dram_ctrl.hh revision 12706:456304051464
1/*
2 * Copyright (c) 2012-2018 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2013 Amin Farmahini-Farahani
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Andreas Hansson
41 *          Ani Udipi
42 *          Neha Agarwal
43 *          Omar Naji
44 *          Matthias Jung
45 *          Wendy Elsasser
46 *          Radhika Jagtap
47 */
48
49/**
50 * @file
51 * DRAMCtrl declaration
52 */
53
54#ifndef __MEM_DRAM_CTRL_HH__
55#define __MEM_DRAM_CTRL_HH__
56
57#include <deque>
58#include <string>
59#include <unordered_set>
60
61#include "base/callback.hh"
62#include "base/statistics.hh"
63#include "enums/AddrMap.hh"
64#include "enums/MemSched.hh"
65#include "enums/PageManage.hh"
66#include "mem/abstract_mem.hh"
67#include "mem/qport.hh"
68#include "params/DRAMCtrl.hh"
69#include "sim/eventq.hh"
70#include "mem/drampower.hh"
71
72/**
73 * The DRAM controller is a single-channel memory controller capturing
74 * the most important timing constraints associated with a
75 * contemporary DRAM. For multi-channel memory systems, the controller
76 * is combined with a crossbar model, with the channel address
77 * interleaving taking part in the crossbar.
78 *
79 * As a basic design principle, this controller
80 * model is not cycle callable, but instead uses events to: 1) decide
81 * when new decisions can be made, 2) when resources become available,
82 * 3) when things are to be considered done, and 4) when to send
83 * things back. Through these simple principles, the model delivers
84 * high performance, and lots of flexibility, allowing users to
85 * evaluate the system impact of a wide range of memory technologies,
86 * such as DDR3/4, LPDDR2/3/4, WideIO1/2, HBM and HMC.
87 *
88 * For more details, please see Hansson et al, "Simulating DRAM
89 * controllers for future system architecture exploration",
90 * Proc. ISPASS, 2014. If you use this model as part of your research
91 * please cite the paper.
92 *
93 * The low-power functionality implements a staggered powerdown
94 * similar to that described in "Optimized Active and Power-Down Mode
95 * Refresh Control in 3D-DRAMs" by Jung et al, VLSI-SoC, 2014.
96 */
97class DRAMCtrl : public AbstractMemory
98{
99
100  private:
101
102    // For now, make use of a queued slave port to avoid dealing with
103    // flow control for the responses being sent back
104    class MemoryPort : public QueuedSlavePort
105    {
106
107        RespPacketQueue queue;
108        DRAMCtrl& memory;
109
110      public:
111
112        MemoryPort(const std::string& name, DRAMCtrl& _memory);
113
114      protected:
115
116        Tick recvAtomic(PacketPtr pkt);
117
118        void recvFunctional(PacketPtr pkt);
119
120        bool recvTimingReq(PacketPtr);
121
122        virtual AddrRangeList getAddrRanges() const;
123
124    };
125
126    /**
127     * Our incoming port, for a multi-ported controller add a crossbar
128     * in front of it
129     */
130    MemoryPort port;
131
132    /**
133     * Remeber if the memory system is in timing mode
134     */
135    bool isTimingMode;
136
137    /**
138     * Remember if we have to retry a request when available.
139     */
140    bool retryRdReq;
141    bool retryWrReq;
142
143    /**
144     * Bus state used to control the read/write switching and drive
145     * the scheduling of the next request.
146     */
147    enum BusState {
148        READ = 0,
149        WRITE,
150    };
151
152    BusState busState;
153
154    /* bus state for next request event triggered */
155    BusState busStateNext;
156
157    /**
158     * Simple structure to hold the values needed to keep track of
159     * commands for DRAMPower
160     */
161    struct Command {
162       Data::MemCommand::cmds type;
163       uint8_t bank;
164       Tick timeStamp;
165
166       constexpr Command(Data::MemCommand::cmds _type, uint8_t _bank,
167                         Tick time_stamp)
168            : type(_type), bank(_bank), timeStamp(time_stamp)
169        { }
170    };
171
172    /**
173     * A basic class to track the bank state, i.e. what row is
174     * currently open (if any), when is the bank free to accept a new
175     * column (read/write) command, when can it be precharged, and
176     * when can it be activated.
177     *
178     * The bank also keeps track of how many bytes have been accessed
179     * in the open row since it was opened.
