATA);
829    }
830
831    /**
832     * Set the data pointer to a value that should have delete []
833     * called on it. Dynamic data is local to this packet, and as the
834     * packet travels from source to destination, forwarded packets
835     * will allocate their own data. When a packet reaches the final
836     * destination it will populate the dynamic data of that specific
837     * packet, and on the way back towards the source, memcpy will be
838     * invoked in every step where a new packet was created e.g. in
839     * the caches. Ultimately when the response reaches the source a
840     * final memcpy is needed to extract the data from the packet
841     * before it is deallocated.
842     */
843    template <typename T>
844    void
845    dataDynamic(T *p)
846    {
847        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
848        data = (PacketDataPtr)p;
849        flags.set(DYNAMIC_DATA);
850    }
851
852    /**
853     * get a pointer to the data ptr.
854     */
855    template <typename T>
856    T*
857    getPtr()
858    {
859        assert(flags.isSet(STATIC_DATA|DYNAMIC_DATA));
860        return (T*)data;
861    }
862
863    template <typename T>
864    const T*
865    getConstPtr() const
866    {
867        assert(flags.isSet(STATIC_DATA|DYNAMIC_DATA));
868        return (const T*)data;
869    }
870
871    /**
872     * Get the data in the packet byte swapped from big endian to
873     * host endian.
874     */
875    template <typename T>
876    T getBE() const;
877
878    /**
879     * Get the data in the packet byte swapped from little endian to
880     * host endian.
881     */
882    template <typename T>
883    T getLE() const;
884
885    /**
886     * Get the data in the packet byte swapped from the specified
887     * endianness.
888     */
889    template <typename T>
890    T get(ByteOrder endian) const;
891
892    /**
893     * Get the data in the packet byte swapped from guest to host
894     * endian.
895     */
896    template <typename T>
897    T get() const;
898
899    /** Set the value in the data pointer to v as big endian. */
900    template <typename T>
901    void setBE(T v);
902
903    /** Set the value in the data pointer to v as little endian. */
904    template <typename T>
905    void setLE(T v);
906
907    /**
908     * Set the value in the data pointer to v using the specified
909     * endianness.
910     */
911    template <typename T>
912    void set(T v, ByteOrder endian);
913
914    /** Set the value in the data pointer to v as guest endian. */
915    template <typename T>
916    void set(T v);
917
918    /**
919     * Copy data into the packet from the provided pointer.
920     */
921    void
922    setData(const uint8_t *p)
923    {
924        // we should never be copying data onto itself, which means we
925        // must idenfity packets with static data, as they carry the
926        // same pointer from source to destination and back
927        assert(p != getPtr<uint8_t>() || flags.isSet(STATIC_DATA));
928
929        if (p != getPtr<uint8_t>())
930            // for packet with allocated dynamic data, we copy data from
931            // one to the other, e.g. a forwarded response to a response
932            std::memcpy(getPtr<uint8_t>(), p, getSize());
933    }
934
935    /**
936     * Copy data into the packet from the provided block pointer,
937     * which is aligned to the given block size.
938     */
939    void
940    setDataFromBlock(const uint8_t *blk_data, int blkSize)
941    {
942        setData(blk_data + getOffset(blkSize));
943    }
944
945    /**
946     * Copy data from the packet to the provided block pointer, which
947     * is aligned to the given block size.
948     */
949    void
950    writeData(uint8_t *p) const
951    {
952        std::memcpy(p, getConstPtr<uint8_t>(), getSize());
953    }
954
955    /**
956     * Copy data from the packet to the memory at the provided pointer.
957     */
958    void
959    writeDataToBlock(uint8_t *blk_data, int blkSize) const
960    {
961        writeData(blk_data + getOffset(blkSize));
962    }
963
964    /**
965     * delete the data pointed to in the data pointer. Ok to call to
966     * matter how data was allocted.
967     */
968    void
969    deleteData()
970    {
971        if (flags.isSet(DYNAMIC_DATA))
972            delete [] data;
973
974        flags.clear(STATIC_DATA|DYNAMIC_DATA);
975        data = NULL;
976    }
977
978    /** Allocate memory for the packet. */
979    void
980    allocate()
981    {
982        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
983        flags.set(DYNAMIC_DATA);
984        data = new uint8_t[getSize()];
985    }
986
987    /** @} */
988
989  private: // Private data accessor methods
990    /** Get the data in the packet without byte swapping. */
991    template <typename T>
992    T getRaw() const;
993
994    /** Set the value in the data pointer to v without byte swapping. */
995    template <typename T>
996    void setRaw(T v);
997
998  public:
999    /**
1000     * Check a functional request against a memory value stored in
1001     * another packet (i.e. an in-transit request or
1002     * response). Returns true if the current packet is a read, and
1003     * the other packet provides the data, which is then copied to the
1004     * current packet. If the current packet is a write, and the other
1005     * packet intersects this one, then we update the data
1006     * accordingly.
1007     */
1008    bool
1009    checkFunctional(PacketPtr other)
1010    {
1011        // all packets that are carrying a payload should have a valid
1012        // data pointer
1013        return checkFunctional(other, other->getAddr(), other->isSecure(),
1014                               other->getSize(),
1015                               other->hasData() ?
1016                               other->getPtr<uint8_t>() : NULL);
1017    }
1018
1019    /**
1020     * Does the request need to check for cached copies of the same block
1021     * in the memory hierarchy above.
1022     **/
1023    bool
1024    mustCheckAbove() const
1025    {
1026        return cmd == MemCmd::HardPFReq || isEviction();
1027    }
1028
1029    /**
1030     * Is this packet a clean eviction, including both actual clean
1031     * evict packets, but also clean writebacks.
1032     */
1033    bool
1034    isCleanEviction() const
1035    {
1036        return cmd == MemCmd::CleanEvict || cmd == MemCmd::WritebackClean;
1037    }
1038
1039    /**
1040     * Check a functional request against a memory value represented
1041     * by a base/size pair and an associated data array. If the
1042     * current packet is a read, it may be satisfied by the memory
1043     * value. If the current packet is a write, it may update the
1044     * memory value.
1045     */
1046    bool
1047    checkFunctional(Printable *obj, Addr base, bool is_secure, int size,
1048                    uint8_t *_data);
1049
1050    /**
1051     * Push label for PrintReq (safe to call unconditionally).
1052     */
1053    void
1054    pushLabel(const std::string &lbl)
1055    {
1056        if (isPrint())
1057            safe_cast<PrintReqState*>(senderState)->pushLabel(lbl);
1058    }
1059
1060    /**
1061     * Pop label for PrintReq (safe to call unconditionally).
1062     */
1063    void
1064    popLabel()
1065    {
1066        if (isPrint())
1067            safe_cast<PrintReqState*>(senderState)->popLabel();
1068    }
1069
1070    void print(std::ostream &o, int verbosity = 0,
1071               const std::string &prefix = "") const;
1072
1073    /**
1074     * A no-args wrapper of print(std::ostream...)
1075     * meant to be invoked from DPRINTFs
1076     * avoiding string overheads in fast mode
1077     * @return string with the request's type and start<->end addresses
1078     */
1079    std::string print() const;
1080};
1081
1082#endif //__MEM_PACKET_HH
1083