packet.hh revision 10694:1a6785e37d81
1/*
2 * Copyright (c) 2012-2015 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2006 The Regents of The University of Michigan
15 * Copyright (c) 2010 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Ron Dreslinski
42 *          Steve Reinhardt
43 *          Ali Saidi
44 *          Andreas Hansson
45 */
46
47/**
48 * @file
49 * Declaration of the Packet class.
50 */
51
52#ifndef __MEM_PACKET_HH__
53#define __MEM_PACKET_HH__
54
55#include <bitset>
56#include <cassert>
57#include <list>
58
59#include "base/cast.hh"
60#include "base/compiler.hh"
61#include "base/flags.hh"
62#include "base/misc.hh"
63#include "base/printable.hh"
64#include "base/types.hh"
65#include "mem/request.hh"
66#include "sim/core.hh"
67
68class Packet;
69typedef Packet *PacketPtr;
70typedef uint8_t* PacketDataPtr;
71typedef std::list<PacketPtr> PacketList;
72
73class MemCmd
74{
75    friend class Packet;
76
77  public:
78    /**
79     * List of all commands associated with a packet.
80     */
81    enum Command
82    {
83        InvalidCmd,
84        ReadReq,
85        ReadResp,
86        ReadRespWithInvalidate,
87        WriteReq,
88        WriteResp,
89        Writeback,
90        SoftPFReq,
91        HardPFReq,
92        SoftPFResp,
93        HardPFResp,
94        WriteInvalidateReq,
95        WriteInvalidateResp,
96        UpgradeReq,
97        SCUpgradeReq,           // Special "weak" upgrade for StoreCond
98        UpgradeResp,
99        SCUpgradeFailReq,       // Failed SCUpgradeReq in MSHR (never sent)
100        UpgradeFailResp,        // Valid for SCUpgradeReq only
101        ReadExReq,
102        ReadExResp,
103        LoadLockedReq,
104        StoreCondReq,
105        StoreCondFailReq,       // Failed StoreCondReq in MSHR (never sent)
106        StoreCondResp,
107        SwapReq,
108        SwapResp,
109        MessageReq,
110        MessageResp,
111        // Error responses
112        // @TODO these should be classified as responses rather than
113        // requests; coding them as requests initially for backwards
114        // compatibility
115        InvalidDestError,  // packet dest field invalid
116        BadAddressError,   // memory address invalid
117        FunctionalReadError, // unable to fulfill functional read
118        FunctionalWriteError, // unable to fulfill functional write
119        // Fake simulator-only commands
120        PrintReq,       // Print state matching address
121        FlushReq,      //request for a cache flush
122        InvalidationReq,   // request for address to be invalidated from lsq
123        NUM_MEM_CMDS
124    };
125
126  private:
127    /**
128     * List of command attributes.
129     */
130    enum Attribute
131    {
132        IsRead,         //!< Data flows from responder to requester
133        IsWrite,        //!< Data flows from requester to responder
134        IsUpgrade,
135        IsInvalidate,
136        NeedsExclusive, //!< Requires exclusive copy to complete in-cache
137        IsRequest,      //!< Issued by requester
138        IsResponse,     //!< Issue by responder
139        NeedsResponse,  //!< Requester needs response from target
140        IsSWPrefetch,
141        IsHWPrefetch,
142        IsLlsc,         //!< Alpha/MIPS LL or SC access
143        HasData,        //!< There is an associated payload
144        IsError,        //!< Error response
145        IsPrint,        //!< Print state matching address (for debugging)
146        IsFlush,        //!< Flush the address from caches
147        NUM_COMMAND_ATTRIBUTES
148    };
149
150    /**
151     * Structure that defines attributes and other data associated
152     * with a Command.
153     */
154    struct CommandInfo
155    {
156        /// Set of attribute flags.
157        const std::bitset<NUM_COMMAND_ATTRIBUTES> attributes;
158        /// Corresponding response for requests; InvalidCmd if no
159        /// response is applicable.
