dram_ctrl.hh revision 10618:bb665366cc00
1/*
2 * Copyright (c) 2012-2014 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2013 Amin Farmahini-Farahani
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Andreas Hansson
41 *          Ani Udipi
42 *          Neha Agarwal
43 *          Omar Naji
44 */
45
46/**
47 * @file
48 * DRAMCtrl declaration
49 */
50
51#ifndef __MEM_DRAM_CTRL_HH__
52#define __MEM_DRAM_CTRL_HH__
53
54#include <deque>
55#include <string>
56
57#include "base/statistics.hh"
58#include "enums/AddrMap.hh"
59#include "enums/MemSched.hh"
60#include "enums/PageManage.hh"
61#include "mem/abstract_mem.hh"
62#include "mem/qport.hh"
63#include "params/DRAMCtrl.hh"
64#include "sim/eventq.hh"
65#include "mem/drampower.hh"
66
67/**
68 * The DRAM controller is a single-channel memory controller capturing
69 * the most important timing constraints associated with a
70 * contemporary DRAM. For multi-channel memory systems, the controller
71 * is combined with a crossbar model, with the channel address
72 * interleaving taking part in the crossbar.
73 *
74 * As a basic design principle, this controller
75 * model is not cycle callable, but instead uses events to: 1) decide
76 * when new decisions can be made, 2) when resources become available,
77 * 3) when things are to be considered done, and 4) when to send
78 * things back. Through these simple principles, the model delivers
79 * high performance, and lots of flexibility, allowing users to
80 * evaluate the system impact of a wide range of memory technologies,
81 * such as DDR3/4, LPDDR2/3/4, WideIO1/2, HBM and HMC.
82 *
83 * For more details, please see Hansson et al, "Simulating DRAM
84 * controllers for future system architecture exploration",
85 * Proc. ISPASS, 2014. If you use this model as part of your research
86 * please cite the paper.
87 */
88class DRAMCtrl : public AbstractMemory
89{
90
91  private:
92
93    // For now, make use of a queued slave port to avoid dealing with
94    // flow control for the responses being sent back
95    class MemoryPort : public QueuedSlavePort
96    {
97
98        SlavePacketQueue queue;
99        DRAMCtrl& memory;
100
101      public:
102
103        MemoryPort(const std::string& name, DRAMCtrl& _memory);
104
105      protected:
106
107        Tick recvAtomic(PacketPtr pkt);
108
109        void recvFunctional(PacketPtr pkt);
110
111        bool recvTimingReq(PacketPtr);
112
113        virtual AddrRangeList getAddrRanges() const;
114
115    };
116
117    /**
118     * Our incoming port, for a multi-ported controller add a crossbar
119     * in front of it
120     */
121    MemoryPort port;
122
123    /**
124     * Remember if we have to retry a request when available.
125     */
126    bool retryRdReq;
127    bool retryWrReq;
128
129    /**
130     * Bus state used to control the read/write switching and drive
131     * the scheduling of the next request.
132     */
133    enum BusState {
134        READ = 0,
135        READ_TO_WRITE,
136        WRITE,
137        WRITE_TO_READ
138    };
139
140    BusState busState;
141
142    /**
143     * A basic class to track the bank state, i.e. what row is
144     * currently open (if any), when is the bank free to accept a new
145     * column (read/write) command, when can it be precharged, and
146     * when can it be activated.
147     *
148     * The bank also keeps track of how many bytes have been accessed
149     * in the open row since it was opened.
150     */
151    class Bank
152    {
153
154      public:
155
156        static const uint32_t NO_ROW = -1;
157
158        uint32_t openRow;
159        uint8_t bank;
160        uint8_t bankgr;
161
162        Tick colAllowedAt;
163        Tick preAllowedAt;
164        Tick actAllowedAt;
165
166        uint32_t rowAccesses;
167        uint32_t bytesAccessed;
168
169        Bank() :
170            openRow(NO_ROW), bank(0), bankgr(0),
171            colAllowedAt(0), preAllowedAt(0), actAllowedAt(0),
172            rowAccesses(0), bytesAccessed(0)
173        { }
174    };
175
176
177    /**
178     * Rank class includes a vector of banks. Refresh and Power state
179     * machines are defined per rank. Events required to change the
180     * state of the refresh and power state machine are scheduled per
181     * rank. This class allows the implementation of rank-wise refresh
182     * and rank-wise power-down.
