dram_ctrl.hh revision 11675
1/*
2 * Copyright (c) 2012-2016 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2013 Amin Farmahini-Farahani
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Andreas Hansson
41 *          Ani Udipi
42 *          Neha Agarwal
43 *          Omar Naji
44 *          Matthias Jung
45 */
46
47/**
48 * @file
49 * DRAMCtrl declaration
50 */
51
52#ifndef __MEM_DRAM_CTRL_HH__
53#define __MEM_DRAM_CTRL_HH__
54
55#include <deque>
56#include <string>
57#include <unordered_set>
58
59#include "base/statistics.hh"
60#include "enums/AddrMap.hh"
61#include "enums/MemSched.hh"
62#include "enums/PageManage.hh"
63#include "mem/abstract_mem.hh"
64#include "mem/qport.hh"
65#include "params/DRAMCtrl.hh"
66#include "sim/eventq.hh"
67#include "mem/drampower.hh"
68
69/**
70 * The DRAM controller is a single-channel memory controller capturing
71 * the most important timing constraints associated with a
72 * contemporary DRAM. For multi-channel memory systems, the controller
73 * is combined with a crossbar model, with the channel address
74 * interleaving taking part in the crossbar.
75 *
76 * As a basic design principle, this controller
77 * model is not cycle callable, but instead uses events to: 1) decide
78 * when new decisions can be made, 2) when resources become available,
79 * 3) when things are to be considered done, and 4) when to send
80 * things back. Through these simple principles, the model delivers
81 * high performance, and lots of flexibility, allowing users to
82 * evaluate the system impact of a wide range of memory technologies,
83 * such as DDR3/4, LPDDR2/3/4, WideIO1/2, HBM and HMC.
84 *
85 * For more details, please see Hansson et al, "Simulating DRAM
86 * controllers for future system architecture exploration",
87 * Proc. ISPASS, 2014. If you use this model as part of your research
88 * please cite the paper.
89 */
90class DRAMCtrl : public AbstractMemory
91{
92
93  private:
94
95    // For now, make use of a queued slave port to avoid dealing with
96    // flow control for the responses being sent back
97    class MemoryPort : public QueuedSlavePort
98    {
99
100        RespPacketQueue queue;
101        DRAMCtrl& memory;
102
103      public:
104
105        MemoryPort(const std::string& name, DRAMCtrl& _memory);
106
107      protected:
108
109        Tick recvAtomic(PacketPtr pkt);
110
111        void recvFunctional(PacketPtr pkt);
112
113        bool recvTimingReq(PacketPtr);
114
115        virtual AddrRangeList getAddrRanges() const;
116
117    };
118
119    /**
120     * Our incoming port, for a multi-ported controller add a crossbar
121     * in front of it
122     */
123    MemoryPort port;
124
125    /**
126     * Remeber if the memory system is in timing mode
127     */
128    bool isTimingMode;
129
130    /**
131     * Remember if we have to retry a request when available.
132     */
133    bool retryRdReq;
134    bool retryWrReq;
135
136    /**
137     * Bus state used to control the read/write switching and drive
138     * the scheduling of the next request.
139     */
140    enum BusState {
141        READ = 0,
142        READ_TO_WRITE,
143        WRITE,
144        WRITE_TO_READ
145    };
146
147    BusState busState;
148
149    /**
150     * Simple structure to hold the values needed to keep track of
151     * commands for DRAMPower
152     */
153    struct Command {
154       Data::MemCommand::cmds type;
155       uint8_t bank;
156       Tick timeStamp;
157
158       constexpr Command(Data::MemCommand::cmds _type, uint8_t _bank,
159                         Tick time_stamp)
160            : type(_type), bank(_bank), timeStamp(time_stamp)
161        { }
162    };
163
164    /**
165     * A basic class to track the bank state, i.e. what row is
166     * currently open (if any), when is the bank free to accept a new
167     * column (read/write) command, when can it be precharged, and
168     * when can it be activated.
169     *
170     * The bank also keeps track of how many bytes have been accessed
171     * in the open row since it was opened.