180     */
181    class Bank
182    {
183
184      public:
185
186        static const uint32_t NO_ROW = -1;
187
188        uint32_t openRow;
189        uint8_t bank;
190        uint8_t bankgr;
191
192        Tick rdAllowedAt;
193        Tick wrAllowedAt;
194        Tick preAllowedAt;
195        Tick actAllowedAt;
196
197        uint32_t rowAccesses;
198        uint32_t bytesAccessed;
199
200        Bank() :
201            openRow(NO_ROW), bank(0), bankgr(0),
202            rdAllowedAt(0), wrAllowedAt(0), preAllowedAt(0), actAllowedAt(0),
203            rowAccesses(0), bytesAccessed(0)
204        { }
205    };
206
207
208    /**
209     * The power state captures the different operational states of
210     * the DRAM and interacts with the bus read/write state machine,
211     * and the refresh state machine.
212     *
213     * PWR_IDLE      : The idle state in which all banks are closed
214     *                 From here can transition to:  PWR_REF, PWR_ACT,
215     *                 PWR_PRE_PDN
216     *
217     * PWR_REF       : Auto-refresh state.  Will transition when refresh is
218     *                 complete based on power state prior to PWR_REF
219     *                 From here can transition to:  PWR_IDLE, PWR_PRE_PDN,
220     *                 PWR_SREF
221     *
222     * PWR_SREF      : Self-refresh state.  Entered after refresh if
223     *                 previous state was PWR_PRE_PDN
224     *                 From here can transition to:  PWR_IDLE
225     *
226     * PWR_PRE_PDN   : Precharge power down state
227     *                 From here can transition to:  PWR_REF, PWR_IDLE
228     *
229     * PWR_ACT       : Activate state in which one or more banks are open
230     *                 From here can transition to:  PWR_IDLE, PWR_ACT_PDN
231     *
232     * PWR_ACT_PDN   : Activate power down state
233     *                 From here can transition to:  PWR_ACT
234     */
235     enum PowerState {
236         PWR_IDLE = 0,
237         PWR_REF,
238         PWR_SREF,
239         PWR_PRE_PDN,
240         PWR_ACT,
241         PWR_ACT_PDN
242     };
243
244    /**
245     * The refresh state is used to control the progress of the
246     * refresh scheduling. When normal operation is in progress the
247     * refresh state is idle. Once tREFI has elasped, a refresh event
248     * is triggered to start the following STM transitions which are
249     * used to issue a refresh and return back to normal operation
250     *
251     * REF_IDLE      : IDLE state used during normal operation
252     *                 From here can transition to:  REF_DRAIN
253     *
254     * REF_SREF_EXIT : Exiting a self-refresh; refresh event scheduled
255     *                 after self-refresh exit completes
256     *                 From here can transition to:  REF_DRAIN
257     *
258     * REF_DRAIN     : Drain state in which on going accesses complete.
259     *                 From here can transition to:  REF_PD_EXIT
260     *
261     * REF_PD_EXIT   : Evaluate pwrState and issue wakeup if needed
262     *                 Next state dependent on whether banks are open
263     *                 From here can transition to:  REF_PRE, REF_START
264     *
265     * REF_PRE       : Close (precharge) all open banks
266     *                 From here can transition to:  REF_START
267     *
268     * REF_START     : Issue refresh command and update DRAMPower stats
269     *                 From here can transition to:  REF_RUN
270     *
271     * REF_RUN       : Refresh running, waiting for tRFC to expire
272     *                 From here can transition to:  REF_IDLE, REF_SREF_EXIT
273     */
274     enum RefreshState {
275         REF_IDLE = 0,
276         REF_DRAIN,
277         REF_PD_EXIT,
278         REF_SREF_EXIT,
279         REF_PRE,
280         REF_START,
281         REF_RUN
282     };
283
284    /**
285     * Rank class includes a vector of banks. Refresh and Power state
286     * machines are defined per rank. Events required to change the
287     * state of the refresh and power state machine are scheduled per
288     * rank. This class allows the implementation of rank-wise refresh
289     * and rank-wise power-down.
290     */
291    class Rank : public EventManager
292    {
293
294      private:
295
296        /**
297         * A reference to the parent DRAMCtrl instance
298         */
299        DRAMCtrl& memory;
300
301        /**
302         * Since we are taking decisions out of order, we need to keep
303         * track of what power transition is happening at what time
304         */
305        PowerState pwrStateTrans;
306
307        /**
308         * Previous low-power state, which will be re-entered after refresh.
