packet.hh revision 10872:ebb3d0737aa7
1/*
2 * Copyright (c) 2012-2015 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2006 The Regents of The University of Michigan
15 * Copyright (c) 2010 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Ron Dreslinski
42 *          Steve Reinhardt
43 *          Ali Saidi
44 *          Andreas Hansson
45 */
46
47/**
48 * @file
49 * Declaration of the Packet class.
50 */
51
52#ifndef __MEM_PACKET_HH__
53#define __MEM_PACKET_HH__
54
55#include <bitset>
56#include <cassert>
57#include <list>
58
59#include "base/cast.hh"
60#include "base/compiler.hh"
61#include "base/flags.hh"
62#include "base/misc.hh"
63#include "base/printable.hh"
64#include "base/types.hh"
65#include "mem/request.hh"
66#include "sim/core.hh"
67
68class Packet;
69typedef Packet *PacketPtr;
70typedef uint8_t* PacketDataPtr;
71typedef std::list<PacketPtr> PacketList;
72
73class MemCmd
74{
75    friend class Packet;
76
77  public:
78    /**
79     * List of all commands associated with a packet.
80     */
81    enum Command
82    {
83        InvalidCmd,
84        ReadReq,
85        ReadResp,
86        ReadRespWithInvalidate,
87        WriteReq,
88        WriteResp,
89        Writeback,
90        SoftPFReq,
91        HardPFReq,
92        SoftPFResp,
93        HardPFResp,
94        WriteInvalidateReq,
95        WriteInvalidateResp,
96        UpgradeReq,
97        SCUpgradeReq,           // Special "weak" upgrade for StoreCond
98        UpgradeResp,
99        SCUpgradeFailReq,       // Failed SCUpgradeReq in MSHR (never sent)
100        UpgradeFailResp,        // Valid for SCUpgradeReq only
101        ReadExReq,
102        ReadExResp,
103        LoadLockedReq,
104        StoreCondReq,
105        StoreCondFailReq,       // Failed StoreCondReq in MSHR (never sent)
106        StoreCondResp,
107        SwapReq,
108        SwapResp,
109        MessageReq,
110        MessageResp,
111        // Error responses
112        // @TODO these should be classified as responses rather than
113        // requests; coding them as requests initially for backwards
114        // compatibility
115        InvalidDestError,  // packet dest field invalid
116        BadAddressError,   // memory address invalid
117        FunctionalReadError, // unable to fulfill functional read
118        FunctionalWriteError, // unable to fulfill functional write
119        // Fake simulator-only commands
120        PrintReq,       // Print state matching address
121        FlushReq,      //request for a cache flush
122        InvalidationReq,   // request for address to be invalidated from lsq
123        NUM_MEM_CMDS
124    };
125
126  private:
127    /**
128     * List of command attributes.
129     */
130    enum Attribute
131    {
132        IsRead,         //!< Data flows from responder to requester
133        IsWrite,        //!< Data flows from requester to responder
134        IsUpgrade,
135        IsInvalidate,
136        NeedsExclusive, //!< Requires exclusive copy to complete in-cache
137        IsRequest,      //!< Issued by requester
138        IsResponse,     //!< Issue by responder
139        NeedsResponse,  //!< Requester needs response from target
140        IsSWPrefetch,
141        IsHWPrefetch,
142        IsLlsc,         //!< Alpha/MIPS LL or SC access
143        HasData,        //!< There is an associated payload
144        IsError,        //!< Error response
145        IsPrint,        //!< Print state matching address (for debugging)
146        IsFlush,        //!< Flush the address from caches
147        NUM_COMMAND_ATTRIBUTES
148    };
149
150    /**
151     * Structure that defines attributes and other data associated
152     * with a Command.
153     */
154    struct CommandInfo
155    {
156        /// Set of attribute flags.
157        const std::bitset<NUM_COMMAND_ATTRIBUTES> attributes;
158        /// Corresponding response for requests; InvalidCmd if no
159        /// response is applicable.