172     */
173    class Bank
174    {
175
176      public:
177
178        static const uint32_t NO_ROW = -1;
179
180        uint32_t openRow;
181        uint8_t bank;
182        uint8_t bankgr;
183
184        Tick colAllowedAt;
185        Tick preAllowedAt;
186        Tick actAllowedAt;
187
188        uint32_t rowAccesses;
189        uint32_t bytesAccessed;
190
191        Bank() :
192            openRow(NO_ROW), bank(0), bankgr(0),
193            colAllowedAt(0), preAllowedAt(0), actAllowedAt(0),
194            rowAccesses(0), bytesAccessed(0)
195        { }
196    };
197
198
199    /**
200     * Rank class includes a vector of banks. Refresh and Power state
201     * machines are defined per rank. Events required to change the
202     * state of the refresh and power state machine are scheduled per
203     * rank. This class allows the implementation of rank-wise refresh
204     * and rank-wise power-down.
205     */
206    class Rank : public EventManager
207    {
208
209      private:
210
211        /**
212         * The power state captures the different operational states of
213         * the DRAM and interacts with the bus read/write state machine,
214         * and the refresh state machine. In the idle state all banks are
215         * precharged. From there we either go to an auto refresh (as
216         * determined by the refresh state machine), or to a precharge
217         * power down mode. From idle the memory can also go to the active
218         * state (with one or more banks active), and in turn from there
219         * to active power down. At the moment we do not capture the deep
220         * power down and self-refresh state.
221         */
222        enum PowerState {
223            PWR_IDLE = 0,
224            PWR_REF,
225            PWR_PRE_PDN,
226            PWR_ACT,
227            PWR_ACT_PDN
228        };
229
230        /**
231         * The refresh state is used to control the progress of the
232         * refresh scheduling. When normal operation is in progress the
233         * refresh state is idle. From there, it progresses to the refresh
234         * drain state once tREFI has passed. The refresh drain state
235         * captures the DRAM row active state, as it will stay there until
236         * all ongoing accesses complete. Thereafter all banks are
237         * precharged, and lastly, the DRAM is refreshed.
238         */
239        enum RefreshState {
240            REF_IDLE = 0,
241            REF_DRAIN,
242            REF_PRE,
243            REF_RUN
244        };
245
246        /**
247         * A reference to the parent DRAMCtrl instance
248         */
249        DRAMCtrl& memory;
250
251        /**
252         * Since we are taking decisions out of order, we need to keep
253         * track of what power transition is happening at what time, such
254         * that we can go back in time and change history. For example, if
255         * we precharge all banks and schedule going to the idle state, we
256         * might at a later point decide to activate a bank before the
257         * transition to idle would have taken place.
258         */
259        PowerState pwrStateTrans;
260
261        /**
262         * Current power state.
263         */
264        PowerState pwrState;
265
266        /**
267         * Track when we transitioned to the current power state
268         */
269        Tick pwrStateTick;
270
271        /**
272         * current refresh state
273         */
274        RefreshState refreshState;
275
276        /**
277         * Keep track of when a refresh is due.
278         */
279        Tick refreshDueAt;
280
281        /*
282         * Command energies
283         */
284        Stats::Scalar actEnergy;
285        Stats::Scalar preEnergy;
286        Stats::Scalar readEnergy;
287        Stats::Scalar writeEnergy;
288        Stats::Scalar refreshEnergy;
289
290        /*
291         * Active Background Energy
292         */
293        Stats::Scalar actBackEnergy;
294
295        /*
296         * Precharge Background Energy
297         */
298        Stats::Scalar preBackEnergy;
299
300        Stats::Scalar totalEnergy;
301        Stats::Scalar averagePower;
302
303        /**
304         * Track time spent in each power state.
305         */
306        Stats::Vector pwrStateTime;
307
308        /**
309         * Function to update Power Stats
310         */
311        void updatePowerStats();
312
313        /**
314         * Schedule a power state transition in the future, and
315         * potentially override an already scheduled transition.
