packet.hh revision 11127:f39c2cc0d44e
1/*
2 * Copyright (c) 2012-2015 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2006 The Regents of The University of Michigan
15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Ron Dreslinski
42 *          Steve Reinhardt
43 *          Ali Saidi
44 *          Andreas Hansson
45 */
46
47/**
48 * @file
49 * Declaration of the Packet class.
50 */
51
52#ifndef __MEM_PACKET_HH__
53#define __MEM_PACKET_HH__
54
55#include <bitset>
56#include <cassert>
57#include <list>
58
59#include "base/cast.hh"
60#include "base/compiler.hh"
61#include "base/flags.hh"
62#include "base/misc.hh"
63#include "base/printable.hh"
64#include "base/types.hh"
65#include "mem/request.hh"
66#include "sim/core.hh"
67
68class Packet;
69typedef Packet *PacketPtr;
70typedef uint8_t* PacketDataPtr;
71typedef std::list<PacketPtr> PacketList;
72
73class MemCmd
74{
75    friend class Packet;
76
77  public:
78    /**
79     * List of all commands associated with a packet.
80     */
81    enum Command
82    {
83        InvalidCmd,
84        ReadReq,
85        ReadResp,
86        ReadRespWithInvalidate,
87        WriteReq,
88        WriteResp,
89        Writeback,
90        CleanEvict,
91        SoftPFReq,
92        HardPFReq,
93        SoftPFResp,
94        HardPFResp,
95        WriteLineReq,
96        UpgradeReq,
97        SCUpgradeReq,           // Special "weak" upgrade for StoreCond
98        UpgradeResp,
99        SCUpgradeFailReq,       // Failed SCUpgradeReq in MSHR (never sent)
100        UpgradeFailResp,        // Valid for SCUpgradeReq only
101        ReadExReq,
102        ReadExResp,
103        ReadCleanReq,
104        ReadSharedReq,
105        LoadLockedReq,
106        StoreCondReq,
107        StoreCondFailReq,       // Failed StoreCondReq in MSHR (never sent)
108        StoreCondResp,
109        SwapReq,
110        SwapResp,
111        MessageReq,
112        MessageResp,
113        ReleaseReq,
114        ReleaseResp,
115        AcquireReq,
116        AcquireResp,
117        // Error responses
118        // @TODO these should be classified as responses rather than
119        // requests; coding them as requests initially for backwards
120        // compatibility
121        InvalidDestError,  // packet dest field invalid
122        BadAddressError,   // memory address invalid
123        FunctionalReadError, // unable to fulfill functional read
124        FunctionalWriteError, // unable to fulfill functional write
125        // Fake simulator-only commands
126        PrintReq,       // Print state matching address
127        FlushReq,      //request for a cache flush
128        InvalidateReq,   // request for address to be invalidated
129        InvalidateResp,
130        NUM_MEM_CMDS
131    };
132
133  private:
134    /**
135     * List of command attributes.
136     */
137    enum Attribute
138    {
139        IsRead,         //!< Data flows from responder to requester
140        IsWrite,        //!< Data flows from requester to responder
141        IsUpgrade,
142        IsInvalidate,
143        NeedsExclusive, //!< Requires exclusive copy to complete in-cache
144        IsRequest,      //!< Issued by requester
145        IsResponse,     //!< Issue by responder
146        NeedsResponse,  //!< Requester needs response from target
147        IsSWPrefetch,
148        IsHWPrefetch,
149        IsLlsc,         //!< Alpha/MIPS LL or SC access
150        HasData,        //!< There is an associated payload
151        IsError,        //!< Error response
152        IsPrint,        //!< Print state matching address (for debugging)
153        IsFlush,        //!< Flush the address from caches
154        NUM_COMMAND_ATTRIBUTES
155    };
156
157    /**
158     * Structure that defines attributes and other data associated
159     * with a Command.
160     */
161    struct CommandInfo
162    {
163        /// Set of attribute flags.
164        const std::bitset<NUM_COMMAND_ATTRIBUTES> attributes;
165        /// Corresponding response for requests; InvalidCmd if no
166        /// response is applicable.
167        const Command response;
168        /// String representation (for printing)
169        const std::string str;
170    };
171
172    /// Array to map Command enum to associated info.
