packet.hh revision 10885:3ac92bf1f31f
1/*
2 * Copyright (c) 2012-2015 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2006 The Regents of The University of Michigan
15 * Copyright (c) 2010 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Ron Dreslinski
42 *          Steve Reinhardt
43 *          Ali Saidi
44 *          Andreas Hansson
45 */
46
47/**
48 * @file
49 * Declaration of the Packet class.
50 */
51
52#ifndef __MEM_PACKET_HH__
53#define __MEM_PACKET_HH__
54
55#include <bitset>
56#include <cassert>
57#include <list>
58
59#include "base/cast.hh"
60#include "base/compiler.hh"
61#include "base/flags.hh"
62#include "base/misc.hh"
63#include "base/printable.hh"
64#include "base/types.hh"
65#include "mem/request.hh"
66#include "sim/core.hh"
67
68class Packet;
69typedef Packet *PacketPtr;
70typedef uint8_t* PacketDataPtr;
71typedef std::list<PacketPtr> PacketList;
72
73class MemCmd
74{
75    friend class Packet;
76
77  public:
78    /**
79     * List of all commands associated with a packet.
80     */
81    enum Command
82    {
83        InvalidCmd,
84        ReadReq,
85        ReadResp,
86        ReadRespWithInvalidate,
87        WriteReq,
88        WriteResp,
89        Writeback,
90        CleanEvict,
91        SoftPFReq,
92        HardPFReq,
93        SoftPFResp,
94        HardPFResp,
95        WriteInvalidateReq,
96        WriteInvalidateResp,
97        UpgradeReq,
98        SCUpgradeReq,           // Special "weak" upgrade for StoreCond
99        UpgradeResp,
100        SCUpgradeFailReq,       // Failed SCUpgradeReq in MSHR (never sent)
101        UpgradeFailResp,        // Valid for SCUpgradeReq only
102        ReadExReq,
103        ReadExResp,
104        ReadCleanReq,
105        ReadSharedReq,
106        LoadLockedReq,
107        StoreCondReq,
108        StoreCondFailReq,       // Failed StoreCondReq in MSHR (never sent)
109        StoreCondResp,
110        SwapReq,
111        SwapResp,
112        MessageReq,
113        MessageResp,
114        // Error responses
115        // @TODO these should be classified as responses rather than
116        // requests; coding them as requests initially for backwards
117        // compatibility
118        InvalidDestError,  // packet dest field invalid
119        BadAddressError,   // memory address invalid
120        FunctionalReadError, // unable to fulfill functional read
121        FunctionalWriteError, // unable to fulfill functional write
122        // Fake simulator-only commands
123        PrintReq,       // Print state matching address
124        FlushReq,      //request for a cache flush
125        InvalidationReq,   // request for address to be invalidated from lsq
126        NUM_MEM_CMDS
127    };
128
129  private:
130    /**
131     * List of command attributes.
132     */
133    enum Attribute
134    {
135        IsRead,         //!< Data flows from responder to requester
136        IsWrite,        //!< Data flows from requester to responder
137        IsUpgrade,
138        IsInvalidate,
139        NeedsExclusive, //!< Requires exclusive copy to complete in-cache
140        IsRequest,      //!< Issued by requester
141        IsResponse,     //!< Issue by responder
142        NeedsResponse,  //!< Requester needs response from target
143        IsSWPrefetch,
144        IsHWPrefetch,
145        IsLlsc,         //!< Alpha/MIPS LL or SC access
146        HasData,        //!< There is an associated payload
147        IsError,        //!< Error response
148        IsPrint,        //!< Print state matching address (for debugging)
149        IsFlush,        //!< Flush the address from caches
150        NUM_COMMAND_ATTRIBUTES
151    };
152
153    /**
154     * Structure that defines attributes and other data associated
155     * with a Command.
156     */
157    struct CommandInfo
158    {
159        /// Set of attribute flags.
160        const std::bitset<NUM_COMMAND_ATTRIBUTES> attributes;
161        /// Corresponding response for requests; InvalidCmd if no
162        /// response is applicable.