183     */
184    class Rank : public EventManager
185    {
186
187      private:
188
189        /**
190         * The power state captures the different operational states of
191         * the DRAM and interacts with the bus read/write state machine,
192         * and the refresh state machine. In the idle state all banks are
193         * precharged. From there we either go to an auto refresh (as
194         * determined by the refresh state machine), or to a precharge
195         * power down mode. From idle the memory can also go to the active
196         * state (with one or more banks active), and in turn from there
197         * to active power down. At the moment we do not capture the deep
198         * power down and self-refresh state.
199         */
200        enum PowerState {
201            PWR_IDLE = 0,
202            PWR_REF,
203            PWR_PRE_PDN,
204            PWR_ACT,
205            PWR_ACT_PDN
206        };
207
208        /**
209         * The refresh state is used to control the progress of the
210         * refresh scheduling. When normal operation is in progress the
211         * refresh state is idle. From there, it progresses to the refresh
212         * drain state once tREFI has passed. The refresh drain state
213         * captures the DRAM row active state, as it will stay there until
214         * all ongoing accesses complete. Thereafter all banks are
215         * precharged, and lastly, the DRAM is refreshed.
216         */
217        enum RefreshState {
218            REF_IDLE = 0,
219            REF_DRAIN,
220            REF_PRE,
221            REF_RUN
222        };
223
224        /**
225         * A reference to the parent DRAMCtrl instance
226         */
227        DRAMCtrl& memory;
228
229        /**
230         * Since we are taking decisions out of order, we need to keep
231         * track of what power transition is happening at what time, such
232         * that we can go back in time and change history. For example, if
233         * we precharge all banks and schedule going to the idle state, we
234         * might at a later point decide to activate a bank before the
235         * transition to idle would have taken place.
236         */
237        PowerState pwrStateTrans;
238
239        /**
240         * Current power state.
241         */
242        PowerState pwrState;
243
244        /**
245         * Track when we transitioned to the current power state
246         */
247        Tick pwrStateTick;
248
249        /**
250         * current refresh state
251         */
252        RefreshState refreshState;
253
254        /**
255         * Keep track of when a refresh is due.
256         */
257        Tick refreshDueAt;
258
259        /*
260         * Command energies
261         */
262        Stats::Scalar actEnergy;
263        Stats::Scalar preEnergy;
264        Stats::Scalar readEnergy;
265        Stats::Scalar writeEnergy;
266        Stats::Scalar refreshEnergy;
267
268        /*
269         * Active Background Energy
270         */
271        Stats::Scalar actBackEnergy;
272
273        /*
274         * Precharge Background Energy
275         */
276        Stats::Scalar preBackEnergy;
277
278        Stats::Scalar totalEnergy;
279        Stats::Scalar averagePower;
280
281        /**
282         * Track time spent in each power state.
283         */
284        Stats::Vector pwrStateTime;
285
286        /**
287         * Function to update Power Stats
288         */
289        void updatePowerStats();
290
291        /**
292         * Schedule a power state transition in the future, and
293         * potentially override an already scheduled transition.
294         *
295         * @param pwr_state Power state to transition to
296         * @param tick Tick when transition should take place
297         */
298        void schedulePowerEvent(PowerState pwr_state, Tick tick);
299
300      public:
301
302        /**
303         * Current Rank index
304         */
305        uint8_t rank;
306
307        /**
308         * One DRAMPower instance per rank
309         */
310        DRAMPower power;
311
312        /**
313         * Vector of Banks. Each rank is made of several devices which in
314         * term are made from several banks.
315         */
316        std::vector<Bank> banks;
317
318        /**
319         *  To track number of banks which are currently active for
320         *  this rank.
321         */
322        unsigned int numBanksActive;
323
324        /** List to keep track of activate ticks */
325        std::deque<Tick> actTicks;
326
327        Rank(DRAMCtrl& _memory, const DRAMCtrlParams* _p);
328
329        const std::string name() const
330        {
331            return csprintf("%s_%d", memory.name(), rank);
332        }
333
334        /**
335         * Kick off accounting for power and refresh states and
336         * schedule initial refresh.
337         *
338         * @param ref_tick Tick for first refresh
339         */
340        void startup(Tick ref_tick);
341
342        /**
343         * Check if the current rank is available for scheduling.
344         *
345         * @param Return true if the rank is idle from a refresh point of view
346         */
347        bool isAvailable() const { return refreshState == REF_IDLE; }
348
349        /**
350         * Let the rank check if it was waiting for requests to drain
351         * to allow it to transition states.