309         */
310        PowerState pwrStatePostRefresh;
311
312        /**
313         * Track when we transitioned to the current power state
314         */
315        Tick pwrStateTick;
316
317        /**
318         * Keep track of when a refresh is due.
319         */
320        Tick refreshDueAt;
321
322        /*
323         * Command energies
324         */
325        Stats::Scalar actEnergy;
326        Stats::Scalar preEnergy;
327        Stats::Scalar readEnergy;
328        Stats::Scalar writeEnergy;
329        Stats::Scalar refreshEnergy;
330
331        /*
332         * Active Background Energy
333         */
334        Stats::Scalar actBackEnergy;
335
336        /*
337         * Precharge Background Energy
338         */
339        Stats::Scalar preBackEnergy;
340
341        /*
342         * Active Power-Down Energy
343         */
344        Stats::Scalar actPowerDownEnergy;
345
346        /*
347         * Precharge Power-Down Energy
348         */
349        Stats::Scalar prePowerDownEnergy;
350
351        /*
352         * self Refresh Energy
353         */
354        Stats::Scalar selfRefreshEnergy;
355
356        Stats::Scalar totalEnergy;
357        Stats::Scalar averagePower;
358
359        /**
360         * Stat to track total DRAM idle time
361         *
362         */
363        Stats::Scalar totalIdleTime;
364
365        /**
366         * Track time spent in each power state.
367         */
368        Stats::Vector pwrStateTime;
369
370        /**
371         * Function to update Power Stats
372         */
373        void updatePowerStats();
374
375        /**
376         * Schedule a power state transition in the future, and
377         * potentially override an already scheduled transition.
378         *
379         * @param pwr_state Power state to transition to
380         * @param tick Tick when transition should take place
381         */
382        void schedulePowerEvent(PowerState pwr_state, Tick tick);
383
384      public:
385
386        /**
387         * Current power state.
388         */
389        PowerState pwrState;
390
391       /**
392         * current refresh state
393         */
394        RefreshState refreshState;
395
396        /**
397         * rank is in or transitioning to power-down or self-refresh
398         */
399        bool inLowPowerState;
400
401        /**
402         * Current Rank index
403         */
404        uint8_t rank;
405
406       /**
407         * Track number of packets in read queue going to this rank
408         */
409        uint32_t readEntries;
410
411       /**
412         * Track number of packets in write queue going to this rank
413         */
414        uint32_t writeEntries;
415
416        /**
417         * Number of ACT, RD, and WR events currently scheduled
418         * Incremented when a refresh event is started as well
419         * Used to determine when a low-power state can be entered
420         */
421        uint8_t outstandingEvents;
422
423        /**
424         * delay power-down and self-refresh exit until this requirement is met
425         */
426        Tick wakeUpAllowedAt;
427
428        /**
429         * One DRAMPower instance per rank
430         */
431        DRAMPower power;
432
433        /**
434         * List of comamnds issued, to be sent to DRAMPpower at refresh
435         * and stats dump.  Keep commands here since commands to different
436         * banks are added out of order.  Will only pass commands up to
437         * curTick() to DRAMPower after sorting.
438         */
439        std::vector<Command> cmdList;
440
441        /**
442         * Vector of Banks. Each rank is made of several devices which in
443         * term are made from several banks.
444         */
445        std::vector<Bank> banks;
446
447        /**
448         *  To track number of banks which are currently active for
449         *  this rank.
450         */
451        unsigned int numBanksActive;
452
453        /** List to keep track of activate ticks */
454        std::deque<Tick> actTicks;
455
456        Rank(DRAMCtrl& _memory, const DRAMCtrlParams* _p, int rank);
457
458        const std::string name() const
459        {
460            return csprintf("%s_%d", memory.name(), rank);
461        }
462
463        /**
464         * Kick off accounting for power and refresh states and
465         * schedule initial refresh.
466         *
467         * @param ref_tick Tick for first refresh
468         */
469        void startup(Tick ref_tick);
470
471        /**
472         * Stop the refresh events.
473         */
474        void suspend();
475
476        /**
477         * Check if there is no refresh and no preparation of refresh ongoing
478         * i.e. the refresh state machine is in idle
479         *
480         * @param Return true if the rank is idle from a refresh point of view
481         */
482        bool inRefIdleState() const { return refreshState == REF_IDLE; }
483
484        /**
485         * Check if the current rank has all banks closed and is not
486         * in a low power state
487         *
488         * @param Return true if the rank is idle from a bank
489         *        and power point of view
490         */
491        bool inPwrIdleState() const { return pwrState == PWR_IDLE; }
492
493        /**
494         * Trigger a self-refresh exit if there are entries enqueued
495         * Exit if there are any read entries regardless of the bus state.
