packet.hh revision 10940:49d9b53b21dc
1/*
2 * Copyright (c) 2012-2015 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2006 The Regents of The University of Michigan
15 * Copyright (c) 2010 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Ron Dreslinski
42 *          Steve Reinhardt
43 *          Ali Saidi
44 *          Andreas Hansson
45 */
46
47/**
48 * @file
49 * Declaration of the Packet class.
50 */
51
52#ifndef __MEM_PACKET_HH__
53#define __MEM_PACKET_HH__
54
55#include <bitset>
56#include <cassert>
57#include <list>
58
59#include "base/cast.hh"
60#include "base/compiler.hh"
61#include "base/flags.hh"
62#include "base/misc.hh"
63#include "base/printable.hh"
64#include "base/types.hh"
65#include "mem/request.hh"
66#include "sim/core.hh"
67
68class Packet;
69typedef Packet *PacketPtr;
70typedef uint8_t* PacketDataPtr;
71typedef std::list<PacketPtr> PacketList;
72
73class MemCmd
74{
75    friend class Packet;
76
77  public:
78    /**
79     * List of all commands associated with a packet.
80     */
81    enum Command
82    {
83        InvalidCmd,
84        ReadReq,
85        ReadResp,
86        ReadRespWithInvalidate,
87        WriteReq,
88        WriteResp,
89        Writeback,
90        CleanEvict,
91        SoftPFReq,
92        HardPFReq,
93        SoftPFResp,
94        HardPFResp,
95        WriteLineReq,
96        UpgradeReq,
97        SCUpgradeReq,           // Special "weak" upgrade for StoreCond
98        UpgradeResp,
99        SCUpgradeFailReq,       // Failed SCUpgradeReq in MSHR (never sent)
100        UpgradeFailResp,        // Valid for SCUpgradeReq only
101        ReadExReq,
102        ReadExResp,
103        ReadCleanReq,
104        ReadSharedReq,
105        LoadLockedReq,
106        StoreCondReq,
107        StoreCondFailReq,       // Failed StoreCondReq in MSHR (never sent)
108        StoreCondResp,
109        SwapReq,
110        SwapResp,
111        MessageReq,
112        MessageResp,
113        // Error responses
114        // @TODO these should be classified as responses rather than
115        // requests; coding them as requests initially for backwards
116        // compatibility
117        InvalidDestError,  // packet dest field invalid
118        BadAddressError,   // memory address invalid
119        FunctionalReadError, // unable to fulfill functional read
120        FunctionalWriteError, // unable to fulfill functional write
121        // Fake simulator-only commands
122        PrintReq,       // Print state matching address
123        FlushReq,      //request for a cache flush
124        InvalidateReq,   // request for address to be invalidated
125        InvalidateResp,
126        NUM_MEM_CMDS
127    };
128
129  private:
130    /**
131     * List of command attributes.
132     */
133    enum Attribute
134    {
135        IsRead,         //!< Data flows from responder to requester
136        IsWrite,        //!< Data flows from requester to responder
137        IsUpgrade,
138        IsInvalidate,
139        NeedsExclusive, //!< Requires exclusive copy to complete in-cache
140        IsRequest,      //!< Issued by requester
141        IsResponse,     //!< Issue by responder
142        NeedsResponse,  //!< Requester needs response from target
143        IsSWPrefetch,
144        IsHWPrefetch,
145        IsLlsc,         //!< Alpha/MIPS LL or SC access
146        HasData,        //!< There is an associated payload
147        IsError,        //!< Error response
148        IsPrint,        //!< Print state matching address (for debugging)
149        IsFlush,        //!< Flush the address from caches
150        NUM_COMMAND_ATTRIBUTES
151    };
152
153    /**
154     * Structure that defines attributes and other data associated
155     * with a Command.
156     */
157    struct CommandInfo
158    {
159        /// Set of attribute flags.
160        const std::bitset<NUM_COMMAND_ATTRIBUTES> attributes;
161        /// Corresponding response for requests; InvalidCmd if no
162        /// response is applicable.
