packet.hh revision 10896:66e131813346
1/*
2 * Copyright (c) 2012-2015 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2006 The Regents of The University of Michigan
15 * Copyright (c) 2010 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Ron Dreslinski
42 *          Steve Reinhardt
43 *          Ali Saidi
44 *          Andreas Hansson
45 */
46
47/**
48 * @file
49 * Declaration of the Packet class.
50 */
51
52#ifndef __MEM_PACKET_HH__
53#define __MEM_PACKET_HH__
54
55#include <bitset>
56#include <cassert>
57#include <list>
58
59#include "base/cast.hh"
60#include "base/compiler.hh"
61#include "base/flags.hh"
62#include "base/misc.hh"
63#include "base/printable.hh"
64#include "base/types.hh"
65#include "mem/request.hh"
66#include "sim/core.hh"
67
68class Packet;
69typedef Packet *PacketPtr;
70typedef uint8_t* PacketDataPtr;
71typedef std::list<PacketPtr> PacketList;
72
73class MemCmd
74{
75    friend class Packet;
76
77  public:
78    /**
79     * List of all commands associated with a packet.
80     */
81    enum Command
82    {
83        InvalidCmd,
84        ReadReq,
85        ReadResp,
86        ReadRespWithInvalidate,
87        WriteReq,
88        WriteResp,
89        Writeback,
90        CleanEvict,
91        SoftPFReq,
92        HardPFReq,
93        SoftPFResp,
94        HardPFResp,
95        WriteLineReq,
96        UpgradeReq,
97        SCUpgradeReq,           // Special "weak" upgrade for StoreCond
98        UpgradeResp,
99        SCUpgradeFailReq,       // Failed SCUpgradeReq in MSHR (never sent)
100        UpgradeFailResp,        // Valid for SCUpgradeReq only
101        ReadExReq,
102        ReadExResp,
103        ReadCleanReq,
104        ReadSharedReq,
105        LoadLockedReq,
106        StoreCondReq,
107        StoreCondFailReq,       // Failed StoreCondReq in MSHR (never sent)
108        StoreCondResp,
109        SwapReq,
110        SwapResp,
111        MessageReq,
112        MessageResp,
113        // Error responses
114        // @TODO these should be classified as responses rather than
115        // requests; coding them as requests initially for backwards
116        // compatibility
117        InvalidDestError,  // packet dest field invalid
118        BadAddressError,   // memory address invalid
119        FunctionalReadError, // unable to fulfill functional read
120        FunctionalWriteError, // unable to fulfill functional write
121        // Fake simulator-only commands
122        PrintReq,       // Print state matching address
123        FlushReq,      //request for a cache flush
124        InvalidateReq,   // request for address to be invalidated
125        InvalidateResp,
126        NUM_MEM_CMDS
127    };
128
129  private:
130    /**
131     * List of command attributes.
132     */
133    enum Attribute
134    {
135        IsRead,         //!< Data flows from responder to requester
136        IsWrite,        //!< Data flows from requester to responder
137        IsUpgrade,
138        IsInvalidate,
139        NeedsExclusive, //!< Requires exclusive copy to complete in-cache
140        IsRequest,      //!< Issued by requester
141        IsResponse,     //!< Issue by responder
142        NeedsResponse,  //!< Requester needs response from target
143        IsSWPrefetch,
144        IsHWPrefetch,
145        IsLlsc,         //!< Alpha/MIPS LL or SC access
146        HasData,        //!< There is an associated payload
147        IsError,        //!< Error response
148        IsPrint,        //!< Print state matching address (for debugging)
149        IsFlush,        //!< Flush the address from caches
150        NUM_COMMAND_ATTRIBUTES
151    };
152
153    /**
154     * Structure that defines attributes and other data associated
155     * with a Command.
156     */
157    struct CommandInfo
158    {
159        /// Set of attribute flags.
160        const std::bitset<NUM_COMMAND_ATTRIBUTES> attributes;
161        /// Corresponding response for requests; InvalidCmd if no
162        /// response is applicable.