160        const Command response;
161        /// String representation (for printing)
162        const std::string str;
163    };
164
165    /// Array to map Command enum to associated info.
166    static const CommandInfo commandInfo[];
167
168  private:
169
170    Command cmd;
171
172    bool
173    testCmdAttrib(MemCmd::Attribute attrib) const
174    {
175        return commandInfo[cmd].attributes[attrib] != 0;
176    }
177
178  public:
179
180    bool isRead() const            { return testCmdAttrib(IsRead); }
181    bool isWrite() const           { return testCmdAttrib(IsWrite); }
182    bool isUpgrade() const         { return testCmdAttrib(IsUpgrade); }
183    bool isRequest() const         { return testCmdAttrib(IsRequest); }
184    bool isResponse() const        { return testCmdAttrib(IsResponse); }
185    bool needsExclusive() const    { return testCmdAttrib(NeedsExclusive); }
186    bool needsResponse() const     { return testCmdAttrib(NeedsResponse); }
187    bool isInvalidate() const      { return testCmdAttrib(IsInvalidate); }
188    bool isWriteInvalidate() const { return testCmdAttrib(IsWrite) &&
189                                            testCmdAttrib(IsInvalidate); }
190
191    /**
192     * Check if this particular packet type carries payload data. Note
193     * that this does not reflect if the data pointer of the packet is
194     * valid or not.
195     */
196    bool hasData() const        { return testCmdAttrib(HasData); }
197    bool isLLSC() const         { return testCmdAttrib(IsLlsc); }
198    bool isSWPrefetch() const   { return testCmdAttrib(IsSWPrefetch); }
199    bool isHWPrefetch() const   { return testCmdAttrib(IsHWPrefetch); }
200    bool isPrefetch() const     { return testCmdAttrib(IsSWPrefetch) ||
201                                         testCmdAttrib(IsHWPrefetch); }
202    bool isError() const        { return testCmdAttrib(IsError); }
203    bool isPrint() const        { return testCmdAttrib(IsPrint); }
204    bool isFlush() const        { return testCmdAttrib(IsFlush); }
205
206    const Command
207    responseCommand() const
208    {
209        return commandInfo[cmd].response;
210    }
211
212    /// Return the string to a cmd given by idx.
213    const std::string &toString() const { return commandInfo[cmd].str; }
214    int toInt() const { return (int)cmd; }
215
216    MemCmd(Command _cmd) : cmd(_cmd) { }
217    MemCmd(int _cmd) : cmd((Command)_cmd) { }
218    MemCmd() : cmd(InvalidCmd) { }
219
220    bool operator==(MemCmd c2) const { return (cmd == c2.cmd); }
221    bool operator!=(MemCmd c2) const { return (cmd != c2.cmd); }
222};
223
224/**
225 * A Packet is used to encapsulate a transfer between two objects in
226 * the memory system (e.g., the L1 and L2 cache).  (In contrast, a
227 * single Request travels all the way from the requester to the
228 * ultimate destination and back, possibly being conveyed by several
229 * different Packets along the way.)
230 */
231class Packet : public Printable
232{
233  public:
234    typedef uint32_t FlagsType;
235    typedef ::Flags<FlagsType> Flags;
236
237  private:
238    static const FlagsType PUBLIC_FLAGS           = 0x00000000;
239    static const FlagsType PRIVATE_FLAGS          = 0x00007F0F;
240    static const FlagsType COPY_FLAGS             = 0x0000000F;
241
242    static const FlagsType SHARED                 = 0x00000001;
243    // Special control flags
244    /// Special timing-mode atomic snoop for multi-level coherence.
245    static const FlagsType EXPRESS_SNOOP          = 0x00000002;
246    /// Does supplier have exclusive copy?
247    /// Useful for multi-level coherence.
248    static const FlagsType SUPPLY_EXCLUSIVE       = 0x00000004;
249    // Snoop response flags
250    static const FlagsType MEM_INHIBIT            = 0x00000008;
251    /// Are the 'addr' and 'size' fields valid?
