packet.hh revision 10975:eba4e93665fc
1/*
2 * Copyright (c) 2012-2015 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2006 The Regents of The University of Michigan
15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Ron Dreslinski
42 *          Steve Reinhardt
43 *          Ali Saidi
44 *          Andreas Hansson
45 */
46
47/**
48 * @file
49 * Declaration of the Packet class.
50 */
51
52#ifndef __MEM_PACKET_HH__
53#define __MEM_PACKET_HH__
54
55#include <bitset>
56#include <cassert>
57#include <list>
58
59#include "base/cast.hh"
60#include "base/compiler.hh"
61#include "base/flags.hh"
62#include "base/misc.hh"
63#include "base/printable.hh"
64#include "base/types.hh"
65#include "mem/request.hh"
66#include "sim/core.hh"
67
68class Packet;
69typedef Packet *PacketPtr;
70typedef uint8_t* PacketDataPtr;
71typedef std::list<PacketPtr> PacketList;
72
73class MemCmd
74{
75    friend class Packet;
76
77  public:
78    /**
79     * List of all commands associated with a packet.
80     */
81    enum Command
82    {
83        InvalidCmd,
84        ReadReq,
85        ReadResp,
86        ReadRespWithInvalidate,
87        WriteReq,
88        WriteResp,
89        Writeback,
90        CleanEvict,
91        SoftPFReq,
92        HardPFReq,
93        SoftPFResp,
94        HardPFResp,
95        WriteLineReq,
96        UpgradeReq,
97        SCUpgradeReq,           // Special "weak" upgrade for StoreCond
98        UpgradeResp,
99        SCUpgradeFailReq,       // Failed SCUpgradeReq in MSHR (never sent)
100        UpgradeFailResp,        // Valid for SCUpgradeReq only
101        ReadExReq,
102        ReadExResp,
103        ReadCleanReq,
104        ReadSharedReq,
105        LoadLockedReq,
106        StoreCondReq,
107        StoreCondFailReq,       // Failed StoreCondReq in MSHR (never sent)
108        StoreCondResp,
109        SwapReq,
110        SwapResp,
111        MessageReq,
112        MessageResp,
113        ReleaseReq,
114        ReleaseResp,
115        AcquireReq,
116        AcquireResp,
117        // Error responses
118        // @TODO these should be classified as responses rather than
119        // requests; coding them as requests initially for backwards
120        // compatibility
121        InvalidDestError,  // packet dest field invalid
122        BadAddressError,   // memory address invalid
123        FunctionalReadError, // unable to fulfill functional read
124        FunctionalWriteError, // unable to fulfill functional write
125        // Fake simulator-only commands
126        PrintReq,       // Print state matching address
127        FlushReq,      //request for a cache flush
128        InvalidateReq,   // request for address to be invalidated
129        InvalidateResp,
130        NUM_MEM_CMDS
131    };
132
133  private:
134    /**
135     * List of command attributes.
136     */
137    enum Attribute
138    {
139        IsRead,         //!< Data flows from responder to requester
140        IsWrite,        //!< Data flows from requester to responder
141        IsUpgrade,
142        IsInvalidate,
143        NeedsExclusive, //!< Requires exclusive copy to complete in-cache
144        IsRequest,      //!< Issued by requester
145        IsResponse,     //!< Issue by responder
146        NeedsResponse,  //!< Requester needs response from target
147        IsSWPrefetch,
148        IsHWPrefetch,
149        IsLlsc,         //!< Alpha/MIPS LL or SC access
150        HasData,        //!< There is an associated payload
151        IsError,        //!< Error response
152        IsPrint,        //!< Print state matching address (for debugging)
153        IsFlush,        //!< Flush the address from caches
154        IsAcquire,      //!< Acquire operation
155        IsRelease,      //!< Release operation
156        NUM_COMMAND_ATTRIBUTES
157    };
158
159    /**
160     * Structure that defines attributes and other data associated
161     * with a Command.
162     */
163    struct CommandInfo
164    {
165        /// Set of attribute flags.