316         *
317         * @param pwr_state Power state to transition to
318         * @param tick Tick when transition should take place
319         */
320        void schedulePowerEvent(PowerState pwr_state, Tick tick);
321
322      public:
323
324        /**
325         * Current Rank index
326         */
327        uint8_t rank;
328
329        /**
330         * One DRAMPower instance per rank
331         */
332        DRAMPower power;
333
334        /**
335         * List of comamnds issued, to be sent to DRAMPpower at refresh
336         * and stats dump.  Keep commands here since commands to different
337         * banks are added out of order.  Will only pass commands up to
338         * curTick() to DRAMPower after sorting.
339         */
340        std::vector<Command> cmdList;
341
342        /**
343         * Vector of Banks. Each rank is made of several devices which in
344         * term are made from several banks.
345         */
346        std::vector<Bank> banks;
347
348        /**
349         *  To track number of banks which are currently active for
350         *  this rank.
351         */
352        unsigned int numBanksActive;
353
354        /** List to keep track of activate ticks */
355        std::deque<Tick> actTicks;
356
357        Rank(DRAMCtrl& _memory, const DRAMCtrlParams* _p);
358
359        const std::string name() const
360        {
361            return csprintf("%s_%d", memory.name(), rank);
362        }
363
364        /**
365         * Kick off accounting for power and refresh states and
366         * schedule initial refresh.
367         *
368         * @param ref_tick Tick for first refresh
369         */
370        void startup(Tick ref_tick);
371
372        /**
373         * Stop the refresh events.
374         */
375        void suspend();
376
377        /**
378         * Check if the current rank is available for scheduling.
379         *
380         * @param Return true if the rank is idle from a refresh point of view
381         */
382        bool isAvailable() const { return refreshState == REF_IDLE; }
383
384        /**
385         * Let the rank check if it was waiting for requests to drain
386         * to allow it to transition states.
387         */
388        void checkDrainDone();
389
390        /**
391         * Push command out of cmdList queue that are scheduled at
392         * or before curTick() to DRAMPower library
393         * All commands before curTick are guaranteed to be complete
394         * and can safely be flushed.
395         */
396        void flushCmdList();
397
398        /*
399         * Function to register Stats
400         */
401        void regStats();
402
403        void processActivateEvent();
404        EventWrapper<Rank, &Rank::processActivateEvent>
405        activateEvent;
406
407        void processPrechargeEvent();
408        EventWrapper<Rank, &Rank::processPrechargeEvent>
409        prechargeEvent;
410
411        void processRefreshEvent();
412        EventWrapper<Rank, &Rank::processRefreshEvent>
413        refreshEvent;
414
415        void processPowerEvent();
416        EventWrapper<Rank, &Rank::processPowerEvent>
417        powerEvent;
418
419    };
420
421    /**
422     * A burst helper helps organize and manage a packet that is larger than
423     * the DRAM burst size. A system packet that is larger than the burst size
424     * is split into multiple DRAM packets and all those DRAM packets point to
425     * a single burst helper such that we know when the whole packet is served.
426     */
427    class BurstHelper {
428
429      public:
430
431        /** Number of DRAM bursts requred for a system packet **/
432        const unsigned int burstCount;
433
434        /** Number of DRAM bursts serviced so far for a system packet **/
435        unsigned int burstsServiced;
436
437        BurstHelper(unsigned int _burstCount)
438            : burstCount(_burstCount), burstsServiced(0)
439        { }
440    };
441
442    /**
443     * A DRAM packet stores packets along with the timestamp of when
444     * the packet entered the queue, and also the decoded address.
445     */
446    class DRAMPacket {
447
448      public:
449
450        /** When did request enter the controller */
451        const Tick entryTime;
452
453        /** When will request leave the controller */
454        Tick readyTime;
455
456        /** This comes from the outside world */
457        const PacketPtr pkt;
458
459        const bool isRead;
460
461        /** Will be populated by address decoder */
462        const uint8_t rank;
463        const uint8_t bank;
464        const uint32_t row;
465
466        /**
467         * Bank id is calculated considering banks in all the ranks
468         * eg: 2 ranks each with 8 banks, then bankId = 0 --> rank0, bank0 and
469         * bankId = 8 --> rank1, bank0
470         */
471        const uint16_t bankId;
472
473        /**
474         * The starting address of the DRAM packet.
