dram_ctrl.hh revision 11673:9f3ccf96bb5a
1/*
2 * Copyright (c) 2012-2015 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2013 Amin Farmahini-Farahani
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Andreas Hansson
41 *          Ani Udipi
42 *          Neha Agarwal
43 *          Omar Naji
44 *          Matthias Jung
45 */
46
47/**
48 * @file
49 * DRAMCtrl declaration
50 */
51
52#ifndef __MEM_DRAM_CTRL_HH__
53#define __MEM_DRAM_CTRL_HH__
54
55#include <deque>
56#include <string>
57#include <unordered_set>
58
59#include "base/statistics.hh"
60#include "enums/AddrMap.hh"
61#include "enums/MemSched.hh"
62#include "enums/PageManage.hh"
63#include "mem/abstract_mem.hh"
64#include "mem/qport.hh"
65#include "params/DRAMCtrl.hh"
66#include "sim/eventq.hh"
67#include "mem/drampower.hh"
68
69/**
70 * The DRAM controller is a single-channel memory controller capturing
71 * the most important timing constraints associated with a
72 * contemporary DRAM. For multi-channel memory systems, the controller
73 * is combined with a crossbar model, with the channel address
74 * interleaving taking part in the crossbar.
75 *
76 * As a basic design principle, this controller
77 * model is not cycle callable, but instead uses events to: 1) decide
78 * when new decisions can be made, 2) when resources become available,
79 * 3) when things are to be considered done, and 4) when to send
80 * things back. Through these simple principles, the model delivers
81 * high performance, and lots of flexibility, allowing users to
82 * evaluate the system impact of a wide range of memory technologies,
83 * such as DDR3/4, LPDDR2/3/4, WideIO1/2, HBM and HMC.
84 *
85 * For more details, please see Hansson et al, "Simulating DRAM
86 * controllers for future system architecture exploration",
87 * Proc. ISPASS, 2014. If you use this model as part of your research
88 * please cite the paper.
89 */
90class DRAMCtrl : public AbstractMemory
91{
92
93  private:
94
95    // For now, make use of a queued slave port to avoid dealing with
96    // flow control for the responses being sent back
97    class MemoryPort : public QueuedSlavePort
98    {
99
100        RespPacketQueue queue;
101        DRAMCtrl& memory;
102
103      public:
104
105        MemoryPort(const std::string& name, DRAMCtrl& _memory);
106
107      protected:
108
109        Tick recvAtomic(PacketPtr pkt);
110
111        void recvFunctional(PacketPtr pkt);
112
113        bool recvTimingReq(PacketPtr);
114
115        virtual AddrRangeList getAddrRanges() const;
116
117    };
118
119    /**
120     * Our incoming port, for a multi-ported controller add a crossbar
121     * in front of it
122     */
123    MemoryPort port;
124
125    /**
126     * Remeber if the memory system is in timing mode
127     */
128    bool isTimingMode;
129
130    /**
131     * Remember if we have to retry a request when available.
132     */
133    bool retryRdReq;
134    bool retryWrReq;
135
136    /**
137     * Bus state used to control the read/write switching and drive
138     * the scheduling of the next request.
139     */
140    enum BusState {
141        READ = 0,
142        READ_TO_WRITE,
143        WRITE,
144        WRITE_TO_READ
145    };
146
147    BusState busState;
148
149    /**
150     * A basic class to track the bank state, i.e. what row is
151     * currently open (if any), when is the bank free to accept a new
152     * column (read/write) command, when can it be precharged, and
153     * when can it be activated.
154     *
155     * The bank also keeps track of how many bytes have been accessed
156     * in the open row since it was opened.