166        const std::bitset<NUM_COMMAND_ATTRIBUTES> attributes;
167        /// Corresponding response for requests; InvalidCmd if no
168        /// response is applicable.
169        const Command response;
170        /// String representation (for printing)
171        const std::string str;
172    };
173
174    /// Array to map Command enum to associated info.
175    static const CommandInfo commandInfo[];
176
177  private:
178
179    Command cmd;
180
181    bool
182    testCmdAttrib(MemCmd::Attribute attrib) const
183    {
184        return commandInfo[cmd].attributes[attrib] != 0;
185    }
186
187  public:
188
189    bool isRead() const            { return testCmdAttrib(IsRead); }
190    bool isWrite() const           { return testCmdAttrib(IsWrite); }
191    bool isUpgrade() const         { return testCmdAttrib(IsUpgrade); }
192    bool isRequest() const         { return testCmdAttrib(IsRequest); }
193    bool isResponse() const        { return testCmdAttrib(IsResponse); }
194    bool needsExclusive() const    { return testCmdAttrib(NeedsExclusive); }
195    bool needsResponse() const     { return testCmdAttrib(NeedsResponse); }
196    bool isInvalidate() const      { return testCmdAttrib(IsInvalidate); }
197
198    /**
199     * Check if this particular packet type carries payload data. Note
200     * that this does not reflect if the data pointer of the packet is
201     * valid or not.
202     */
203    bool hasData() const        { return testCmdAttrib(HasData); }
204    bool isLLSC() const         { return testCmdAttrib(IsLlsc); }
205    bool isSWPrefetch() const   { return testCmdAttrib(IsSWPrefetch); }
206    bool isHWPrefetch() const   { return testCmdAttrib(IsHWPrefetch); }
207    bool isPrefetch() const     { return testCmdAttrib(IsSWPrefetch) ||
208                                         testCmdAttrib(IsHWPrefetch); }
209    bool isError() const        { return testCmdAttrib(IsError); }
210    bool isPrint() const        { return testCmdAttrib(IsPrint); }
211    bool isFlush() const        { return testCmdAttrib(IsFlush); }
212    bool isAcquire() const      { return testCmdAttrib(IsAcquire); }
213    bool isRelease() const      { return testCmdAttrib(IsRelease); }
214
215    const Command
216    responseCommand() const
217    {
218        return commandInfo[cmd].response;
219    }
220
221    /// Return the string to a cmd given by idx.
222    const std::string &toString() const { return commandInfo[cmd].str; }
223    int toInt() const { return (int)cmd; }
224
225    MemCmd(Command _cmd) : cmd(_cmd) { }
226    MemCmd(int _cmd) : cmd((Command)_cmd) { }
227    MemCmd() : cmd(InvalidCmd) { }
228
229    bool operator==(MemCmd c2) const { return (cmd == c2.cmd); }
230    bool operator!=(MemCmd c2) const { return (cmd != c2.cmd); }
231};
232
233/**
234 * A Packet is used to encapsulate a transfer between two objects in
235 * the memory system (e.g., the L1 and L2 cache).  (In contrast, a
236 * single Request travels all the way from the requester to the
237 * ultimate destination and back, possibly being conveyed by several
238 * different Packets along the way.)
239 */
240class Packet : public Printable
241{
242  public:
243    typedef uint32_t FlagsType;
244    typedef ::Flags<FlagsType> Flags;
245
246  private:
247
248    enum : FlagsType {
249        // Flags to transfer across when copying a packet
250        COPY_FLAGS             = 0x0000000F,
251
252        SHARED                 = 0x00000001,
253        // Special control flags
254        /// Special timing-mode atomic snoop for multi-level coherence.
255        EXPRESS_SNOOP          = 0x00000002,
256        /// Does supplier have exclusive copy?
257        /// Useful for multi-level coherence.
258        SUPPLY_EXCLUSIVE       = 0x00000004,
259        // Snoop response flags
260        MEM_INHIBIT            = 0x00000008,
261
262        /// Are the 'addr' and 'size' fields valid?