475         * This address could be unaligned to burst size boundaries. The
476         * reason is to keep the address offset so we can accurately check
477         * incoming read packets with packets in the write queue.
478         */
479        Addr addr;
480
481        /**
482         * The size of this dram packet in bytes
483         * It is always equal or smaller than DRAM burst size
484         */
485        unsigned int size;
486
487        /**
488         * A pointer to the BurstHelper if this DRAMPacket is a split packet
489         * If not a split packet (common case), this is set to NULL
490         */
491        BurstHelper* burstHelper;
492        Bank& bankRef;
493        Rank& rankRef;
494
495        DRAMPacket(PacketPtr _pkt, bool is_read, uint8_t _rank, uint8_t _bank,
496                   uint32_t _row, uint16_t bank_id, Addr _addr,
497                   unsigned int _size, Bank& bank_ref, Rank& rank_ref)
498            : entryTime(curTick()), readyTime(curTick()),
499              pkt(_pkt), isRead(is_read), rank(_rank), bank(_bank), row(_row),
500              bankId(bank_id), addr(_addr), size(_size), burstHelper(NULL),
501              bankRef(bank_ref), rankRef(rank_ref)
502        { }
503
504    };
505
506    /**
507     * Bunch of things requires to setup "events" in gem5
508     * When event "respondEvent" occurs for example, the method
509     * processRespondEvent is called; no parameters are allowed
510     * in these methods
511     */
512    void processNextReqEvent();
513    EventWrapper<DRAMCtrl,&DRAMCtrl::processNextReqEvent> nextReqEvent;
514
515    void processRespondEvent();
516    EventWrapper<DRAMCtrl, &DRAMCtrl::processRespondEvent> respondEvent;
517
518    /**
519     * Check if the read queue has room for more entries
520     *
521     * @param pktCount The number of entries needed in the read queue
522     * @return true if read queue is full, false otherwise
523     */
524    bool readQueueFull(unsigned int pktCount) const;
525
526    /**
527     * Check if the write queue has room for more entries
528     *
529     * @param pktCount The number of entries needed in the write queue
530     * @return true if write queue is full, false otherwise
531     */
532    bool writeQueueFull(unsigned int pktCount) const;
533
534    /**
535     * When a new read comes in, first check if the write q has a
536     * pending request to the same address.\ If not, decode the
537     * address to populate rank/bank/row, create one or mutliple
538     * "dram_pkt", and push them to the back of the read queue.\
539     * If this is the only
540     * read request in the system, schedule an event to start
541     * servicing it.
542     *
543     * @param pkt The request packet from the outside world
544     * @param pktCount The number of DRAM bursts the pkt
545     * translate to. If pkt size is larger then one full burst,
546     * then pktCount is greater than one.
547     */
548    void addToReadQueue(PacketPtr pkt, unsigned int pktCount);
549
550    /**
551     * Decode the incoming pkt, create a dram_pkt and push to the
552     * back of the write queue. \If the write q length is more than
553     * the threshold specified by the user, ie the queue is beginning
554     * to get full, stop reads, and start draining writes.
555     *
556     * @param pkt The request packet from the outside world
557     * @param pktCount The number of DRAM bursts the pkt
558     * translate to. If pkt size is larger then one full burst,
559     * then pktCount is greater than one.
560     */
561    void addToWriteQueue(PacketPtr pkt, unsigned int pktCount);
562
563    /**
564     * Actually do the DRAM access - figure out the latency it
565     * will take to service the req based on bank state, channel state etc
566     * and then update those states to account for this request.\ Based
567     * on this, update the packet's "readyTime" and move it to the
568     * response q from where it will eventually go back to the outside
569     * world.