160        const Command response;
161        /// String representation (for printing)
162        const std::string str;
163    };
164
165    /// Array to map Command enum to associated info.
166    static const CommandInfo commandInfo[];
167
168  private:
169
170    Command cmd;
171
172    bool
173    testCmdAttrib(MemCmd::Attribute attrib) const
174    {
175        return commandInfo[cmd].attributes[attrib] != 0;
176    }
177
178  public:
179
180    bool isRead() const            { return testCmdAttrib(IsRead); }
181    bool isWrite() const           { return testCmdAttrib(IsWrite); }
182    bool isUpgrade() const         { return testCmdAttrib(IsUpgrade); }
183    bool isRequest() const         { return testCmdAttrib(IsRequest); }
184    bool isResponse() const        { return testCmdAttrib(IsResponse); }
185    bool needsExclusive() const    { return testCmdAttrib(NeedsExclusive); }
186    bool needsResponse() const     { return testCmdAttrib(NeedsResponse); }
187    bool isInvalidate() const      { return testCmdAttrib(IsInvalidate); }
188    bool isWriteInvalidate() const { return testCmdAttrib(IsWrite) &&
189                                            testCmdAttrib(IsInvalidate); }
190
191    /**
192     * Check if this particular packet type carries payload data. Note
193     * that this does not reflect if the data pointer of the packet is
194     * valid or not.
195     */
196    bool hasData() const        { return testCmdAttrib(HasData); }
197    bool isLLSC() const         { return testCmdAttrib(IsLlsc); }
198    bool isSWPrefetch() const   { return testCmdAttrib(IsSWPrefetch); }
199    bool isHWPrefetch() const   { return testCmdAttrib(IsHWPrefetch); }
200    bool isPrefetch() const     { return testCmdAttrib(IsSWPrefetch) ||
201                                         testCmdAttrib(IsHWPrefetch); }
202    bool isError() const        { return testCmdAttrib(IsError); }
203    bool isPrint() const        { return testCmdAttrib(IsPrint); }
204    bool isFlush() const        { return testCmdAttrib(IsFlush); }
205
206    const Command
207    responseCommand() const
208    {
209        return commandInfo[cmd].response;
210    }
211
212    /// Return the string to a cmd given by idx.
213    const std::string &toString() const { return commandInfo[cmd].str; }
214    int toInt() const { return (int)cmd; }
215
216    MemCmd(Command _cmd) : cmd(_cmd) { }
217    MemCmd(int _cmd) : cmd((Command)_cmd) { }
218    MemCmd() : cmd(InvalidCmd) { }
219
220    bool operator==(MemCmd c2) const { return (cmd == c2.cmd); }
221    bool operator!=(MemCmd c2) const { return (cmd != c2.cmd); }
222};
223
224/**
225 * A Packet is used to encapsulate a transfer between two objects in
226 * the memory system (e.g., the L1 and L2 cache).  (In contrast, a
227 * single Request travels all the way from the requester to the
228 * ultimate destination and back, possibly being conveyed by several
229 * different Packets along the way.)
230 */
231class Packet : public Printable
232{
233  public:
234    typedef uint32_t FlagsType;
235    typedef ::Flags<FlagsType> Flags;
236
237  private:
238    static const FlagsType PUBLIC_FLAGS           = 0x00000000;
239    static const FlagsType PRIVATE_FLAGS          = 0x00007F0F;
240    static const FlagsType COPY_FLAGS             = 0x0000000F;
241
242    static const FlagsType SHARED                 = 0x00000001;
243    // Special control flags
244    /// Special timing-mode atomic snoop for multi-level coherence.
245    static const FlagsType EXPRESS_SNOOP          = 0x00000002;
246    /// Does supplier have exclusive copy?
247    /// Useful for multi-level coherence.
248    static const FlagsType SUPPLY_EXCLUSIVE       = 0x00000004;
249    // Snoop response flags
250    static const FlagsType MEM_INHIBIT            = 0x00000008;
251    /// Are the 'addr' and 'size' fields valid?