157     */
158    class Bank
159    {
160
161      public:
162
163        static const uint32_t NO_ROW = -1;
164
165        uint32_t openRow;
166        uint8_t bank;
167        uint8_t bankgr;
168
169        Tick colAllowedAt;
170        Tick preAllowedAt;
171        Tick actAllowedAt;
172
173        uint32_t rowAccesses;
174        uint32_t bytesAccessed;
175
176        Bank() :
177            openRow(NO_ROW), bank(0), bankgr(0),
178            colAllowedAt(0), preAllowedAt(0), actAllowedAt(0),
179            rowAccesses(0), bytesAccessed(0)
180        { }
181    };
182
183
184    /**
185     * Rank class includes a vector of banks. Refresh and Power state
186     * machines are defined per rank. Events required to change the
187     * state of the refresh and power state machine are scheduled per
188     * rank. This class allows the implementation of rank-wise refresh
189     * and rank-wise power-down.
190     */
191    class Rank : public EventManager
192    {
193
194      private:
195
196        /**
197         * The power state captures the different operational states of
198         * the DRAM and interacts with the bus read/write state machine,
199         * and the refresh state machine. In the idle state all banks are
200         * precharged. From there we either go to an auto refresh (as
201         * determined by the refresh state machine), or to a precharge
202         * power down mode. From idle the memory can also go to the active
203         * state (with one or more banks active), and in turn from there
204         * to active power down. At the moment we do not capture the deep
205         * power down and self-refresh state.
206         */
207        enum PowerState {
208            PWR_IDLE = 0,
209            PWR_REF,
210            PWR_PRE_PDN,
211            PWR_ACT,
212            PWR_ACT_PDN
213        };
214
215        /**
216         * The refresh state is used to control the progress of the
217         * refresh scheduling. When normal operation is in progress the
218         * refresh state is idle. From there, it progresses to the refresh
219         * drain state once tREFI has passed. The refresh drain state
220         * captures the DRAM row active state, as it will stay there until
221         * all ongoing accesses complete. Thereafter all banks are
222         * precharged, and lastly, the DRAM is refreshed.
223         */
224        enum RefreshState {
225            REF_IDLE = 0,
226            REF_DRAIN,
227            REF_PRE,
228            REF_RUN
229        };
230
231        /**
232         * A reference to the parent DRAMCtrl instance
233         */
234        DRAMCtrl& memory;
235
236        /**
237         * Since we are taking decisions out of order, we need to keep
238         * track of what power transition is happening at what time, such
239         * that we can go back in time and change history. For example, if
240         * we precharge all banks and schedule going to the idle state, we
241         * might at a later point decide to activate a bank before the
242         * transition to idle would have taken place.
243         */
244        PowerState pwrStateTrans;
245
246        /**
247         * Current power state.
248         */
249        PowerState pwrState;
250
251        /**
252         * Track when we transitioned to the current power state
253         */
254        Tick pwrStateTick;
255
256        /**
257         * current refresh state
258         */
259        RefreshState refreshState;
260
261        /**
262         * Keep track of when a refresh is due.
263         */
264        Tick refreshDueAt;
265
266        /*
267         * Command energies
268         */
269        Stats::Scalar actEnergy;
270        Stats::Scalar preEnergy;
271        Stats::Scalar readEnergy;
272        Stats::Scalar writeEnergy;
273        Stats::Scalar refreshEnergy;
274
275        /*
276         * Active Background Energy
277         */
278        Stats::Scalar actBackEnergy;
279
280        /*
281         * Precharge Background Energy
282         */
283        Stats::Scalar preBackEnergy;
284
285        Stats::Scalar totalEnergy;
286        Stats::Scalar averagePower;
287
288        /**
289         * Track time spent in each power state.
290         */
291        Stats::Vector pwrStateTime;
292
293        /**
294         * Function to update Power Stats
295         */
296        void updatePowerStats();
297
298        /**
299         * Schedule a power state transition in the future, and
300         * potentially override an already scheduled transition.