496         * If we are currently issuing write commands, exit if we have any
497         * write commands enqueued as well.
498         * Could expand this in the future to analyze state of entire queue
499         * if needed.
500         *
501         * @return boolean indicating self-refresh exit should be scheduled
502         */
503        bool forceSelfRefreshExit() const {
504            return (readEntries != 0) ||
505                   ((memory.busStateNext == WRITE) && (writeEntries != 0));
506        }
507
508        /**
509         * Check if the command queue of current rank is idle
510         *
511         * @param Return true if the there are no commands in Q.
512         *                    Bus direction determines queue checked.
513         */
514        bool isQueueEmpty() const;
515
516        /**
517         * Let the rank check if it was waiting for requests to drain
518         * to allow it to transition states.
519         */
520        void checkDrainDone();
521
522        /**
523         * Push command out of cmdList queue that are scheduled at
524         * or before curTick() to DRAMPower library
525         * All commands before curTick are guaranteed to be complete
526         * and can safely be flushed.
527         */
528        void flushCmdList();
529
530        /*
531         * Function to register Stats
532         */
533        void regStats();
534
535        /**
536         * Computes stats just prior to dump event
537         */
538        void computeStats();
539
540        /**
541         * Reset stats on a stats event
542         */
543        void resetStats();
544
545        /**
546         * Schedule a transition to power-down (sleep)
547         *
548         * @param pwr_state Power state to transition to
549         * @param tick Absolute tick when transition should take place
550         */
551        void powerDownSleep(PowerState pwr_state, Tick tick);
552
553       /**
554         * schedule and event to wake-up from power-down or self-refresh
555         * and update bank timing parameters
556         *
557         * @param exit_delay Relative tick defining the delay required between
558         *                   low-power exit and the next command
559         */
560        void scheduleWakeUpEvent(Tick exit_delay);
561
562        void processWriteDoneEvent();
563        EventFunctionWrapper writeDoneEvent;
564
565        void processActivateEvent();
566        EventFunctionWrapper activateEvent;
567
568        void processPrechargeEvent();
569        EventFunctionWrapper prechargeEvent;
570
571        void processRefreshEvent();
572        EventFunctionWrapper refreshEvent;
573
574        void processPowerEvent();
575        EventFunctionWrapper powerEvent;
576
577        void processWakeUpEvent();
578        EventFunctionWrapper wakeUpEvent;
579
580    };
581
582    /**
583     * Define the process to compute stats on a stats dump event, e.g. on
584     * simulation exit or intermediate stats dump. This is defined per rank
585     * as the per rank stats are based on state transition and periodically
586     * updated, requiring re-sync at exit.
587     */
588    class RankDumpCallback : public Callback
589    {
590        Rank *ranks;
591      public:
592        RankDumpCallback(Rank *r) : ranks(r) {}
593        virtual void process() { ranks->computeStats(); };
594    };
595
596    /** Define a process to clear power lib counters on a stats reset */
597    class RankResetCallback : public Callback
598    {
599      private:
600        /** Pointer to the rank, thus we instantiate per rank */
601        Rank *rank;
602
603      public:
604        RankResetCallback(Rank *r) : rank(r) {}
605        virtual void process() { rank->resetStats(); };
606    };
607
608    /** Define a process to store the time on a stats reset */
609    class MemResetCallback : public Callback
610    {
611      private:
612        /** A reference to the DRAMCtrl instance */
613        DRAMCtrl *mem;
614
615      public:
616        MemResetCallback(DRAMCtrl *_mem) : mem(_mem) {}
617        virtual void process() { mem->lastStatsResetTick = curTick(); };
618    };
619
620    /**
621     * A burst helper helps organize and manage a packet that is larger than
622     * the DRAM burst size. A system packet that is larger than the burst size
623     * is split into multiple DRAM packets and all those DRAM packets point to
624     * a single burst helper such that we know when the whole packet is served.
625     */
626    class BurstHelper {
627
628      public:
629
630        /** Number of DRAM bursts requred for a system packet **/
631        const unsigned int burstCount;
632
633        /** Number of DRAM bursts serviced so far for a system packet **/
634        unsigned int burstsServiced;
635
636        BurstHelper(unsigned int _burstCount)
637            : burstCount(_burstCount), burstsServiced(0)
638        { }
639    };
640
641    /**
642     * A DRAM packet stores packets along with the timestamp of when
643     * the packet entered the queue, and also the decoded address.