263        VALID_ADDR             = 0x00000100,
264        VALID_SIZE             = 0x00000200,
265
266        /// Is the data pointer set to a value that shouldn't be freed
267        /// when the packet is destroyed?
268        STATIC_DATA            = 0x00001000,
269        /// The data pointer points to a value that should be freed when
270        /// the packet is destroyed. The pointer is assumed to be pointing
271        /// to an array, and delete [] is consequently called
272        DYNAMIC_DATA           = 0x00002000,
273
274        /// suppress the error if this packet encounters a functional
275        /// access failure.
276        SUPPRESS_FUNC_ERROR    = 0x00008000,
277
278        // Signal block present to squash prefetch and cache evict packets
279        // through express snoop flag
280        BLOCK_CACHED          = 0x00010000
281    };
282
283    Flags flags;
284
285  public:
286    typedef MemCmd::Command Command;
287
288    /// The command field of the packet.
289    MemCmd cmd;
290
291    /// A pointer to the original request.
292    const RequestPtr req;
293
294  private:
295   /**
296    * A pointer to the data being transfered.  It can be differnt
297    * sizes at each level of the heirarchy so it belongs in the
298    * packet, not request. This may or may not be populated when a
299    * responder recieves the packet. If not populated it memory should
300    * be allocated.
301    */
302    PacketDataPtr data;
303
304    /// The address of the request.  This address could be virtual or
305    /// physical, depending on the system configuration.
306    Addr addr;
307
308    /// True if the request targets the secure memory space.
309    bool _isSecure;
310
311    /// The size of the request or transfer.
312    unsigned size;
313
314    /**
315     * Track the bytes found that satisfy a functional read.
316     */
317    std::vector<bool> bytesValid;
318
319  public:
320
321    /**
322     * The extra delay from seeing the packet until the header is
323     * transmitted. This delay is used to communicate the crossbar
324     * forwarding latency to the neighbouring object (e.g. a cache)
325     * that actually makes the packet wait. As the delay is relative,
326     * a 32-bit unsigned should be sufficient.
327     */
328    uint32_t headerDelay;
329
330    /**
331     * The extra pipelining delay from seeing the packet until the end of
332     * payload is transmitted by the component that provided it (if
333     * any). This includes the header delay. Similar to the header
334     * delay, this is used to make up for the fact that the
335     * crossbar does not make the packet wait. As the delay is
336     * relative, a 32-bit unsigned should be sufficient.
337     */
338    uint32_t payloadDelay;
339
340    /**
341     * A virtual base opaque structure used to hold state associated
342     * with the packet (e.g., an MSHR), specific to a MemObject that
343     * sees the packet. A pointer to this state is returned in the
344     * packet's response so that the MemObject in question can quickly
345     * look up the state needed to process it. A specific subclass
346     * would be derived from this to carry state specific to a
347     * particular sending device.
348     *
349     * As multiple MemObjects may add their SenderState throughout the
350     * memory system, the SenderStates create a stack, where a
351     * MemObject can add a new Senderstate, as long as the
352     * predecessing SenderState is restored when the response comes
353     * back. For this reason, the predecessor should always be
354     * populated with the current SenderState of a packet before
355     * modifying the senderState field in the request packet.
356     */
357    struct SenderState
358    {
359        SenderState* predecessor;
360        SenderState() : predecessor(NULL) {}
361        virtual ~SenderState() {}
362    };
363
364    /**
365     * Object used to maintain state of a PrintReq.  The senderState
366     * field of a PrintReq should always be of this type.
367     */
368    class PrintReqState : public SenderState
369    {
370      private:
371        /**
372         * An entry in the label stack.
373         */
374        struct LabelStackEntry
375        {
376            const std::string label;
377            std::string *prefix;
378            bool labelPrinted;
379            LabelStackEntry(const std::string &_label, std::string *_prefix);
380        };
381
382        typedef std::list<LabelStackEntry> LabelStack;
383        LabelStack labelStack;
384
385        std::string *curPrefixPtr;
386
387      public:
388        std::ostream &os;
389        const int verbosity;
390
391        PrintReqState(std::ostream &os, int verbosity = 0);
392        ~PrintReqState();
393
394        /**
395         * Returns the current line prefix.