252    static const FlagsType VALID_ADDR             = 0x00000100;
253    static const FlagsType VALID_SIZE             = 0x00000200;
254    /// Is the data pointer set to a value that shouldn't be freed
255    /// when the packet is destroyed?
256    static const FlagsType STATIC_DATA            = 0x00001000;
257    /// The data pointer points to a value that should be freed when
258    /// the packet is destroyed. The pointer is assumed to be pointing
259    /// to an array, and delete [] is consequently called
260    static const FlagsType DYNAMIC_DATA           = 0x00002000;
261    /// suppress the error if this packet encounters a functional
262    /// access failure.
263    static const FlagsType SUPPRESS_FUNC_ERROR    = 0x00008000;
264    // Signal block present to squash prefetch and cache evict packets
265    // through express snoop flag
266    static const FlagsType BLOCK_CACHED          = 0x00010000;
267
268    Flags flags;
269
270  public:
271    typedef MemCmd::Command Command;
272
273    /// The command field of the packet.
274    MemCmd cmd;
275
276    /// A pointer to the original request.
277    const RequestPtr req;
278
279  private:
280   /**
281    * A pointer to the data being transfered.  It can be differnt
282    * sizes at each level of the heirarchy so it belongs in the
283    * packet, not request. This may or may not be populated when a
284    * responder recieves the packet. If not populated it memory should
285    * be allocated.
286    */
287    PacketDataPtr data;
288
289    /// The address of the request.  This address could be virtual or
290    /// physical, depending on the system configuration.
291    Addr addr;
292
293    /// True if the request targets the secure memory space.
294    bool _isSecure;
295
296    /// The size of the request or transfer.
297    unsigned size;
298
299    /**
300     * The original value of the command field.  Only valid when the
301     * current command field is an error condition; in that case, the
302     * previous contents of the command field are copied here.  This
303     * field is *not* set on non-error responses.
304     */
305    MemCmd origCmd;
306
307    /**
308     * Track the bytes found that satisfy a functional read.
309     */
310    std::vector<bool> bytesValid;
311
312  public:
313
314    /**
315     * The extra delay from seeing the packet until the header is
316     * transmitted. This delay is used to communicate the crossbar
317     * forwarding latency to the neighbouring object (e.g. a cache)
318     * that actually makes the packet wait. As the delay is relative,
319     * a 32-bit unsigned should be sufficient.
320     */
321    uint32_t headerDelay;
322
323    /**
324     * The extra pipelining delay from seeing the packet until the end of
325     * payload is transmitted by the component that provided it (if
326     * any). This includes the header delay. Similar to the header
327     * delay, this is used to make up for the fact that the
328     * crossbar does not make the packet wait. As the delay is
329     * relative, a 32-bit unsigned should be sufficient.
330     */
331    uint32_t payloadDelay;
332
333    /**
334     * A virtual base opaque structure used to hold state associated
335     * with the packet (e.g., an MSHR), specific to a MemObject that
336     * sees the packet. A pointer to this state is returned in the
337     * packet's response so that the MemObject in question can quickly
338     * look up the state needed to process it. A specific subclass
339     * would be derived from this to carry state specific to a
340     * particular sending device.
341     *
342     * As multiple MemObjects may add their SenderState throughout the
343     * memory system, the SenderStates create a stack, where a
344     * MemObject can add a new Senderstate, as long as the
345     * predecessing SenderState is restored when the response comes
346     * back. For this reason, the predecessor should always be
347     * populated with the current SenderState of a packet before
348     * modifying the senderState field in the request packet.
349     */
350    struct SenderState
351    {
352        SenderState* predecessor;
353        SenderState() : predecessor(NULL) {}
354        virtual ~SenderState() {}
355    };
356
357    /**
358     * Object used to maintain state of a PrintReq.  The senderState
359     * field of a PrintReq should always be of this type.