163        const Command response;
164        /// String representation (for printing)
165        const std::string str;
166    };
167
168    /// Array to map Command enum to associated info.
169    static const CommandInfo commandInfo[];
170
171  private:
172
173    Command cmd;
174
175    bool
176    testCmdAttrib(MemCmd::Attribute attrib) const
177    {
178        return commandInfo[cmd].attributes[attrib] != 0;
179    }
180
181  public:
182
183    bool isRead() const            { return testCmdAttrib(IsRead); }
184    bool isWrite() const           { return testCmdAttrib(IsWrite); }
185    bool isUpgrade() const         { return testCmdAttrib(IsUpgrade); }
186    bool isRequest() const         { return testCmdAttrib(IsRequest); }
187    bool isResponse() const        { return testCmdAttrib(IsResponse); }
188    bool needsExclusive() const    { return testCmdAttrib(NeedsExclusive); }
189    bool needsResponse() const     { return testCmdAttrib(NeedsResponse); }
190    bool isInvalidate() const      { return testCmdAttrib(IsInvalidate); }
191
192    /**
193     * Check if this particular packet type carries payload data. Note
194     * that this does not reflect if the data pointer of the packet is
195     * valid or not.
196     */
197    bool hasData() const        { return testCmdAttrib(HasData); }
198    bool isLLSC() const         { return testCmdAttrib(IsLlsc); }
199    bool isSWPrefetch() const   { return testCmdAttrib(IsSWPrefetch); }
200    bool isHWPrefetch() const   { return testCmdAttrib(IsHWPrefetch); }
201    bool isPrefetch() const     { return testCmdAttrib(IsSWPrefetch) ||
202                                         testCmdAttrib(IsHWPrefetch); }
203    bool isError() const        { return testCmdAttrib(IsError); }
204    bool isPrint() const        { return testCmdAttrib(IsPrint); }
205    bool isFlush() const        { return testCmdAttrib(IsFlush); }
206
207    const Command
208    responseCommand() const
209    {
210        return commandInfo[cmd].response;
211    }
212
213    /// Return the string to a cmd given by idx.
214    const std::string &toString() const { return commandInfo[cmd].str; }
215    int toInt() const { return (int)cmd; }
216
217    MemCmd(Command _cmd) : cmd(_cmd) { }
218    MemCmd(int _cmd) : cmd((Command)_cmd) { }
219    MemCmd() : cmd(InvalidCmd) { }
220
221    bool operator==(MemCmd c2) const { return (cmd == c2.cmd); }
222    bool operator!=(MemCmd c2) const { return (cmd != c2.cmd); }
223};
224
225/**
226 * A Packet is used to encapsulate a transfer between two objects in
227 * the memory system (e.g., the L1 and L2 cache).  (In contrast, a
228 * single Request travels all the way from the requester to the
229 * ultimate destination and back, possibly being conveyed by several
230 * different Packets along the way.)
231 */
232class Packet : public Printable
233{
234  public:
235    typedef uint32_t FlagsType;
236    typedef ::Flags<FlagsType> Flags;
237
238  private:
239    static const FlagsType PUBLIC_FLAGS           = 0x00000000;
240    static const FlagsType PRIVATE_FLAGS          = 0x00007F0F;
241    static const FlagsType COPY_FLAGS             = 0x0000000F;
242
243    static const FlagsType SHARED                 = 0x00000001;
244    // Special control flags
245    /// Special timing-mode atomic snoop for multi-level coherence.
246    static const FlagsType EXPRESS_SNOOP          = 0x00000002;
247    /// Does supplier have exclusive copy?
248    /// Useful for multi-level coherence.
249    static const FlagsType SUPPLY_EXCLUSIVE       = 0x00000004;
250    // Snoop response flags
251    static const FlagsType MEM_INHIBIT            = 0x00000008;
252    /// Are the 'addr' and 'size' fields valid?
253    static const FlagsType VALID_ADDR             = 0x00000100;
254    static const FlagsType VALID_SIZE             = 0x00000200;
255    /// Is the data pointer set to a value that shouldn't be freed
256    /// when the packet is destroyed?