644     */
645    class DRAMPacket {
646
647      public:
648
649        /** When did request enter the controller */
650        const Tick entryTime;
651
652        /** When will request leave the controller */
653        Tick readyTime;
654
655        /** This comes from the outside world */
656        const PacketPtr pkt;
657
658        const bool isRead;
659
660        /** Will be populated by address decoder */
661        const uint8_t rank;
662        const uint8_t bank;
663        const uint32_t row;
664
665        /**
666         * Bank id is calculated considering banks in all the ranks
667         * eg: 2 ranks each with 8 banks, then bankId = 0 --> rank0, bank0 and
668         * bankId = 8 --> rank1, bank0
669         */
670        const uint16_t bankId;
671
672        /**
673         * The starting address of the DRAM packet.
674         * This address could be unaligned to burst size boundaries. The
675         * reason is to keep the address offset so we can accurately check
676         * incoming read packets with packets in the write queue.
677         */
678        Addr addr;
679
680        /**
681         * The size of this dram packet in bytes
682         * It is always equal or smaller than DRAM burst size
683         */
684        unsigned int size;
685
686        /**
687         * A pointer to the BurstHelper if this DRAMPacket is a split packet
688         * If not a split packet (common case), this is set to NULL
689         */
690        BurstHelper* burstHelper;
691        Bank& bankRef;
692        Rank& rankRef;
693
694        DRAMPacket(PacketPtr _pkt, bool is_read, uint8_t _rank, uint8_t _bank,
695                   uint32_t _row, uint16_t bank_id, Addr _addr,
696                   unsigned int _size, Bank& bank_ref, Rank& rank_ref)
697            : entryTime(curTick()), readyTime(curTick()),
698              pkt(_pkt), isRead(is_read), rank(_rank), bank(_bank), row(_row),
699              bankId(bank_id), addr(_addr), size(_size), burstHelper(NULL),
700              bankRef(bank_ref), rankRef(rank_ref)
701        { }
702
703    };
704
705    /**
706     * Bunch of things requires to setup "events" in gem5
707     * When event "respondEvent" occurs for example, the method
708     * processRespondEvent is called; no parameters are allowed
709     * in these methods
710     */
711    void processNextReqEvent();
712    EventFunctionWrapper nextReqEvent;
713
714    void processRespondEvent();
715    EventFunctionWrapper respondEvent;
716
717    /**
718     * Check if the read queue has room for more entries
719     *
720     * @param pktCount The number of entries needed in the read queue
721     * @return true if read queue is full, false otherwise
722     */
723    bool readQueueFull(unsigned int pktCount) const;
724
725    /**
726     * Check if the write queue has room for more entries
727     *
728     * @param pktCount The number of entries needed in the write queue
729     * @return true if write queue is full, false otherwise
730     */
731    bool writeQueueFull(unsigned int pktCount) const;
732
733    /**
734     * When a new read comes in, first check if the write q has a
735     * pending request to the same address.\ If not, decode the
736     * address to populate rank/bank/row, create one or mutliple
737     * "dram_pkt", and push them to the back of the read queue.\
738     * If this is the only
739     * read request in the system, schedule an event to start
740     * servicing it.
741     *
742     * @param pkt The request packet from the outside world
743     * @param pktCount The number of DRAM bursts the pkt
744     * translate to. If pkt size is larger then one full burst,
745     * then pktCount is greater than one.
746     */
747    void addToReadQueue(PacketPtr pkt, unsigned int pktCount);
748
749    /**
750     * Decode the incoming pkt, create a dram_pkt and push to the
751     * back of the write queue. \If the write q length is more than
752     * the threshold specified by the user, ie the queue is beginning
753     * to get full, stop reads, and start draining writes.
754     *
755     * @param pkt The request packet from the outside world
756     * @param pktCount The number of DRAM bursts the pkt
757     * translate to. If pkt size is larger then one full burst,
758     * then pktCount is greater than one.
759     */
760    void addToWriteQueue(PacketPtr pkt, unsigned int pktCount);
761
762    /**
763     * Actually do the DRAM access - figure out the latency it
764     * will take to service the req based on bank state, channel state etc
765     * and then update those states to account for this request.\ Based
766     * on this, update the packet's "readyTime" and move it to the
767     * response q from where it will eventually go back to the outside
768     * world.