570     *
571     * @param pkt The DRAM packet created from the outside world pkt
572     */
573    void doDRAMAccess(DRAMPacket* dram_pkt);
574
575    /**
576     * When a packet reaches its "readyTime" in the response Q,
577     * use the "access()" method in AbstractMemory to actually
578     * create the response packet, and send it back to the outside
579     * world requestor.
580     *
581     * @param pkt The packet from the outside world
582     * @param static_latency Static latency to add before sending the packet
583     */
584    void accessAndRespond(PacketPtr pkt, Tick static_latency);
585
586    /**
587     * Address decoder to figure out physical mapping onto ranks,
588     * banks, and rows. This function is called multiple times on the same
589     * system packet if the pakcet is larger than burst of the memory. The
590     * dramPktAddr is used for the offset within the packet.
591     *
592     * @param pkt The packet from the outside world
593     * @param dramPktAddr The starting address of the DRAM packet
594     * @param size The size of the DRAM packet in bytes
595     * @param isRead Is the request for a read or a write to DRAM
596     * @return A DRAMPacket pointer with the decoded information
597     */
598    DRAMPacket* decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned int size,
599                           bool isRead);
600
601    /**
602     * The memory schduler/arbiter - picks which request needs to
603     * go next, based on the specified policy such as FCFS or FR-FCFS
604     * and moves it to the head of the queue.
605     * Prioritizes accesses to the same rank as previous burst unless
606     * controller is switching command type.
607     *
608     * @param queue Queued requests to consider
609     * @param extra_col_delay Any extra delay due to a read/write switch
610     * @return true if a packet is scheduled to a rank which is available else
611     * false
612     */
613    bool chooseNext(std::deque<DRAMPacket*>& queue, Tick extra_col_delay);
614
615    /**
616     * For FR-FCFS policy reorder the read/write queue depending on row buffer
617     * hits and earliest bursts available in DRAM
618     *
619     * @param queue Queued requests to consider
620     * @param extra_col_delay Any extra delay due to a read/write switch
621     * @return true if a packet is scheduled to a rank which is available else
622     * false
623     */
624    bool reorderQueue(std::deque<DRAMPacket*>& queue, Tick extra_col_delay);
625
626    /**
627     * Find which are the earliest banks ready to issue an activate
628     * for the enqueued requests. Assumes maximum of 64 banks per DIMM
629     * Also checks if the bank is already prepped.
630     *
631     * @param queue Queued requests to consider
632     * @param time of seamless burst command
633     * @return One-hot encoded mask of bank indices
634     * @return boolean indicating burst can issue seamlessly, with no gaps
635     */
636    std::pair<uint64_t, bool> minBankPrep(const std::deque<DRAMPacket*>& queue,
637                                          Tick min_col_at) const;
638
639    /**
640     * Keep track of when row activations happen, in order to enforce
641     * the maximum number of activations in the activation window. The
642     * method updates the time that the banks become available based
643     * on the current limits.
644     *
645     * @param rank_ref Reference to the rank
646     * @param bank_ref Reference to the bank
647     * @param act_tick Time when the activation takes place
648     * @param row Index of the row
649     */
650    void activateBank(Rank& rank_ref, Bank& bank_ref, Tick act_tick,
651                      uint32_t row);
652
653    /**
654     * Precharge a given bank and also update when the precharge is
655     * done. This will also deal with any stats related to the
656     * accesses to the open page.
657     *
658     * @param rank_ref The rank to precharge
659     * @param bank_ref The bank to precharge
660     * @param pre_at Time when the precharge takes place
661     * @param trace Is this an auto precharge then do not add to trace
662     */
663    void prechargeBank(Rank& rank_ref, Bank& bank_ref,
664                       Tick pre_at, bool trace = true);
665
666    /**
667     * Used for debugging to observe the contents of the queues.
668     */
669    void printQs() const;
670
671    /**
672     * Burst-align an address.