173    static const CommandInfo commandInfo[];
174
175  private:
176
177    Command cmd;
178
179    bool
180    testCmdAttrib(MemCmd::Attribute attrib) const
181    {
182        return commandInfo[cmd].attributes[attrib] != 0;
183    }
184
185  public:
186
187    bool isRead() const            { return testCmdAttrib(IsRead); }
188    bool isWrite() const           { return testCmdAttrib(IsWrite); }
189    bool isUpgrade() const         { return testCmdAttrib(IsUpgrade); }
190    bool isRequest() const         { return testCmdAttrib(IsRequest); }
191    bool isResponse() const        { return testCmdAttrib(IsResponse); }
192    bool needsExclusive() const    { return testCmdAttrib(NeedsExclusive); }
193    bool needsResponse() const     { return testCmdAttrib(NeedsResponse); }
194    bool isInvalidate() const      { return testCmdAttrib(IsInvalidate); }
195
196    /**
197     * Check if this particular packet type carries payload data. Note
198     * that this does not reflect if the data pointer of the packet is
199     * valid or not.
200     */
201    bool hasData() const        { return testCmdAttrib(HasData); }
202    bool isLLSC() const         { return testCmdAttrib(IsLlsc); }
203    bool isSWPrefetch() const   { return testCmdAttrib(IsSWPrefetch); }
204    bool isHWPrefetch() const   { return testCmdAttrib(IsHWPrefetch); }
205    bool isPrefetch() const     { return testCmdAttrib(IsSWPrefetch) ||
206                                         testCmdAttrib(IsHWPrefetch); }
207    bool isError() const        { return testCmdAttrib(IsError); }
208    bool isPrint() const        { return testCmdAttrib(IsPrint); }
209    bool isFlush() const        { return testCmdAttrib(IsFlush); }
210
211    const Command
212    responseCommand() const
213    {
214        return commandInfo[cmd].response;
215    }
216
217    /// Return the string to a cmd given by idx.
218    const std::string &toString() const { return commandInfo[cmd].str; }
219    int toInt() const { return (int)cmd; }
220
221    MemCmd(Command _cmd) : cmd(_cmd) { }
222    MemCmd(int _cmd) : cmd((Command)_cmd) { }
223    MemCmd() : cmd(InvalidCmd) { }
224
225    bool operator==(MemCmd c2) const { return (cmd == c2.cmd); }
226    bool operator!=(MemCmd c2) const { return (cmd != c2.cmd); }
227};
228
229/**
230 * A Packet is used to encapsulate a transfer between two objects in
231 * the memory system (e.g., the L1 and L2 cache).  (In contrast, a
232 * single Request travels all the way from the requester to the
233 * ultimate destination and back, possibly being conveyed by several
234 * different Packets along the way.)
235 */
236class Packet : public Printable
237{
238  public:
239    typedef uint32_t FlagsType;
240    typedef ::Flags<FlagsType> Flags;
241
242  private:
243
244    enum : FlagsType {
245        // Flags to transfer across when copying a packet
246        COPY_FLAGS             = 0x0000000F,
247
248        SHARED                 = 0x00000001,
249        // Special control flags
250        /// Special timing-mode atomic snoop for multi-level coherence.
251        EXPRESS_SNOOP          = 0x00000002,
252        /// Does supplier have exclusive copy?
253        /// Useful for multi-level coherence.
254        SUPPLY_EXCLUSIVE       = 0x00000004,
255        // Snoop response flags
256        MEM_INHIBIT            = 0x00000008,
257
258        /// Are the 'addr' and 'size' fields valid?
259        VALID_ADDR             = 0x00000100,
260        VALID_SIZE             = 0x00000200,
261
262        /// Is the data pointer set to a value that shouldn't be freed
263        /// when the packet is destroyed?
264        STATIC_DATA            = 0x00001000,
265        /// The data pointer points to a value that should be freed when
266        /// the packet is destroyed. The pointer is assumed to be pointing
267        /// to an array, and delete [] is consequently called
268        DYNAMIC_DATA           = 0x00002000,
269
270        /// suppress the error if this packet encounters a functional
271        /// access failure.
