packet.hh revision 11003:ba91725c8f6b
1/*
2 * Copyright (c) 2012-2015 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2006 The Regents of The University of Michigan
15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Ron Dreslinski
42 *          Steve Reinhardt
43 *          Ali Saidi
44 *          Andreas Hansson
45 */
46
47/**
48 * @file
49 * Declaration of the Packet class.
50 */
51
52#ifndef __MEM_PACKET_HH__
53#define __MEM_PACKET_HH__
54
55#include <bitset>
56#include <cassert>
57#include <list>
58
59#include "base/cast.hh"
60#include "base/compiler.hh"
61#include "base/flags.hh"
62#include "base/misc.hh"
63#include "base/printable.hh"
64#include "base/types.hh"
65#include "mem/request.hh"
66#include "sim/core.hh"
67
68class Packet;
69typedef Packet *PacketPtr;
70typedef uint8_t* PacketDataPtr;
71typedef std::list<PacketPtr> PacketList;
72
73class MemCmd
74{
75    friend class Packet;
76
77  public:
78    /**
79     * List of all commands associated with a packet.
80     */
81    enum Command
82    {
83        InvalidCmd,
84        ReadReq,
85        ReadResp,
86        ReadRespWithInvalidate,
87        WriteReq,
88        WriteResp,
89        Writeback,
90        CleanEvict,
91        SoftPFReq,
92        HardPFReq,
93        SoftPFResp,
94        HardPFResp,
95        WriteLineReq,
96        UpgradeReq,
97        SCUpgradeReq,           // Special "weak" upgrade for StoreCond
98        UpgradeResp,
99        SCUpgradeFailReq,       // Failed SCUpgradeReq in MSHR (never sent)
100        UpgradeFailResp,        // Valid for SCUpgradeReq only
101        ReadExReq,
102        ReadExResp,
103        ReadCleanReq,
104        ReadSharedReq,
105        LoadLockedReq,
106        StoreCondReq,
107        StoreCondFailReq,       // Failed StoreCondReq in MSHR (never sent)
108        StoreCondResp,
109        SwapReq,
110        SwapResp,
111        MessageReq,
112        MessageResp,
113        ReleaseReq,
114        ReleaseResp,
115        AcquireReq,
116        AcquireResp,
117        // Error responses
118        // @TODO these should be classified as responses rather than
119        // requests; coding them as requests initially for backwards
120        // compatibility
121        InvalidDestError,  // packet dest field invalid
122        BadAddressError,   // memory address invalid
123        FunctionalReadError, // unable to fulfill functional read
124        FunctionalWriteError, // unable to fulfill functional write
125        // Fake simulator-only commands
126        PrintReq,       // Print state matching address
127        FlushReq,      //request for a cache flush
128        InvalidateReq,   // request for address to be invalidated
129        InvalidateResp,
130        NUM_MEM_CMDS
131    };
132
133  private:
134    /**
135     * List of command attributes.
136     */
137    enum Attribute
138    {
139        IsRead,         //!< Data flows from responder to requester
140        IsWrite,        //!< Data flows from requester to responder
141        IsUpgrade,
142        IsInvalidate,
143        NeedsExclusive, //!< Requires exclusive copy to complete in-cache
144        IsRequest,      //!< Issued by requester
145        IsResponse,     //!< Issue by responder
146        NeedsResponse,  //!< Requester needs response from target
147        IsSWPrefetch,
148        IsHWPrefetch,
149        IsLlsc,         //!< Alpha/MIPS LL or SC access
150        HasData,        //!< There is an associated payload
151        IsError,        //!< Error response
152        IsPrint,        //!< Print state matching address (for debugging)
153        IsFlush,        //!< Flush the address from caches
154        NUM_COMMAND_ATTRIBUTES
155    };
156
157    /**
158     * Structure that defines attributes and other data associated
159     * with a Command.
160     */
161    struct CommandInfo
162    {
163        /// Set of attribute flags.