301         *
302         * @param pwr_state Power state to transition to
303         * @param tick Tick when transition should take place
304         */
305        void schedulePowerEvent(PowerState pwr_state, Tick tick);
306
307      public:
308
309        /**
310         * Current Rank index
311         */
312        uint8_t rank;
313
314        /**
315         * One DRAMPower instance per rank
316         */
317        DRAMPower power;
318
319        /**
320         * Vector of Banks. Each rank is made of several devices which in
321         * term are made from several banks.
322         */
323        std::vector<Bank> banks;
324
325        /**
326         *  To track number of banks which are currently active for
327         *  this rank.
328         */
329        unsigned int numBanksActive;
330
331        /** List to keep track of activate ticks */
332        std::deque<Tick> actTicks;
333
334        Rank(DRAMCtrl& _memory, const DRAMCtrlParams* _p);
335
336        const std::string name() const
337        {
338            return csprintf("%s_%d", memory.name(), rank);
339        }
340
341        /**
342         * Kick off accounting for power and refresh states and
343         * schedule initial refresh.
344         *
345         * @param ref_tick Tick for first refresh
346         */
347        void startup(Tick ref_tick);
348
349        /**
350         * Stop the refresh events.
351         */
352        void suspend();
353
354        /**
355         * Check if the current rank is available for scheduling.
356         *
357         * @param Return true if the rank is idle from a refresh point of view
358         */
359        bool isAvailable() const { return refreshState == REF_IDLE; }
360
361        /**
362         * Let the rank check if it was waiting for requests to drain
363         * to allow it to transition states.
364         */
365        void checkDrainDone();
366
367        /*
368         * Function to register Stats
369         */
370        void regStats();
371
372        void processActivateEvent();
373        EventWrapper<Rank, &Rank::processActivateEvent>
374        activateEvent;
375
376        void processPrechargeEvent();
377        EventWrapper<Rank, &Rank::processPrechargeEvent>
378        prechargeEvent;
379
380        void processRefreshEvent();
381        EventWrapper<Rank, &Rank::processRefreshEvent>
382        refreshEvent;
383
384        void processPowerEvent();
385        EventWrapper<Rank, &Rank::processPowerEvent>
386        powerEvent;
387
388    };
389
390    /**
391     * A burst helper helps organize and manage a packet that is larger than
392     * the DRAM burst size. A system packet that is larger than the burst size
393     * is split into multiple DRAM packets and all those DRAM packets point to
394     * a single burst helper such that we know when the whole packet is served.
395     */
396    class BurstHelper {
397
398      public:
399
400        /** Number of DRAM bursts requred for a system packet **/
401        const unsigned int burstCount;
402
403        /** Number of DRAM bursts serviced so far for a system packet **/
404        unsigned int burstsServiced;
405
406        BurstHelper(unsigned int _burstCount)
407            : burstCount(_burstCount), burstsServiced(0)
408        { }
409    };
410
411    /**
412     * A DRAM packet stores packets along with the timestamp of when
413     * the packet entered the queue, and also the decoded address.
414     */
415    class DRAMPacket {
416
417      public:
418
419        /** When did request enter the controller */
420        const Tick entryTime;
421
422        /** When will request leave the controller */
423        Tick readyTime;
424
425        /** This comes from the outside world */
426        const PacketPtr pkt;
427
428        const bool isRead;
429
430        /** Will be populated by address decoder */
431        const uint8_t rank;
432        const uint8_t bank;
433        const uint32_t row;
434
435        /**
436         * Bank id is calculated considering banks in all the ranks
437         * eg: 2 ranks each with 8 banks, then bankId = 0 --> rank0, bank0 and
438         * bankId = 8 --> rank1, bank0
439         */
440        const uint16_t bankId;
441
442        /**
443         * The starting address of the DRAM packet.
444         * This address could be unaligned to burst size boundaries. The
445         * reason is to keep the address offset so we can accurately check
446         * incoming read packets with packets in the write queue.