163        const Command response;
164        /// String representation (for printing)
165        const std::string str;
166    };
167
168    /// Array to map Command enum to associated info.
169    static const CommandInfo commandInfo[];
170
171  private:
172
173    Command cmd;
174
175    bool
176    testCmdAttrib(MemCmd::Attribute attrib) const
177    {
178        return commandInfo[cmd].attributes[attrib] != 0;
179    }
180
181  public:
182
183    bool isRead() const            { return testCmdAttrib(IsRead); }
184    bool isWrite() const           { return testCmdAttrib(IsWrite); }
185    bool isUpgrade() const         { return testCmdAttrib(IsUpgrade); }
186    bool isRequest() const         { return testCmdAttrib(IsRequest); }
187    bool isResponse() const        { return testCmdAttrib(IsResponse); }
188    bool needsExclusive() const    { return testCmdAttrib(NeedsExclusive); }
189    bool needsResponse() const     { return testCmdAttrib(NeedsResponse); }
190    bool isInvalidate() const      { return testCmdAttrib(IsInvalidate); }
191
192    /**
193     * Check if this particular packet type carries payload data. Note
194     * that this does not reflect if the data pointer of the packet is
195     * valid or not.
196     */
197    bool hasData() const        { return testCmdAttrib(HasData); }
198    bool isLLSC() const         { return testCmdAttrib(IsLlsc); }
199    bool isSWPrefetch() const   { return testCmdAttrib(IsSWPrefetch); }
200    bool isHWPrefetch() const   { return testCmdAttrib(IsHWPrefetch); }
201    bool isPrefetch() const     { return testCmdAttrib(IsSWPrefetch) ||
202                                         testCmdAttrib(IsHWPrefetch); }
203    bool isError() const        { return testCmdAttrib(IsError); }
204    bool isPrint() const        { return testCmdAttrib(IsPrint); }
205    bool isFlush() const        { return testCmdAttrib(IsFlush); }
206
207    const Command
208    responseCommand() const
209    {
210        return commandInfo[cmd].response;
211    }
212
213    /// Return the string to a cmd given by idx.
214    const std::string &toString() const { return commandInfo[cmd].str; }
215    int toInt() const { return (int)cmd; }
216
217    MemCmd(Command _cmd) : cmd(_cmd) { }
218    MemCmd(int _cmd) : cmd((Command)_cmd) { }
219    MemCmd() : cmd(InvalidCmd) { }
220
221    bool operator==(MemCmd c2) const { return (cmd == c2.cmd); }
222    bool operator!=(MemCmd c2) const { return (cmd != c2.cmd); }
223};
224
225/**
226 * A Packet is used to encapsulate a transfer between two objects in
227 * the memory system (e.g., the L1 and L2 cache).  (In contrast, a
228 * single Request travels all the way from the requester to the
229 * ultimate destination and back, possibly being conveyed by several
230 * different Packets along the way.)
231 */
232class Packet : public Printable
233{
234  public:
235    typedef uint32_t FlagsType;
236    typedef ::Flags<FlagsType> Flags;
237
238  private:
239
240    enum : FlagsType {
241        // Flags to transfer across when copying a packet
242        COPY_FLAGS             = 0x0000000F,
243
244        SHARED                 = 0x00000001,
245        // Special control flags
246        /// Special timing-mode atomic snoop for multi-level coherence.
247        EXPRESS_SNOOP          = 0x00000002,
248        /// Does supplier have exclusive copy?
249        /// Useful for multi-level coherence.
250        SUPPLY_EXCLUSIVE       = 0x00000004,
251        // Snoop response flags
252        MEM_INHIBIT            = 0x00000008,
253
254        /// Are the 'addr' and 'size' fields valid?
255        VALID_ADDR             = 0x00000100,
256        VALID_SIZE             = 0x00000200,
257
258        /// Is the data pointer set to a value that shouldn't be freed
259        /// when the packet is destroyed?