164        const std::bitset<NUM_COMMAND_ATTRIBUTES> attributes;
165        /// Corresponding response for requests; InvalidCmd if no
166        /// response is applicable.
167        const Command response;
168        /// String representation (for printing)
169        const std::string str;
170    };
171
172    /// Array to map Command enum to associated info.
173    static const CommandInfo commandInfo[];
174
175  private:
176
177    Command cmd;
178
179    bool
180    testCmdAttrib(MemCmd::Attribute attrib) const
181    {
182        return commandInfo[cmd].attributes[attrib] != 0;
183    }
184
185  public:
186
187    bool isRead() const            { return testCmdAttrib(IsRead); }
188    bool isWrite() const           { return testCmdAttrib(IsWrite); }
189    bool isUpgrade() const         { return testCmdAttrib(IsUpgrade); }
190    bool isRequest() const         { return testCmdAttrib(IsRequest); }
191    bool isResponse() const        { return testCmdAttrib(IsResponse); }
192    bool needsExclusive() const    { return testCmdAttrib(NeedsExclusive); }
193    bool needsResponse() const     { return testCmdAttrib(NeedsResponse); }
194    bool isInvalidate() const      { return testCmdAttrib(IsInvalidate); }
195
196    /**
197     * Check if this particular packet type carries payload data. Note
198     * that this does not reflect if the data pointer of the packet is
199     * valid or not.
200     */
201    bool hasData() const        { return testCmdAttrib(HasData); }
202    bool isLLSC() const         { return testCmdAttrib(IsLlsc); }
203    bool isSWPrefetch() const   { return testCmdAttrib(IsSWPrefetch); }
204    bool isHWPrefetch() const   { return testCmdAttrib(IsHWPrefetch); }
205    bool isPrefetch() const     { return testCmdAttrib(IsSWPrefetch) ||
206                                         testCmdAttrib(IsHWPrefetch); }
207    bool isError() const        { return testCmdAttrib(IsError); }
208    bool isPrint() const        { return testCmdAttrib(IsPrint); }
209    bool isFlush() const        { return testCmdAttrib(IsFlush); }
210
211    const Command
212    responseCommand() const
213    {
214        return commandInfo[cmd].response;
215    }
216
217    /// Return the string to a cmd given by idx.
218    const std::string &toString() const { return commandInfo[cmd].str; }
219    int toInt() const { return (int)cmd; }
220
221    MemCmd(Command _cmd) : cmd(_cmd) { }
222    MemCmd(int _cmd) : cmd((Command)_cmd) { }
223    MemCmd() : cmd(InvalidCmd) { }
224
225    bool operator==(MemCmd c2) const { return (cmd == c2.cmd); }
226    bool operator!=(MemCmd c2) const { return (cmd != c2.cmd); }
227};
228
229/**
230 * A Packet is used to encapsulate a transfer between two objects in
231 * the memory system (e.g., the L1 and L2 cache).  (In contrast, a
232 * single Request travels all the way from the requester to the
233 * ultimate destination and back, possibly being conveyed by several
234 * different Packets along the way.)
235 */
236class Packet : public Printable
237{
238  public:
239    typedef uint32_t FlagsType;
240    typedef ::Flags<FlagsType> Flags;
241
242  private:
243
244    enum : FlagsType {
245        // Flags to transfer across when copying a packet
246        COPY_FLAGS             = 0x0000000F,
247
248        SHARED                 = 0x00000001,
249        // Special control flags
250        /// Special timing-mode atomic snoop for multi-level coherence.
251        EXPRESS_SNOOP          = 0x00000002,
252        /// Does supplier have exclusive copy?
253        /// Useful for multi-level coherence.
254        SUPPLY_EXCLUSIVE       = 0x00000004,
255        // Snoop response flags
256        MEM_INHIBIT            = 0x00000008,
257
258        /// Are the 'addr' and 'size' fields valid?
259        VALID_ADDR             = 0x00000100,
260        VALID_SIZE             = 0x00000200,
261
262        /// Is the data pointer set to a value that shouldn't be freed
263        /// when the packet is destroyed?