769     *
770     * @param pkt The DRAM packet created from the outside world pkt
771     */
772    void doDRAMAccess(DRAMPacket* dram_pkt);
773
774    /**
775     * When a packet reaches its "readyTime" in the response Q,
776     * use the "access()" method in AbstractMemory to actually
777     * create the response packet, and send it back to the outside
778     * world requestor.
779     *
780     * @param pkt The packet from the outside world
781     * @param static_latency Static latency to add before sending the packet
782     */
783    void accessAndRespond(PacketPtr pkt, Tick static_latency);
784
785    /**
786     * Address decoder to figure out physical mapping onto ranks,
787     * banks, and rows. This function is called multiple times on the same
788     * system packet if the pakcet is larger than burst of the memory. The
789     * dramPktAddr is used for the offset within the packet.
790     *
791     * @param pkt The packet from the outside world
792     * @param dramPktAddr The starting address of the DRAM packet
793     * @param size The size of the DRAM packet in bytes
794     * @param isRead Is the request for a read or a write to DRAM
795     * @return A DRAMPacket pointer with the decoded information
796     */
797    DRAMPacket* decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned int size,
798                           bool isRead);
799
800    /**
801     * The memory schduler/arbiter - picks which request needs to
802     * go next, based on the specified policy such as FCFS or FR-FCFS
803     * and moves it to the head of the queue.
804     * Prioritizes accesses to the same rank as previous burst unless
805     * controller is switching command type.
806     *
807     * @param queue Queued requests to consider
808     * @param extra_col_delay Any extra delay due to a read/write switch
809     * @return true if a packet is scheduled to a rank which is available else
810     * false
811     */
812    bool chooseNext(std::deque<DRAMPacket*>& queue, Tick extra_col_delay);
813
814    /**
815     * For FR-FCFS policy reorder the read/write queue depending on row buffer
816     * hits and earliest bursts available in DRAM
817     *
818     * @param queue Queued requests to consider
819     * @param extra_col_delay Any extra delay due to a read/write switch
820     * @return true if a packet is scheduled to a rank which is available else
821     * false
822     */
823    bool reorderQueue(std::deque<DRAMPacket*>& queue, Tick extra_col_delay);
824
825    /**
826     * Find which are the earliest banks ready to issue an activate
827     * for the enqueued requests. Assumes maximum of 32 banks per rank
828     * Also checks if the bank is already prepped.
829     *
830     * @param queue Queued requests to consider
831     * @param min_col_at time of seamless burst command
832     * @return One-hot encoded mask of bank indices
833     * @return boolean indicating burst can issue seamlessly, with no gaps
834     */
835    std::pair<std::vector<uint32_t>, bool> minBankPrep(
836                                          const std::deque<DRAMPacket*>& queue,
837                                          Tick min_col_at) const;
838
839    /**
840     * Keep track of when row activations happen, in order to enforce
841     * the maximum number of activations in the activation window. The
842     * method updates the time that the banks become available based
843     * on the current limits.
844     *
845     * @param rank_ref Reference to the rank
846     * @param bank_ref Reference to the bank
847     * @param act_tick Time when the activation takes place
848     * @param row Index of the row
849     */
850    void activateBank(Rank& rank_ref, Bank& bank_ref, Tick act_tick,
851                      uint32_t row);
852
853    /**
854     * Precharge a given bank and also update when the precharge is
855     * done. This will also deal with any stats related to the
856     * accesses to the open page.
857     *
858     * @param rank_ref The rank to precharge
859     * @param bank_ref The bank to precharge
860     * @param pre_at Time when the precharge takes place
861     * @param trace Is this an auto precharge then do not add to trace
862     */
863    void prechargeBank(Rank& rank_ref, Bank& bank_ref,
864                       Tick pre_at, bool trace = true);
865
866    /**
867     * Used for debugging to observe the contents of the queues.
868     */
869    void printQs() const;
870
871    /**
872     * Burst-align an address.
873     *
874     * @param addr The potentially unaligned address
875     *
876     * @return An address aligned to a DRAM burst
877     */
878    Addr burstAlign(Addr addr) const { return (addr & ~(Addr(burstSize - 1))); }
879
880    /**
881     * The controller's main read and write queues
882     */
883    std::deque<DRAMPacket*> readQueue;
884    std::deque<DRAMPacket*> writeQueue;
885
886    /**
887     * To avoid iterating over the write queue to check for
888     * overlapping transactions, maintain a set of burst addresses
889     * that are currently queued. Since we merge writes to the same
890     * location we never have more than one address to the same burst
891     * address.