163        const Command response;
164        /// String representation (for printing)
165        const std::string str;
166    };
167
168    /// Array to map Command enum to associated info.
169    static const CommandInfo commandInfo[];
170
171  private:
172
173    Command cmd;
174
175    bool
176    testCmdAttrib(MemCmd::Attribute attrib) const
177    {
178        return commandInfo[cmd].attributes[attrib] != 0;
179    }
180
181  public:
182
183    bool isRead() const            { return testCmdAttrib(IsRead); }
184    bool isWrite() const           { return testCmdAttrib(IsWrite); }
185    bool isUpgrade() const         { return testCmdAttrib(IsUpgrade); }
186    bool isRequest() const         { return testCmdAttrib(IsRequest); }
187    bool isResponse() const        { return testCmdAttrib(IsResponse); }
188    bool needsExclusive() const    { return testCmdAttrib(NeedsExclusive); }
189    bool needsResponse() const     { return testCmdAttrib(NeedsResponse); }
190    bool isInvalidate() const      { return testCmdAttrib(IsInvalidate); }
191    bool isWriteInvalidate() const { return testCmdAttrib(IsWrite) &&
192                                            testCmdAttrib(IsInvalidate); }
193
194    /**
195     * Check if this particular packet type carries payload data. Note
196     * that this does not reflect if the data pointer of the packet is
197     * valid or not.
198     */
199    bool hasData() const        { return testCmdAttrib(HasData); }
200    bool isLLSC() const         { return testCmdAttrib(IsLlsc); }
201    bool isSWPrefetch() const   { return testCmdAttrib(IsSWPrefetch); }
202    bool isHWPrefetch() const   { return testCmdAttrib(IsHWPrefetch); }
203    bool isPrefetch() const     { return testCmdAttrib(IsSWPrefetch) ||
204                                         testCmdAttrib(IsHWPrefetch); }
205    bool isError() const        { return testCmdAttrib(IsError); }
206    bool isPrint() const        { return testCmdAttrib(IsPrint); }
207    bool isFlush() const        { return testCmdAttrib(IsFlush); }
208
209    const Command
210    responseCommand() const
211    {
212        return commandInfo[cmd].response;
213    }
214
215    /// Return the string to a cmd given by idx.
216    const std::string &toString() const { return commandInfo[cmd].str; }
217    int toInt() const { return (int)cmd; }
218
219    MemCmd(Command _cmd) : cmd(_cmd) { }
220    MemCmd(int _cmd) : cmd((Command)_cmd) { }
221    MemCmd() : cmd(InvalidCmd) { }
222
223    bool operator==(MemCmd c2) const { return (cmd == c2.cmd); }
224    bool operator!=(MemCmd c2) const { return (cmd != c2.cmd); }
225};
226
227/**
228 * A Packet is used to encapsulate a transfer between two objects in
229 * the memory system (e.g., the L1 and L2 cache).  (In contrast, a
230 * single Request travels all the way from the requester to the
231 * ultimate destination and back, possibly being conveyed by several
232 * different Packets along the way.)
233 */
234class Packet : public Printable
235{
236  public:
237    typedef uint32_t FlagsType;
238    typedef ::Flags<FlagsType> Flags;
239
240  private:
241    static const FlagsType PUBLIC_FLAGS           = 0x00000000;
242    static const FlagsType PRIVATE_FLAGS          = 0x00007F0F;
243    static const FlagsType COPY_FLAGS             = 0x0000000F;
244
245    static const FlagsType SHARED                 = 0x00000001;
246    // Special control flags
247    /// Special timing-mode atomic snoop for multi-level coherence.
248    static const FlagsType EXPRESS_SNOOP          = 0x00000002;
249    /// Does supplier have exclusive copy?
250    /// Useful for multi-level coherence.
251    static const FlagsType SUPPLY_EXCLUSIVE       = 0x00000004;
252    // Snoop response flags
253    static const FlagsType MEM_INHIBIT            = 0x00000008;
254    /// Are the 'addr' and 'size' fields valid?