252    static const FlagsType VALID_ADDR             = 0x00000100;
253    static const FlagsType VALID_SIZE             = 0x00000200;
254    /// Is the data pointer set to a value that shouldn't be freed
255    /// when the packet is destroyed?
256    static const FlagsType STATIC_DATA            = 0x00001000;
257    /// The data pointer points to a value that should be freed when
258    /// the packet is destroyed. The pointer is assumed to be pointing
259    /// to an array, and delete [] is consequently called
260    static const FlagsType DYNAMIC_DATA           = 0x00002000;
261    /// suppress the error if this packet encounters a functional
262    /// access failure.
263    static const FlagsType SUPPRESS_FUNC_ERROR    = 0x00008000;
264    // Signal prefetch squash through express snoop flag
265    static const FlagsType PREFETCH_SNOOP_SQUASH  = 0x00010000;
266
267    Flags flags;
268
269  public:
270    typedef MemCmd::Command Command;
271
272    /// The command field of the packet.
273    MemCmd cmd;
274
275    /// A pointer to the original request.
276    const RequestPtr req;
277
278  private:
279   /**
280    * A pointer to the data being transfered.  It can be differnt
281    * sizes at each level of the heirarchy so it belongs in the
282    * packet, not request. This may or may not be populated when a
283    * responder recieves the packet. If not populated it memory should
284    * be allocated.
285    */
286    PacketDataPtr data;
287
288    /// The address of the request.  This address could be virtual or
289    /// physical, depending on the system configuration.
290    Addr addr;
291
292    /// True if the request targets the secure memory space.
293    bool _isSecure;
294
295    /// The size of the request or transfer.
296    unsigned size;
297
298    /**
299     * The original value of the command field.  Only valid when the
300     * current command field is an error condition; in that case, the
301     * previous contents of the command field are copied here.  This
302     * field is *not* set on non-error responses.
303     */
304    MemCmd origCmd;
305
306    /**
307     * These values specify the range of bytes found that satisfy a
308     * functional read.
309     */
310    uint16_t bytesValidStart;
311    uint16_t bytesValidEnd;
312
313  public:
314
315    /**
316     * The extra delay from seeing the packet until the header is
317     * transmitted. This delay is used to communicate the crossbar
318     * forwarding latency to the neighbouring object (e.g. a cache)
319     * that actually makes the packet wait. As the delay is relative,
320     * a 32-bit unsigned should be sufficient.
321     */
322    uint32_t headerDelay;
323
324    /**
325     * The extra pipelining delay from seeing the packet until the end of
326     * payload is transmitted by the component that provided it (if
327     * any). This includes the header delay. Similar to the header
328     * delay, this is used to make up for the fact that the
329     * crossbar does not make the packet wait. As the delay is
330     * relative, a 32-bit unsigned should be sufficient.
331     */
332    uint32_t payloadDelay;
333
334    /**
335     * A virtual base opaque structure used to hold state associated
336     * with the packet (e.g., an MSHR), specific to a MemObject that
337     * sees the packet. A pointer to this state is returned in the
338     * packet's response so that the MemObject in question can quickly
339     * look up the state needed to process it. A specific subclass
340     * would be derived from this to carry state specific to a
341     * particular sending device.
342     *
343     * As multiple MemObjects may add their SenderState throughout the
344     * memory system, the SenderStates create a stack, where a
345     * MemObject can add a new Senderstate, as long as the
346     * predecessing SenderState is restored when the response comes
347     * back. For this reason, the predecessor should always be
348     * populated with the current SenderState of a packet before
349     * modifying the senderState field in the request packet.
350     */
351    struct SenderState
352    {
353        SenderState* predecessor;
354        SenderState() : predecessor(NULL) {}
355        virtual ~SenderState() {}
356    };
357
358    /**
359     * Object used to maintain state of a PrintReq.  The senderState
360     * field of a PrintReq should always be of this type.