447         */
448        Addr addr;
449
450        /**
451         * The size of this dram packet in bytes
452         * It is always equal or smaller than DRAM burst size
453         */
454        unsigned int size;
455
456        /**
457         * A pointer to the BurstHelper if this DRAMPacket is a split packet
458         * If not a split packet (common case), this is set to NULL
459         */
460        BurstHelper* burstHelper;
461        Bank& bankRef;
462        Rank& rankRef;
463
464        DRAMPacket(PacketPtr _pkt, bool is_read, uint8_t _rank, uint8_t _bank,
465                   uint32_t _row, uint16_t bank_id, Addr _addr,
466                   unsigned int _size, Bank& bank_ref, Rank& rank_ref)
467            : entryTime(curTick()), readyTime(curTick()),
468              pkt(_pkt), isRead(is_read), rank(_rank), bank(_bank), row(_row),
469              bankId(bank_id), addr(_addr), size(_size), burstHelper(NULL),
470              bankRef(bank_ref), rankRef(rank_ref)
471        { }
472
473    };
474
475    /**
476     * Bunch of things requires to setup "events" in gem5
477     * When event "respondEvent" occurs for example, the method
478     * processRespondEvent is called; no parameters are allowed
479     * in these methods
480     */
481    void processNextReqEvent();
482    EventWrapper<DRAMCtrl,&DRAMCtrl::processNextReqEvent> nextReqEvent;
483
484    void processRespondEvent();
485    EventWrapper<DRAMCtrl, &DRAMCtrl::processRespondEvent> respondEvent;
486
487    /**
488     * Check if the read queue has room for more entries
489     *
490     * @param pktCount The number of entries needed in the read queue
491     * @return true if read queue is full, false otherwise
492     */
493    bool readQueueFull(unsigned int pktCount) const;
494
495    /**
496     * Check if the write queue has room for more entries
497     *
498     * @param pktCount The number of entries needed in the write queue
499     * @return true if write queue is full, false otherwise
500     */
501    bool writeQueueFull(unsigned int pktCount) const;
502
503    /**
504     * When a new read comes in, first check if the write q has a
505     * pending request to the same address.\ If not, decode the
506     * address to populate rank/bank/row, create one or mutliple
507     * "dram_pkt", and push them to the back of the read queue.\
508     * If this is the only
509     * read request in the system, schedule an event to start
510     * servicing it.
511     *
512     * @param pkt The request packet from the outside world
513     * @param pktCount The number of DRAM bursts the pkt
514     * translate to. If pkt size is larger then one full burst,
515     * then pktCount is greater than one.
516     */
517    void addToReadQueue(PacketPtr pkt, unsigned int pktCount);
518
519    /**
520     * Decode the incoming pkt, create a dram_pkt and push to the
521     * back of the write queue. \If the write q length is more than
522     * the threshold specified by the user, ie the queue is beginning
523     * to get full, stop reads, and start draining writes.
524     *
525     * @param pkt The request packet from the outside world
526     * @param pktCount The number of DRAM bursts the pkt
527     * translate to. If pkt size is larger then one full burst,
528     * then pktCount is greater than one.
529     */
530    void addToWriteQueue(PacketPtr pkt, unsigned int pktCount);
531
532    /**
533     * Actually do the DRAM access - figure out the latency it
534     * will take to service the req based on bank state, channel state etc
535     * and then update those states to account for this request.\ Based
536     * on this, update the packet's "readyTime" and move it to the
537     * response q from where it will eventually go back to the outside
538     * world.
539     *
540     * @param pkt The DRAM packet created from the outside world pkt
541     */
542    void doDRAMAccess(DRAMPacket* dram_pkt);
543
544    /**
545     * When a packet reaches its "readyTime" in the response Q,
546     * use the "access()" method in AbstractMemory to actually
547     * create the response packet, and send it back to the outside
548     * world requestor.
549     *
550     * @param pkt The packet from the outside world
551     * @param static_latency Static latency to add before sending the packet
552     */
553    void accessAndRespond(PacketPtr pkt, Tick static_latency);
554
555    /**
556     * Address decoder to figure out physical mapping onto ranks,
557     * banks, and rows. This function is called multiple times on the same
558     * system packet if the pakcet is larger than burst of the memory. The
559     * dramPktAddr is used for the offset within the packet.