260        STATIC_DATA            = 0x00001000,
261        /// The data pointer points to a value that should be freed when
262        /// the packet is destroyed. The pointer is assumed to be pointing
263        /// to an array, and delete [] is consequently called
264        DYNAMIC_DATA           = 0x00002000,
265
266        /// suppress the error if this packet encounters a functional
267        /// access failure.
268        SUPPRESS_FUNC_ERROR    = 0x00008000,
269
270        // Signal block present to squash prefetch and cache evict packets
271        // through express snoop flag
272        BLOCK_CACHED          = 0x00010000
273    };
274
275    Flags flags;
276
277  public:
278    typedef MemCmd::Command Command;
279
280    /// The command field of the packet.
281    MemCmd cmd;
282
283    /// A pointer to the original request.
284    const RequestPtr req;
285
286  private:
287   /**
288    * A pointer to the data being transfered.  It can be differnt
289    * sizes at each level of the heirarchy so it belongs in the
290    * packet, not request. This may or may not be populated when a
291    * responder recieves the packet. If not populated it memory should
292    * be allocated.
293    */
294    PacketDataPtr data;
295
296    /// The address of the request.  This address could be virtual or
297    /// physical, depending on the system configuration.
298    Addr addr;
299
300    /// True if the request targets the secure memory space.
301    bool _isSecure;
302
303    /// The size of the request or transfer.
304    unsigned size;
305
306    /**
307     * Track the bytes found that satisfy a functional read.
308     */
309    std::vector<bool> bytesValid;
310
311  public:
312
313    /**
314     * The extra delay from seeing the packet until the header is
315     * transmitted. This delay is used to communicate the crossbar
316     * forwarding latency to the neighbouring object (e.g. a cache)
317     * that actually makes the packet wait. As the delay is relative,
318     * a 32-bit unsigned should be sufficient.
319     */
320    uint32_t headerDelay;
321
322    /**
323     * The extra pipelining delay from seeing the packet until the end of
324     * payload is transmitted by the component that provided it (if
325     * any). This includes the header delay. Similar to the header
326     * delay, this is used to make up for the fact that the
327     * crossbar does not make the packet wait. As the delay is
328     * relative, a 32-bit unsigned should be sufficient.
329     */
330    uint32_t payloadDelay;
331
332    /**
333     * A virtual base opaque structure used to hold state associated
334     * with the packet (e.g., an MSHR), specific to a MemObject that
335     * sees the packet. A pointer to this state is returned in the
336     * packet's response so that the MemObject in question can quickly
337     * look up the state needed to process it. A specific subclass
338     * would be derived from this to carry state specific to a
339     * particular sending device.
340     *
341     * As multiple MemObjects may add their SenderState throughout the
342     * memory system, the SenderStates create a stack, where a
343     * MemObject can add a new Senderstate, as long as the
344     * predecessing SenderState is restored when the response comes
345     * back. For this reason, the predecessor should always be
346     * populated with the current SenderState of a packet before
347     * modifying the senderState field in the request packet.
348     */
349    struct SenderState
350    {
351        SenderState* predecessor;
352        SenderState() : predecessor(NULL) {}
353        virtual ~SenderState() {}
354    };
355
356    /**
357     * Object used to maintain state of a PrintReq.  The senderState
358     * field of a PrintReq should always be of this type.
359     */
360    class PrintReqState : public SenderState
361    {
362      private:
363        /**
364         * An entry in the label stack.
365         */
366        struct LabelStackEntry
367        {
368            const std::string label;
369            std::string *prefix;
370            bool labelPrinted;
371            LabelStackEntry(const std::string &_label, std::string *_prefix);
372        };
373
374        typedef std::list<LabelStackEntry> LabelStack;
375        LabelStack labelStack;
376
377        std::string *curPrefixPtr;
378
379      public:
380        std::ostream &os;
381        const int verbosity;
382
383        PrintReqState(std::ostream &os, int verbosity = 0);
384        ~PrintReqState();
385
386        /**
387         * Returns the current line prefix.