264        STATIC_DATA            = 0x00001000,
265        /// The data pointer points to a value that should be freed when
266        /// the packet is destroyed. The pointer is assumed to be pointing
267        /// to an array, and delete [] is consequently called
268        DYNAMIC_DATA           = 0x00002000,
269
270        /// suppress the error if this packet encounters a functional
271        /// access failure.
272        SUPPRESS_FUNC_ERROR    = 0x00008000,
273
274        // Signal block present to squash prefetch and cache evict packets
275        // through express snoop flag
276        BLOCK_CACHED          = 0x00010000
277    };
278
279    Flags flags;
280
281  public:
282    typedef MemCmd::Command Command;
283
284    /// The command field of the packet.
285    MemCmd cmd;
286
287    /// A pointer to the original request.
288    const RequestPtr req;
289
290  private:
291   /**
292    * A pointer to the data being transfered.  It can be differnt
293    * sizes at each level of the heirarchy so it belongs in the
294    * packet, not request. This may or may not be populated when a
295    * responder recieves the packet. If not populated it memory should
296    * be allocated.
297    */
298    PacketDataPtr data;
299
300    /// The address of the request.  This address could be virtual or
301    /// physical, depending on the system configuration.
302    Addr addr;
303
304    /// True if the request targets the secure memory space.
305    bool _isSecure;
306
307    /// The size of the request or transfer.
308    unsigned size;
309
310    /**
311     * Track the bytes found that satisfy a functional read.
312     */
313    std::vector<bool> bytesValid;
314
315  public:
316
317    /**
318     * The extra delay from seeing the packet until the header is
319     * transmitted. This delay is used to communicate the crossbar
320     * forwarding latency to the neighbouring object (e.g. a cache)
321     * that actually makes the packet wait. As the delay is relative,
322     * a 32-bit unsigned should be sufficient.
323     */
324    uint32_t headerDelay;
325
326    /**
327     * The extra pipelining delay from seeing the packet until the end of
328     * payload is transmitted by the component that provided it (if
329     * any). This includes the header delay. Similar to the header
330     * delay, this is used to make up for the fact that the
331     * crossbar does not make the packet wait. As the delay is
332     * relative, a 32-bit unsigned should be sufficient.
333     */
334    uint32_t payloadDelay;
335
336    /**
337     * A virtual base opaque structure used to hold state associated
338     * with the packet (e.g., an MSHR), specific to a MemObject that
339     * sees the packet. A pointer to this state is returned in the
340     * packet's response so that the MemObject in question can quickly
341     * look up the state needed to process it. A specific subclass
342     * would be derived from this to carry state specific to a
343     * particular sending device.
344     *
345     * As multiple MemObjects may add their SenderState throughout the
346     * memory system, the SenderStates create a stack, where a
347     * MemObject can add a new Senderstate, as long as the
348     * predecessing SenderState is restored when the response comes
349     * back. For this reason, the predecessor should always be
350     * populated with the current SenderState of a packet before
351     * modifying the senderState field in the request packet.
352     */
353    struct SenderState
354    {
355        SenderState* predecessor;
356        SenderState() : predecessor(NULL) {}
357        virtual ~SenderState() {}
358    };
359
360    /**
361     * Object used to maintain state of a PrintReq.  The senderState
362     * field of a PrintReq should always be of this type.
363     */
364    class PrintReqState : public SenderState
365    {
366      private:
367        /**
368         * An entry in the label stack.
369         */
370        struct LabelStackEntry
371        {
372            const std::string label;
373            std::string *prefix;
374            bool labelPrinted;
375            LabelStackEntry(const std::string &_label, std::string *_prefix);
376        };
377
378        typedef std::list<LabelStackEntry> LabelStack;
379        LabelStack labelStack;
380
381        std::string *curPrefixPtr;
382
383      public:
384        std::ostream &os;
385        const int verbosity;
386
387        PrintReqState(std::ostream &os, int verbosity = 0);
388        ~PrintReqState();
389
390        /**
391         * Returns the current line prefix.