560     *
561     * @param pkt The packet from the outside world
562     * @param dramPktAddr The starting address of the DRAM packet
563     * @param size The size of the DRAM packet in bytes
564     * @param isRead Is the request for a read or a write to DRAM
565     * @return A DRAMPacket pointer with the decoded information
566     */
567    DRAMPacket* decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned int size,
568                           bool isRead);
569
570    /**
571     * The memory schduler/arbiter - picks which request needs to
572     * go next, based on the specified policy such as FCFS or FR-FCFS
573     * and moves it to the head of the queue.
574     * Prioritizes accesses to the same rank as previous burst unless
575     * controller is switching command type.
576     *
577     * @param queue Queued requests to consider
578     * @param extra_col_delay Any extra delay due to a read/write switch
579     * @return true if a packet is scheduled to a rank which is available else
580     * false
581     */
582    bool chooseNext(std::deque<DRAMPacket*>& queue, Tick extra_col_delay);
583
584    /**
585     * For FR-FCFS policy reorder the read/write queue depending on row buffer
586     * hits and earliest bursts available in DRAM
587     *
588     * @param queue Queued requests to consider
589     * @param extra_col_delay Any extra delay due to a read/write switch
590     * @return true if a packet is scheduled to a rank which is available else
591     * false
592     */
593    bool reorderQueue(std::deque<DRAMPacket*>& queue, Tick extra_col_delay);
594
595    /**
596     * Find which are the earliest banks ready to issue an activate
597     * for the enqueued requests. Assumes maximum of 64 banks per DIMM
598     * Also checks if the bank is already prepped.
599     *
600     * @param queue Queued requests to consider
601     * @param time of seamless burst command
602     * @return One-hot encoded mask of bank indices
603     * @return boolean indicating burst can issue seamlessly, with no gaps
604     */
605    std::pair<uint64_t, bool> minBankPrep(const std::deque<DRAMPacket*>& queue,
606                                          Tick min_col_at) const;
607
608    /**
609     * Keep track of when row activations happen, in order to enforce
610     * the maximum number of activations in the activation window. The
611     * method updates the time that the banks become available based
612     * on the current limits.
613     *
614     * @param rank_ref Reference to the rank
615     * @param bank_ref Reference to the bank
616     * @param act_tick Time when the activation takes place
617     * @param row Index of the row
618     */
619    void activateBank(Rank& rank_ref, Bank& bank_ref, Tick act_tick,
620                      uint32_t row);
621
622    /**
623     * Precharge a given bank and also update when the precharge is
624     * done. This will also deal with any stats related to the
625     * accesses to the open page.
626     *
627     * @param rank_ref The rank to precharge
628     * @param bank_ref The bank to precharge
629     * @param pre_at Time when the precharge takes place
630     * @param trace Is this an auto precharge then do not add to trace
631     */
632    void prechargeBank(Rank& rank_ref, Bank& bank_ref,
633                       Tick pre_at, bool trace = true);
634
635    /**
636     * Used for debugging to observe the contents of the queues.
637     */
638    void printQs() const;
639
640    /**
641     * Burst-align an address.
642     *
643     * @param addr The potentially unaligned address
644     *
645     * @return An address aligned to a DRAM burst
646     */
647    Addr burstAlign(Addr addr) const { return (addr & ~(Addr(burstSize - 1))); }
648
649    /**
650     * The controller's main read and write queues
651     */
652    std::deque<DRAMPacket*> readQueue;
653    std::deque<DRAMPacket*> writeQueue;
654
655    /**
656     * To avoid iterating over the write queue to check for
657     * overlapping transactions, maintain a set of burst addresses
658     * that are currently queued. Since we merge writes to the same
659     * location we never have more than one address to the same burst
660     * address.