352         */
353        void checkDrainDone();
354
355        /*
356         * Function to register Stats
357         */
358        void regStats();
359
360        void processActivateEvent();
361        EventWrapper<Rank, &Rank::processActivateEvent>
362        activateEvent;
363
364        void processPrechargeEvent();
365        EventWrapper<Rank, &Rank::processPrechargeEvent>
366        prechargeEvent;
367
368        void processRefreshEvent();
369        EventWrapper<Rank, &Rank::processRefreshEvent>
370        refreshEvent;
371
372        void processPowerEvent();
373        EventWrapper<Rank, &Rank::processPowerEvent>
374        powerEvent;
375
376    };
377
378    /**
379     * A burst helper helps organize and manage a packet that is larger than
380     * the DRAM burst size. A system packet that is larger than the burst size
381     * is split into multiple DRAM packets and all those DRAM packets point to
382     * a single burst helper such that we know when the whole packet is served.
383     */
384    class BurstHelper {
385
386      public:
387
388        /** Number of DRAM bursts requred for a system packet **/
389        const unsigned int burstCount;
390
391        /** Number of DRAM bursts serviced so far for a system packet **/
392        unsigned int burstsServiced;
393
394        BurstHelper(unsigned int _burstCount)
395            : burstCount(_burstCount), burstsServiced(0)
396        { }
397    };
398
399    /**
400     * A DRAM packet stores packets along with the timestamp of when
401     * the packet entered the queue, and also the decoded address.
402     */
403    class DRAMPacket {
404
405      public:
406
407        /** When did request enter the controller */
408        const Tick entryTime;
409
410        /** When will request leave the controller */
411        Tick readyTime;
412
413        /** This comes from the outside world */
414        const PacketPtr pkt;
415
416        const bool isRead;
417
418        /** Will be populated by address decoder */
419        const uint8_t rank;
420        const uint8_t bank;
421        const uint32_t row;
422
423        /**
424         * Bank id is calculated considering banks in all the ranks
425         * eg: 2 ranks each with 8 banks, then bankId = 0 --> rank0, bank0 and
426         * bankId = 8 --> rank1, bank0
427         */
428        const uint16_t bankId;
429
430        /**
431         * The starting address of the DRAM packet.
432         * This address could be unaligned to burst size boundaries. The
433         * reason is to keep the address offset so we can accurately check
434         * incoming read packets with packets in the write queue.
435         */
436        Addr addr;
437
438        /**
439         * The size of this dram packet in bytes
440         * It is always equal or smaller than DRAM burst size
441         */
442        unsigned int size;
443
444        /**
445         * A pointer to the BurstHelper if this DRAMPacket is a split packet
446         * If not a split packet (common case), this is set to NULL
447         */
448        BurstHelper* burstHelper;
449        Bank& bankRef;
450        Rank& rankRef;
451
452        DRAMPacket(PacketPtr _pkt, bool is_read, uint8_t _rank, uint8_t _bank,
453                   uint32_t _row, uint16_t bank_id, Addr _addr,
454                   unsigned int _size, Bank& bank_ref, Rank& rank_ref)
455            : entryTime(curTick()), readyTime(curTick()),
456              pkt(_pkt), isRead(is_read), rank(_rank), bank(_bank), row(_row),
457              bankId(bank_id), addr(_addr), size(_size), burstHelper(NULL),
458              bankRef(bank_ref), rankRef(rank_ref)
459        { }
460
461    };
462
463    /**
464     * Bunch of things requires to setup "events" in gem5
465     * When event "respondEvent" occurs for example, the method
466     * processRespondEvent is called; no parameters are allowed
467     * in these methods
468     */
469    void processNextReqEvent();
470    EventWrapper<DRAMCtrl,&DRAMCtrl::processNextReqEvent> nextReqEvent;
471
472    void processRespondEvent();
473    EventWrapper<DRAMCtrl, &DRAMCtrl::processRespondEvent> respondEvent;
474
475    /**
476     * Check if the read queue has room for more entries
477     *
478     * @param pktCount The number of entries needed in the read queue
479     * @return true if read queue is full, false otherwise
480     */
481    bool readQueueFull(unsigned int pktCount) const;
482
483    /**
484     * Check if the write queue has room for more entries
485     *
486     * @param pktCount The number of entries needed in the write queue
487     * @return true if write queue is full, false otherwise
488     */
489    bool writeQueueFull(unsigned int pktCount) const;
490
491    /**
492     * When a new read comes in, first check if the write q has a
493     * pending request to the same address.\ If not, decode the
494     * address to populate rank/bank/row, create one or mutliple
495     * "dram_pkt", and push them to the back of the read queue.\
496     * If this is the only
497     * read request in the system, schedule an event to start
498     * servicing it.