257    static const FlagsType STATIC_DATA            = 0x00001000;
258    /// The data pointer points to a value that should be freed when
259    /// the packet is destroyed. The pointer is assumed to be pointing
260    /// to an array, and delete [] is consequently called
261    static const FlagsType DYNAMIC_DATA           = 0x00002000;
262    /// suppress the error if this packet encounters a functional
263    /// access failure.
264    static const FlagsType SUPPRESS_FUNC_ERROR    = 0x00008000;
265    // Signal block present to squash prefetch and cache evict packets
266    // through express snoop flag
267    static const FlagsType BLOCK_CACHED          = 0x00010000;
268
269    Flags flags;
270
271  public:
272    typedef MemCmd::Command Command;
273
274    /// The command field of the packet.
275    MemCmd cmd;
276
277    /// A pointer to the original request.
278    const RequestPtr req;
279
280  private:
281   /**
282    * A pointer to the data being transfered.  It can be differnt
283    * sizes at each level of the heirarchy so it belongs in the
284    * packet, not request. This may or may not be populated when a
285    * responder recieves the packet. If not populated it memory should
286    * be allocated.
287    */
288    PacketDataPtr data;
289
290    /// The address of the request.  This address could be virtual or
291    /// physical, depending on the system configuration.
292    Addr addr;
293
294    /// True if the request targets the secure memory space.
295    bool _isSecure;
296
297    /// The size of the request or transfer.
298    unsigned size;
299
300    /**
301     * The original value of the command field.  Only valid when the
302     * current command field is an error condition; in that case, the
303     * previous contents of the command field are copied here.  This
304     * field is *not* set on non-error responses.
305     */
306    MemCmd origCmd;
307
308    /**
309     * Track the bytes found that satisfy a functional read.
310     */
311    std::vector<bool> bytesValid;
312
313  public:
314
315    /**
316     * The extra delay from seeing the packet until the header is
317     * transmitted. This delay is used to communicate the crossbar
318     * forwarding latency to the neighbouring object (e.g. a cache)
319     * that actually makes the packet wait. As the delay is relative,
320     * a 32-bit unsigned should be sufficient.
321     */
322    uint32_t headerDelay;
323
324    /**
325     * The extra pipelining delay from seeing the packet until the end of
326     * payload is transmitted by the component that provided it (if
327     * any). This includes the header delay. Similar to the header
328     * delay, this is used to make up for the fact that the
329     * crossbar does not make the packet wait. As the delay is
330     * relative, a 32-bit unsigned should be sufficient.
331     */
332    uint32_t payloadDelay;
333
334    /**
335     * A virtual base opaque structure used to hold state associated
336     * with the packet (e.g., an MSHR), specific to a MemObject that
337     * sees the packet. A pointer to this state is returned in the
338     * packet's response so that the MemObject in question can quickly
339     * look up the state needed to process it. A specific subclass
340     * would be derived from this to carry state specific to a
341     * particular sending device.
342     *
343     * As multiple MemObjects may add their SenderState throughout the
344     * memory system, the SenderStates create a stack, where a
345     * MemObject can add a new Senderstate, as long as the
346     * predecessing SenderState is restored when the response comes
347     * back. For this reason, the predecessor should always be
348     * populated with the current SenderState of a packet before
349     * modifying the senderState field in the request packet.
350     */
351    struct SenderState
352    {
353        SenderState* predecessor;
354        SenderState() : predecessor(NULL) {}
355        virtual ~SenderState() {}
356    };
357
358    /**
359     * Object used to maintain state of a PrintReq.  The senderState
360     * field of a PrintReq should always be of this type.
361     */
362    class PrintReqState : public SenderState
363    {
364      private:
365        /**
366         * An entry in the label stack.