255    static const FlagsType VALID_ADDR             = 0x00000100;
256    static const FlagsType VALID_SIZE             = 0x00000200;
257    /// Is the data pointer set to a value that shouldn't be freed
258    /// when the packet is destroyed?
259    static const FlagsType STATIC_DATA            = 0x00001000;
260    /// The data pointer points to a value that should be freed when
261    /// the packet is destroyed. The pointer is assumed to be pointing
262    /// to an array, and delete [] is consequently called
263    static const FlagsType DYNAMIC_DATA           = 0x00002000;
264    /// suppress the error if this packet encounters a functional
265    /// access failure.
266    static const FlagsType SUPPRESS_FUNC_ERROR    = 0x00008000;
267    // Signal block present to squash prefetch and cache evict packets
268    // through express snoop flag
269    static const FlagsType BLOCK_CACHED          = 0x00010000;
270
271    Flags flags;
272
273  public:
274    typedef MemCmd::Command Command;
275
276    /// The command field of the packet.
277    MemCmd cmd;
278
279    /// A pointer to the original request.
280    const RequestPtr req;
281
282  private:
283   /**
284    * A pointer to the data being transfered.  It can be differnt
285    * sizes at each level of the heirarchy so it belongs in the
286    * packet, not request. This may or may not be populated when a
287    * responder recieves the packet. If not populated it memory should
288    * be allocated.
289    */
290    PacketDataPtr data;
291
292    /// The address of the request.  This address could be virtual or
293    /// physical, depending on the system configuration.
294    Addr addr;
295
296    /// True if the request targets the secure memory space.
297    bool _isSecure;
298
299    /// The size of the request or transfer.
300    unsigned size;
301
302    /**
303     * The original value of the command field.  Only valid when the
304     * current command field is an error condition; in that case, the
305     * previous contents of the command field are copied here.  This
306     * field is *not* set on non-error responses.
307     */
308    MemCmd origCmd;
309
310    /**
311     * Track the bytes found that satisfy a functional read.
312     */
313    std::vector<bool> bytesValid;
314
315  public:
316
317    /**
318     * The extra delay from seeing the packet until the header is
319     * transmitted. This delay is used to communicate the crossbar
320     * forwarding latency to the neighbouring object (e.g. a cache)
321     * that actually makes the packet wait. As the delay is relative,
322     * a 32-bit unsigned should be sufficient.
323     */
324    uint32_t headerDelay;
325
326    /**
327     * The extra pipelining delay from seeing the packet until the end of
328     * payload is transmitted by the component that provided it (if
329     * any). This includes the header delay. Similar to the header
330     * delay, this is used to make up for the fact that the
331     * crossbar does not make the packet wait. As the delay is
332     * relative, a 32-bit unsigned should be sufficient.
333     */
334    uint32_t payloadDelay;
335
336    /**
337     * A virtual base opaque structure used to hold state associated
338     * with the packet (e.g., an MSHR), specific to a MemObject that
339     * sees the packet. A pointer to this state is returned in the
340     * packet's response so that the MemObject in question can quickly
341     * look up the state needed to process it. A specific subclass
342     * would be derived from this to carry state specific to a
343     * particular sending device.
344     *
345     * As multiple MemObjects may add their SenderState throughout the
346     * memory system, the SenderStates create a stack, where a
347     * MemObject can add a new Senderstate, as long as the
348     * predecessing SenderState is restored when the response comes
349     * back. For this reason, the predecessor should always be
350     * populated with the current SenderState of a packet before
351     * modifying the senderState field in the request packet.
352     */
353    struct SenderState
354    {
355        SenderState* predecessor;
356        SenderState() : predecessor(NULL) {}
357        virtual ~SenderState() {}
358    };
359
360    /**
361     * Object used to maintain state of a PrintReq.  The senderState
362     * field of a PrintReq should always be of this type.
363     */
364    class PrintReqState : public SenderState
365    {
366      private:
367        /**
368         * An entry in the label stack.