499     *
500     * @param pkt The request packet from the outside world
501     * @param pktCount The number of DRAM bursts the pkt
502     * translate to. If pkt size is larger then one full burst,
503     * then pktCount is greater than one.
504     */
505    void addToReadQueue(PacketPtr pkt, unsigned int pktCount);
506
507    /**
508     * Decode the incoming pkt, create a dram_pkt and push to the
509     * back of the write queue. \If the write q length is more than
510     * the threshold specified by the user, ie the queue is beginning
511     * to get full, stop reads, and start draining writes.
512     *
513     * @param pkt The request packet from the outside world
514     * @param pktCount The number of DRAM bursts the pkt
515     * translate to. If pkt size is larger then one full burst,
516     * then pktCount is greater than one.
517     */
518    void addToWriteQueue(PacketPtr pkt, unsigned int pktCount);
519
520    /**
521     * Actually do the DRAM access - figure out the latency it
522     * will take to service the req based on bank state, channel state etc
523     * and then update those states to account for this request.\ Based
524     * on this, update the packet's "readyTime" and move it to the
525     * response q from where it will eventually go back to the outside
526     * world.
527     *
528     * @param pkt The DRAM packet created from the outside world pkt
529     */
530    void doDRAMAccess(DRAMPacket* dram_pkt);
531
532    /**
533     * When a packet reaches its "readyTime" in the response Q,
534     * use the "access()" method in AbstractMemory to actually
535     * create the response packet, and send it back to the outside
536     * world requestor.
537     *
538     * @param pkt The packet from the outside world
539     * @param static_latency Static latency to add before sending the packet
540     */
541    void accessAndRespond(PacketPtr pkt, Tick static_latency);
542
543    /**
544     * Address decoder to figure out physical mapping onto ranks,
545     * banks, and rows. This function is called multiple times on the same
546     * system packet if the pakcet is larger than burst of the memory. The
547     * dramPktAddr is used for the offset within the packet.
548     *
549     * @param pkt The packet from the outside world
550     * @param dramPktAddr The starting address of the DRAM packet
551     * @param size The size of the DRAM packet in bytes
552     * @param isRead Is the request for a read or a write to DRAM
553     * @return A DRAMPacket pointer with the decoded information
554     */
555    DRAMPacket* decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned int size,
556                           bool isRead);
557
558    /**
559     * The memory schduler/arbiter - picks which request needs to
560     * go next, based on the specified policy such as FCFS or FR-FCFS
561     * and moves it to the head of the queue.
562     * Prioritizes accesses to the same rank as previous burst unless
563     * controller is switching command type.
564     *
565     * @param queue Queued requests to consider
566     * @param switched_cmd_type Command type is changing
567     * @return true if a packet is scheduled to a rank which is available else
568     * false
569     */
570    bool chooseNext(std::deque<DRAMPacket*>& queue, bool switched_cmd_type);
571
572    /**
573     * For FR-FCFS policy reorder the read/write queue depending on row buffer
574     * hits and earliest banks available in DRAM
575     * Prioritizes accesses to the same rank as previous burst unless
576     * controller is switching command type.
577     *
578     * @param queue Queued requests to consider
579     * @param switched_cmd_type Command type is changing
580     * @return true if a packet is scheduled to a rank which is available else
581     * false
582     */
583    bool reorderQueue(std::deque<DRAMPacket*>& queue, bool switched_cmd_type);
584
585    /**
586     * Find which are the earliest banks ready to issue an activate
587     * for the enqueued requests. Assumes maximum of 64 banks per DIMM
588     * Also checks if the bank is already prepped.
589     *
590     * @param queue Queued requests to consider
591     * @param switched_cmd_type Command type is changing
592     * @return One-hot encoded mask of bank indices
593     */
594    uint64_t minBankPrep(const std::deque<DRAMPacket*>& queue,
595                         bool switched_cmd_type) const;
596
597    /**
598     * Keep track of when row activations happen, in order to enforce
599     * the maximum number of activations in the activation window. The
600     * method updates the time that the banks become available based
601     * on the current limits.