367         */
368        struct LabelStackEntry
369        {
370            const std::string label;
371            std::string *prefix;
372            bool labelPrinted;
373            LabelStackEntry(const std::string &_label, std::string *_prefix);
374        };
375
376        typedef std::list<LabelStackEntry> LabelStack;
377        LabelStack labelStack;
378
379        std::string *curPrefixPtr;
380
381      public:
382        std::ostream &os;
383        const int verbosity;
384
385        PrintReqState(std::ostream &os, int verbosity = 0);
386        ~PrintReqState();
387
388        /**
389         * Returns the current line prefix.
390         */
391        const std::string &curPrefix() { return *curPrefixPtr; }
392
393        /**
394         * Push a label onto the label stack, and prepend the given
395         * prefix string onto the current prefix.  Labels will only be
396         * printed if an object within the label's scope is printed.
397         */
398        void pushLabel(const std::string &lbl,
399                       const std::string &prefix = "  ");
400
401        /**
402         * Pop a label off the label stack.
403         */
404        void popLabel();
405
406        /**
407         * Print all of the pending unprinted labels on the
408         * stack. Called by printObj(), so normally not called by
409         * users unless bypassing printObj().
410         */
411        void printLabels();
412
413        /**
414         * Print a Printable object to os, because it matched the
415         * address on a PrintReq.
416         */
417        void printObj(Printable *obj);
418    };
419
420    /**
421     * This packet's sender state.  Devices should use dynamic_cast<>
422     * to cast to the state appropriate to the sender.  The intent of
423     * this variable is to allow a device to attach extra information
424     * to a request. A response packet must return the sender state
425     * that was attached to the original request (even if a new packet
426     * is created).
427     */
428    SenderState *senderState;
429
430    /**
431     * Push a new sender state to the packet and make the current
432     * sender state the predecessor of the new one. This should be
433     * prefered over direct manipulation of the senderState member
434     * variable.
435     *
436     * @param sender_state SenderState to push at the top of the stack
437     */
438    void pushSenderState(SenderState *sender_state);
439
440    /**
441     * Pop the top of the state stack and return a pointer to it. This
442     * assumes the current sender state is not NULL. This should be
443     * preferred over direct manipulation of the senderState member
444     * variable.
445     *
446     * @return The current top of the stack
447     */
448    SenderState *popSenderState();
449
450    /**
451     * Go through the sender state stack and return the first instance
452     * that is of type T (as determined by a dynamic_cast). If there
453     * is no sender state of type T, NULL is returned.
454     *
455     * @return The topmost state of type T
456     */
457    template <typename T>
458    T * findNextSenderState() const
459    {
460        T *t = NULL;
461        SenderState* sender_state = senderState;
462        while (t == NULL && sender_state != NULL) {
463            t = dynamic_cast<T*>(sender_state);
464            sender_state = sender_state->predecessor;
465        }
466        return t;
467    }
468
469    /// Return the string name of the cmd field (for debugging and
470    /// tracing).
471    const std::string &cmdString() const { return cmd.toString(); }
472
473    /// Return the index of this command.