392         */
393        const std::string &curPrefix() { return *curPrefixPtr; }
394
395        /**
396         * Push a label onto the label stack, and prepend the given
397         * prefix string onto the current prefix.  Labels will only be
398         * printed if an object within the label's scope is printed.
399         */
400        void pushLabel(const std::string &lbl,
401                       const std::string &prefix = "  ");
402
403        /**
404         * Pop a label off the label stack.
405         */
406        void popLabel();
407
408        /**
409         * Print all of the pending unprinted labels on the
410         * stack. Called by printObj(), so normally not called by
411         * users unless bypassing printObj().
412         */
413        void printLabels();
414
415        /**
416         * Print a Printable object to os, because it matched the
417         * address on a PrintReq.
418         */
419        void printObj(Printable *obj);
420    };
421
422    /**
423     * This packet's sender state.  Devices should use dynamic_cast<>
424     * to cast to the state appropriate to the sender.  The intent of
425     * this variable is to allow a device to attach extra information
426     * to a request. A response packet must return the sender state
427     * that was attached to the original request (even if a new packet
428     * is created).
429     */
430    SenderState *senderState;
431
432    /**
433     * Push a new sender state to the packet and make the current
434     * sender state the predecessor of the new one. This should be
435     * prefered over direct manipulation of the senderState member
436     * variable.
437     *
438     * @param sender_state SenderState to push at the top of the stack
439     */
440    void pushSenderState(SenderState *sender_state);
441
442    /**
443     * Pop the top of the state stack and return a pointer to it. This
444     * assumes the current sender state is not NULL. This should be
445     * preferred over direct manipulation of the senderState member
446     * variable.
447     *
448     * @return The current top of the stack
449     */
450    SenderState *popSenderState();
451
452    /**
453     * Go through the sender state stack and return the first instance
454     * that is of type T (as determined by a dynamic_cast). If there
455     * is no sender state of type T, NULL is returned.
456     *
457     * @return The topmost state of type T
458     */
459    template <typename T>
460    T * findNextSenderState() const
461    {
462        T *t = NULL;
463        SenderState* sender_state = senderState;
464        while (t == NULL && sender_state != NULL) {
465            t = dynamic_cast<T*>(sender_state);
466            sender_state = sender_state->predecessor;
467        }
468        return t;
469    }
470
471    /// Return the string name of the cmd field (for debugging and
472    /// tracing).
473    const std::string &cmdString() const { return cmd.toString(); }
474
475    /// Return the index of this command.
476    inline int cmdToIndex() const { return cmd.toInt(); }
477
478    bool isRead() const              { return cmd.isRead(); }
479    bool isWrite() const             { return cmd.isWrite(); }
480    bool isUpgrade()  const          { return cmd.isUpgrade(); }
481    bool isRequest() const           { return cmd.isRequest(); }
482    bool isResponse() const          { return cmd.isResponse(); }
483    bool needsExclusive() const      { return cmd.needsExclusive(); }
484    bool needsResponse() const       { return cmd.needsResponse(); }
485    bool isInvalidate() const        { return cmd.isInvalidate(); }
486    bool hasData() const             { return cmd.hasData(); }
487    bool isLLSC() const              { return cmd.isLLSC(); }
488    bool isError() const             { return cmd.isError(); }
489    bool isPrint() const             { return cmd.isPrint(); }
490    bool isFlush() const             { return cmd.isFlush(); }
491
492    // Snoop flags
493    void assertMemInhibit()
494    {
495        assert(isRequest());
496        assert(!flags.isSet(MEM_INHIBIT));
497        flags.set(MEM_INHIBIT);
498    }
499    bool memInhibitAsserted() const { return flags.isSet(MEM_INHIBIT); }
500    void assertShared()             { flags.set(SHARED); }
501    bool sharedAsserted() const     { return flags.isSet(SHARED); }
502
503    // Special control flags
504    void setExpressSnoop()          { flags.set(EXPRESS_SNOOP); }
505    bool isExpressSnoop() const     { return flags.isSet(EXPRESS_SNOOP); }
506    void setSupplyExclusive()       { flags.set(SUPPLY_EXCLUSIVE); }
507    bool isSupplyExclusive() const  { return flags.isSet(SUPPLY_EXCLUSIVE); }
508    void setSuppressFuncError()     { flags.set(SUPPRESS_FUNC_ERROR); }
509    bool suppressFuncError() const  { return flags.isSet(SUPPRESS_FUNC_ERROR); }
510    void setBlockCached()          { flags.set(BLOCK_CACHED); }
511    bool isBlockCached() const     { return flags.isSet(BLOCK_CACHED); }
512    void clearBlockCached()        { flags.clear(BLOCK_CACHED); }
513
514    // Network error conditions... encapsulate them as methods since
515    // their encoding keeps changing (from result field to command
516    // field, etc.)