388         */
389        const std::string &curPrefix() { return *curPrefixPtr; }
390
391        /**
392         * Push a label onto the label stack, and prepend the given
393         * prefix string onto the current prefix.  Labels will only be
394         * printed if an object within the label's scope is printed.
395         */
396        void pushLabel(const std::string &lbl,
397                       const std::string &prefix = "  ");
398
399        /**
400         * Pop a label off the label stack.
401         */
402        void popLabel();
403
404        /**
405         * Print all of the pending unprinted labels on the
406         * stack. Called by printObj(), so normally not called by
407         * users unless bypassing printObj().
408         */
409        void printLabels();
410
411        /**
412         * Print a Printable object to os, because it matched the
413         * address on a PrintReq.
414         */
415        void printObj(Printable *obj);
416    };
417
418    /**
419     * This packet's sender state.  Devices should use dynamic_cast<>
420     * to cast to the state appropriate to the sender.  The intent of
421     * this variable is to allow a device to attach extra information
422     * to a request. A response packet must return the sender state
423     * that was attached to the original request (even if a new packet
424     * is created).
425     */
426    SenderState *senderState;
427
428    /**
429     * Push a new sender state to the packet and make the current
430     * sender state the predecessor of the new one. This should be
431     * prefered over direct manipulation of the senderState member
432     * variable.
433     *
434     * @param sender_state SenderState to push at the top of the stack
435     */
436    void pushSenderState(SenderState *sender_state);
437
438    /**
439     * Pop the top of the state stack and return a pointer to it. This
440     * assumes the current sender state is not NULL. This should be
441     * preferred over direct manipulation of the senderState member
442     * variable.
443     *
444     * @return The current top of the stack
445     */
446    SenderState *popSenderState();
447
448    /**
449     * Go through the sender state stack and return the first instance
450     * that is of type T (as determined by a dynamic_cast). If there
451     * is no sender state of type T, NULL is returned.
452     *
453     * @return The topmost state of type T
454     */
455    template <typename T>
456    T * findNextSenderState() const
457    {
458        T *t = NULL;
459        SenderState* sender_state = senderState;
460        while (t == NULL && sender_state != NULL) {
461            t = dynamic_cast<T*>(sender_state);
462            sender_state = sender_state->predecessor;
463        }
464        return t;
465    }
466
467    /// Return the string name of the cmd field (for debugging and
468    /// tracing).
469    const std::string &cmdString() const { return cmd.toString(); }
470
471    /// Return the index of this command.
472    inline int cmdToIndex() const { return cmd.toInt(); }
473
474    bool isRead() const              { return cmd.isRead(); }
475    bool isWrite() const             { return cmd.isWrite(); }
476    bool isUpgrade()  const          { return cmd.isUpgrade(); }
477    bool isRequest() const           { return cmd.isRequest(); }
478    bool isResponse() const          { return cmd.isResponse(); }
479    bool needsExclusive() const      { return cmd.needsExclusive(); }
480    bool needsResponse() const       { return cmd.needsResponse(); }
481    bool isInvalidate() const        { return cmd.isInvalidate(); }
482    bool hasData() const             { return cmd.hasData(); }
483    bool isLLSC() const              { return cmd.isLLSC(); }
484    bool isError() const             { return cmd.isError(); }
485    bool isPrint() const             { return cmd.isPrint(); }
486    bool isFlush() const             { return cmd.isFlush(); }
487
488    // Snoop flags
489    void assertMemInhibit()
490    {
491        assert(isRequest());
492        assert(!flags.isSet(MEM_INHIBIT));
493        flags.set(MEM_INHIBIT);
494    }
495    bool memInhibitAsserted() const { return flags.isSet(MEM_INHIBIT); }
496    void assertShared()             { flags.set(SHARED); }
497    bool sharedAsserted() const     { return flags.isSet(SHARED); }
498
499    // Special control flags
500    void setExpressSnoop()          { flags.set(EXPRESS_SNOOP); }
501    bool isExpressSnoop() const     { return flags.isSet(EXPRESS_SNOOP); }
502    void setSupplyExclusive()       { flags.set(SUPPLY_EXCLUSIVE); }
503    bool isSupplyExclusive() const  { return flags.isSet(SUPPLY_EXCLUSIVE); }
504    void setSuppressFuncError()     { flags.set(SUPPRESS_FUNC_ERROR); }
505    bool suppressFuncError() const  { return flags.isSet(SUPPRESS_FUNC_ERROR); }
506    void setBlockCached()          { flags.set(BLOCK_CACHED); }
507    bool isBlockCached() const     { return flags.isSet(BLOCK_CACHED); }
508    void clearBlockCached()        { flags.clear(BLOCK_CACHED); }
509
510    // Network error conditions... encapsulate them as methods since
511    // their encoding keeps changing (from result field to command
512    // field, etc.)