272        SUPPRESS_FUNC_ERROR    = 0x00008000,
273
274        // Signal block present to squash prefetch and cache evict packets
275        // through express snoop flag
276        BLOCK_CACHED          = 0x00010000
277    };
278
279    Flags flags;
280
281  public:
282    typedef MemCmd::Command Command;
283
284    /// The command field of the packet.
285    MemCmd cmd;
286
287    /// A pointer to the original request.
288    const RequestPtr req;
289
290  private:
291   /**
292    * A pointer to the data being transfered.  It can be differnt
293    * sizes at each level of the heirarchy so it belongs in the
294    * packet, not request. This may or may not be populated when a
295    * responder recieves the packet. If not populated it memory should
296    * be allocated.
297    */
298    PacketDataPtr data;
299
300    /// The address of the request.  This address could be virtual or
301    /// physical, depending on the system configuration.
302    Addr addr;
303
304    /// True if the request targets the secure memory space.
305    bool _isSecure;
306
307    /// The size of the request or transfer.
308    unsigned size;
309
310    /**
311     * Track the bytes found that satisfy a functional read.
312     */
313    std::vector<bool> bytesValid;
314
315  public:
316
317    /**
318     * The extra delay from seeing the packet until the header is
319     * transmitted. This delay is used to communicate the crossbar
320     * forwarding latency to the neighbouring object (e.g. a cache)
321     * that actually makes the packet wait. As the delay is relative,
322     * a 32-bit unsigned should be sufficient.
323     */
324    uint32_t headerDelay;
325
326    /**
327     * Keep track of the extra delay incurred by snooping upwards
328     * before sending a request down the memory system. This is used
329     * by the coherent crossbar to account for the additional request
330     * delay.
331     */
332    uint32_t snoopDelay;
333
334    /**
335     * The extra pipelining delay from seeing the packet until the end of
336     * payload is transmitted by the component that provided it (if
337     * any). This includes the header delay. Similar to the header
338     * delay, this is used to make up for the fact that the
339     * crossbar does not make the packet wait. As the delay is
340     * relative, a 32-bit unsigned should be sufficient.
341     */
342    uint32_t payloadDelay;
343
344    /**
345     * A virtual base opaque structure used to hold state associated
346     * with the packet (e.g., an MSHR), specific to a MemObject that
347     * sees the packet. A pointer to this state is returned in the
348     * packet's response so that the MemObject in question can quickly
349     * look up the state needed to process it. A specific subclass
350     * would be derived from this to carry state specific to a
351     * particular sending device.
352     *
353     * As multiple MemObjects may add their SenderState throughout the
354     * memory system, the SenderStates create a stack, where a
355     * MemObject can add a new Senderstate, as long as the
356     * predecessing SenderState is restored when the response comes
357     * back. For this reason, the predecessor should always be
358     * populated with the current SenderState of a packet before
359     * modifying the senderState field in the request packet.
360     */
361    struct SenderState
362    {
363        SenderState* predecessor;
364        SenderState() : predecessor(NULL) {}
365        virtual ~SenderState() {}
366    };
367
368    /**
369     * Object used to maintain state of a PrintReq.  The senderState
370     * field of a PrintReq should always be of this type.
371     */
372    class PrintReqState : public SenderState
373    {
374      private:
375        /**
376         * An entry in the label stack.
377         */
378        struct LabelStackEntry
379        {
380            const std::string label;
381            std::string *prefix;
382            bool labelPrinted;
383            LabelStackEntry(const std::string &_label, std::string *_prefix);
384        };
385
386        typedef std::list<LabelStackEntry> LabelStack;
387        LabelStack labelStack;
388
389        std::string *curPrefixPtr;
390
391      public:
392        std::ostream &os;
393        const int verbosity;
394
395        PrintReqState(std::ostream &os, int verbosity = 0);
396        ~PrintReqState();
397
398        /**
399         * Returns the current line prefix.
400         */
401        const std::string &curPrefix() { return *curPrefixPtr; }
402
403        /**
404         * Push a label onto the label stack, and prepend the given
405         * prefix string onto the current prefix.  Labels will only be
406         * printed if an object within the label's scope is printed.