369         */
370        struct LabelStackEntry
371        {
372            const std::string label;
373            std::string *prefix;
374            bool labelPrinted;
375            LabelStackEntry(const std::string &_label, std::string *_prefix);
376        };
377
378        typedef std::list<LabelStackEntry> LabelStack;
379        LabelStack labelStack;
380
381        std::string *curPrefixPtr;
382
383      public:
384        std::ostream &os;
385        const int verbosity;
386
387        PrintReqState(std::ostream &os, int verbosity = 0);
388        ~PrintReqState();
389
390        /**
391         * Returns the current line prefix.
392         */
393        const std::string &curPrefix() { return *curPrefixPtr; }
394
395        /**
396         * Push a label onto the label stack, and prepend the given
397         * prefix string onto the current prefix.  Labels will only be
398         * printed if an object within the label's scope is printed.
399         */
400        void pushLabel(const std::string &lbl,
401                       const std::string &prefix = "  ");
402
403        /**
404         * Pop a label off the label stack.
405         */
406        void popLabel();
407
408        /**
409         * Print all of the pending unprinted labels on the
410         * stack. Called by printObj(), so normally not called by
411         * users unless bypassing printObj().
412         */
413        void printLabels();
414
415        /**
416         * Print a Printable object to os, because it matched the
417         * address on a PrintReq.
418         */
419        void printObj(Printable *obj);
420    };
421
422    /**
423     * This packet's sender state.  Devices should use dynamic_cast<>
424     * to cast to the state appropriate to the sender.  The intent of
425     * this variable is to allow a device to attach extra information
426     * to a request. A response packet must return the sender state
427     * that was attached to the original request (even if a new packet
428     * is created).
429     */
430    SenderState *senderState;
431
432    /**
433     * Push a new sender state to the packet and make the current
434     * sender state the predecessor of the new one. This should be
435     * prefered over direct manipulation of the senderState member
436     * variable.
437     *
438     * @param sender_state SenderState to push at the top of the stack
439     */
440    void pushSenderState(SenderState *sender_state);
441
442    /**
443     * Pop the top of the state stack and return a pointer to it. This
444     * assumes the current sender state is not NULL. This should be
445     * preferred over direct manipulation of the senderState member
446     * variable.
447     *
448     * @return The current top of the stack
449     */
450    SenderState *popSenderState();
451
452    /**
453     * Go through the sender state stack and return the first instance
454     * that is of type T (as determined by a dynamic_cast). If there
455     * is no sender state of type T, NULL is returned.
456     *
457     * @return The topmost state of type T
458     */
459    template <typename T>
460    T * findNextSenderState() const
461    {
462        T *t = NULL;
463        SenderState* sender_state = senderState;
464        while (t == NULL && sender_state != NULL) {
465            t = dynamic_cast<T*>(sender_state);
466            sender_state = sender_state->predecessor;
467        }
468        return t;
469    }
470
471    /// Return the string name of the cmd field (for debugging and
472    /// tracing).
473    const std::string &cmdString() const { return cmd.toString(); }
474
475    /// Return the index of this command.