361     */
362    class PrintReqState : public SenderState
363    {
364      private:
365        /**
366         * An entry in the label stack.
367         */
368        struct LabelStackEntry
369        {
370            const std::string label;
371            std::string *prefix;
372            bool labelPrinted;
373            LabelStackEntry(const std::string &_label, std::string *_prefix);
374        };
375
376        typedef std::list<LabelStackEntry> LabelStack;
377        LabelStack labelStack;
378
379        std::string *curPrefixPtr;
380
381      public:
382        std::ostream &os;
383        const int verbosity;
384
385        PrintReqState(std::ostream &os, int verbosity = 0);
386        ~PrintReqState();
387
388        /**
389         * Returns the current line prefix.
390         */
391        const std::string &curPrefix() { return *curPrefixPtr; }
392
393        /**
394         * Push a label onto the label stack, and prepend the given
395         * prefix string onto the current prefix.  Labels will only be
396         * printed if an object within the label's scope is printed.
397         */
398        void pushLabel(const std::string &lbl,
399                       const std::string &prefix = "  ");
400
401        /**
402         * Pop a label off the label stack.
403         */
404        void popLabel();
405
406        /**
407         * Print all of the pending unprinted labels on the
408         * stack. Called by printObj(), so normally not called by
409         * users unless bypassing printObj().
410         */
411        void printLabels();
412
413        /**
414         * Print a Printable object to os, because it matched the
415         * address on a PrintReq.
416         */
417        void printObj(Printable *obj);
418    };
419
420    /**
421     * This packet's sender state.  Devices should use dynamic_cast<>
422     * to cast to the state appropriate to the sender.  The intent of
423     * this variable is to allow a device to attach extra information
424     * to a request. A response packet must return the sender state
425     * that was attached to the original request (even if a new packet
426     * is created).
427     */
428    SenderState *senderState;
429
430    /**
431     * Push a new sender state to the packet and make the current
432     * sender state the predecessor of the new one. This should be
433     * prefered over direct manipulation of the senderState member
434     * variable.
435     *
436     * @param sender_state SenderState to push at the top of the stack
437     */
438    void pushSenderState(SenderState *sender_state);
439
440    /**
441     * Pop the top of the state stack and return a pointer to it. This
442     * assumes the current sender state is not NULL. This should be
443     * preferred over direct manipulation of the senderState member
444     * variable.
445     *
446     * @return The current top of the stack
447     */
448    SenderState *popSenderState();
449
450    /**
451     * Go through the sender state stack and return the first instance
452     * that is of type T (as determined by a dynamic_cast). If there
453     * is no sender state of type T, NULL is returned.
454     *
455     * @return The topmost state of type T
456     */
457    template <typename T>
458    T * findNextSenderState() const
459    {
460        T *t = NULL;
461        SenderState* sender_state = senderState;
462        while (t == NULL && sender_state != NULL) {
463            t = dynamic_cast<T*>(sender_state);
464            sender_state = sender_state->predecessor;
465        }
466        return t;
467    }
468
469    /// Return the string name of the cmd field (for debugging and
470    /// tracing).
471    const std::string &cmdString() const { return cmd.toString(); }
472
473    /// Return the index of this command.