517    void
518    setBadAddress()
519    {
520        assert(isResponse());
521        cmd = MemCmd::BadAddressError;
522    }
523
524    void copyError(Packet *pkt) { assert(pkt->isError()); cmd = pkt->cmd; }
525
526    Addr getAddr() const { assert(flags.isSet(VALID_ADDR)); return addr; }
527    /**
528     * Update the address of this packet mid-transaction. This is used
529     * by the address mapper to change an already set address to a new
530     * one based on the system configuration. It is intended to remap
531     * an existing address, so it asserts that the current address is
532     * valid.
533     */
534    void setAddr(Addr _addr) { assert(flags.isSet(VALID_ADDR)); addr = _addr; }
535
536    unsigned getSize() const  { assert(flags.isSet(VALID_SIZE)); return size; }
537
538    Addr getOffset(unsigned int blk_size) const
539    {
540        return getAddr() & Addr(blk_size - 1);
541    }
542
543    Addr getBlockAddr(unsigned int blk_size) const
544    {
545        return getAddr() & ~(Addr(blk_size - 1));
546    }
547
548    bool isSecure() const
549    {
550        assert(flags.isSet(VALID_ADDR));
551        return _isSecure;
552    }
553
554    /**
555     * It has been determined that the SC packet should successfully update
556     * memory. Therefore, convert this SC packet to a normal write.
557     */
558    void
559    convertScToWrite()
560    {
561        assert(isLLSC());
562        assert(isWrite());
563        cmd = MemCmd::WriteReq;
564    }
565
566    /**
567     * When ruby is in use, Ruby will monitor the cache line and the
568     * phys memory should treat LL ops as normal reads.
569     */
570    void
571    convertLlToRead()
572    {
573        assert(isLLSC());
574        assert(isRead());
575        cmd = MemCmd::ReadReq;
576    }
577
578    /**
579     * Constructor. Note that a Request object must be constructed
580     * first, but the Requests's physical address and size fields need
581     * not be valid. The command must be supplied.
582     */
583    Packet(const RequestPtr _req, MemCmd _cmd)
584        :  cmd(_cmd), req(_req), data(nullptr), addr(0), _isSecure(false),
585           size(0), headerDelay(0), payloadDelay(0),
586           senderState(NULL)
587    {
588        if (req->hasPaddr()) {
589            addr = req->getPaddr();
590            flags.set(VALID_ADDR);
591            _isSecure = req->isSecure();
592        }
593        if (req->hasSize()) {
594            size = req->getSize();
595            flags.set(VALID_SIZE);
596        }
597    }
598
599    /**
600     * Alternate constructor if you are trying to create a packet with
601     * a request that is for a whole block, not the address from the
602     * req.  this allows for overriding the size/addr of the req.