513    void
514    setBadAddress()
515    {
516        assert(isResponse());
517        cmd = MemCmd::BadAddressError;
518    }
519
520    void copyError(Packet *pkt) { assert(pkt->isError()); cmd = pkt->cmd; }
521
522    Addr getAddr() const { assert(flags.isSet(VALID_ADDR)); return addr; }
523    /**
524     * Update the address of this packet mid-transaction. This is used
525     * by the address mapper to change an already set address to a new
526     * one based on the system configuration. It is intended to remap
527     * an existing address, so it asserts that the current address is
528     * valid.
529     */
530    void setAddr(Addr _addr) { assert(flags.isSet(VALID_ADDR)); addr = _addr; }
531
532    unsigned getSize() const  { assert(flags.isSet(VALID_SIZE)); return size; }
533
534    Addr getOffset(unsigned int blk_size) const
535    {
536        return getAddr() & Addr(blk_size - 1);
537    }
538
539    Addr getBlockAddr(unsigned int blk_size) const
540    {
541        return getAddr() & ~(Addr(blk_size - 1));
542    }
543
544    bool isSecure() const
545    {
546        assert(flags.isSet(VALID_ADDR));
547        return _isSecure;
548    }
549
550    /**
551     * It has been determined that the SC packet should successfully update
552     * memory. Therefore, convert this SC packet to a normal write.
553     */
554    void
555    convertScToWrite()
556    {
557        assert(isLLSC());
558        assert(isWrite());
559        cmd = MemCmd::WriteReq;
560    }
561
562    /**
563     * When ruby is in use, Ruby will monitor the cache line and the
564     * phys memory should treat LL ops as normal reads.
565     */
566    void
567    convertLlToRead()
568    {
569        assert(isLLSC());
570        assert(isRead());
571        cmd = MemCmd::ReadReq;
572    }
573
574    /**
575     * Constructor. Note that a Request object must be constructed
576     * first, but the Requests's physical address and size fields need
577     * not be valid. The command must be supplied.
578     */
579    Packet(const RequestPtr _req, MemCmd _cmd)
580        :  cmd(_cmd), req(_req), data(nullptr), addr(0), _isSecure(false),
581           size(0), headerDelay(0), payloadDelay(0),
582           senderState(NULL)
583    {
584        if (req->hasPaddr()) {
585            addr = req->getPaddr();
586            flags.set(VALID_ADDR);
587            _isSecure = req->isSecure();
588        }
589        if (req->hasSize()) {
590            size = req->getSize();
591            flags.set(VALID_SIZE);
592        }
593    }
594
595    /**
596     * Alternate constructor if you are trying to create a packet with
597     * a request that is for a whole block, not the address from the
598     * req.  this allows for overriding the size/addr of the req.