474    inline int cmdToIndex() const { return cmd.toInt(); }
475
476    bool isRead() const              { return cmd.isRead(); }
477    bool isWrite() const             { return cmd.isWrite(); }
478    bool isUpgrade()  const          { return cmd.isUpgrade(); }
479    bool isRequest() const           { return cmd.isRequest(); }
480    bool isResponse() const          { return cmd.isResponse(); }
481    bool needsExclusive() const      { return cmd.needsExclusive(); }
482    bool needsResponse() const       { return cmd.needsResponse(); }
483    bool isInvalidate() const        { return cmd.isInvalidate(); }
484    bool hasData() const             { return cmd.hasData(); }
485    bool isLLSC() const              { return cmd.isLLSC(); }
486    bool isError() const             { return cmd.isError(); }
487    bool isPrint() const             { return cmd.isPrint(); }
488    bool isFlush() const             { return cmd.isFlush(); }
489
490    // Snoop flags
491    void assertMemInhibit()
492    {
493        assert(isRequest());
494        assert(!flags.isSet(MEM_INHIBIT));
495        flags.set(MEM_INHIBIT);
496    }
497    bool memInhibitAsserted() const { return flags.isSet(MEM_INHIBIT); }
498    void assertShared()             { flags.set(SHARED); }
499    bool sharedAsserted() const     { return flags.isSet(SHARED); }
500
501    // Special control flags
502    void setExpressSnoop()          { flags.set(EXPRESS_SNOOP); }
503    bool isExpressSnoop() const     { return flags.isSet(EXPRESS_SNOOP); }
504    void setSupplyExclusive()       { flags.set(SUPPLY_EXCLUSIVE); }
505    void clearSupplyExclusive()     { flags.clear(SUPPLY_EXCLUSIVE); }
506    bool isSupplyExclusive() const  { return flags.isSet(SUPPLY_EXCLUSIVE); }
507    void setSuppressFuncError()     { flags.set(SUPPRESS_FUNC_ERROR); }
508    bool suppressFuncError() const  { return flags.isSet(SUPPRESS_FUNC_ERROR); }
509    void setBlockCached()          { flags.set(BLOCK_CACHED); }
510    bool isBlockCached() const     { return flags.isSet(BLOCK_CACHED); }
511    void clearBlockCached()        { flags.clear(BLOCK_CACHED); }
512
513    // Network error conditions... encapsulate them as methods since
514    // their encoding keeps changing (from result field to command
515    // field, etc.)
516    void
517    setBadAddress()
518    {
519        assert(isResponse());
520        cmd = MemCmd::BadAddressError;
521    }
522
523    bool hadBadAddress() const { return cmd == MemCmd::BadAddressError; }
524    void copyError(Packet *pkt) { assert(pkt->isError()); cmd = pkt->cmd; }
525
526    Addr getAddr() const { assert(flags.isSet(VALID_ADDR)); return addr; }
527    /**
528     * Update the address of this packet mid-transaction. This is used
529     * by the address mapper to change an already set address to a new
530     * one based on the system configuration. It is intended to remap
531     * an existing address, so it asserts that the current address is
532     * valid.
533     */
534    void setAddr(Addr _addr) { assert(flags.isSet(VALID_ADDR)); addr = _addr; }
535
536    unsigned getSize() const  { assert(flags.isSet(VALID_SIZE)); return size; }
537    Addr getOffset(int blkSize) const { return getAddr() & (Addr)(blkSize - 1); }
538
539    bool isSecure() const
540    {
541        assert(flags.isSet(VALID_ADDR));
542        return _isSecure;
543    }
544
545    /**
546     * It has been determined that the SC packet should successfully update
547     * memory.  Therefore, convert this SC packet to a normal write.
548     */
549    void
550    convertScToWrite()
551    {
552        assert(isLLSC());
553        assert(isWrite());
554        cmd = MemCmd::WriteReq;
555    }
556
557    /**
558     * When ruby is in use, Ruby will monitor the cache line and thus M5
559     * phys memory should treat LL ops as normal reads.
560     */
561    void
562    convertLlToRead()
563    {
564        assert(isLLSC());
565        assert(isRead());
566        cmd = MemCmd::ReadReq;
567    }
568
569    /**
570     * Constructor.  Note that a Request object must be constructed
571     * first, but the Requests's physical address and size fields need
572     * not be valid. The command must be supplied.
573     */
574    Packet(const RequestPtr _req, MemCmd _cmd)
575        :  cmd(_cmd), req(_req), data(nullptr), addr(0), _isSecure(false),
576           size(0), headerDelay(0), payloadDelay(0),
577           senderState(NULL)
578    {
579        if (req->hasPaddr()) {
580            addr = req->getPaddr();
581            flags.set(VALID_ADDR);
582            _isSecure = req->isSecure();
583        }
584        if (req->hasSize()) {
585            size = req->getSize();
586            flags.set(VALID_SIZE);
587        }
588    }
589
590    /**
591     * Alternate constructor if you are trying to create a packet with
592     * a request that is for a whole block, not the address from the
593     * req.  this allows for overriding the size/addr of the req.