474    inline int cmdToIndex() const { return cmd.toInt(); }
475
476    bool isRead() const              { return cmd.isRead(); }
477    bool isWrite() const             { return cmd.isWrite(); }
478    bool isUpgrade()  const          { return cmd.isUpgrade(); }
479    bool isRequest() const           { return cmd.isRequest(); }
480    bool isResponse() const          { return cmd.isResponse(); }
481    bool needsExclusive() const      { return cmd.needsExclusive(); }
482    bool needsResponse() const       { return cmd.needsResponse(); }
483    bool isInvalidate() const        { return cmd.isInvalidate(); }
484    bool isWriteInvalidate() const   { return cmd.isWriteInvalidate(); }
485    bool hasData() const             { return cmd.hasData(); }
486    bool isLLSC() const              { return cmd.isLLSC(); }
487    bool isError() const             { return cmd.isError(); }
488    bool isPrint() const             { return cmd.isPrint(); }
489    bool isFlush() const             { return cmd.isFlush(); }
490
491    // Snoop flags
492    void assertMemInhibit()
493    {
494        assert(isRequest());
495        assert(!flags.isSet(MEM_INHIBIT));
496        flags.set(MEM_INHIBIT);
497    }
498    bool memInhibitAsserted() const { return flags.isSet(MEM_INHIBIT); }
499    void assertShared()             { flags.set(SHARED); }
500    bool sharedAsserted() const     { return flags.isSet(SHARED); }
501
502    // Special control flags
503    void setExpressSnoop()          { flags.set(EXPRESS_SNOOP); }
504    bool isExpressSnoop() const     { return flags.isSet(EXPRESS_SNOOP); }
505    void setSupplyExclusive()       { flags.set(SUPPLY_EXCLUSIVE); }
506    void clearSupplyExclusive()     { flags.clear(SUPPLY_EXCLUSIVE); }
507    bool isSupplyExclusive() const  { return flags.isSet(SUPPLY_EXCLUSIVE); }
508    void setSuppressFuncError()     { flags.set(SUPPRESS_FUNC_ERROR); }
509    bool suppressFuncError() const  { return flags.isSet(SUPPRESS_FUNC_ERROR); }
510    void setPrefetchSquashed()      { flags.set(PREFETCH_SNOOP_SQUASH); }
511    bool prefetchSquashed() const   { return flags.isSet(PREFETCH_SNOOP_SQUASH); }
512
513    // Network error conditions... encapsulate them as methods since
514    // their encoding keeps changing (from result field to command
515    // field, etc.)
516    void
517    setBadAddress()
518    {
519        assert(isResponse());
520        cmd = MemCmd::BadAddressError;
521    }
522
523    bool hadBadAddress() const { return cmd == MemCmd::BadAddressError; }
524    void copyError(Packet *pkt) { assert(pkt->isError()); cmd = pkt->cmd; }
525
526    Addr getAddr() const { assert(flags.isSet(VALID_ADDR)); return addr; }
527    /**
528     * Update the address of this packet mid-transaction. This is used
529     * by the address mapper to change an already set address to a new
530     * one based on the system configuration. It is intended to remap
531     * an existing address, so it asserts that the current address is
532     * valid.
533     */
534    void setAddr(Addr _addr) { assert(flags.isSet(VALID_ADDR)); addr = _addr; }
535
536    unsigned getSize() const  { assert(flags.isSet(VALID_SIZE)); return size; }
537    Addr getOffset(int blkSize) const { return getAddr() & (Addr)(blkSize - 1); }
538
539    bool isSecure() const
540    {
541        assert(flags.isSet(VALID_ADDR));
542        return _isSecure;
543    }
544
545    /**
546     * It has been determined that the SC packet should successfully update
547     * memory.  Therefore, convert this SC packet to a normal write.
548     */
549    void
550    convertScToWrite()
551    {
552        assert(isLLSC());
553        assert(isWrite());
554        cmd = MemCmd::WriteReq;
555    }
556
557    /**
558     * When ruby is in use, Ruby will monitor the cache line and thus M5
559     * phys memory should treat LL ops as normal reads.
560     */
561    void
562    convertLlToRead()
563    {
564        assert(isLLSC());
565        assert(isRead());
566        cmd = MemCmd::ReadReq;
567    }
568
569    /**
570     * Constructor.  Note that a Request object must be constructed
571     * first, but the Requests's physical address and size fields need
572     * not be valid. The command must be supplied.