360     */
361    class PrintReqState : public SenderState
362    {
363      private:
364        /**
365         * An entry in the label stack.
366         */
367        struct LabelStackEntry
368        {
369            const std::string label;
370            std::string *prefix;
371            bool labelPrinted;
372            LabelStackEntry(const std::string &_label, std::string *_prefix);
373        };
374
375        typedef std::list<LabelStackEntry> LabelStack;
376        LabelStack labelStack;
377
378        std::string *curPrefixPtr;
379
380      public:
381        std::ostream &os;
382        const int verbosity;
383
384        PrintReqState(std::ostream &os, int verbosity = 0);
385        ~PrintReqState();
386
387        /**
388         * Returns the current line prefix.
389         */
390        const std::string &curPrefix() { return *curPrefixPtr; }
391
392        /**
393         * Push a label onto the label stack, and prepend the given
394         * prefix string onto the current prefix.  Labels will only be
395         * printed if an object within the label's scope is printed.
396         */
397        void pushLabel(const std::string &lbl,
398                       const std::string &prefix = "  ");
399
400        /**
401         * Pop a label off the label stack.
402         */
403        void popLabel();
404
405        /**
406         * Print all of the pending unprinted labels on the
407         * stack. Called by printObj(), so normally not called by
408         * users unless bypassing printObj().
409         */
410        void printLabels();
411
412        /**
413         * Print a Printable object to os, because it matched the
414         * address on a PrintReq.
415         */
416        void printObj(Printable *obj);
417    };
418
419    /**
420     * This packet's sender state.  Devices should use dynamic_cast<>
421     * to cast to the state appropriate to the sender.  The intent of
422     * this variable is to allow a device to attach extra information
423     * to a request. A response packet must return the sender state
424     * that was attached to the original request (even if a new packet
425     * is created).
426     */
427    SenderState *senderState;
428
429    /**
430     * Push a new sender state to the packet and make the current
431     * sender state the predecessor of the new one. This should be
432     * prefered over direct manipulation of the senderState member
433     * variable.
434     *
435     * @param sender_state SenderState to push at the top of the stack
436     */
437    void pushSenderState(SenderState *sender_state);
438
439    /**
440     * Pop the top of the state stack and return a pointer to it. This
441     * assumes the current sender state is not NULL. This should be
442     * preferred over direct manipulation of the senderState member
443     * variable.
444     *
445     * @return The current top of the stack
446     */
447    SenderState *popSenderState();
448
449    /**
450     * Go through the sender state stack and return the first instance
451     * that is of type T (as determined by a dynamic_cast). If there
452     * is no sender state of type T, NULL is returned.
453     *
454     * @return The topmost state of type T
455     */
456    template <typename T>
457    T * findNextSenderState() const
458    {
459        T *t = NULL;
460        SenderState* sender_state = senderState;
461        while (t == NULL && sender_state != NULL) {
462            t = dynamic_cast<T*>(sender_state);
463            sender_state = sender_state->predecessor;
464        }
465        return t;
466    }
467
468    /// Return the string name of the cmd field (for debugging and
469    /// tracing).
470    const std::string &cmdString() const { return cmd.toString(); }
471
472    /// Return the index of this command.