594     */
595    Packet(const RequestPtr _req, MemCmd _cmd, int _blkSize)
596        :  cmd(_cmd), req(_req), data(nullptr), addr(0), _isSecure(false),
597           headerDelay(0), payloadDelay(0),
598           senderState(NULL)
599    {
600        if (req->hasPaddr()) {
601            addr = req->getPaddr() & ~(_blkSize - 1);
602            flags.set(VALID_ADDR);
603            _isSecure = req->isSecure();
604        }
605        size = _blkSize;
606        flags.set(VALID_SIZE);
607    }
608
609    /**
610     * Alternate constructor for copying a packet.  Copy all fields
611     * *except* if the original packet's data was dynamic, don't copy
612     * that, as we can't guarantee that the new packet's lifetime is
613     * less than that of the original packet.  In this case the new
614     * packet should allocate its own data.
615     */
616    Packet(const PacketPtr pkt, bool clear_flags, bool alloc_data)
617        :  cmd(pkt->cmd), req(pkt->req),
618           data(nullptr),
619           addr(pkt->addr), _isSecure(pkt->_isSecure), size(pkt->size),
620           bytesValid(pkt->bytesValid),
621           headerDelay(pkt->headerDelay),
622           payloadDelay(pkt->payloadDelay),
623           senderState(pkt->senderState)
624    {
625        if (!clear_flags)
626            flags.set(pkt->flags & COPY_FLAGS);
627
628        flags.set(pkt->flags & (VALID_ADDR|VALID_SIZE));
629
630        // should we allocate space for data, or not, the express
631        // snoops do not need to carry any data as they only serve to
632        // co-ordinate state changes
633        if (alloc_data) {
634            // even if asked to allocate data, if the original packet
635            // holds static data, then the sender will not be doing
636            // any memcpy on receiving the response, thus we simply
637            // carry the pointer forward
638            if (pkt->flags.isSet(STATIC_DATA)) {
639                data = pkt->data;
640                flags.set(STATIC_DATA);
641            } else {
642                allocate();
643            }
644        }
645    }
646
647    /**
648     * Generate the appropriate read MemCmd based on the Request flags.
649     */
650    static MemCmd
651    makeReadCmd(const RequestPtr req)
652    {
653        if (req->isLLSC())
654            return MemCmd::LoadLockedReq;
655        else if (req->isPrefetch())
656            return MemCmd::SoftPFReq;
657        else
658            return MemCmd::ReadReq;
659    }
660
661    /**
662     * Generate the appropriate write MemCmd based on the Request flags.
663     */
664    static MemCmd
665    makeWriteCmd(const RequestPtr req)
666    {
667        if (req->isLLSC())
668            return MemCmd::StoreCondReq;
669        else if (req->isSwap())
670            return MemCmd::SwapReq;
671        else
672            return MemCmd::WriteReq;
673    }
674
675    /**
676     * Constructor-like methods that return Packets based on Request objects.
677     * Fine-tune the MemCmd type if it's not a vanilla read or write.
678     */
679    static PacketPtr
680    createRead(const RequestPtr req)
681    {
682        return new Packet(req, makeReadCmd(req));
683    }
684
685    static PacketPtr
686    createWrite(const RequestPtr req)
687    {
688        return new Packet(req, makeWriteCmd(req));
689    }
690
691    /**
692     * clean up packet variables
693     */
694    ~Packet()
695    {
696        // Delete the request object if this is a request packet which
697        // does not need a response, because the requester will not get
698        // a chance. If the request packet needs a response then the
699        // request will be deleted on receipt of the response
700        // packet. We also make sure to never delete the request for
701        // express snoops, even for cases when responses are not
702        // needed (CleanEvict and Writeback), since the snoop packet
703        // re-uses the same request.
704        if (req && isRequest() && !needsResponse() &&
705            !isExpressSnoop()) {
706            delete req;
707        }
708        deleteData();
709    }
710
711    /**
712     * Take a request packet and modify it in place to be suitable for
713     * returning as a response to that request.