573     */
574    Packet(const RequestPtr _req, MemCmd _cmd)
575        :  cmd(_cmd), req(_req), data(nullptr), addr(0), _isSecure(false),
576           size(0), bytesValidStart(0), bytesValidEnd(0),
577           headerDelay(0), payloadDelay(0),
578           senderState(NULL)
579    {
580        if (req->hasPaddr()) {
581            addr = req->getPaddr();
582            flags.set(VALID_ADDR);
583            _isSecure = req->isSecure();
584        }
585        if (req->hasSize()) {
586            size = req->getSize();
587            flags.set(VALID_SIZE);
588        }
589    }
590
591    /**
592     * Alternate constructor if you are trying to create a packet with
593     * a request that is for a whole block, not the address from the
594     * req.  this allows for overriding the size/addr of the req.
595     */
596    Packet(const RequestPtr _req, MemCmd _cmd, int _blkSize)
597        :  cmd(_cmd), req(_req), data(nullptr), addr(0), _isSecure(false),
598           bytesValidStart(0), bytesValidEnd(0),
599           headerDelay(0), payloadDelay(0),
600           senderState(NULL)
601    {
602        if (req->hasPaddr()) {
603            addr = req->getPaddr() & ~(_blkSize - 1);
604            flags.set(VALID_ADDR);
605            _isSecure = req->isSecure();
606        }
607        size = _blkSize;
608        flags.set(VALID_SIZE);
609    }
610
611    /**
612     * Alternate constructor for copying a packet.  Copy all fields
613     * *except* if the original packet's data was dynamic, don't copy
614     * that, as we can't guarantee that the new packet's lifetime is
615     * less than that of the original packet.  In this case the new
616     * packet should allocate its own data.
617     */
618    Packet(PacketPtr pkt, bool clear_flags, bool alloc_data)
619        :  cmd(pkt->cmd), req(pkt->req),
620           data(nullptr),
621           addr(pkt->addr), _isSecure(pkt->_isSecure), size(pkt->size),
622           bytesValidStart(pkt->bytesValidStart),
623           bytesValidEnd(pkt->bytesValidEnd),
624           headerDelay(pkt->headerDelay),
625           payloadDelay(pkt->payloadDelay),
626           senderState(pkt->senderState)
627    {
628        if (!clear_flags)
629            flags.set(pkt->flags & COPY_FLAGS);
630
631        flags.set(pkt->flags & (VALID_ADDR|VALID_SIZE));
632
633        // should we allocate space for data, or not, the express
634        // snoops do not need to carry any data as they only serve to
635        // co-ordinate state changes
636        if (alloc_data) {
637            // even if asked to allocate data, if the original packet
638            // holds static data, then the sender will not be doing
639            // any memcpy on receiving the response, thus we simply
640            // carry the pointer forward
641            if (pkt->flags.isSet(STATIC_DATA)) {
642                data = pkt->data;
643                flags.set(STATIC_DATA);
644            } else {
645                allocate();
646            }
647        }
648    }
649
650    /**
651     * Change the packet type based on request type.
652     */
653    void
654    refineCommand()
655    {
656        if (cmd == MemCmd::ReadReq) {
657            if (req->isLLSC()) {
658                cmd = MemCmd::LoadLockedReq;
659            } else if (req->isPrefetch()) {
660                cmd = MemCmd::SoftPFReq;
661            }
662        } else if (cmd == MemCmd::WriteReq) {
663            if (req->isLLSC()) {
664                cmd = MemCmd::StoreCondReq;
665            } else if (req->isSwap()) {
666                cmd = MemCmd::SwapReq;
667            }
668        }
669    }
670
671    /**
672     * Constructor-like methods that return Packets based on Request objects.
673     * Will call refineCommand() to fine-tune the Packet type if it's not a
674     * vanilla read or write.
675     */
676    static PacketPtr
677    createRead(const RequestPtr req)
678    {
679        PacketPtr pkt = new Packet(req, MemCmd::ReadReq);
680        pkt->refineCommand();
681        return pkt;
682    }
683
684    static PacketPtr
685    createWrite(const RequestPtr req)
686    {
687        PacketPtr pkt = new Packet(req, MemCmd::WriteReq);
688        pkt->refineCommand();
689        return pkt;
690    }
691
692    /**
693     * clean up packet variables
694     */
695    ~Packet()
696    {
697        // If this is a request packet for which there's no response,
698        // delete the request object here, since the requester will
699        // never get the chance.