407         */
408        void pushLabel(const std::string &lbl,
409                       const std::string &prefix = "  ");
410
411        /**
412         * Pop a label off the label stack.
413         */
414        void popLabel();
415
416        /**
417         * Print all of the pending unprinted labels on the
418         * stack. Called by printObj(), so normally not called by
419         * users unless bypassing printObj().
420         */
421        void printLabels();
422
423        /**
424         * Print a Printable object to os, because it matched the
425         * address on a PrintReq.
426         */
427        void printObj(Printable *obj);
428    };
429
430    /**
431     * This packet's sender state.  Devices should use dynamic_cast<>
432     * to cast to the state appropriate to the sender.  The intent of
433     * this variable is to allow a device to attach extra information
434     * to a request. A response packet must return the sender state
435     * that was attached to the original request (even if a new packet
436     * is created).
437     */
438    SenderState *senderState;
439
440    /**
441     * Push a new sender state to the packet and make the current
442     * sender state the predecessor of the new one. This should be
443     * prefered over direct manipulation of the senderState member
444     * variable.
445     *
446     * @param sender_state SenderState to push at the top of the stack
447     */
448    void pushSenderState(SenderState *sender_state);
449
450    /**
451     * Pop the top of the state stack and return a pointer to it. This
452     * assumes the current sender state is not NULL. This should be
453     * preferred over direct manipulation of the senderState member
454     * variable.
455     *
456     * @return The current top of the stack
457     */
458    SenderState *popSenderState();
459
460    /**
461     * Go through the sender state stack and return the first instance
462     * that is of type T (as determined by a dynamic_cast). If there
463     * is no sender state of type T, NULL is returned.
464     *
465     * @return The topmost state of type T
466     */
467    template <typename T>
468    T * findNextSenderState() const
469    {
470        T *t = NULL;
471        SenderState* sender_state = senderState;
472        while (t == NULL && sender_state != NULL) {
473            t = dynamic_cast<T*>(sender_state);
474            sender_state = sender_state->predecessor;
475        }
476        return t;
477    }
478
479    /// Return the string name of the cmd field (for debugging and
480    /// tracing).
481    const std::string &cmdString() const { return cmd.toString(); }
482
483    /// Return the index of this command.
484    inline int cmdToIndex() const { return cmd.toInt(); }
485
486    bool isRead() const              { return cmd.isRead(); }
487    bool isWrite() const             { return cmd.isWrite(); }
488    bool isUpgrade()  const          { return cmd.isUpgrade(); }
489    bool isRequest() const           { return cmd.isRequest(); }
490    bool isResponse() const          { return cmd.isResponse(); }
491    bool needsExclusive() const      { return cmd.needsExclusive(); }
492    bool needsResponse() const       { return cmd.needsResponse(); }
493    bool isInvalidate() const        { return cmd.isInvalidate(); }
494    bool hasData() const             { return cmd.hasData(); }
495    bool isLLSC() const              { return cmd.isLLSC(); }
496    bool isError() const             { return cmd.isError(); }
497    bool isPrint() const             { return cmd.isPrint(); }
498    bool isFlush() const             { return cmd.isFlush(); }
499
500    // Snoop flags
501    void assertMemInhibit()
502    {
503        assert(isRequest());
504        assert(!flags.isSet(MEM_INHIBIT));
505        flags.set(MEM_INHIBIT);
506    }
507    bool memInhibitAsserted() const { return flags.isSet(MEM_INHIBIT); }
508    void assertShared()             { flags.set(SHARED); }
509    bool sharedAsserted() const     { return flags.isSet(SHARED); }
510
511    // Special control flags
512    void setExpressSnoop()          { flags.set(EXPRESS_SNOOP); }
513    bool isExpressSnoop() const     { return flags.isSet(EXPRESS_SNOOP); }
514    void setSupplyExclusive()       { flags.set(SUPPLY_EXCLUSIVE); }
515    bool isSupplyExclusive() const  { return flags.isSet(SUPPLY_EXCLUSIVE); }
516    void setSuppressFuncError()     { flags.set(SUPPRESS_FUNC_ERROR); }
517    bool suppressFuncError() const  { return flags.isSet(SUPPRESS_FUNC_ERROR); }
518    void setBlockCached()          { flags.set(BLOCK_CACHED); }
519    bool isBlockCached() const     { return flags.isSet(BLOCK_CACHED); }
520    void clearBlockCached()        { flags.clear(BLOCK_CACHED); }
521
522    // Network error conditions... encapsulate them as methods since
523    // their encoding keeps changing (from result field to command
524    // field, etc.)