661     */
662    std::unordered_set<Addr> isInWriteQueue;
663
664    /**
665     * Response queue where read packets wait after we're done working
666     * with them, but it's not time to send the response yet. The
667     * responses are stored seperately mostly to keep the code clean
668     * and help with events scheduling. For all logical purposes such
669     * as sizing the read queue, this and the main read queue need to
670     * be added together.
671     */
672    std::deque<DRAMPacket*> respQueue;
673
674    /**
675     * Vector of ranks
676     */
677    std::vector<Rank*> ranks;
678
679    /**
680     * The following are basic design parameters of the memory
681     * controller, and are initialized based on parameter values.
682     * The rowsPerBank is determined based on the capacity, number of
683     * ranks and banks, the burst size, and the row buffer size.
684     */
685    const uint32_t deviceSize;
686    const uint32_t deviceBusWidth;
687    const uint32_t burstLength;
688    const uint32_t deviceRowBufferSize;
689    const uint32_t devicesPerRank;
690    const uint32_t burstSize;
691    const uint32_t rowBufferSize;
692    const uint32_t columnsPerRowBuffer;
693    const uint32_t columnsPerStripe;
694    const uint32_t ranksPerChannel;
695    const uint32_t bankGroupsPerRank;
696    const bool bankGroupArch;
697    const uint32_t banksPerRank;
698    const uint32_t channels;
699    uint32_t rowsPerBank;
700    const uint32_t readBufferSize;
701    const uint32_t writeBufferSize;
702    const uint32_t writeHighThreshold;
703    const uint32_t writeLowThreshold;
704    const uint32_t minWritesPerSwitch;
705    uint32_t writesThisTime;
706    uint32_t readsThisTime;
707
708    /**
709     * Basic memory timing parameters initialized based on parameter
710     * values.
711     */
712    const Tick M5_CLASS_VAR_USED tCK;
713    const Tick tWTR;
714    const Tick tRTW;
715    const Tick tCS;
716    const Tick tBURST;
717    const Tick tCCD_L;
718    const Tick tRCD;
719    const Tick tCL;
720    const Tick tRP;
721    const Tick tRAS;
722    const Tick tWR;
723    const Tick tRTP;
724    const Tick tRFC;
725    const Tick tREFI;
726    const Tick tRRD;
727    const Tick tRRD_L;
728    const Tick tXAW;
729    const Tick tXP;
730    const Tick tXS;
731    const uint32_t activationLimit;
732
733    /**
734     * Memory controller configuration initialized based on parameter
735     * values.
736     */
737    Enums::MemSched memSchedPolicy;
738    Enums::AddrMap addrMapping;
739    Enums::PageManage pageMgmt;
740
741    /**
742     * Max column accesses (read and write) per row, before forefully
743     * closing it.
744     */
745    const uint32_t maxAccessesPerRow;
746
747    /**
748     * Pipeline latency of the controller frontend. The frontend
749     * contribution is added to writes (that complete when they are in
750     * the write buffer) and reads that are serviced the write buffer.
751     */
752    const Tick frontendLatency;
753
754    /**
755     * Pipeline latency of the backend and PHY. Along with the
756     * frontend contribution, this latency is added to reads serviced
757     * by the DRAM.
758     */
759    const Tick backendLatency;
760
761    /**
762     * Till when has the main data bus been spoken for already?
763     */
764    Tick busBusyUntil;
765
766    Tick prevArrival;
767
768    /**
769     * The soonest you have to start thinking about the next request
770     * is the longest access time that can occur before
771     * busBusyUntil. Assuming you need to precharge, open a new row,
772     * and access, it is tRP + tRCD + tCL.