700        if (req && isRequest() && !needsResponse())
701            delete req;
702        deleteData();
703    }
704
705    /**
706     * Take a request packet and modify it in place to be suitable for
707     * returning as a response to that request.
708     */
709    void
710    makeResponse()
711    {
712        assert(needsResponse());
713        assert(isRequest());
714        origCmd = cmd;
715        cmd = cmd.responseCommand();
716
717        // responses are never express, even if the snoop that
718        // triggered them was
719        flags.clear(EXPRESS_SNOOP);
720    }
721
722    void
723    makeAtomicResponse()
724    {
725        makeResponse();
726    }
727
728    void
729    makeTimingResponse()
730    {
731        makeResponse();
732    }
733
734    void
735    setFunctionalResponseStatus(bool success)
736    {
737        if (!success) {
738            if (isWrite()) {
739                cmd = MemCmd::FunctionalWriteError;
740            } else {
741                cmd = MemCmd::FunctionalReadError;
742            }
743        }
744    }
745
746    void
747    setSize(unsigned size)
748    {
749        assert(!flags.isSet(VALID_SIZE));
750
751        this->size = size;
752        flags.set(VALID_SIZE);
753    }
754
755
756    /**
757     * Set the data pointer to the following value that should not be
758     * freed. Static data allows us to do a single memcpy even if
759     * multiple packets are required to get from source to destination
760     * and back. In essence the pointer is set calling dataStatic on
761     * the original packet, and whenever this packet is copied and
762     * forwarded the same pointer is passed on. When a packet
763     * eventually reaches the destination holding the data, it is
764     * copied once into the location originally set. On the way back
765     * to the source, no copies are necessary.
766     */
767    template <typename T>
768    void
769    dataStatic(T *p)
770    {
771        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
772        data = (PacketDataPtr)p;
773        flags.set(STATIC_DATA);
774    }
775
776    /**
777     * Set the data pointer to the following value that should not be
778     * freed. This version of the function allows the pointer passed
779     * to us to be const. To avoid issues down the line we cast the
780     * constness away, the alternative would be to keep both a const
781     * and non-const data pointer and cleverly choose between
782     * them. Note that this is only allowed for static data.
783     */
784    template <typename T>
785    void
786    dataStaticConst(const T *p)
787    {
788        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
789        data = const_cast<PacketDataPtr>(p);
790        flags.set(STATIC_DATA);
791    }
792
793    /**
794     * Set the data pointer to a value that should have delete []
795     * called on it. Dynamic data is local to this packet, and as the
796     * packet travels from source to destination, forwarded packets
797     * will allocate their own data. When a packet reaches the final
798     * destination it will populate the dynamic data of that specific
799     * packet, and on the way back towards the source, memcpy will be
800     * invoked in every step where a new packet was created e.g. in
801     * the caches. Ultimately when the response reaches the source a
802     * final memcpy is needed to extract the data from the packet
803     * before it is deallocated.
804     */
805    template <typename T>
806    void
807    dataDynamic(T *p)
808    {
809        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
810        data = (PacketDataPtr)p;
811        flags.set(DYNAMIC_DATA);
812    }
813
814    /**
815     * get a pointer to the data ptr.
816     */
817    template <typename T>
818    T*
819    getPtr()
820    {
821        assert(flags.isSet(STATIC_DATA|DYNAMIC_DATA));
822        return (T*)data;
823    }
824
825    template <typename T>
826    const T*
827    getConstPtr() const
828    {
829        assert(flags.isSet(STATIC_DATA|DYNAMIC_DATA));
830        return (const T*)data;
831    }
832
833    /**
834     * return the value of what is pointed to in the packet.
835     */
836    template <typename T>
837    T get() const;
838
839    /**
840     * set the value in the data pointer to v.