525    void
526    setBadAddress()
527    {
528        assert(isResponse());
529        cmd = MemCmd::BadAddressError;
530    }
531
532    void copyError(Packet *pkt) { assert(pkt->isError()); cmd = pkt->cmd; }
533
534    Addr getAddr() const { assert(flags.isSet(VALID_ADDR)); return addr; }
535    /**
536     * Update the address of this packet mid-transaction. This is used
537     * by the address mapper to change an already set address to a new
538     * one based on the system configuration. It is intended to remap
539     * an existing address, so it asserts that the current address is
540     * valid.
541     */
542    void setAddr(Addr _addr) { assert(flags.isSet(VALID_ADDR)); addr = _addr; }
543
544    unsigned getSize() const  { assert(flags.isSet(VALID_SIZE)); return size; }
545
546    Addr getOffset(unsigned int blk_size) const
547    {
548        return getAddr() & Addr(blk_size - 1);
549    }
550
551    Addr getBlockAddr(unsigned int blk_size) const
552    {
553        return getAddr() & ~(Addr(blk_size - 1));
554    }
555
556    bool isSecure() const
557    {
558        assert(flags.isSet(VALID_ADDR));
559        return _isSecure;
560    }
561
562    /**
563     * It has been determined that the SC packet should successfully update
564     * memory. Therefore, convert this SC packet to a normal write.
565     */
566    void
567    convertScToWrite()
568    {
569        assert(isLLSC());
570        assert(isWrite());
571        cmd = MemCmd::WriteReq;
572    }
573
574    /**
575     * When ruby is in use, Ruby will monitor the cache line and the
576     * phys memory should treat LL ops as normal reads.
577     */
578    void
579    convertLlToRead()
580    {
581        assert(isLLSC());
582        assert(isRead());
583        cmd = MemCmd::ReadReq;
584    }
585
586    /**
587     * Constructor. Note that a Request object must be constructed
588     * first, but the Requests's physical address and size fields need
589     * not be valid. The command must be supplied.
590     */
591    Packet(const RequestPtr _req, MemCmd _cmd)
592        :  cmd(_cmd), req(_req), data(nullptr), addr(0), _isSecure(false),
593           size(0), headerDelay(0), snoopDelay(0), payloadDelay(0),
594           senderState(NULL)
595    {
596        if (req->hasPaddr()) {
597            addr = req->getPaddr();
598            flags.set(VALID_ADDR);
599            _isSecure = req->isSecure();
600        }
601        if (req->hasSize()) {
602            size = req->getSize();
603            flags.set(VALID_SIZE);
604        }
605    }
606
607    /**
608     * Alternate constructor if you are trying to create a packet with
609     * a request that is for a whole block, not the address from the
610     * req.  this allows for overriding the size/addr of the req.
611     */
612    Packet(const RequestPtr _req, MemCmd _cmd, int _blkSize)
613        :  cmd(_cmd), req(_req), data(nullptr), addr(0), _isSecure(false),
614           headerDelay(0), snoopDelay(0), payloadDelay(0),
615           senderState(NULL)
616    {
617        if (req->hasPaddr()) {
618            addr = req->getPaddr() & ~(_blkSize - 1);
619            flags.set(VALID_ADDR);
620            _isSecure = req->isSecure();
621        }
622        size = _blkSize;
623        flags.set(VALID_SIZE);
624    }
625
626    /**
627     * Alternate constructor for copying a packet.  Copy all fields
628     * *except* if the original packet's data was dynamic, don't copy
629     * that, as we can't guarantee that the new packet's lifetime is
630     * less than that of the original packet.  In this case the new
631     * packet should allocate its own data.