714     */
715    void
716    makeResponse()
717    {
718        assert(needsResponse());
719        assert(isRequest());
720        origCmd = cmd;
721        cmd = cmd.responseCommand();
722
723        // responses are never express, even if the snoop that
724        // triggered them was
725        flags.clear(EXPRESS_SNOOP);
726    }
727
728    void
729    makeAtomicResponse()
730    {
731        makeResponse();
732    }
733
734    void
735    makeTimingResponse()
736    {
737        makeResponse();
738    }
739
740    void
741    setFunctionalResponseStatus(bool success)
742    {
743        if (!success) {
744            if (isWrite()) {
745                cmd = MemCmd::FunctionalWriteError;
746            } else {
747                cmd = MemCmd::FunctionalReadError;
748            }
749        }
750    }
751
752    void
753    setSize(unsigned size)
754    {
755        assert(!flags.isSet(VALID_SIZE));
756
757        this->size = size;
758        flags.set(VALID_SIZE);
759    }
760
761
762    /**
763     * Set the data pointer to the following value that should not be
764     * freed. Static data allows us to do a single memcpy even if
765     * multiple packets are required to get from source to destination
766     * and back. In essence the pointer is set calling dataStatic on
767     * the original packet, and whenever this packet is copied and
768     * forwarded the same pointer is passed on. When a packet
769     * eventually reaches the destination holding the data, it is
770     * copied once into the location originally set. On the way back
771     * to the source, no copies are necessary.
772     */
773    template <typename T>
774    void
775    dataStatic(T *p)
776    {
777        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
778        data = (PacketDataPtr)p;
779        flags.set(STATIC_DATA);
780    }
781
782    /**
783     * Set the data pointer to the following value that should not be
784     * freed. This version of the function allows the pointer passed
785     * to us to be const. To avoid issues down the line we cast the
786     * constness away, the alternative would be to keep both a const
787     * and non-const data pointer and cleverly choose between
788     * them. Note that this is only allowed for static data.
789     */
790    template <typename T>
791    void
792    dataStaticConst(const T *p)
793    {
794        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
795        data = const_cast<PacketDataPtr>(p);
796        flags.set(STATIC_DATA);
797    }
798
799    /**
800     * Set the data pointer to a value that should have delete []
801     * called on it. Dynamic data is local to this packet, and as the
802     * packet travels from source to destination, forwarded packets
803     * will allocate their own data. When a packet reaches the final
804     * destination it will populate the dynamic data of that specific
805     * packet, and on the way back towards the source, memcpy will be
806     * invoked in every step where a new packet was created e.g. in
807     * the caches. Ultimately when the response reaches the source a
808     * final memcpy is needed to extract the data from the packet
809     * before it is deallocated.
810     */
811    template <typename T>
812    void
813    dataDynamic(T *p)
814    {
815        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
816        data = (PacketDataPtr)p;
817        flags.set(DYNAMIC_DATA);
818    }
819
820    /**
821     * get a pointer to the data ptr.
822     */
823    template <typename T>
824    T*
825    getPtr()
826    {
827        assert(flags.isSet(STATIC_DATA|DYNAMIC_DATA));
828        return (T*)data;
829    }
830
831    template <typename T>
832    const T*
833    getConstPtr() const
834    {
835        assert(flags.isSet(STATIC_DATA|DYNAMIC_DATA));
836        return (const T*)data;
837    }
838
839    /**
840     * return the value of what is pointed to in the packet.
841     */
842    template <typename T>
843    T get() const;
844
845    /**
846     * set the value in the data pointer to v.
847     */
848    template <typename T>
849    void set(T v);
850
851    /**
852     * Copy data into the packet from the provided pointer.
853     */
854    void
855    setData(const uint8_t *p)
856    {
857        // we should never be copying data onto itself, which means we
858        // must idenfity packets with static data, as they carry the
859        // same pointer from source to destination and back
860        assert(p != getPtr<uint8_t>() || flags.isSet(STATIC_DATA));
861
862        if (p != getPtr<uint8_t>())
863            // for packet with allocated dynamic data, we copy data from
864            // one to the other, e.g. a forwarded response to a response
865            std::memcpy(getPtr<uint8_t>(), p, getSize());
866    }
867
868    /**
869     * Copy data into the packet from the provided block pointer,
870     * which is aligned to the given block size.