473    inline int cmdToIndex() const { return cmd.toInt(); }
474
475    bool isRead() const              { return cmd.isRead(); }
476    bool isWrite() const             { return cmd.isWrite(); }
477    bool isUpgrade()  const          { return cmd.isUpgrade(); }
478    bool isRequest() const           { return cmd.isRequest(); }
479    bool isResponse() const          { return cmd.isResponse(); }
480    bool needsExclusive() const      { return cmd.needsExclusive(); }
481    bool needsResponse() const       { return cmd.needsResponse(); }
482    bool isInvalidate() const        { return cmd.isInvalidate(); }
483    bool isWriteInvalidate() const   { return cmd.isWriteInvalidate(); }
484    bool hasData() const             { return cmd.hasData(); }
485    bool isLLSC() const              { return cmd.isLLSC(); }
486    bool isError() const             { return cmd.isError(); }
487    bool isPrint() const             { return cmd.isPrint(); }
488    bool isFlush() const             { return cmd.isFlush(); }
489
490    // Snoop flags
491    void assertMemInhibit()
492    {
493        assert(isRequest());
494        assert(!flags.isSet(MEM_INHIBIT));
495        flags.set(MEM_INHIBIT);
496    }
497    bool memInhibitAsserted() const { return flags.isSet(MEM_INHIBIT); }
498    void assertShared()             { flags.set(SHARED); }
499    bool sharedAsserted() const     { return flags.isSet(SHARED); }
500
501    // Special control flags
502    void setExpressSnoop()          { flags.set(EXPRESS_SNOOP); }
503    bool isExpressSnoop() const     { return flags.isSet(EXPRESS_SNOOP); }
504    void setSupplyExclusive()       { flags.set(SUPPLY_EXCLUSIVE); }
505    void clearSupplyExclusive()     { flags.clear(SUPPLY_EXCLUSIVE); }
506    bool isSupplyExclusive() const  { return flags.isSet(SUPPLY_EXCLUSIVE); }
507    void setSuppressFuncError()     { flags.set(SUPPRESS_FUNC_ERROR); }
508    bool suppressFuncError() const  { return flags.isSet(SUPPRESS_FUNC_ERROR); }
509    void setBlockCached()          { flags.set(BLOCK_CACHED); }
510    bool isBlockCached() const     { return flags.isSet(BLOCK_CACHED); }
511
512    // Network error conditions... encapsulate them as methods since
513    // their encoding keeps changing (from result field to command
514    // field, etc.)
515    void
516    setBadAddress()
517    {
518        assert(isResponse());
519        cmd = MemCmd::BadAddressError;
520    }
521
522    bool hadBadAddress() const { return cmd == MemCmd::BadAddressError; }
523    void copyError(Packet *pkt) { assert(pkt->isError()); cmd = pkt->cmd; }
524
525    Addr getAddr() const { assert(flags.isSet(VALID_ADDR)); return addr; }
526    /**
527     * Update the address of this packet mid-transaction. This is used
528     * by the address mapper to change an already set address to a new
529     * one based on the system configuration. It is intended to remap
530     * an existing address, so it asserts that the current address is
531     * valid.
532     */
533    void setAddr(Addr _addr) { assert(flags.isSet(VALID_ADDR)); addr = _addr; }
534
535    unsigned getSize() const  { assert(flags.isSet(VALID_SIZE)); return size; }
536    Addr getOffset(int blkSize) const { return getAddr() & (Addr)(blkSize - 1); }
537
538    bool isSecure() const
539    {
540        assert(flags.isSet(VALID_ADDR));
541        return _isSecure;
542    }
543
544    /**
545     * It has been determined that the SC packet should successfully update
546     * memory.  Therefore, convert this SC packet to a normal write.
547     */
548    void
549    convertScToWrite()
550    {
551        assert(isLLSC());
552        assert(isWrite());
553        cmd = MemCmd::WriteReq;
554    }
555
556    /**
557     * When ruby is in use, Ruby will monitor the cache line and thus M5
558     * phys memory should treat LL ops as normal reads.
559     */
560    void
561    convertLlToRead()
562    {
563        assert(isLLSC());
564        assert(isRead());
565        cmd = MemCmd::ReadReq;
566    }
567
568    /**
569     * Constructor.  Note that a Request object must be constructed
570     * first, but the Requests's physical address and size fields need
571     * not be valid. The command must be supplied.
572     */
573    Packet(const RequestPtr _req, MemCmd _cmd)
574        :  cmd(_cmd), req(_req), data(nullptr), addr(0), _isSecure(false),
575           size(0), headerDelay(0), payloadDelay(0),
576           senderState(NULL)
577    {
578        if (req->hasPaddr()) {
579            addr = req->getPaddr();
580            flags.set(VALID_ADDR);
581            _isSecure = req->isSecure();
582        }
583        if (req->hasSize()) {
584            size = req->getSize();
585            flags.set(VALID_SIZE);
586        }
587    }
588
589    /**
590     * Alternate constructor if you are trying to create a packet with
591     * a request that is for a whole block, not the address from the
592     * req.  this allows for overriding the size/addr of the req.