773     */
774    Tick nextReqTime;
775
776    // All statistics that the model needs to capture
777    Stats::Scalar readReqs;
778    Stats::Scalar writeReqs;
779    Stats::Scalar readBursts;
780    Stats::Scalar writeBursts;
781    Stats::Scalar bytesReadDRAM;
782    Stats::Scalar bytesReadWrQ;
783    Stats::Scalar bytesWritten;
784    Stats::Scalar bytesReadSys;
785    Stats::Scalar bytesWrittenSys;
786    Stats::Scalar servicedByWrQ;
787    Stats::Scalar mergedWrBursts;
788    Stats::Scalar neitherReadNorWrite;
789    Stats::Vector perBankRdBursts;
790    Stats::Vector perBankWrBursts;
791    Stats::Scalar numRdRetry;
792    Stats::Scalar numWrRetry;
793    Stats::Scalar totGap;
794    Stats::Vector readPktSize;
795    Stats::Vector writePktSize;
796    Stats::Vector rdQLenPdf;
797    Stats::Vector wrQLenPdf;
798    Stats::Histogram bytesPerActivate;
799    Stats::Histogram rdPerTurnAround;
800    Stats::Histogram wrPerTurnAround;
801
802    // Latencies summed over all requests
803    Stats::Scalar totQLat;
804    Stats::Scalar totMemAccLat;
805    Stats::Scalar totBusLat;
806
807    // Average latencies per request
808    Stats::Formula avgQLat;
809    Stats::Formula avgBusLat;
810    Stats::Formula avgMemAccLat;
811
812    // Average bandwidth
813    Stats::Formula avgRdBW;
814    Stats::Formula avgWrBW;
815    Stats::Formula avgRdBWSys;
816    Stats::Formula avgWrBWSys;
817    Stats::Formula peakBW;
818    Stats::Formula busUtil;
819    Stats::Formula busUtilRead;
820    Stats::Formula busUtilWrite;
821
822    // Average queue lengths
823    Stats::Average avgRdQLen;
824    Stats::Average avgWrQLen;
825
826    // Row hit count and rate
827    Stats::Scalar readRowHits;
828    Stats::Scalar writeRowHits;
829    Stats::Formula readRowHitRate;
830    Stats::Formula writeRowHitRate;
831    Stats::Formula avgGap;
832
833    // DRAM Power Calculation
834    Stats::Formula pageHitRate;
835
836    // Holds the value of the rank of burst issued
837    uint8_t activeRank;
838
839    // timestamp offset
840    uint64_t timeStampOffset;
841
842    /**
843     * Upstream caches need this packet until true is returned, so
844     * hold it for deletion until a subsequent call
845     */
846    std::unique_ptr<Packet> pendingDelete;
847
848    /**
849     * This function increments the energy when called. If stats are
850     * dumped periodically, note accumulated energy values will
851     * appear in the stats (even if the stats are reset). This is a
852     * result of the energy values coming from DRAMPower, and there
853     * is currently no support for resetting the state.
854     *
855     * @param rank Currrent rank
856     */
857    void updatePowerStats(Rank& rank_ref);
858
859    /**
860     * Function for sorting commands in the command list of DRAMPower.
861     *
862     * @param a Memory Command in command list of DRAMPower library
863     * @param next Memory Command in command list of DRAMPower
864     * @return true if timestamp of Command 1 < timestamp of Command 2
865     */
866    static bool sortTime(const Data::MemCommand& m1,
867                         const Data::MemCommand& m2) {
868        return m1.getTimeInt64() < m2.getTimeInt64();
869    };
870
871
872  public:
873
874    void regStats() override;
875
876    DRAMCtrl(const DRAMCtrlParams* p);
877
878    DrainState drain() override;
879
880    virtual BaseSlavePort& getSlavePort(const std::string& if_name,
881                                        PortID idx = InvalidPortID) override;
882
883    virtual void init() override;
884    virtual void startup() override;
885    virtual void drainResume() override;
886
887  protected:
888
889    Tick recvAtomic(PacketPtr pkt);
890    void recvFunctional(PacketPtr pkt);
891    bool recvTimingReq(PacketPtr pkt);
892
893};
894
895#endif //__MEM_DRAM_CTRL_HH__
896