632     */
633    Packet(const PacketPtr pkt, bool clear_flags, bool alloc_data)
634        :  cmd(pkt->cmd), req(pkt->req),
635           data(nullptr),
636           addr(pkt->addr), _isSecure(pkt->_isSecure), size(pkt->size),
637           bytesValid(pkt->bytesValid),
638           headerDelay(pkt->headerDelay),
639           snoopDelay(0),
640           payloadDelay(pkt->payloadDelay),
641           senderState(pkt->senderState)
642    {
643        if (!clear_flags)
644            flags.set(pkt->flags & COPY_FLAGS);
645
646        flags.set(pkt->flags & (VALID_ADDR|VALID_SIZE));
647
648        // should we allocate space for data, or not, the express
649        // snoops do not need to carry any data as they only serve to
650        // co-ordinate state changes
651        if (alloc_data) {
652            // even if asked to allocate data, if the original packet
653            // holds static data, then the sender will not be doing
654            // any memcpy on receiving the response, thus we simply
655            // carry the pointer forward
656            if (pkt->flags.isSet(STATIC_DATA)) {
657                data = pkt->data;
658                flags.set(STATIC_DATA);
659            } else {
660                allocate();
661            }
662        }
663    }
664
665    /**
666     * Generate the appropriate read MemCmd based on the Request flags.
667     */
668    static MemCmd
669    makeReadCmd(const RequestPtr req)
670    {
671        if (req->isLLSC())
672            return MemCmd::LoadLockedReq;
673        else if (req->isPrefetch())
674            return MemCmd::SoftPFReq;
675        else
676            return MemCmd::ReadReq;
677    }
678
679    /**
680     * Generate the appropriate write MemCmd based on the Request flags.
681     */
682    static MemCmd
683    makeWriteCmd(const RequestPtr req)
684    {
685        if (req->isLLSC())
686            return MemCmd::StoreCondReq;
687        else if (req->isSwap())
688            return MemCmd::SwapReq;
689        else
690            return MemCmd::WriteReq;
691    }
692
693    /**
694     * Constructor-like methods that return Packets based on Request objects.
695     * Fine-tune the MemCmd type if it's not a vanilla read or write.
696     */
697    static PacketPtr
698    createRead(const RequestPtr req)
699    {
700        return new Packet(req, makeReadCmd(req));
701    }
702
703    static PacketPtr
704    createWrite(const RequestPtr req)
705    {
706        return new Packet(req, makeWriteCmd(req));
707    }
708
709    /**
710     * clean up packet variables
711     */
712    ~Packet()
713    {
714        // Delete the request object if this is a request packet which
715        // does not need a response, because the requester will not get
716        // a chance. If the request packet needs a response then the
717        // request will be deleted on receipt of the response
718        // packet. We also make sure to never delete the request for
719        // express snoops, even for cases when responses are not
720        // needed (CleanEvict and Writeback), since the snoop packet
721        // re-uses the same request.
722        if (req && isRequest() && !needsResponse() &&
723            !isExpressSnoop()) {
724            delete req;
725        }
726        deleteData();
727    }
728
729    /**
730     * Take a request packet and modify it in place to be suitable for
731     * returning as a response to that request.
732     */
733    void
734    makeResponse()
735    {
736        assert(needsResponse());
737        assert(isRequest());
738        cmd = cmd.responseCommand();
739
740        // responses are never express, even if the snoop that
741        // triggered them was
742        flags.clear(EXPRESS_SNOOP);
743    }
744
745    void
746    makeAtomicResponse()
747    {
748        makeResponse();
749    }
750
751    void
752    makeTimingResponse()
753    {
754        makeResponse();
755    }
756
757    void
758    setFunctionalResponseStatus(bool success)
759    {
760        if (!success) {
761            if (isWrite()) {
762                cmd = MemCmd::FunctionalWriteError;
763            } else {
764                cmd = MemCmd::FunctionalReadError;
765            }
766        }
767    }
768
769    void
770    setSize(unsigned size)
771    {
772        assert(!flags.isSet(VALID_SIZE));
773
774        this->size = size;
775        flags.set(VALID_SIZE);
776    }
777
778
779  public:
780    /**
781     * @{
782     * @name Data accessor mehtods
783     */
784
785    /**
786     * Set the data pointer to the following value that should not be
787     * freed. Static data allows us to do a single memcpy even if
788     * multiple packets are required to get from source to destination
789     * and back. In essence the pointer is set calling dataStatic on
790     * the original packet, and whenever this packet is copied and
791     * forwarded the same pointer is passed on. When a packet
792     * eventually reaches the destination holding the data, it is
793     * copied once into the location originally set. On the way back
794     * to the source, no copies are necessary.