603     */
604    Packet(const RequestPtr _req, MemCmd _cmd, int _blkSize)
605        :  cmd(_cmd), req(_req), data(nullptr), addr(0), _isSecure(false),
606           headerDelay(0), payloadDelay(0),
607           senderState(NULL)
608    {
609        if (req->hasPaddr()) {
610            addr = req->getPaddr() & ~(_blkSize - 1);
611            flags.set(VALID_ADDR);
612            _isSecure = req->isSecure();
613        }
614        size = _blkSize;
615        flags.set(VALID_SIZE);
616    }
617
618    /**
619     * Alternate constructor for copying a packet.  Copy all fields
620     * *except* if the original packet's data was dynamic, don't copy
621     * that, as we can't guarantee that the new packet's lifetime is
622     * less than that of the original packet.  In this case the new
623     * packet should allocate its own data.
624     */
625    Packet(const PacketPtr pkt, bool clear_flags, bool alloc_data)
626        :  cmd(pkt->cmd), req(pkt->req),
627           data(nullptr),
628           addr(pkt->addr), _isSecure(pkt->_isSecure), size(pkt->size),
629           bytesValid(pkt->bytesValid),
630           headerDelay(pkt->headerDelay),
631           payloadDelay(pkt->payloadDelay),
632           senderState(pkt->senderState)
633    {
634        if (!clear_flags)
635            flags.set(pkt->flags & COPY_FLAGS);
636
637        flags.set(pkt->flags & (VALID_ADDR|VALID_SIZE));
638
639        // should we allocate space for data, or not, the express
640        // snoops do not need to carry any data as they only serve to
641        // co-ordinate state changes
642        if (alloc_data) {
643            // even if asked to allocate data, if the original packet
644            // holds static data, then the sender will not be doing
645            // any memcpy on receiving the response, thus we simply
646            // carry the pointer forward
647            if (pkt->flags.isSet(STATIC_DATA)) {
648                data = pkt->data;
649                flags.set(STATIC_DATA);
650            } else {
651                allocate();
652            }
653        }
654    }
655
656    /**
657     * Generate the appropriate read MemCmd based on the Request flags.
658     */
659    static MemCmd
660    makeReadCmd(const RequestPtr req)
661    {
662        if (req->isLLSC())
663            return MemCmd::LoadLockedReq;
664        else if (req->isPrefetch())
665            return MemCmd::SoftPFReq;
666        else
667            return MemCmd::ReadReq;
668    }
669
670    /**
671     * Generate the appropriate write MemCmd based on the Request flags.
672     */
673    static MemCmd
674    makeWriteCmd(const RequestPtr req)
675    {
676        if (req->isLLSC())
677            return MemCmd::StoreCondReq;
678        else if (req->isSwap())
679            return MemCmd::SwapReq;
680        else
681            return MemCmd::WriteReq;
682    }
683
684    /**
685     * Constructor-like methods that return Packets based on Request objects.
686     * Fine-tune the MemCmd type if it's not a vanilla read or write.
687     */
688    static PacketPtr
689    createRead(const RequestPtr req)
690    {
691        return new Packet(req, makeReadCmd(req));
692    }
693
694    static PacketPtr
695    createWrite(const RequestPtr req)
696    {
697        return new Packet(req, makeWriteCmd(req));
698    }
699
700    /**
701     * clean up packet variables
702     */
703    ~Packet()
704    {
705        // Delete the request object if this is a request packet which
706        // does not need a response, because the requester will not get
707        // a chance. If the request packet needs a response then the
708        // request will be deleted on receipt of the response
709        // packet. We also make sure to never delete the request for
710        // express snoops, even for cases when responses are not
711        // needed (CleanEvict and Writeback), since the snoop packet
712        // re-uses the same request.
713        if (req && isRequest() && !needsResponse() &&
714            !isExpressSnoop()) {
715            delete req;
716        }
717        deleteData();
718    }
719
720    /**
721     * Take a request packet and modify it in place to be suitable for
722     * returning as a response to that request.