673     *
674     * @param addr The potentially unaligned address
675     *
676     * @return An address aligned to a DRAM burst
677     */
678    Addr burstAlign(Addr addr) const { return (addr & ~(Addr(burstSize - 1))); }
679
680    /**
681     * The controller's main read and write queues
682     */
683    std::deque<DRAMPacket*> readQueue;
684    std::deque<DRAMPacket*> writeQueue;
685
686    /**
687     * To avoid iterating over the write queue to check for
688     * overlapping transactions, maintain a set of burst addresses
689     * that are currently queued. Since we merge writes to the same
690     * location we never have more than one address to the same burst
691     * address.
692     */
693    std::unordered_set<Addr> isInWriteQueue;
694
695    /**
696     * Response queue where read packets wait after we're done working
697     * with them, but it's not time to send the response yet. The
698     * responses are stored seperately mostly to keep the code clean
699     * and help with events scheduling. For all logical purposes such
700     * as sizing the read queue, this and the main read queue need to
701     * be added together.
702     */
703    std::deque<DRAMPacket*> respQueue;
704
705    /**
706     * Vector of ranks
707     */
708    std::vector<Rank*> ranks;
709
710    /**
711     * The following are basic design parameters of the memory
712     * controller, and are initialized based on parameter values.
713     * The rowsPerBank is determined based on the capacity, number of
714     * ranks and banks, the burst size, and the row buffer size.
715     */
716    const uint32_t deviceSize;
717    const uint32_t deviceBusWidth;
718    const uint32_t burstLength;
719    const uint32_t deviceRowBufferSize;
720    const uint32_t devicesPerRank;
721    const uint32_t burstSize;
722    const uint32_t rowBufferSize;
723    const uint32_t columnsPerRowBuffer;
724    const uint32_t columnsPerStripe;
725    const uint32_t ranksPerChannel;
726    const uint32_t bankGroupsPerRank;
727    const bool bankGroupArch;
728    const uint32_t banksPerRank;
729    const uint32_t channels;
730    uint32_t rowsPerBank;
731    const uint32_t readBufferSize;
732    const uint32_t writeBufferSize;
733    const uint32_t writeHighThreshold;
734    const uint32_t writeLowThreshold;
735    const uint32_t minWritesPerSwitch;
736    uint32_t writesThisTime;
737    uint32_t readsThisTime;
738
739    /**
740     * Basic memory timing parameters initialized based on parameter
741     * values.
742     */
743    const Tick M5_CLASS_VAR_USED tCK;
744    const Tick tWTR;
745    const Tick tRTW;
746    const Tick tCS;
747    const Tick tBURST;
748    const Tick tCCD_L;
749    const Tick tRCD;
750    const Tick tCL;
751    const Tick tRP;
752    const Tick tRAS;
753    const Tick tWR;
754    const Tick tRTP;
755    const Tick tRFC;
756    const Tick tREFI;
757    const Tick tRRD;
758    const Tick tRRD_L;
759    const Tick tXAW;
760    const Tick tXP;
761    const Tick tXS;
762    const uint32_t activationLimit;
763
764    /**
765     * Memory controller configuration initialized based on parameter
766     * values.
767     */
768    Enums::MemSched memSchedPolicy;
769    Enums::AddrMap addrMapping;
770    Enums::PageManage pageMgmt;
771
772    /**
773     * Max column accesses (read and write) per row, before forefully
774     * closing it.
775     */
776    const uint32_t maxAccessesPerRow;
777
778    /**
779     * Pipeline latency of the controller frontend. The frontend
780     * contribution is added to writes (that complete when they are in
781     * the write buffer) and reads that are serviced the write buffer.
782     */
783    const Tick frontendLatency;
784
785    /**
786     * Pipeline latency of the backend and PHY. Along with the
787     * frontend contribution, this latency is added to reads serviced
788     * by the DRAM.
789     */
790    const Tick backendLatency;
791
792    /**
793     * Till when has the main data bus been spoken for already?
794     */
795    Tick busBusyUntil;
796
797    Tick prevArrival;
798
799    /**
800     * The soonest you have to start thinking about the next request
801     * is the longest access time that can occur before
802     * busBusyUntil. Assuming you need to precharge, open a new row,
803     * and access, it is tRP + tRCD + tCL.