892     */
893    std::unordered_set<Addr> isInWriteQueue;
894
895    /**
896     * Response queue where read packets wait after we're done working
897     * with them, but it's not time to send the response yet. The
898     * responses are stored seperately mostly to keep the code clean
899     * and help with events scheduling. For all logical purposes such
900     * as sizing the read queue, this and the main read queue need to
901     * be added together.
902     */
903    std::deque<DRAMPacket*> respQueue;
904
905    /**
906     * Vector of ranks
907     */
908    std::vector<Rank*> ranks;
909
910    /**
911     * The following are basic design parameters of the memory
912     * controller, and are initialized based on parameter values.
913     * The rowsPerBank is determined based on the capacity, number of
914     * ranks and banks, the burst size, and the row buffer size.
915     */
916    const uint32_t deviceSize;
917    const uint32_t deviceBusWidth;
918    const uint32_t burstLength;
919    const uint32_t deviceRowBufferSize;
920    const uint32_t devicesPerRank;
921    const uint32_t burstSize;
922    const uint32_t rowBufferSize;
923    const uint32_t columnsPerRowBuffer;
924    const uint32_t columnsPerStripe;
925    const uint32_t ranksPerChannel;
926    const uint32_t bankGroupsPerRank;
927    const bool bankGroupArch;
928    const uint32_t banksPerRank;
929    const uint32_t channels;
930    uint32_t rowsPerBank;
931    const uint32_t readBufferSize;
932    const uint32_t writeBufferSize;
933    const uint32_t writeHighThreshold;
934    const uint32_t writeLowThreshold;
935    const uint32_t minWritesPerSwitch;
936    uint32_t writesThisTime;
937    uint32_t readsThisTime;
938
939    /**
940     * Basic memory timing parameters initialized based on parameter
941     * values.
942     */
943    const Tick M5_CLASS_VAR_USED tCK;
944    const Tick tRTW;
945    const Tick tCS;
946    const Tick tBURST;
947    const Tick tCCD_L_WR;
948    const Tick tCCD_L;
949    const Tick tRCD;
950    const Tick tCL;
951    const Tick tRP;
952    const Tick tRAS;
953    const Tick tWR;
954    const Tick tRTP;
955    const Tick tRFC;
956    const Tick tREFI;
957    const Tick tRRD;
958    const Tick tRRD_L;
959    const Tick tXAW;
960    const Tick tXP;
961    const Tick tXS;
962    const uint32_t activationLimit;
963    const Tick rankToRankDly;
964    const Tick wrToRdDly;
965    const Tick rdToWrDly;
966
967    /**
968     * Memory controller configuration initialized based on parameter
969     * values.
970     */
971    Enums::MemSched memSchedPolicy;
972    Enums::AddrMap addrMapping;
973    Enums::PageManage pageMgmt;
974
975    /**
976     * Max column accesses (read and write) per row, before forefully
977     * closing it.
978     */
979    const uint32_t maxAccessesPerRow;
980
981    /**
982     * Pipeline latency of the controller frontend. The frontend
983     * contribution is added to writes (that complete when they are in
984     * the write buffer) and reads that are serviced the write buffer.
985     */
986    const Tick frontendLatency;
987
988    /**
989     * Pipeline latency of the backend and PHY. Along with the
990     * frontend contribution, this latency is added to reads serviced
991     * by the DRAM.
992     */
993    const Tick backendLatency;
994
995    /**
996     * Till when must we wait before issuing next RD/WR burst?
997     */
998    Tick nextBurstAt;
999
1000    Tick prevArrival;
1001
1002    /**
1003     * The soonest you have to start thinking about the next request
1004     * is the longest access time that can occur before
1005     * nextBurstAt. Assuming you need to precharge, open a new row,
1006     * and access, it is tRP + tRCD + tCL.