723     */
724    void
725    makeResponse()
726    {
727        assert(needsResponse());
728        assert(isRequest());
729        cmd = cmd.responseCommand();
730
731        // responses are never express, even if the snoop that
732        // triggered them was
733        flags.clear(EXPRESS_SNOOP);
734    }
735
736    void
737    makeAtomicResponse()
738    {
739        makeResponse();
740    }
741
742    void
743    makeTimingResponse()
744    {
745        makeResponse();
746    }
747
748    void
749    setFunctionalResponseStatus(bool success)
750    {
751        if (!success) {
752            if (isWrite()) {
753                cmd = MemCmd::FunctionalWriteError;
754            } else {
755                cmd = MemCmd::FunctionalReadError;
756            }
757        }
758    }
759
760    void
761    setSize(unsigned size)
762    {
763        assert(!flags.isSet(VALID_SIZE));
764
765        this->size = size;
766        flags.set(VALID_SIZE);
767    }
768
769
770    /**
771     * Set the data pointer to the following value that should not be
772     * freed. Static data allows us to do a single memcpy even if
773     * multiple packets are required to get from source to destination
774     * and back. In essence the pointer is set calling dataStatic on
775     * the original packet, and whenever this packet is copied and
776     * forwarded the same pointer is passed on. When a packet
777     * eventually reaches the destination holding the data, it is
778     * copied once into the location originally set. On the way back
779     * to the source, no copies are necessary.
780     */
781    template <typename T>
782    void
783    dataStatic(T *p)
784    {
785        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
786        data = (PacketDataPtr)p;
787        flags.set(STATIC_DATA);
788    }
789
790    /**
791     * Set the data pointer to the following value that should not be
792     * freed. This version of the function allows the pointer passed
793     * to us to be const. To avoid issues down the line we cast the
794     * constness away, the alternative would be to keep both a const
795     * and non-const data pointer and cleverly choose between
796     * them. Note that this is only allowed for static data.
797     */
798    template <typename T>
799    void
800    dataStaticConst(const T *p)
801    {
802        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
803        data = const_cast<PacketDataPtr>(p);
804        flags.set(STATIC_DATA);
805    }
806
807    /**
808     * Set the data pointer to a value that should have delete []
809     * called on it. Dynamic data is local to this packet, and as the
810     * packet travels from source to destination, forwarded packets
811     * will allocate their own data. When a packet reaches the final
812     * destination it will populate the dynamic data of that specific
813     * packet, and on the way back towards the source, memcpy will be
814     * invoked in every step where a new packet was created e.g. in
815     * the caches. Ultimately when the response reaches the source a
816     * final memcpy is needed to extract the data from the packet
817     * before it is deallocated.
818     */
819    template <typename T>
820    void
821    dataDynamic(T *p)
822    {
823        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
824        data = (PacketDataPtr)p;
825        flags.set(DYNAMIC_DATA);
826    }
827
828    /**
829     * get a pointer to the data ptr.
830     */
831    template <typename T>
832    T*
833    getPtr()
834    {
835        assert(flags.isSet(STATIC_DATA|DYNAMIC_DATA));
836        return (T*)data;
837    }
838
839    template <typename T>
840    const T*
841    getConstPtr() const
842    {
843        assert(flags.isSet(STATIC_DATA|DYNAMIC_DATA));
844        return (const T*)data;
845    }
846
847    /**
848     * return the value of what is pointed to in the packet.
849     */
850    template <typename T>
851    T get() const;
852
853    /**
854     * set the value in the data pointer to v.
855     */
856    template <typename T>
857    void set(T v);
858
859    /**
860     * Copy data into the packet from the provided pointer.
861     */
862    void
863    setData(const uint8_t *p)
864    {
865        // we should never be copying data onto itself, which means we
866        // must idenfity packets with static data, as they carry the
867        // same pointer from source to destination and back
868        assert(p != getPtr<uint8_t>() || flags.isSet(STATIC_DATA));
869
870        if (p != getPtr<uint8_t>())
871            // for packet with allocated dynamic data, we copy data from
872            // one to the other, e.g. a forwarded response to a response
873            std::memcpy(getPtr<uint8_t>(), p, getSize());
874    }
875
876    /**
877     * Copy data into the packet from the provided block pointer,
878     * which is aligned to the given block size.