599     */
600    Packet(const RequestPtr _req, MemCmd _cmd, int _blkSize)
601        :  cmd(_cmd), req(_req), data(nullptr), addr(0), _isSecure(false),
602           headerDelay(0), payloadDelay(0),
603           senderState(NULL)
604    {
605        if (req->hasPaddr()) {
606            addr = req->getPaddr() & ~(_blkSize - 1);
607            flags.set(VALID_ADDR);
608            _isSecure = req->isSecure();
609        }
610        size = _blkSize;
611        flags.set(VALID_SIZE);
612    }
613
614    /**
615     * Alternate constructor for copying a packet.  Copy all fields
616     * *except* if the original packet's data was dynamic, don't copy
617     * that, as we can't guarantee that the new packet's lifetime is
618     * less than that of the original packet.  In this case the new
619     * packet should allocate its own data.
620     */
621    Packet(const PacketPtr pkt, bool clear_flags, bool alloc_data)
622        :  cmd(pkt->cmd), req(pkt->req),
623           data(nullptr),
624           addr(pkt->addr), _isSecure(pkt->_isSecure), size(pkt->size),
625           bytesValid(pkt->bytesValid),
626           headerDelay(pkt->headerDelay),
627           payloadDelay(pkt->payloadDelay),
628           senderState(pkt->senderState)
629    {
630        if (!clear_flags)
631            flags.set(pkt->flags & COPY_FLAGS);
632
633        flags.set(pkt->flags & (VALID_ADDR|VALID_SIZE));
634
635        // should we allocate space for data, or not, the express
636        // snoops do not need to carry any data as they only serve to
637        // co-ordinate state changes
638        if (alloc_data) {
639            // even if asked to allocate data, if the original packet
640            // holds static data, then the sender will not be doing
641            // any memcpy on receiving the response, thus we simply
642            // carry the pointer forward
643            if (pkt->flags.isSet(STATIC_DATA)) {
644                data = pkt->data;
645                flags.set(STATIC_DATA);
646            } else {
647                allocate();
648            }
649        }
650    }
651
652    /**
653     * Generate the appropriate read MemCmd based on the Request flags.
654     */
655    static MemCmd
656    makeReadCmd(const RequestPtr req)
657    {
658        if (req->isLLSC())
659            return MemCmd::LoadLockedReq;
660        else if (req->isPrefetch())
661            return MemCmd::SoftPFReq;
662        else
663            return MemCmd::ReadReq;
664    }
665
666    /**
667     * Generate the appropriate write MemCmd based on the Request flags.
668     */
669    static MemCmd
670    makeWriteCmd(const RequestPtr req)
671    {
672        if (req->isLLSC())
673            return MemCmd::StoreCondReq;
674        else if (req->isSwap())
675            return MemCmd::SwapReq;
676        else
677            return MemCmd::WriteReq;
678    }
679
680    /**
681     * Constructor-like methods that return Packets based on Request objects.
682     * Fine-tune the MemCmd type if it's not a vanilla read or write.
683     */
684    static PacketPtr
685    createRead(const RequestPtr req)
686    {
687        return new Packet(req, makeReadCmd(req));
688    }
689
690    static PacketPtr
691    createWrite(const RequestPtr req)
692    {
693        return new Packet(req, makeWriteCmd(req));
694    }
695
696    /**
697     * clean up packet variables
698     */
699    ~Packet()
700    {
701        // Delete the request object if this is a request packet which
702        // does not need a response, because the requester will not get
703        // a chance. If the request packet needs a response then the
704        // request will be deleted on receipt of the response
705        // packet. We also make sure to never delete the request for
706        // express snoops, even for cases when responses are not
707        // needed (CleanEvict and Writeback), since the snoop packet
708        // re-uses the same request.
709        if (req && isRequest() && !needsResponse() &&
710            !isExpressSnoop()) {
711            delete req;
712        }
713        deleteData();
714    }
715
716    /**
717     * Take a request packet and modify it in place to be suitable for
718     * returning as a response to that request.