871     */
872    void
873    setDataFromBlock(const uint8_t *blk_data, int blkSize)
874    {
875        setData(blk_data + getOffset(blkSize));
876    }
877
878    /**
879     * Copy data from the packet to the provided block pointer, which
880     * is aligned to the given block size.
881     */
882    void
883    writeData(uint8_t *p) const
884    {
885        std::memcpy(p, getConstPtr<uint8_t>(), getSize());
886    }
887
888    /**
889     * Copy data from the packet to the memory at the provided pointer.
890     */
891    void
892    writeDataToBlock(uint8_t *blk_data, int blkSize) const
893    {
894        writeData(blk_data + getOffset(blkSize));
895    }
896
897    /**
898     * delete the data pointed to in the data pointer. Ok to call to
899     * matter how data was allocted.
900     */
901    void
902    deleteData()
903    {
904        if (flags.isSet(DYNAMIC_DATA))
905            delete [] data;
906
907        flags.clear(STATIC_DATA|DYNAMIC_DATA);
908        data = NULL;
909    }
910
911    /** Allocate memory for the packet. */
912    void
913    allocate()
914    {
915        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
916        flags.set(DYNAMIC_DATA);
917        data = new uint8_t[getSize()];
918    }
919
920    /**
921     * Check a functional request against a memory value stored in
922     * another packet (i.e. an in-transit request or
923     * response). Returns true if the current packet is a read, and
924     * the other packet provides the data, which is then copied to the
925     * current packet. If the current packet is a write, and the other
926     * packet intersects this one, then we update the data
927     * accordingly.
928     */
929    bool
930    checkFunctional(PacketPtr other)
931    {
932        // all packets that are carrying a payload should have a valid
933        // data pointer
934        return checkFunctional(other, other->getAddr(), other->isSecure(),
935                               other->getSize(),
936                               other->hasData() ?
937                               other->getPtr<uint8_t>() : NULL);
938    }
939
940    /**
941     * Is this request notification of a clean or dirty eviction from the cache.
942     **/
943    bool
944    evictingBlock() const
945    {
946        return (cmd == MemCmd::Writeback ||
947                cmd == MemCmd::CleanEvict);
948    }
949
950    /**
951     * Does the request need to check for cached copies of the same block
952     * in the memory hierarchy above.
953     **/
954    bool
955    mustCheckAbove() const
956    {
957        return (cmd == MemCmd::HardPFReq ||
958                evictingBlock());
959    }
960
961    /**
962     * Check a functional request against a memory value represented
963     * by a base/size pair and an associated data array. If the
964     * current packet is a read, it may be satisfied by the memory
965     * value. If the current packet is a write, it may update the
966     * memory value.
967     */
968    bool
969    checkFunctional(Printable *obj, Addr base, bool is_secure, int size,
970                    uint8_t *_data);
971
972    /**
973     * Push label for PrintReq (safe to call unconditionally).
974     */
975    void
976    pushLabel(const std::string &lbl)
977    {
978        if (isPrint())
979            safe_cast<PrintReqState*>(senderState)->pushLabel(lbl);
980    }
981
982    /**
983     * Pop label for PrintReq (safe to call unconditionally).
984     */
985    void
986    popLabel()
987    {
988        if (isPrint())
989            safe_cast<PrintReqState*>(senderState)->popLabel();
990    }
991
992    void print(std::ostream &o, int verbosity = 0,
993               const std::string &prefix = "") const;
994
995    /**
996     * A no-args wrapper of print(std::ostream...)
997     * meant to be invoked from DPRINTFs
998     * avoiding string overheads in fast mode
999     * @return string with the request's type and start<->end addresses
1000     */
1001    std::string print() const;
1002};
1003
1004#endif //__MEM_PACKET_HH
1005