396         */
397        const std::string &curPrefix() { return *curPrefixPtr; }
398
399        /**
400         * Push a label onto the label stack, and prepend the given
401         * prefix string onto the current prefix.  Labels will only be
402         * printed if an object within the label's scope is printed.
403         */
404        void pushLabel(const std::string &lbl,
405                       const std::string &prefix = "  ");
406
407        /**
408         * Pop a label off the label stack.
409         */
410        void popLabel();
411
412        /**
413         * Print all of the pending unprinted labels on the
414         * stack. Called by printObj(), so normally not called by
415         * users unless bypassing printObj().
416         */
417        void printLabels();
418
419        /**
420         * Print a Printable object to os, because it matched the
421         * address on a PrintReq.
422         */
423        void printObj(Printable *obj);
424    };
425
426    /**
427     * This packet's sender state.  Devices should use dynamic_cast<>
428     * to cast to the state appropriate to the sender.  The intent of
429     * this variable is to allow a device to attach extra information
430     * to a request. A response packet must return the sender state
431     * that was attached to the original request (even if a new packet
432     * is created).
433     */
434    SenderState *senderState;
435
436    /**
437     * Push a new sender state to the packet and make the current
438     * sender state the predecessor of the new one. This should be
439     * prefered over direct manipulation of the senderState member
440     * variable.
441     *
442     * @param sender_state SenderState to push at the top of the stack
443     */
444    void pushSenderState(SenderState *sender_state);
445
446    /**
447     * Pop the top of the state stack and return a pointer to it. This
448     * assumes the current sender state is not NULL. This should be
449     * preferred over direct manipulation of the senderState member
450     * variable.
451     *
452     * @return The current top of the stack
453     */
454    SenderState *popSenderState();
455
456    /**
457     * Go through the sender state stack and return the first instance
458     * that is of type T (as determined by a dynamic_cast). If there
459     * is no sender state of type T, NULL is returned.
460     *
461     * @return The topmost state of type T
462     */
463    template <typename T>
464    T * findNextSenderState() const
465    {
466        T *t = NULL;
467        SenderState* sender_state = senderState;
468        while (t == NULL && sender_state != NULL) {
469            t = dynamic_cast<T*>(sender_state);
470            sender_state = sender_state->predecessor;
471        }
472        return t;
473    }
474
475    /// Return the string name of the cmd field (for debugging and
476    /// tracing).
477    const std::string &cmdString() const { return cmd.toString(); }
478
479    /// Return the index of this command.
480    inline int cmdToIndex() const { return cmd.toInt(); }
481
482    bool isRead() const              { return cmd.isRead(); }
483    bool isWrite() const             { return cmd.isWrite(); }
484    bool isUpgrade()  const          { return cmd.isUpgrade(); }
485    bool isRequest() const           { return cmd.isRequest(); }
486    bool isResponse() const          { return cmd.isResponse(); }
487    bool needsExclusive() const      { return cmd.needsExclusive(); }
488    bool needsResponse() const       { return cmd.needsResponse(); }
489    bool isInvalidate() const        { return cmd.isInvalidate(); }
490    bool hasData() const             { return cmd.hasData(); }
491    bool isLLSC() const              { return cmd.isLLSC(); }
492    bool isError() const             { return cmd.isError(); }
493    bool isPrint() const             { return cmd.isPrint(); }
494    bool isFlush() const             { return cmd.isFlush(); }
495    bool isAcquire() const           { return cmd.isAcquire(); }