593     */
594    Packet(const RequestPtr _req, MemCmd _cmd, int _blkSize)
595        :  cmd(_cmd), req(_req), data(nullptr), addr(0), _isSecure(false),
596           headerDelay(0), payloadDelay(0),
597           senderState(NULL)
598    {
599        if (req->hasPaddr()) {
600            addr = req->getPaddr() & ~(_blkSize - 1);
601            flags.set(VALID_ADDR);
602            _isSecure = req->isSecure();
603        }
604        size = _blkSize;
605        flags.set(VALID_SIZE);
606    }
607
608    /**
609     * Alternate constructor for copying a packet.  Copy all fields
610     * *except* if the original packet's data was dynamic, don't copy
611     * that, as we can't guarantee that the new packet's lifetime is
612     * less than that of the original packet.  In this case the new
613     * packet should allocate its own data.
614     */
615    Packet(PacketPtr pkt, bool clear_flags, bool alloc_data)
616        :  cmd(pkt->cmd), req(pkt->req),
617           data(nullptr),
618           addr(pkt->addr), _isSecure(pkt->_isSecure), size(pkt->size),
619           bytesValid(pkt->bytesValid),
620           headerDelay(pkt->headerDelay),
621           payloadDelay(pkt->payloadDelay),
622           senderState(pkt->senderState)
623    {
624        if (!clear_flags)
625            flags.set(pkt->flags & COPY_FLAGS);
626
627        flags.set(pkt->flags & (VALID_ADDR|VALID_SIZE));
628
629        // should we allocate space for data, or not, the express
630        // snoops do not need to carry any data as they only serve to
631        // co-ordinate state changes
632        if (alloc_data) {
633            // even if asked to allocate data, if the original packet
634            // holds static data, then the sender will not be doing
635            // any memcpy on receiving the response, thus we simply
636            // carry the pointer forward
637            if (pkt->flags.isSet(STATIC_DATA)) {
638                data = pkt->data;
639                flags.set(STATIC_DATA);
640            } else {
641                allocate();
642            }
643        }
644    }
645
646    /**
647     * Generate the appropriate read MemCmd based on the Request flags.
648     */
649    static MemCmd
650    makeReadCmd(const RequestPtr req)
651    {
652        if (req->isLLSC())
653            return MemCmd::LoadLockedReq;
654        else if (req->isPrefetch())
655            return MemCmd::SoftPFReq;
656        else
657            return MemCmd::ReadReq;
658    }
659
660    /**
661     * Generate the appropriate write MemCmd based on the Request flags.
662     */
663    static MemCmd
664    makeWriteCmd(const RequestPtr req)
665    {
666        if (req->isLLSC())
667            return MemCmd::StoreCondReq;
668        else if (req->isSwap())
669            return MemCmd::SwapReq;
670        else
671            return MemCmd::WriteReq;
672    }
673
674    /**
675     * Constructor-like methods that return Packets based on Request objects.
676     * Fine-tune the MemCmd type if it's not a vanilla read or write.
677     */
678    static PacketPtr
679    createRead(const RequestPtr req)
680    {
681        return new Packet(req, makeReadCmd(req));
682    }
683
684    static PacketPtr
685    createWrite(const RequestPtr req)
686    {
687        return new Packet(req, makeWriteCmd(req));
688    }
689
690    /**
691     * clean up packet variables
692     */
693    ~Packet()
694    {
695        // Delete the request object if this is a request packet which
696        // does not need a response, because the requester will not get
697        // a chance. If the request packet needs a response then the
698        // request will be deleted on receipt of the response
699        // packet. We also make sure to never delete the request for
700        // express snoops, even for cases when responses are not
701        // needed (CleanEvict and Writeback), since the snoop packet
702        // re-uses the same request.