1007     */
1008    Tick nextReqTime;
1009
1010    // All statistics that the model needs to capture
1011    Stats::Scalar readReqs;
1012    Stats::Scalar writeReqs;
1013    Stats::Scalar readBursts;
1014    Stats::Scalar writeBursts;
1015    Stats::Scalar bytesReadDRAM;
1016    Stats::Scalar bytesReadWrQ;
1017    Stats::Scalar bytesWritten;
1018    Stats::Scalar bytesReadSys;
1019    Stats::Scalar bytesWrittenSys;
1020    Stats::Scalar servicedByWrQ;
1021    Stats::Scalar mergedWrBursts;
1022    Stats::Scalar neitherReadNorWrite;
1023    Stats::Vector perBankRdBursts;
1024    Stats::Vector perBankWrBursts;
1025    Stats::Scalar numRdRetry;
1026    Stats::Scalar numWrRetry;
1027    Stats::Scalar totGap;
1028    Stats::Vector readPktSize;
1029    Stats::Vector writePktSize;
1030    Stats::Vector rdQLenPdf;
1031    Stats::Vector wrQLenPdf;
1032    Stats::Histogram bytesPerActivate;
1033    Stats::Histogram rdPerTurnAround;
1034    Stats::Histogram wrPerTurnAround;
1035
1036    // Latencies summed over all requests
1037    Stats::Scalar totQLat;
1038    Stats::Scalar totMemAccLat;
1039    Stats::Scalar totBusLat;
1040
1041    // Average latencies per request
1042    Stats::Formula avgQLat;
1043    Stats::Formula avgBusLat;
1044    Stats::Formula avgMemAccLat;
1045
1046    // Average bandwidth
1047    Stats::Formula avgRdBW;
1048    Stats::Formula avgWrBW;
1049    Stats::Formula avgRdBWSys;
1050    Stats::Formula avgWrBWSys;
1051    Stats::Formula peakBW;
1052    Stats::Formula busUtil;
1053    Stats::Formula busUtilRead;
1054    Stats::Formula busUtilWrite;
1055
1056    // Average queue lengths
1057    Stats::Average avgRdQLen;
1058    Stats::Average avgWrQLen;
1059
1060    // Row hit count and rate
1061    Stats::Scalar readRowHits;
1062    Stats::Scalar writeRowHits;
1063    Stats::Formula readRowHitRate;
1064    Stats::Formula writeRowHitRate;
1065    Stats::Formula avgGap;
1066
1067    // DRAM Power Calculation
1068    Stats::Formula pageHitRate;
1069
1070    // Holds the value of the rank of burst issued
1071    uint8_t activeRank;
1072
1073    // timestamp offset
1074    uint64_t timeStampOffset;
1075
1076    /** The time when stats were last reset used to calculate average power */
1077    Tick lastStatsResetTick;
1078
1079    /**
1080     * Upstream caches need this packet until true is returned, so
1081     * hold it for deletion until a subsequent call
1082     */
1083    std::unique_ptr<Packet> pendingDelete;
1084
1085    /**
1086     * This function increments the energy when called. If stats are
1087     * dumped periodically, note accumulated energy values will
1088     * appear in the stats (even if the stats are reset). This is a
1089     * result of the energy values coming from DRAMPower, and there
1090     * is currently no support for resetting the state.
1091     *
1092     * @param rank Currrent rank
1093     */
1094    void updatePowerStats(Rank& rank_ref);
1095
1096    /**
1097     * Function for sorting Command structures based on timeStamp
1098     *
1099     * @param a Memory Command
1100     * @param next Memory Command
1101     * @return true if timeStamp of Command 1 < timeStamp of Command 2
1102     */
1103    static bool sortTime(const Command& cmd, const Command& cmd_next) {
1104        return cmd.timeStamp < cmd_next.timeStamp;
1105    };
1106
1107  public:
1108
1109    void regStats() override;
1110
1111    DRAMCtrl(const DRAMCtrlParams* p);
1112
1113    DrainState drain() override;
1114
1115    virtual BaseSlavePort& getSlavePort(const std::string& if_name,
1116                                        PortID idx = InvalidPortID) override;
1117
1118    virtual void init() override;
1119    virtual void startup() override;
1120    virtual void drainResume() override;
1121
1122    /**
1123     * Return true once refresh is complete for all ranks and there are no
1124     * additional commands enqueued.  (only evaluated when draining)
1125     * This will ensure that all banks are closed, power state is IDLE, and
1126     * power stats have been updated
1127     *
1128     * @return true if all ranks have refreshed, with no commands enqueued
1129     *
1130     */
1131    bool allRanksDrained() const;
1132
1133  protected:
1134
1135    Tick recvAtomic(PacketPtr pkt);
1136    void recvFunctional(PacketPtr pkt);
1137    bool recvTimingReq(PacketPtr pkt);
1138
1139};
1140
1141#endif //__MEM_DRAM_CTRL_HH__
1142