795     */
796    template <typename T>
797    void
798    dataStatic(T *p)
799    {
800        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
801        data = (PacketDataPtr)p;
802        flags.set(STATIC_DATA);
803    }
804
805    /**
806     * Set the data pointer to the following value that should not be
807     * freed. This version of the function allows the pointer passed
808     * to us to be const. To avoid issues down the line we cast the
809     * constness away, the alternative would be to keep both a const
810     * and non-const data pointer and cleverly choose between
811     * them. Note that this is only allowed for static data.
812     */
813    template <typename T>
814    void
815    dataStaticConst(const T *p)
816    {
817        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
818        data = const_cast<PacketDataPtr>(p);
819        flags.set(STATIC_DATA);
820    }
821
822    /**
823     * Set the data pointer to a value that should have delete []
824     * called on it. Dynamic data is local to this packet, and as the
825     * packet travels from source to destination, forwarded packets
826     * will allocate their own data. When a packet reaches the final
827     * destination it will populate the dynamic data of that specific
828     * packet, and on the way back towards the source, memcpy will be
829     * invoked in every step where a new packet was created e.g. in
830     * the caches. Ultimately when the response reaches the source a
831     * final memcpy is needed to extract the data from the packet
832     * before it is deallocated.
833     */
834    template <typename T>
835    void
836    dataDynamic(T *p)
837    {
838        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
839        data = (PacketDataPtr)p;
840        flags.set(DYNAMIC_DATA);
841    }
842
843    /**
844     * get a pointer to the data ptr.
845     */
846    template <typename T>
847    T*
848    getPtr()
849    {
850        assert(flags.isSet(STATIC_DATA|DYNAMIC_DATA));
851        return (T*)data;
852    }
853
854    template <typename T>
855    const T*
856    getConstPtr() const
857    {
858        assert(flags.isSet(STATIC_DATA|DYNAMIC_DATA));
859        return (const T*)data;
860    }
861
862    /**
863     * Get the data in the packet byte swapped from big endian to
864     * host endian.
865     */
866    template <typename T>
867    T getBE() const;
868
869    /**
870     * Get the data in the packet byte swapped from little endian to
871     * host endian.
872     */
873    template <typename T>
874    T getLE() const;
875
876    /**
877     * Get the data in the packet byte swapped from the specified
878     * endianness.
879     */
880    template <typename T>
881    T get(ByteOrder endian) const;
882
883    /**
884     * Get the data in the packet byte swapped from guest to host
885     * endian.
886     */
887    template <typename T>
888    T get() const;
889
890    /** Set the value in the data pointer to v as big endian. */
891    template <typename T>
892    void setBE(T v);
893
894    /** Set the value in the data pointer to v as little endian. */
895    template <typename T>
896    void setLE(T v);
897
898    /**
899     * Set the value in the data pointer to v using the specified
900     * endianness.
901     */
902    template <typename T>
903    void set(T v, ByteOrder endian);
904
905    /** Set the value in the data pointer to v as guest endian. */
906    template <typename T>
907    void set(T v);
908
909    /**
910     * Copy data into the packet from the provided pointer.
911     */
912    void
913    setData(const uint8_t *p)
914    {
915        // we should never be copying data onto itself, which means we
916        // must idenfity packets with static data, as they carry the
917        // same pointer from source to destination and back
918        assert(p != getPtr<uint8_t>() || flags.isSet(STATIC_DATA));
919
920        if (p != getPtr<uint8_t>())
921            // for packet with allocated dynamic data, we copy data from
922            // one to the other, e.g. a forwarded response to a response
923            std::memcpy(getPtr<uint8_t>(), p, getSize());
924    }
925
926    /**
927     * Copy data into the packet from the provided block pointer,
928     * which is aligned to the given block size.