602     *
603     * @param rank_ref Reference to the rank
604     * @param bank_ref Reference to the bank
605     * @param act_tick Time when the activation takes place
606     * @param row Index of the row
607     */
608    void activateBank(Rank& rank_ref, Bank& bank_ref, Tick act_tick,
609                      uint32_t row);
610
611    /**
612     * Precharge a given bank and also update when the precharge is
613     * done. This will also deal with any stats related to the
614     * accesses to the open page.
615     *
616     * @param rank_ref The rank to precharge
617     * @param bank_ref The bank to precharge
618     * @param pre_at Time when the precharge takes place
619     * @param trace Is this an auto precharge then do not add to trace
620     */
621    void prechargeBank(Rank& rank_ref, Bank& bank_ref,
622                       Tick pre_at, bool trace = true);
623
624    /**
625     * Used for debugging to observe the contents of the queues.
626     */
627    void printQs() const;
628
629    /**
630     * The controller's main read and write queues
631     */
632    std::deque<DRAMPacket*> readQueue;
633    std::deque<DRAMPacket*> writeQueue;
634
635    /**
636     * Response queue where read packets wait after we're done working
637     * with them, but it's not time to send the response yet. The
638     * responses are stored seperately mostly to keep the code clean
639     * and help with events scheduling. For all logical purposes such
640     * as sizing the read queue, this and the main read queue need to
641     * be added together.
642     */
643    std::deque<DRAMPacket*> respQueue;
644
645    /**
646     * If we need to drain, keep the drain manager around until we're
647     * done here.
648     */
649    DrainManager *drainManager;
650
651    /**
652     * Vector of ranks
653     */
654    std::vector<Rank*> ranks;
655
656    /**
657     * The following are basic design parameters of the memory
658     * controller, and are initialized based on parameter values.
659     * The rowsPerBank is determined based on the capacity, number of
660     * ranks and banks, the burst size, and the row buffer size.
661     */
662    const uint32_t deviceSize;
663    const uint32_t deviceBusWidth;
664    const uint32_t burstLength;
665    const uint32_t deviceRowBufferSize;
666    const uint32_t devicesPerRank;
667    const uint32_t burstSize;
668    const uint32_t rowBufferSize;
669    const uint32_t columnsPerRowBuffer;
670    const uint32_t columnsPerStripe;
671    const uint32_t ranksPerChannel;
672    const uint32_t bankGroupsPerRank;
673    const bool bankGroupArch;
674    const uint32_t banksPerRank;
675    const uint32_t channels;
676    uint32_t rowsPerBank;
677    const uint32_t readBufferSize;
678    const uint32_t writeBufferSize;
679    const uint32_t writeHighThreshold;
680    const uint32_t writeLowThreshold;
681    const uint32_t minWritesPerSwitch;
682    uint32_t writesThisTime;
683    uint32_t readsThisTime;
684
685    /**
686     * Basic memory timing parameters initialized based on parameter
687     * values.
688     */
689    const Tick M5_CLASS_VAR_USED tCK;
690    const Tick tWTR;
691    const Tick tRTW;
692    const Tick tCS;
693    const Tick tBURST;
694    const Tick tCCD_L;
695    const Tick tRCD;
696    const Tick tCL;
697    const Tick tRP;
698    const Tick tRAS;
699    const Tick tWR;
700    const Tick tRTP;
701    const Tick tRFC;
702    const Tick tREFI;
703    const Tick tRRD;
704    const Tick tRRD_L;
705    const Tick tXAW;
706    const uint32_t activationLimit;
707
708    /**
709     * Memory controller configuration initialized based on parameter
710     * values.
711     */
712    Enums::MemSched memSchedPolicy;
713    Enums::AddrMap addrMapping;
714    Enums::PageManage pageMgmt;
715
716    /**
717     * Max column accesses (read and write) per row, before forefully
718     * closing it.
719     */
720    const uint32_t maxAccessesPerRow;
721
722    /**
723     * Pipeline latency of the controller frontend. The frontend
724     * contribution is added to writes (that complete when they are in
725     * the write buffer) and reads that are serviced the write buffer.
726     */
727    const Tick frontendLatency;
728
729    /**
730     * Pipeline latency of the backend and PHY. Along with the
731     * frontend contribution, this latency is added to reads serviced
732     * by the DRAM.
733     */
734    const Tick backendLatency;
735
736    /**
737     * Till when has the main data bus been spoken for already?