496    bool isRelease() const           { return cmd.isRelease(); }
497
498    // Snoop flags
499    void assertMemInhibit()
500    {
501        assert(isRequest());
502        assert(!flags.isSet(MEM_INHIBIT));
503        flags.set(MEM_INHIBIT);
504    }
505    bool memInhibitAsserted() const { return flags.isSet(MEM_INHIBIT); }
506    void assertShared()             { flags.set(SHARED); }
507    bool sharedAsserted() const     { return flags.isSet(SHARED); }
508
509    // Special control flags
510    void setExpressSnoop()          { flags.set(EXPRESS_SNOOP); }
511    bool isExpressSnoop() const     { return flags.isSet(EXPRESS_SNOOP); }
512    void setSupplyExclusive()       { flags.set(SUPPLY_EXCLUSIVE); }
513    bool isSupplyExclusive() const  { return flags.isSet(SUPPLY_EXCLUSIVE); }
514    void setSuppressFuncError()     { flags.set(SUPPRESS_FUNC_ERROR); }
515    bool suppressFuncError() const  { return flags.isSet(SUPPRESS_FUNC_ERROR); }
516    void setBlockCached()          { flags.set(BLOCK_CACHED); }
517    bool isBlockCached() const     { return flags.isSet(BLOCK_CACHED); }
518    void clearBlockCached()        { flags.clear(BLOCK_CACHED); }
519
520    // Network error conditions... encapsulate them as methods since
521    // their encoding keeps changing (from result field to command
522    // field, etc.)
523    void
524    setBadAddress()
525    {
526        assert(isResponse());
527        cmd = MemCmd::BadAddressError;
528    }
529
530    void copyError(Packet *pkt) { assert(pkt->isError()); cmd = pkt->cmd; }
531
532    Addr getAddr() const { assert(flags.isSet(VALID_ADDR)); return addr; }
533    /**
534     * Update the address of this packet mid-transaction. This is used
535     * by the address mapper to change an already set address to a new
536     * one based on the system configuration. It is intended to remap
537     * an existing address, so it asserts that the current address is
538     * valid.
539     */
540    void setAddr(Addr _addr) { assert(flags.isSet(VALID_ADDR)); addr = _addr; }
541
542    unsigned getSize() const  { assert(flags.isSet(VALID_SIZE)); return size; }
543
544    Addr getOffset(unsigned int blk_size) const
545    {
546        return getAddr() & Addr(blk_size - 1);
547    }
548
549    Addr getBlockAddr(unsigned int blk_size) const
550    {
551        return getAddr() & ~(Addr(blk_size - 1));
552    }
553
554    bool isSecure() const
555    {
556        assert(flags.isSet(VALID_ADDR));
557        return _isSecure;
558    }
559
560    /**
561     * It has been determined that the SC packet should successfully update
562     * memory. Therefore, convert this SC packet to a normal write.
563     */
564    void
565    convertScToWrite()
566    {
567        assert(isLLSC());
568        assert(isWrite());
569        cmd = MemCmd::WriteReq;
570    }
571
572    /**
573     * When ruby is in use, Ruby will monitor the cache line and the
574     * phys memory should treat LL ops as normal reads.
575     */
576    void
577    convertLlToRead()
578    {
579        assert(isLLSC());
580        assert(isRead());
581        cmd = MemCmd::ReadReq;
582    }
583
584    /**
585     * Constructor. Note that a Request object must be constructed
586     * first, but the Requests's physical address and size fields need
587     * not be valid. The command must be supplied.
588     */
589    Packet(const RequestPtr _req, MemCmd _cmd)
590        :  cmd(_cmd), req(_req), data(nullptr), addr(0), _isSecure(false),
591           size(0), headerDelay(0), payloadDelay(0),
592           senderState(NULL)
593    {
594        if (req->hasPaddr()) {
595            addr = req->getPaddr();
596            flags.set(VALID_ADDR);
597            _isSecure = req->isSecure();
598        }
599        if (req->hasSize()) {
600            size = req->getSize();
601            flags.set(VALID_SIZE);
602        }
603    }
604
605    /**
606     * Alternate constructor if you are trying to create a packet with
607     * a request that is for a whole block, not the address from the
608     * req.  this allows for overriding the size/addr of the req.