719     */
720    void
721    makeResponse()
722    {
723        assert(needsResponse());
724        assert(isRequest());
725        cmd = cmd.responseCommand();
726
727        // responses are never express, even if the snoop that
728        // triggered them was
729        flags.clear(EXPRESS_SNOOP);
730    }
731
732    void
733    makeAtomicResponse()
734    {
735        makeResponse();
736    }
737
738    void
739    makeTimingResponse()
740    {
741        makeResponse();
742    }
743
744    void
745    setFunctionalResponseStatus(bool success)
746    {
747        if (!success) {
748            if (isWrite()) {
749                cmd = MemCmd::FunctionalWriteError;
750            } else {
751                cmd = MemCmd::FunctionalReadError;
752            }
753        }
754    }
755
756    void
757    setSize(unsigned size)
758    {
759        assert(!flags.isSet(VALID_SIZE));
760
761        this->size = size;
762        flags.set(VALID_SIZE);
763    }
764
765
766    /**
767     * Set the data pointer to the following value that should not be
768     * freed. Static data allows us to do a single memcpy even if
769     * multiple packets are required to get from source to destination
770     * and back. In essence the pointer is set calling dataStatic on
771     * the original packet, and whenever this packet is copied and
772     * forwarded the same pointer is passed on. When a packet
773     * eventually reaches the destination holding the data, it is
774     * copied once into the location originally set. On the way back
775     * to the source, no copies are necessary.
776     */
777    template <typename T>
778    void
779    dataStatic(T *p)
780    {
781        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
782        data = (PacketDataPtr)p;
783        flags.set(STATIC_DATA);
784    }
785
786    /**
787     * Set the data pointer to the following value that should not be
788     * freed. This version of the function allows the pointer passed
789     * to us to be const. To avoid issues down the line we cast the
790     * constness away, the alternative would be to keep both a const
791     * and non-const data pointer and cleverly choose between
792     * them. Note that this is only allowed for static data.
793     */
794    template <typename T>
795    void
796    dataStaticConst(const T *p)
797    {
798        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
799        data = const_cast<PacketDataPtr>(p);
800        flags.set(STATIC_DATA);
801    }
802
803    /**
804     * Set the data pointer to a value that should have delete []
805     * called on it. Dynamic data is local to this packet, and as the
806     * packet travels from source to destination, forwarded packets
807     * will allocate their own data. When a packet reaches the final
808     * destination it will populate the dynamic data of that specific
809     * packet, and on the way back towards the source, memcpy will be
810     * invoked in every step where a new packet was created e.g. in
811     * the caches. Ultimately when the response reaches the source a
812     * final memcpy is needed to extract the data from the packet
813     * before it is deallocated.
814     */
815    template <typename T>
816    void
817    dataDynamic(T *p)
818    {
819        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
820        data = (PacketDataPtr)p;
821        flags.set(DYNAMIC_DATA);
822    }
823
824    /**
825     * get a pointer to the data ptr.
826     */
827    template <typename T>
828    T*
829    getPtr()
830    {
831        assert(flags.isSet(STATIC_DATA|DYNAMIC_DATA));
832        return (T*)data;
833    }
834
835    template <typename T>
836    const T*
837    getConstPtr() const
838    {
839        assert(flags.isSet(STATIC_DATA|DYNAMIC_DATA));
840        return (const T*)data;
841    }
842
843    /**
844     * return the value of what is pointed to in the packet.
845     */
846    template <typename T>
847    T get() const;
848
849    /**
850     * set the value in the data pointer to v.
851     */
852    template <typename T>
853    void set(T v);
854
855    /**
856     * Copy data into the packet from the provided pointer.
857     */
858    void
859    setData(const uint8_t *p)
860    {
861        // we should never be copying data onto itself, which means we
862        // must idenfity packets with static data, as they carry the
863        // same pointer from source to destination and back
864        assert(p != getPtr<uint8_t>() || flags.isSet(STATIC_DATA));
865
866        if (p != getPtr<uint8_t>())
867            // for packet with allocated dynamic data, we copy data from
868            // one to the other, e.g. a forwarded response to a response
869            std::memcpy(getPtr<uint8_t>(), p, getSize());
870    }
871
872    /**
873     * Copy data into the packet from the provided block pointer,
874     * which is aligned to the given block size.