476    inline int cmdToIndex() const { return cmd.toInt(); }
477
478    bool isRead() const              { return cmd.isRead(); }
479    bool isWrite() const             { return cmd.isWrite(); }
480    bool isUpgrade()  const          { return cmd.isUpgrade(); }
481    bool isRequest() const           { return cmd.isRequest(); }
482    bool isResponse() const          { return cmd.isResponse(); }
483    bool needsExclusive() const      { return cmd.needsExclusive(); }
484    bool needsResponse() const       { return cmd.needsResponse(); }
485    bool isInvalidate() const        { return cmd.isInvalidate(); }
486    bool isWriteInvalidate() const   { return cmd.isWriteInvalidate(); }
487    bool hasData() const             { return cmd.hasData(); }
488    bool isLLSC() const              { return cmd.isLLSC(); }
489    bool isError() const             { return cmd.isError(); }
490    bool isPrint() const             { return cmd.isPrint(); }
491    bool isFlush() const             { return cmd.isFlush(); }
492
493    // Snoop flags
494    void assertMemInhibit()
495    {
496        assert(isRequest());
497        assert(!flags.isSet(MEM_INHIBIT));
498        flags.set(MEM_INHIBIT);
499    }
500    bool memInhibitAsserted() const { return flags.isSet(MEM_INHIBIT); }
501    void assertShared()             { flags.set(SHARED); }
502    bool sharedAsserted() const     { return flags.isSet(SHARED); }
503
504    // Special control flags
505    void setExpressSnoop()          { flags.set(EXPRESS_SNOOP); }
506    bool isExpressSnoop() const     { return flags.isSet(EXPRESS_SNOOP); }
507    void setSupplyExclusive()       { flags.set(SUPPLY_EXCLUSIVE); }
508    void clearSupplyExclusive()     { flags.clear(SUPPLY_EXCLUSIVE); }
509    bool isSupplyExclusive() const  { return flags.isSet(SUPPLY_EXCLUSIVE); }
510    void setSuppressFuncError()     { flags.set(SUPPRESS_FUNC_ERROR); }
511    bool suppressFuncError() const  { return flags.isSet(SUPPRESS_FUNC_ERROR); }
512    void setBlockCached()          { flags.set(BLOCK_CACHED); }
513    bool isBlockCached() const     { return flags.isSet(BLOCK_CACHED); }
514    void clearBlockCached()        { flags.clear(BLOCK_CACHED); }
515
516    // Network error conditions... encapsulate them as methods since
517    // their encoding keeps changing (from result field to command
518    // field, etc.)
519    void
520    setBadAddress()
521    {
522        assert(isResponse());
523        cmd = MemCmd::BadAddressError;
524    }
525
526    bool hadBadAddress() const { return cmd == MemCmd::BadAddressError; }
527    void copyError(Packet *pkt) { assert(pkt->isError()); cmd = pkt->cmd; }
528
529    Addr getAddr() const { assert(flags.isSet(VALID_ADDR)); return addr; }
530    /**
531     * Update the address of this packet mid-transaction. This is used
532     * by the address mapper to change an already set address to a new
533     * one based on the system configuration. It is intended to remap
534     * an existing address, so it asserts that the current address is
535     * valid.
536     */
537    void setAddr(Addr _addr) { assert(flags.isSet(VALID_ADDR)); addr = _addr; }
538
539    unsigned getSize() const  { assert(flags.isSet(VALID_SIZE)); return size; }
540    Addr getOffset(int blkSize) const { return getAddr() & (Addr)(blkSize - 1); }
541
542    bool isSecure() const
543    {
544        assert(flags.isSet(VALID_ADDR));
545        return _isSecure;
546    }
547
548    /**
549     * It has been determined that the SC packet should successfully update
550     * memory.  Therefore, convert this SC packet to a normal write.
551     */
552    void
553    convertScToWrite()
554    {
555        assert(isLLSC());
556        assert(isWrite());
557        cmd = MemCmd::WriteReq;
558    }
559
560    /**
561     * When ruby is in use, Ruby will monitor the cache line and thus M5
562     * phys memory should treat LL ops as normal reads.
563     */
564    void
565    convertLlToRead()
566    {
567        assert(isLLSC());
568        assert(isRead());
569        cmd = MemCmd::ReadReq;
570    }
571
572    /**
573     * Constructor.  Note that a Request object must be constructed
574     * first, but the Requests's physical address and size fields need
575     * not be valid. The command must be supplied.
576     */
577    Packet(const RequestPtr _req, MemCmd _cmd)
578        :  cmd(_cmd), req(_req), data(nullptr), addr(0), _isSecure(false),
579           size(0), headerDelay(0), payloadDelay(0),
580           senderState(NULL)
581    {
582        if (req->hasPaddr()) {
583            addr = req->getPaddr();
584            flags.set(VALID_ADDR);
585            _isSecure = req->isSecure();
586        }
587        if (req->hasSize()) {
588            size = req->getSize();
589            flags.set(VALID_SIZE);
590        }
591    }
592
593    /**
594     * Alternate constructor if you are trying to create a packet with
595     * a request that is for a whole block, not the address from the
596     * req.  this allows for overriding the size/addr of the req.