841     */
842    template <typename T>
843    void set(T v);
844
845    /**
846     * Copy data into the packet from the provided pointer.
847     */
848    void
849    setData(const uint8_t *p)
850    {
851        // we should never be copying data onto itself, which means we
852        // must idenfity packets with static data, as they carry the
853        // same pointer from source to destination and back
854        assert(p != getPtr<uint8_t>() || flags.isSet(STATIC_DATA));
855
856        if (p != getPtr<uint8_t>())
857            // for packet with allocated dynamic data, we copy data from
858            // one to the other, e.g. a forwarded response to a response
859            std::memcpy(getPtr<uint8_t>(), p, getSize());
860    }
861
862    /**
863     * Copy data into the packet from the provided block pointer,
864     * which is aligned to the given block size.
865     */
866    void
867    setDataFromBlock(const uint8_t *blk_data, int blkSize)
868    {
869        setData(blk_data + getOffset(blkSize));
870    }
871
872    /**
873     * Copy data from the packet to the provided block pointer, which
874     * is aligned to the given block size.
875     */
876    void
877    writeData(uint8_t *p) const
878    {
879        std::memcpy(p, getConstPtr<uint8_t>(), getSize());
880    }
881
882    /**
883     * Copy data from the packet to the memory at the provided pointer.
884     */
885    void
886    writeDataToBlock(uint8_t *blk_data, int blkSize) const
887    {
888        writeData(blk_data + getOffset(blkSize));
889    }
890
891    /**
892     * delete the data pointed to in the data pointer. Ok to call to
893     * matter how data was allocted.
894     */
895    void
896    deleteData()
897    {
898        if (flags.isSet(DYNAMIC_DATA))
899            delete [] data;
900
901        flags.clear(STATIC_DATA|DYNAMIC_DATA);
902        data = NULL;
903    }
904
905    /** Allocate memory for the packet. */
906    void
907    allocate()
908    {
909        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
910        flags.set(DYNAMIC_DATA);
911        data = new uint8_t[getSize()];
912    }
913
914    /**
915     * Check a functional request against a memory value stored in
916     * another packet (i.e. an in-transit request or
917     * response). Returns true if the current packet is a read, and
918     * the other packet provides the data, which is then copied to the
919     * current packet. If the current packet is a write, and the other
920     * packet intersects this one, then we update the data
921     * accordingly.
922     */
923    bool
924    checkFunctional(PacketPtr other)
925    {
926        // all packets that are carrying a payload should have a valid
927        // data pointer
928        return checkFunctional(other, other->getAddr(), other->isSecure(),
929                               other->getSize(),
930                               other->hasData() ?
931                               other->getPtr<uint8_t>() : NULL);
932    }
933
934    /**
935     * Check a functional request against a memory value represented
936     * by a base/size pair and an associated data array. If the
937     * current packet is a read, it may be satisfied by the memory
938     * value. If the current packet is a write, it may update the
939     * memory value.
940     */
941    bool
942    checkFunctional(Printable *obj, Addr base, bool is_secure, int size,
943                    uint8_t *_data);
944
945    /**
946     * Push label for PrintReq (safe to call unconditionally).
947     */
948    void
949    pushLabel(const std::string &lbl)
950    {
951        if (isPrint())
952            safe_cast<PrintReqState*>(senderState)->pushLabel(lbl);
953    }
954
955    /**
956     * Pop label for PrintReq (safe to call unconditionally).
957     */
958    void
959    popLabel()
960    {
961        if (isPrint())
962            safe_cast<PrintReqState*>(senderState)->popLabel();
963    }
964
965    void print(std::ostream &o, int verbosity = 0,
966               const std::string &prefix = "") const;
967
968    /**
969     * A no-args wrapper of print(std::ostream...)
970     * meant to be invoked from DPRINTFs
971     * avoiding string overheads in fast mode
972     * @return string with the request's type and start<->end addresses
973     */
974    std::string print() const;
975};
976
977#endif //__MEM_PACKET_HH
978