875     */
876    void
877    setDataFromBlock(const uint8_t *blk_data, int blkSize)
878    {
879        setData(blk_data + getOffset(blkSize));
880    }
881
882    /**
883     * Copy data from the packet to the provided block pointer, which
884     * is aligned to the given block size.
885     */
886    void
887    writeData(uint8_t *p) const
888    {
889        std::memcpy(p, getConstPtr<uint8_t>(), getSize());
890    }
891
892    /**
893     * Copy data from the packet to the memory at the provided pointer.
894     */
895    void
896    writeDataToBlock(uint8_t *blk_data, int blkSize) const
897    {
898        writeData(blk_data + getOffset(blkSize));
899    }
900
901    /**
902     * delete the data pointed to in the data pointer. Ok to call to
903     * matter how data was allocted.
904     */
905    void
906    deleteData()
907    {
908        if (flags.isSet(DYNAMIC_DATA))
909            delete [] data;
910
911        flags.clear(STATIC_DATA|DYNAMIC_DATA);
912        data = NULL;
913    }
914
915    /** Allocate memory for the packet. */
916    void
917    allocate()
918    {
919        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
920        flags.set(DYNAMIC_DATA);
921        data = new uint8_t[getSize()];
922    }
923
924    /**
925     * Check a functional request against a memory value stored in
926     * another packet (i.e. an in-transit request or
927     * response). Returns true if the current packet is a read, and
928     * the other packet provides the data, which is then copied to the
929     * current packet. If the current packet is a write, and the other
930     * packet intersects this one, then we update the data
931     * accordingly.
932     */
933    bool
934    checkFunctional(PacketPtr other)
935    {
936        // all packets that are carrying a payload should have a valid
937        // data pointer
938        return checkFunctional(other, other->getAddr(), other->isSecure(),
939                               other->getSize(),
940                               other->hasData() ?
941                               other->getPtr<uint8_t>() : NULL);
942    }
943
944    /**
945     * Is this request notification of a clean or dirty eviction from the cache.
946     **/
947    bool
948    evictingBlock() const
949    {
950        return (cmd == MemCmd::Writeback ||
951                cmd == MemCmd::CleanEvict);
952    }
953
954    /**
955     * Does the request need to check for cached copies of the same block
956     * in the memory hierarchy above.
957     **/
958    bool
959    mustCheckAbove() const
960    {
961        return (cmd == MemCmd::HardPFReq ||
962                evictingBlock());
963    }
964
965    /**
966     * Check a functional request against a memory value represented
967     * by a base/size pair and an associated data array. If the
968     * current packet is a read, it may be satisfied by the memory
969     * value. If the current packet is a write, it may update the
970     * memory value.
971     */
972    bool
973    checkFunctional(Printable *obj, Addr base, bool is_secure, int size,
974                    uint8_t *_data);
975
976    /**
977     * Push label for PrintReq (safe to call unconditionally).
978     */
979    void
980    pushLabel(const std::string &lbl)
981    {
982        if (isPrint())
983            safe_cast<PrintReqState*>(senderState)->pushLabel(lbl);
984    }
985
986    /**
987     * Pop label for PrintReq (safe to call unconditionally).
988     */
989    void
990    popLabel()
991    {
992        if (isPrint())
993            safe_cast<PrintReqState*>(senderState)->popLabel();
994    }
995
996    void print(std::ostream &o, int verbosity = 0,
997               const std::string &prefix = "") const;
998
999    /**
1000     * A no-args wrapper of print(std::ostream...)
1001     * meant to be invoked from DPRINTFs
1002     * avoiding string overheads in fast mode
1003     * @return string with the request's type and start<->end addresses
1004     */
1005    std::string print() const;
1006};
1007
1008#endif //__MEM_PACKET_HH
1009