597     */
598    Packet(const RequestPtr _req, MemCmd _cmd, int _blkSize)
599        :  cmd(_cmd), req(_req), data(nullptr), addr(0), _isSecure(false),
600           headerDelay(0), payloadDelay(0),
601           senderState(NULL)
602    {
603        if (req->hasPaddr()) {
604            addr = req->getPaddr() & ~(_blkSize - 1);
605            flags.set(VALID_ADDR);
606            _isSecure = req->isSecure();
607        }
608        size = _blkSize;
609        flags.set(VALID_SIZE);
610    }
611
612    /**
613     * Alternate constructor for copying a packet.  Copy all fields
614     * *except* if the original packet's data was dynamic, don't copy
615     * that, as we can't guarantee that the new packet's lifetime is
616     * less than that of the original packet.  In this case the new
617     * packet should allocate its own data.
618     */
619    Packet(PacketPtr pkt, bool clear_flags, bool alloc_data)
620        :  cmd(pkt->cmd), req(pkt->req),
621           data(nullptr),
622           addr(pkt->addr), _isSecure(pkt->_isSecure), size(pkt->size),
623           bytesValid(pkt->bytesValid),
624           headerDelay(pkt->headerDelay),
625           payloadDelay(pkt->payloadDelay),
626           senderState(pkt->senderState)
627    {
628        if (!clear_flags)
629            flags.set(pkt->flags & COPY_FLAGS);
630
631        flags.set(pkt->flags & (VALID_ADDR|VALID_SIZE));
632
633        // should we allocate space for data, or not, the express
634        // snoops do not need to carry any data as they only serve to
635        // co-ordinate state changes
636        if (alloc_data) {
637            // even if asked to allocate data, if the original packet
638            // holds static data, then the sender will not be doing
639            // any memcpy on receiving the response, thus we simply
640            // carry the pointer forward
641            if (pkt->flags.isSet(STATIC_DATA)) {
642                data = pkt->data;
643                flags.set(STATIC_DATA);
644            } else {
645                allocate();
646            }
647        }
648    }
649
650    /**
651     * Generate the appropriate read MemCmd based on the Request flags.
652     */
653    static MemCmd
654    makeReadCmd(const RequestPtr req)
655    {
656        if (req->isLLSC())
657            return MemCmd::LoadLockedReq;
658        else if (req->isPrefetch())
659            return MemCmd::SoftPFReq;
660        else
661            return MemCmd::ReadReq;
662    }
663
664    /**
665     * Generate the appropriate write MemCmd based on the Request flags.
666     */
667    static MemCmd
668    makeWriteCmd(const RequestPtr req)
669    {
670        if (req->isLLSC())
671            return MemCmd::StoreCondReq;
672        else if (req->isSwap())
673            return MemCmd::SwapReq;
674        else
675            return MemCmd::WriteReq;
676    }
677
678    /**
679     * Constructor-like methods that return Packets based on Request objects.
680     * Fine-tune the MemCmd type if it's not a vanilla read or write.
681     */
682    static PacketPtr
683    createRead(const RequestPtr req)
684    {
685        return new Packet(req, makeReadCmd(req));
686    }
687
688    static PacketPtr
689    createWrite(const RequestPtr req)
690    {
691        return new Packet(req, makeWriteCmd(req));
692    }
693
694    /**
695     * clean up packet variables
696     */
697    ~Packet()
698    {
699        // Delete the request object if this is a request packet which
700        // does not need a response, because the requester will not get
701        // a chance. If the request packet needs a response then the
702        // request will be deleted on receipt of the response
703        // packet. We also make sure to never delete the request for
704        // express snoops, even for cases when responses are not
705        // needed (CleanEvict and Writeback), since the snoop packet
706        // re-uses the same request.
707        if (req && isRequest() && !needsResponse() &&
708            !isExpressSnoop()) {
709            delete req;
710        }
711        deleteData();
712    }
713
714    /**
715     * Take a request packet and modify it in place to be suitable for
716     * returning as a response to that request.