738     */
739    Tick busBusyUntil;
740
741    Tick prevArrival;
742
743    /**
744     * The soonest you have to start thinking about the next request
745     * is the longest access time that can occur before
746     * busBusyUntil. Assuming you need to precharge, open a new row,
747     * and access, it is tRP + tRCD + tCL.
748     */
749    Tick nextReqTime;
750
751    // All statistics that the model needs to capture
752    Stats::Scalar readReqs;
753    Stats::Scalar writeReqs;
754    Stats::Scalar readBursts;
755    Stats::Scalar writeBursts;
756    Stats::Scalar bytesReadDRAM;
757    Stats::Scalar bytesReadWrQ;
758    Stats::Scalar bytesWritten;
759    Stats::Scalar bytesReadSys;
760    Stats::Scalar bytesWrittenSys;
761    Stats::Scalar servicedByWrQ;
762    Stats::Scalar mergedWrBursts;
763    Stats::Scalar neitherReadNorWrite;
764    Stats::Vector perBankRdBursts;
765    Stats::Vector perBankWrBursts;
766    Stats::Scalar numRdRetry;
767    Stats::Scalar numWrRetry;
768    Stats::Scalar totGap;
769    Stats::Vector readPktSize;
770    Stats::Vector writePktSize;
771    Stats::Vector rdQLenPdf;
772    Stats::Vector wrQLenPdf;
773    Stats::Histogram bytesPerActivate;
774    Stats::Histogram rdPerTurnAround;
775    Stats::Histogram wrPerTurnAround;
776
777    // Latencies summed over all requests
778    Stats::Scalar totQLat;
779    Stats::Scalar totMemAccLat;
780    Stats::Scalar totBusLat;
781
782    // Average latencies per request
783    Stats::Formula avgQLat;
784    Stats::Formula avgBusLat;
785    Stats::Formula avgMemAccLat;
786
787    // Average bandwidth
788    Stats::Formula avgRdBW;
789    Stats::Formula avgWrBW;
790    Stats::Formula avgRdBWSys;
791    Stats::Formula avgWrBWSys;
792    Stats::Formula peakBW;
793    Stats::Formula busUtil;
794    Stats::Formula busUtilRead;
795    Stats::Formula busUtilWrite;
796
797    // Average queue lengths
798    Stats::Average avgRdQLen;
799    Stats::Average avgWrQLen;
800
801    // Row hit count and rate
802    Stats::Scalar readRowHits;
803    Stats::Scalar writeRowHits;
804    Stats::Formula readRowHitRate;
805    Stats::Formula writeRowHitRate;
806    Stats::Formula avgGap;
807
808    // DRAM Power Calculation
809    Stats::Formula pageHitRate;
810
811    // Holds the value of the rank of burst issued
812    uint8_t activeRank;
813
814    // timestamp offset
815    uint64_t timeStampOffset;
816
817    /** @todo this is a temporary workaround until the 4-phase code is
818     * committed. upstream caches needs this packet until true is returned, so
819     * hold onto it for deletion until a subsequent call
820     */
821    std::vector<PacketPtr> pendingDelete;
822
823    /**
824     * This function increments the energy when called. If stats are
825     * dumped periodically, note accumulated energy values will
826     * appear in the stats (even if the stats are reset). This is a
827     * result of the energy values coming from DRAMPower, and there
828     * is currently no support for resetting the state.
829     *
830     * @param rank Currrent rank
831     */
832    void updatePowerStats(Rank& rank_ref);
833
834    /**
835     * Function for sorting commands in the command list of DRAMPower.
836     *
837     * @param a Memory Command in command list of DRAMPower library
838     * @param next Memory Command in command list of DRAMPower
839     * @return true if timestamp of Command 1 < timestamp of Command 2
840     */
841    static bool sortTime(const Data::MemCommand& m1,
842                         const Data::MemCommand& m2) {
843        return m1.getTime() < m2.getTime();
844    };
845
846
847  public:
848
849    void regStats();
850
851    DRAMCtrl(const DRAMCtrlParams* p);
852
853    unsigned int drain(DrainManager* dm);
854
855    virtual BaseSlavePort& getSlavePort(const std::string& if_name,
856                                        PortID idx = InvalidPortID);
857
858    virtual void init();
859    virtual void startup();
860
861  protected:
862
863    Tick recvAtomic(PacketPtr pkt);
864    void recvFunctional(PacketPtr pkt);
865    bool recvTimingReq(PacketPtr pkt);
866
867};
868
869#endif //__MEM_DRAM_CTRL_HH__
870