804     */
805    Tick nextReqTime;
806
807    // All statistics that the model needs to capture
808    Stats::Scalar readReqs;
809    Stats::Scalar writeReqs;
810    Stats::Scalar readBursts;
811    Stats::Scalar writeBursts;
812    Stats::Scalar bytesReadDRAM;
813    Stats::Scalar bytesReadWrQ;
814    Stats::Scalar bytesWritten;
815    Stats::Scalar bytesReadSys;
816    Stats::Scalar bytesWrittenSys;
817    Stats::Scalar servicedByWrQ;
818    Stats::Scalar mergedWrBursts;
819    Stats::Scalar neitherReadNorWrite;
820    Stats::Vector perBankRdBursts;
821    Stats::Vector perBankWrBursts;
822    Stats::Scalar numRdRetry;
823    Stats::Scalar numWrRetry;
824    Stats::Scalar totGap;
825    Stats::Vector readPktSize;
826    Stats::Vector writePktSize;
827    Stats::Vector rdQLenPdf;
828    Stats::Vector wrQLenPdf;
829    Stats::Histogram bytesPerActivate;
830    Stats::Histogram rdPerTurnAround;
831    Stats::Histogram wrPerTurnAround;
832
833    // Latencies summed over all requests
834    Stats::Scalar totQLat;
835    Stats::Scalar totMemAccLat;
836    Stats::Scalar totBusLat;
837
838    // Average latencies per request
839    Stats::Formula avgQLat;
840    Stats::Formula avgBusLat;
841    Stats::Formula avgMemAccLat;
842
843    // Average bandwidth
844    Stats::Formula avgRdBW;
845    Stats::Formula avgWrBW;
846    Stats::Formula avgRdBWSys;
847    Stats::Formula avgWrBWSys;
848    Stats::Formula peakBW;
849    Stats::Formula busUtil;
850    Stats::Formula busUtilRead;
851    Stats::Formula busUtilWrite;
852
853    // Average queue lengths
854    Stats::Average avgRdQLen;
855    Stats::Average avgWrQLen;
856
857    // Row hit count and rate
858    Stats::Scalar readRowHits;
859    Stats::Scalar writeRowHits;
860    Stats::Formula readRowHitRate;
861    Stats::Formula writeRowHitRate;
862    Stats::Formula avgGap;
863
864    // DRAM Power Calculation
865    Stats::Formula pageHitRate;
866
867    // Holds the value of the rank of burst issued
868    uint8_t activeRank;
869
870    // timestamp offset
871    uint64_t timeStampOffset;
872
873    /**
874     * Upstream caches need this packet until true is returned, so
875     * hold it for deletion until a subsequent call
876     */
877    std::unique_ptr<Packet> pendingDelete;
878
879    /**
880     * This function increments the energy when called. If stats are
881     * dumped periodically, note accumulated energy values will
882     * appear in the stats (even if the stats are reset). This is a
883     * result of the energy values coming from DRAMPower, and there
884     * is currently no support for resetting the state.
885     *
886     * @param rank Currrent rank
887     */
888    void updatePowerStats(Rank& rank_ref);
889
890    /**
891     * Function for sorting Command structures based on timeStamp
892     *
893     * @param a Memory Command
894     * @param next Memory Command
895     * @return true if timeStamp of Command 1 < timeStamp of Command 2
896     */
897    static bool sortTime(const Command& cmd, const Command& cmd_next) {
898        return cmd.timeStamp < cmd_next.timeStamp;
899    };
900
901  public:
902
903    void regStats() override;
904
905    DRAMCtrl(const DRAMCtrlParams* p);
906
907    DrainState drain() override;
908
909    virtual BaseSlavePort& getSlavePort(const std::string& if_name,
910                                        PortID idx = InvalidPortID) override;
911
912    virtual void init() override;
913    virtual void startup() override;
914    virtual void drainResume() override;
915
916  protected:
917
918    Tick recvAtomic(PacketPtr pkt);
919    void recvFunctional(PacketPtr pkt);
920    bool recvTimingReq(PacketPtr pkt);
921
922};
923
924#endif //__MEM_DRAM_CTRL_HH__
925