717     */
718    void
719    makeResponse()
720    {
721        assert(needsResponse());
722        assert(isRequest());
723        origCmd = cmd;
724        cmd = cmd.responseCommand();
725
726        // responses are never express, even if the snoop that
727        // triggered them was
728        flags.clear(EXPRESS_SNOOP);
729    }
730
731    void
732    makeAtomicResponse()
733    {
734        makeResponse();
735    }
736
737    void
738    makeTimingResponse()
739    {
740        makeResponse();
741    }
742
743    void
744    setFunctionalResponseStatus(bool success)
745    {
746        if (!success) {
747            if (isWrite()) {
748                cmd = MemCmd::FunctionalWriteError;
749            } else {
750                cmd = MemCmd::FunctionalReadError;
751            }
752        }
753    }
754
755    void
756    setSize(unsigned size)
757    {
758        assert(!flags.isSet(VALID_SIZE));
759
760        this->size = size;
761        flags.set(VALID_SIZE);
762    }
763
764
765    /**
766     * Set the data pointer to the following value that should not be
767     * freed. Static data allows us to do a single memcpy even if
768     * multiple packets are required to get from source to destination
769     * and back. In essence the pointer is set calling dataStatic on
770     * the original packet, and whenever this packet is copied and
771     * forwarded the same pointer is passed on. When a packet
772     * eventually reaches the destination holding the data, it is
773     * copied once into the location originally set. On the way back
774     * to the source, no copies are necessary.
775     */
776    template <typename T>
777    void
778    dataStatic(T *p)
779    {
780        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
781        data = (PacketDataPtr)p;
782        flags.set(STATIC_DATA);
783    }
784
785    /**
786     * Set the data pointer to the following value that should not be
787     * freed. This version of the function allows the pointer passed
788     * to us to be const. To avoid issues down the line we cast the
789     * constness away, the alternative would be to keep both a const
790     * and non-const data pointer and cleverly choose between
791     * them. Note that this is only allowed for static data.
792     */
793    template <typename T>
794    void
795    dataStaticConst(const T *p)
796    {
797        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
798        data = const_cast<PacketDataPtr>(p);
799        flags.set(STATIC_DATA);
800    }
801
802    /**
803     * Set the data pointer to a value that should have delete []
804     * called on it. Dynamic data is local to this packet, and as the
805     * packet travels from source to destination, forwarded packets
806     * will allocate their own data. When a packet reaches the final
807     * destination it will populate the dynamic data of that specific
808     * packet, and on the way back towards the source, memcpy will be
809     * invoked in every step where a new packet was created e.g. in
810     * the caches. Ultimately when the response reaches the source a
811     * final memcpy is needed to extract the data from the packet
812     * before it is deallocated.
813     */
814    template <typename T>
815    void
816    dataDynamic(T *p)
817    {
818        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
819        data = (PacketDataPtr)p;
820        flags.set(DYNAMIC_DATA);
821    }
822
823    /**
824     * get a pointer to the data ptr.
825     */
826    template <typename T>
827    T*
828    getPtr()
829    {
830        assert(flags.isSet(STATIC_DATA|DYNAMIC_DATA));
831        return (T*)data;
832    }
833
834    template <typename T>
835    const T*
836    getConstPtr() const
837    {
838        assert(flags.isSet(STATIC_DATA|DYNAMIC_DATA));
839        return (const T*)data;
840    }
841
842    /**
843     * return the value of what is pointed to in the packet.
844     */
845    template <typename T>
846    T get() const;
847
848    /**
849     * set the value in the data pointer to v.
850     */
851    template <typename T>
852    void set(T v);
853
854    /**
855     * Copy data into the packet from the provided pointer.
856     */
857    void
858    setData(const uint8_t *p)
859    {
860        // we should never be copying data onto itself, which means we
861        // must idenfity packets with static data, as they carry the
862        // same pointer from source to destination and back
863        assert(p != getPtr<uint8_t>() || flags.isSet(STATIC_DATA));
864
865        if (p != getPtr<uint8_t>())
866            // for packet with allocated dynamic data, we copy data from
867            // one to the other, e.g. a forwarded response to a response
868            std::memcpy(getPtr<uint8_t>(), p, getSize());
869    }
870
871    /**
872     * Copy data into the packet from the provided block pointer,
873     * which is aligned to the given block size.