703        if (req && isRequest() && !needsResponse() &&
704            !isExpressSnoop()) {
705            delete req;
706        }
707        deleteData();
708    }
709
710    /**
711     * Take a request packet and modify it in place to be suitable for
712     * returning as a response to that request.
713     */
714    void
715    makeResponse()
716    {
717        assert(needsResponse());
718        assert(isRequest());
719        origCmd = cmd;
720        cmd = cmd.responseCommand();
721
722        // responses are never express, even if the snoop that
723        // triggered them was
724        flags.clear(EXPRESS_SNOOP);
725    }
726
727    void
728    makeAtomicResponse()
729    {
730        makeResponse();
731    }
732
733    void
734    makeTimingResponse()
735    {
736        makeResponse();
737    }
738
739    void
740    setFunctionalResponseStatus(bool success)
741    {
742        if (!success) {
743            if (isWrite()) {
744                cmd = MemCmd::FunctionalWriteError;
745            } else {
746                cmd = MemCmd::FunctionalReadError;
747            }
748        }
749    }
750
751    void
752    setSize(unsigned size)
753    {
754        assert(!flags.isSet(VALID_SIZE));
755
756        this->size = size;
757        flags.set(VALID_SIZE);
758    }
759
760
761    /**
762     * Set the data pointer to the following value that should not be
763     * freed. Static data allows us to do a single memcpy even if
764     * multiple packets are required to get from source to destination
765     * and back. In essence the pointer is set calling dataStatic on
766     * the original packet, and whenever this packet is copied and
767     * forwarded the same pointer is passed on. When a packet
768     * eventually reaches the destination holding the data, it is
769     * copied once into the location originally set. On the way back
770     * to the source, no copies are necessary.
771     */
772    template <typename T>
773    void
774    dataStatic(T *p)
775    {
776        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
777        data = (PacketDataPtr)p;
778        flags.set(STATIC_DATA);
779    }
780
781    /**
782     * Set the data pointer to the following value that should not be
783     * freed. This version of the function allows the pointer passed
784     * to us to be const. To avoid issues down the line we cast the
785     * constness away, the alternative would be to keep both a const
786     * and non-const data pointer and cleverly choose between
787     * them. Note that this is only allowed for static data.
788     */
789    template <typename T>
790    void
791    dataStaticConst(const T *p)
792    {
793        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
794        data = const_cast<PacketDataPtr>(p);
795        flags.set(STATIC_DATA);
796    }
797
798    /**
799     * Set the data pointer to a value that should have delete []
800     * called on it. Dynamic data is local to this packet, and as the
801     * packet travels from source to destination, forwarded packets
802     * will allocate their own data. When a packet reaches the final
803     * destination it will populate the dynamic data of that specific
804     * packet, and on the way back towards the source, memcpy will be
805     * invoked in every step where a new packet was created e.g. in
806     * the caches. Ultimately when the response reaches the source a
807     * final memcpy is needed to extract the data from the packet
808     * before it is deallocated.
809     */
810    template <typename T>
811    void
812    dataDynamic(T *p)
813    {
814        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
815        data = (PacketDataPtr)p;
816        flags.set(DYNAMIC_DATA);
817    }
818
819    /**
820     * get a pointer to the data ptr.
821     */
822    template <typename T>
823    T*
824    getPtr()
825    {
826        assert(flags.isSet(STATIC_DATA|DYNAMIC_DATA));
827        return (T*)data;
828    }
829
830    template <typename T>
831    const T*
832    getConstPtr() const
833    {
834        assert(flags.isSet(STATIC_DATA|DYNAMIC_DATA));
835        return (const T*)data;
836    }
837
838    /**
839     * return the value of what is pointed to in the packet.
840     */
841    template <typename T>
842    T get() const;
843
844    /**
845     * set the value in the data pointer to v.