879     */
880    void
881    setDataFromBlock(const uint8_t *blk_data, int blkSize)
882    {
883        setData(blk_data + getOffset(blkSize));
884    }
885
886    /**
887     * Copy data from the packet to the provided block pointer, which
888     * is aligned to the given block size.
889     */
890    void
891    writeData(uint8_t *p) const
892    {
893        std::memcpy(p, getConstPtr<uint8_t>(), getSize());
894    }
895
896    /**
897     * Copy data from the packet to the memory at the provided pointer.
898     */
899    void
900    writeDataToBlock(uint8_t *blk_data, int blkSize) const
901    {
902        writeData(blk_data + getOffset(blkSize));
903    }
904
905    /**
906     * delete the data pointed to in the data pointer. Ok to call to
907     * matter how data was allocted.
908     */
909    void
910    deleteData()
911    {
912        if (flags.isSet(DYNAMIC_DATA))
913            delete [] data;
914
915        flags.clear(STATIC_DATA|DYNAMIC_DATA);
916        data = NULL;
917    }
918
919    /** Allocate memory for the packet. */
920    void
921    allocate()
922    {
923        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
924        flags.set(DYNAMIC_DATA);
925        data = new uint8_t[getSize()];
926    }
927
928    /**
929     * Check a functional request against a memory value stored in
930     * another packet (i.e. an in-transit request or
931     * response). Returns true if the current packet is a read, and
932     * the other packet provides the data, which is then copied to the
933     * current packet. If the current packet is a write, and the other
934     * packet intersects this one, then we update the data
935     * accordingly.
936     */
937    bool
938    checkFunctional(PacketPtr other)
939    {
940        // all packets that are carrying a payload should have a valid
941        // data pointer
942        return checkFunctional(other, other->getAddr(), other->isSecure(),
943                               other->getSize(),
944                               other->hasData() ?
945                               other->getPtr<uint8_t>() : NULL);
946    }
947
948    /**
949     * Is this request notification of a clean or dirty eviction from the cache.
950     **/
951    bool
952    evictingBlock() const
953    {
954        return (cmd == MemCmd::Writeback ||
955                cmd == MemCmd::CleanEvict);
956    }
957
958    /**
959     * Does the request need to check for cached copies of the same block
960     * in the memory hierarchy above.
961     **/
962    bool
963    mustCheckAbove() const
964    {
965        return (cmd == MemCmd::HardPFReq ||
966                evictingBlock());
967    }
968
969    /**
970     * Check a functional request against a memory value represented
971     * by a base/size pair and an associated data array. If the
972     * current packet is a read, it may be satisfied by the memory
973     * value. If the current packet is a write, it may update the
974     * memory value.
975     */
976    bool
977    checkFunctional(Printable *obj, Addr base, bool is_secure, int size,
978                    uint8_t *_data);
979
980    /**
981     * Push label for PrintReq (safe to call unconditionally).
982     */
983    void
984    pushLabel(const std::string &lbl)
985    {
986        if (isPrint())
987            safe_cast<PrintReqState*>(senderState)->pushLabel(lbl);
988    }
989
990    /**
991     * Pop label for PrintReq (safe to call unconditionally).
992     */
993    void
994    popLabel()
995    {
996        if (isPrint())
997            safe_cast<PrintReqState*>(senderState)->popLabel();
998    }
999
1000    void print(std::ostream &o, int verbosity = 0,
1001               const std::string &prefix = "") const;
1002
1003    /**
1004     * A no-args wrapper of print(std::ostream...)
1005     * meant to be invoked from DPRINTFs
1006     * avoiding string overheads in fast mode
1007     * @return string with the request's type and start<->end addresses
1008     */
1009    std::string print() const;
1010};
1011
1012#endif //__MEM_PACKET_HH
1013