874     */
875    void
876    setDataFromBlock(const uint8_t *blk_data, int blkSize)
877    {
878        setData(blk_data + getOffset(blkSize));
879    }
880
881    /**
882     * Copy data from the packet to the provided block pointer, which
883     * is aligned to the given block size.
884     */
885    void
886    writeData(uint8_t *p) const
887    {
888        std::memcpy(p, getConstPtr<uint8_t>(), getSize());
889    }
890
891    /**
892     * Copy data from the packet to the memory at the provided pointer.
893     */
894    void
895    writeDataToBlock(uint8_t *blk_data, int blkSize) const
896    {
897        writeData(blk_data + getOffset(blkSize));
898    }
899
900    /**
901     * delete the data pointed to in the data pointer. Ok to call to
902     * matter how data was allocted.
903     */
904    void
905    deleteData()
906    {
907        if (flags.isSet(DYNAMIC_DATA))
908            delete [] data;
909
910        flags.clear(STATIC_DATA|DYNAMIC_DATA);
911        data = NULL;
912    }
913
914    /** Allocate memory for the packet. */
915    void
916    allocate()
917    {
918        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
919        flags.set(DYNAMIC_DATA);
920        data = new uint8_t[getSize()];
921    }
922
923    /**
924     * Check a functional request against a memory value stored in
925     * another packet (i.e. an in-transit request or
926     * response). Returns true if the current packet is a read, and
927     * the other packet provides the data, which is then copied to the
928     * current packet. If the current packet is a write, and the other
929     * packet intersects this one, then we update the data
930     * accordingly.
931     */
932    bool
933    checkFunctional(PacketPtr other)
934    {
935        // all packets that are carrying a payload should have a valid
936        // data pointer
937        return checkFunctional(other, other->getAddr(), other->isSecure(),
938                               other->getSize(),
939                               other->hasData() ?
940                               other->getPtr<uint8_t>() : NULL);
941    }
942
943    /**
944     * Is this request notification of a clean or dirty eviction from the cache.
945     **/
946    bool
947    evictingBlock() const
948    {
949        return (cmd == MemCmd::Writeback ||
950                cmd == MemCmd::CleanEvict);
951    }
952
953    /**
954     * Does the request need to check for cached copies of the same block
955     * in the memory hierarchy above.
956     **/
957    bool
958    mustCheckAbove() const
959    {
960        return (cmd == MemCmd::HardPFReq ||
961                evictingBlock());
962    }
963
964    /**
965     * Check a functional request against a memory value represented
966     * by a base/size pair and an associated data array. If the
967     * current packet is a read, it may be satisfied by the memory
968     * value. If the current packet is a write, it may update the
969     * memory value.
970     */
971    bool
972    checkFunctional(Printable *obj, Addr base, bool is_secure, int size,
973                    uint8_t *_data);
974
975    /**
976     * Push label for PrintReq (safe to call unconditionally).
977     */
978    void
979    pushLabel(const std::string &lbl)
980    {
981        if (isPrint())
982            safe_cast<PrintReqState*>(senderState)->pushLabel(lbl);
983    }
984
985    /**
986     * Pop label for PrintReq (safe to call unconditionally).
987     */
988    void
989    popLabel()
990    {
991        if (isPrint())
992            safe_cast<PrintReqState*>(senderState)->popLabel();
993    }
994
995    void print(std::ostream &o, int verbosity = 0,
996               const std::string &prefix = "") const;
997
998    /**
999     * A no-args wrapper of print(std::ostream...)
1000     * meant to be invoked from DPRINTFs
1001     * avoiding string overheads in fast mode
1002     * @return string with the request's type and start<->end addresses
1003     */
1004    std::string print() const;
1005};
1006
1007#endif //__MEM_PACKET_HH
1008