609     */
610    Packet(const RequestPtr _req, MemCmd _cmd, int _blkSize)
611        :  cmd(_cmd), req(_req), data(nullptr), addr(0), _isSecure(false),
612           headerDelay(0), payloadDelay(0),
613           senderState(NULL)
614    {
615        if (req->hasPaddr()) {
616            addr = req->getPaddr() & ~(_blkSize - 1);
617            flags.set(VALID_ADDR);
618            _isSecure = req->isSecure();
619        }
620        size = _blkSize;
621        flags.set(VALID_SIZE);
622    }
623
624    /**
625     * Alternate constructor for copying a packet.  Copy all fields
626     * *except* if the original packet's data was dynamic, don't copy
627     * that, as we can't guarantee that the new packet's lifetime is
628     * less than that of the original packet.  In this case the new
629     * packet should allocate its own data.
630     */
631    Packet(const PacketPtr pkt, bool clear_flags, bool alloc_data)
632        :  cmd(pkt->cmd), req(pkt->req),
633           data(nullptr),
634           addr(pkt->addr), _isSecure(pkt->_isSecure), size(pkt->size),
635           bytesValid(pkt->bytesValid),
636           headerDelay(pkt->headerDelay),
637           payloadDelay(pkt->payloadDelay),
638           senderState(pkt->senderState)
639    {
640        if (!clear_flags)
641            flags.set(pkt->flags & COPY_FLAGS);
642
643        flags.set(pkt->flags & (VALID_ADDR|VALID_SIZE));
644
645        // should we allocate space for data, or not, the express
646        // snoops do not need to carry any data as they only serve to
647        // co-ordinate state changes
648        if (alloc_data) {
649            // even if asked to allocate data, if the original packet
650            // holds static data, then the sender will not be doing
651            // any memcpy on receiving the response, thus we simply
652            // carry the pointer forward
653            if (pkt->flags.isSet(STATIC_DATA)) {
654                data = pkt->data;
655                flags.set(STATIC_DATA);
656            } else {
657                allocate();
658            }
659        }
660    }
661
662    /**
663     * Generate the appropriate read MemCmd based on the Request flags.
664     */
665    static MemCmd
666    makeReadCmd(const RequestPtr req)
667    {
668        if (req->isLLSC())
669            return MemCmd::LoadLockedReq;
670        else if (req->isPrefetch())
671            return MemCmd::SoftPFReq;
672        else
673            return MemCmd::ReadReq;
674    }
675
676    /**
677     * Generate the appropriate write MemCmd based on the Request flags.
678     */
679    static MemCmd
680    makeWriteCmd(const RequestPtr req)
681    {
682        if (req->isLLSC())
683            return MemCmd::StoreCondReq;
684        else if (req->isSwap())
685            return MemCmd::SwapReq;
686        else
687            return MemCmd::WriteReq;
688    }
689
690    /**
691     * Constructor-like methods that return Packets based on Request objects.
692     * Fine-tune the MemCmd type if it's not a vanilla read or write.
693     */
694    static PacketPtr
695    createRead(const RequestPtr req)
696    {
697        return new Packet(req, makeReadCmd(req));
698    }
699
700    static PacketPtr
701    createWrite(const RequestPtr req)
702    {
703        return new Packet(req, makeWriteCmd(req));
704    }
705
706    /**
707     * clean up packet variables
708     */
709    ~Packet()
710    {
711        // Delete the request object if this is a request packet which
712        // does not need a response, because the requester will not get
713        // a chance. If the request packet needs a response then the
714        // request will be deleted on receipt of the response
715        // packet. We also make sure to never delete the request for
716        // express snoops, even for cases when responses are not
717        // needed (CleanEvict and Writeback), since the snoop packet
718        // re-uses the same request.
719        if (req && isRequest() && !needsResponse() &&
720            !isExpressSnoop()) {
721            delete req;
722        }
723        deleteData();
724    }
725
726    /**
727     * Take a request packet and modify it in place to be suitable for
728     * returning as a response to that request.