929     */
930    void
931    setDataFromBlock(const uint8_t *blk_data, int blkSize)
932    {
933        setData(blk_data + getOffset(blkSize));
934    }
935
936    /**
937     * Copy data from the packet to the provided block pointer, which
938     * is aligned to the given block size.
939     */
940    void
941    writeData(uint8_t *p) const
942    {
943        std::memcpy(p, getConstPtr<uint8_t>(), getSize());
944    }
945
946    /**
947     * Copy data from the packet to the memory at the provided pointer.
948     */
949    void
950    writeDataToBlock(uint8_t *blk_data, int blkSize) const
951    {
952        writeData(blk_data + getOffset(blkSize));
953    }
954
955    /**
956     * delete the data pointed to in the data pointer. Ok to call to
957     * matter how data was allocted.
958     */
959    void
960    deleteData()
961    {
962        if (flags.isSet(DYNAMIC_DATA))
963            delete [] data;
964
965        flags.clear(STATIC_DATA|DYNAMIC_DATA);
966        data = NULL;
967    }
968
969    /** Allocate memory for the packet. */
970    void
971    allocate()
972    {
973        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
974        flags.set(DYNAMIC_DATA);
975        data = new uint8_t[getSize()];
976    }
977
978    /** @} */
979
980  private: // Private data accessor methods
981    /** Get the data in the packet without byte swapping. */
982    template <typename T>
983    T getRaw() const;
984
985    /** Set the value in the data pointer to v without byte swapping. */
986    template <typename T>
987    void setRaw(T v);
988
989  public:
990    /**
991     * Check a functional request against a memory value stored in
992     * another packet (i.e. an in-transit request or
993     * response). Returns true if the current packet is a read, and
994     * the other packet provides the data, which is then copied to the
995     * current packet. If the current packet is a write, and the other
996     * packet intersects this one, then we update the data
997     * accordingly.
998     */
999    bool
1000    checkFunctional(PacketPtr other)
1001    {
1002        // all packets that are carrying a payload should have a valid
1003        // data pointer
1004        return checkFunctional(other, other->getAddr(), other->isSecure(),
1005                               other->getSize(),
1006                               other->hasData() ?
1007                               other->getPtr<uint8_t>() : NULL);
1008    }
1009
1010    /**
1011     * Is this request notification of a clean or dirty eviction from the cache.
1012     **/
1013    bool
1014    evictingBlock() const
1015    {
1016        return (cmd == MemCmd::Writeback ||
1017                cmd == MemCmd::CleanEvict);
1018    }
1019
1020    /**
1021     * Does the request need to check for cached copies of the same block
1022     * in the memory hierarchy above.
1023     **/
1024    bool
1025    mustCheckAbove() const
1026    {
1027        return (cmd == MemCmd::HardPFReq ||
1028                evictingBlock());
1029    }
1030
1031    /**
1032     * Check a functional request against a memory value represented
1033     * by a base/size pair and an associated data array. If the
1034     * current packet is a read, it may be satisfied by the memory
1035     * value. If the current packet is a write, it may update the
1036     * memory value.
1037     */
1038    bool
1039    checkFunctional(Printable *obj, Addr base, bool is_secure, int size,
1040                    uint8_t *_data);
1041
1042    /**
1043     * Push label for PrintReq (safe to call unconditionally).
1044     */
1045    void
1046    pushLabel(const std::string &lbl)
1047    {
1048        if (isPrint())
1049            safe_cast<PrintReqState*>(senderState)->pushLabel(lbl);
1050    }
1051
1052    /**
1053     * Pop label for PrintReq (safe to call unconditionally).
1054     */
1055    void
1056    popLabel()
1057    {
1058        if (isPrint())
1059            safe_cast<PrintReqState*>(senderState)->popLabel();
1060    }
1061
1062    void print(std::ostream &o, int verbosity = 0,
1063               const std::string &prefix = "") const;
1064
1065    /**
1066     * A no-args wrapper of print(std::ostream...)
1067     * meant to be invoked from DPRINTFs
1068     * avoiding string overheads in fast mode
1069     * @return string with the request's type and start<->end addresses
1070     */
1071    std::string print() const;
1072};
1073
1074#endif //__MEM_PACKET_HH
1075