846     */
847    template <typename T>
848    void set(T v);
849
850    /**
851     * Copy data into the packet from the provided pointer.
852     */
853    void
854    setData(const uint8_t *p)
855    {
856        // we should never be copying data onto itself, which means we
857        // must idenfity packets with static data, as they carry the
858        // same pointer from source to destination and back
859        assert(p != getPtr<uint8_t>() || flags.isSet(STATIC_DATA));
860
861        if (p != getPtr<uint8_t>())
862            // for packet with allocated dynamic data, we copy data from
863            // one to the other, e.g. a forwarded response to a response
864            std::memcpy(getPtr<uint8_t>(), p, getSize());
865    }
866
867    /**
868     * Copy data into the packet from the provided block pointer,
869     * which is aligned to the given block size.
870     */
871    void
872    setDataFromBlock(const uint8_t *blk_data, int blkSize)
873    {
874        setData(blk_data + getOffset(blkSize));
875    }
876
877    /**
878     * Copy data from the packet to the provided block pointer, which
879     * is aligned to the given block size.
880     */
881    void
882    writeData(uint8_t *p) const
883    {
884        std::memcpy(p, getConstPtr<uint8_t>(), getSize());
885    }
886
887    /**
888     * Copy data from the packet to the memory at the provided pointer.
889     */
890    void
891    writeDataToBlock(uint8_t *blk_data, int blkSize) const
892    {
893        writeData(blk_data + getOffset(blkSize));
894    }
895
896    /**
897     * delete the data pointed to in the data pointer. Ok to call to
898     * matter how data was allocted.
899     */
900    void
901    deleteData()
902    {
903        if (flags.isSet(DYNAMIC_DATA))
904            delete [] data;
905
906        flags.clear(STATIC_DATA|DYNAMIC_DATA);
907        data = NULL;
908    }
909
910    /** Allocate memory for the packet. */
911    void
912    allocate()
913    {
914        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
915        flags.set(DYNAMIC_DATA);
916        data = new uint8_t[getSize()];
917    }
918
919    /**
920     * Check a functional request against a memory value stored in
921     * another packet (i.e. an in-transit request or
922     * response). Returns true if the current packet is a read, and
923     * the other packet provides the data, which is then copied to the
924     * current packet. If the current packet is a write, and the other
925     * packet intersects this one, then we update the data
926     * accordingly.
927     */
928    bool
929    checkFunctional(PacketPtr other)
930    {
931        // all packets that are carrying a payload should have a valid
932        // data pointer
933        return checkFunctional(other, other->getAddr(), other->isSecure(),
934                               other->getSize(),
935                               other->hasData() ?
936                               other->getPtr<uint8_t>() : NULL);
937    }
938
939    /**
940     * Check a functional request against a memory value represented
941     * by a base/size pair and an associated data array. If the
942     * current packet is a read, it may be satisfied by the memory
943     * value. If the current packet is a write, it may update the
944     * memory value.
945     */
946    bool
947    checkFunctional(Printable *obj, Addr base, bool is_secure, int size,
948                    uint8_t *_data);
949
950    /**
951     * Push label for PrintReq (safe to call unconditionally).
952     */
953    void
954    pushLabel(const std::string &lbl)
955    {
956        if (isPrint())
957            safe_cast<PrintReqState*>(senderState)->pushLabel(lbl);
958    }
959
960    /**
961     * Pop label for PrintReq (safe to call unconditionally).
962     */
963    void
964    popLabel()
965    {
966        if (isPrint())
967            safe_cast<PrintReqState*>(senderState)->popLabel();
968    }
969
970    void print(std::ostream &o, int verbosity = 0,
971               const std::string &prefix = "") const;
972
973    /**
974     * A no-args wrapper of print(std::ostream...)
975     * meant to be invoked from DPRINTFs
976     * avoiding string overheads in fast mode
977     * @return string with the request's type and start<->end addresses
978     */
979    std::string print() const;
980};
981
982#endif //__MEM_PACKET_HH
983