729     */
730    void
731    makeResponse()
732    {
733        assert(needsResponse());
734        assert(isRequest());
735        cmd = cmd.responseCommand();
736
737        // responses are never express, even if the snoop that
738        // triggered them was
739        flags.clear(EXPRESS_SNOOP);
740    }
741
742    void
743    makeAtomicResponse()
744    {
745        makeResponse();
746    }
747
748    void
749    makeTimingResponse()
750    {
751        makeResponse();
752    }
753
754    void
755    setFunctionalResponseStatus(bool success)
756    {
757        if (!success) {
758            if (isWrite()) {
759                cmd = MemCmd::FunctionalWriteError;
760            } else {
761                cmd = MemCmd::FunctionalReadError;
762            }
763        }
764    }
765
766    void
767    setSize(unsigned size)
768    {
769        assert(!flags.isSet(VALID_SIZE));
770
771        this->size = size;
772        flags.set(VALID_SIZE);
773    }
774
775
776    /**
777     * Set the data pointer to the following value that should not be
778     * freed. Static data allows us to do a single memcpy even if
779     * multiple packets are required to get from source to destination
780     * and back. In essence the pointer is set calling dataStatic on
781     * the original packet, and whenever this packet is copied and
782     * forwarded the same pointer is passed on. When a packet
783     * eventually reaches the destination holding the data, it is
784     * copied once into the location originally set. On the way back
785     * to the source, no copies are necessary.
786     */
787    template <typename T>
788    void
789    dataStatic(T *p)
790    {
791        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
792        data = (PacketDataPtr)p;
793        flags.set(STATIC_DATA);
794    }
795
796    /**
797     * Set the data pointer to the following value that should not be
798     * freed. This version of the function allows the pointer passed
799     * to us to be const. To avoid issues down the line we cast the
800     * constness away, the alternative would be to keep both a const
801     * and non-const data pointer and cleverly choose between
802     * them. Note that this is only allowed for static data.
803     */
804    template <typename T>
805    void
806    dataStaticConst(const T *p)
807    {
808        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
809        data = const_cast<PacketDataPtr>(p);
810        flags.set(STATIC_DATA);
811    }
812
813    /**
814     * Set the data pointer to a value that should have delete []
815     * called on it. Dynamic data is local to this packet, and as the
816     * packet travels from source to destination, forwarded packets
817     * will allocate their own data. When a packet reaches the final
818     * destination it will populate the dynamic data of that specific
819     * packet, and on the way back towards the source, memcpy will be
820     * invoked in every step where a new packet was created e.g. in
821     * the caches. Ultimately when the response reaches the source a
822     * final memcpy is needed to extract the data from the packet
823     * before it is deallocated.
824     */
825    template <typename T>
826    void
827    dataDynamic(T *p)
828    {
829        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
830        data = (PacketDataPtr)p;
831        flags.set(DYNAMIC_DATA);
832    }
833
834    /**
835     * get a pointer to the data ptr.
836     */
837    template <typename T>
838    T*
839    getPtr()
840    {
841        assert(flags.isSet(STATIC_DATA|DYNAMIC_DATA));
842        return (T*)data;
843    }
844
845    template <typename T>
846    const T*
847    getConstPtr() const
848    {
849        assert(flags.isSet(STATIC_DATA|DYNAMIC_DATA));
850        return (const T*)data;
851    }
852
853    /**
854     * return the value of what is pointed to in the packet.
855     */
856    template <typename T>
857    T get() const;
858
859    /**
860     * set the value in the data pointer to v.
861     */
862    template <typename T>
863    void set(T v);
864
865    /**
866     * Copy data into the packet from the provided pointer.
867     */
868    void
869    setData(const uint8_t *p)
870    {
871        // we should never be copying data onto itself, which means we
872        // must idenfity packets with static data, as they carry the
873        // same pointer from source to destination and back
874        assert(p != getPtr<uint8_t>() || flags.isSet(STATIC_DATA));
875
876        if (p != getPtr<uint8_t>())
877            // for packet with allocated dynamic data, we copy data from
878            // one to the other, e.g. a forwarded response to a response
879            std::memcpy(getPtr<uint8_t>(), p, getSize());
880    }
881
882    /**
883     * Copy data into the packet from the provided block pointer,
884     * which is aligned to the given block size.
885     */
886    void
887    setDataFromBlock(const uint8_t *blk_data, int blkSize)
888    {
889        setData(blk_data + getOffset(blkSize));
890    }
891
892    /**
893     * Copy data from the packet to the provided block pointer, which
894     * is aligned to the given block size.
895     */
896    void
897    writeData(uint8_t *p) const
898    {
899        std::memcpy(p, getConstPtr<uint8_t>(), getSize());
900    }
901
902    /**
903     * Copy data from the packet to the memory at the provided pointer.
904     */
905    void
906    writeDataToBlock(uint8_t *blk_data, int blkSize) const
907    {
908        writeData(blk_data + getOffset(blkSize));
909    }
910
911    /**
912     * delete the data pointed to in the data pointer. Ok to call to
913     * matter how data was allocted.
914     */
915    void
916    deleteData()
917    {
918        if (flags.isSet(DYNAMIC_DATA))
919            delete [] data;
920
921        flags.clear(STATIC_DATA|DYNAMIC_DATA);
922        data = NULL;
923    }
924
925    /** Allocate memory for the packet. */
926    void
927    allocate()
928    {
929        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
930        flags.set(DYNAMIC_DATA);
931        data = new uint8_t[getSize()];
932    }
933
934    /**
935     * Check a functional request against a memory value stored in
936     * another packet (i.e. an in-transit request or
937     * response). Returns true if the current packet is a read, and
938     * the other packet provides the data, which is then copied to the
939     * current packet. If the current packet is a write, and the other
940     * packet intersects this one, then we update the data
941     * accordingly.
942     */
943    bool
944    checkFunctional(PacketPtr other)
945    {
946        // all packets that are carrying a payload should have a valid
947        // data pointer
948        return checkFunctional(other, other->getAddr(), other->isSecure(),
949                               other->getSize(),
950                               other->hasData() ?
951                               other->getPtr<uint8_t>() : NULL);
952    }
953
954    /**
955     * Is this request notification of a clean or dirty eviction from the cache.
956     **/
957    bool
958    evictingBlock() const
959    {
960        return (cmd == MemCmd::Writeback ||
961                cmd == MemCmd::CleanEvict);
962    }
963
964    /**
965     * Does the request need to check for cached copies of the same block
966     * in the memory hierarchy above.
967     **/
968    bool
969    mustCheckAbove() const
970    {
971        return (cmd == MemCmd::HardPFReq ||
972                evictingBlock());
973    }
974
975    /**
976     * Check a functional request against a memory value represented
977     * by a base/size pair and an associated data array. If the
978     * current packet is a read, it may be satisfied by the memory
979     * value. If the current packet is a write, it may update the
980     * memory value.
981     */
982    bool
983    checkFunctional(Printable *obj, Addr base, bool is_secure, int size,
984                    uint8_t *_data);
985
986    /**
987     * Push label for PrintReq (safe to call unconditionally).
988     */
989    void
990    pushLabel(const std::string &lbl)
991    {
992        if (isPrint())
993            safe_cast<PrintReqState*>(senderState)->pushLabel(lbl);
994    }
995
996    /**
997     * Pop label for PrintReq (safe to call unconditionally).
998     */
999    void
1000    popLabel()
1001    {
1002        if (isPrint())
1003            safe_cast<PrintReqState*>(senderState)->popLabel();
1004    }
1005
1006    void print(std::ostream &o, int verbosity = 0,
1007               const std::string &prefix = "") const;
1008
1009    /**
1010     * A no-args wrapper of print(std::ostream...)
1011     * meant to be invoked from DPRINTFs
1012     * avoiding string overheads in fast mode
1013     * @return string with the request's type and start<->end addresses
1014     */
1015    std::string print() const;
1016};
1017
1018#endif //__MEM_PACKET_HH
1019