dram_ctrl.hh revision 9243
1/*
2 * Copyright (c) 2012 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Andreas Hansson
38 *          Ani Udipi
39 */
40
41/**
42 * @file
43 * SimpleDRAM declaration
44 */
45
46#ifndef __MEM_SIMPLE_DRAM_HH__
47#define __MEM_SIMPLE_DRAM_HH__
48
49#include "base/statistics.hh"
50#include "enums/AddrMap.hh"
51#include "enums/MemSched.hh"
52#include "enums/PageManage.hh"
53#include "mem/abstract_mem.hh"
54#include "mem/qport.hh"
55#include "params/SimpleDRAM.hh"
56#include "sim/eventq.hh"
57
58/**
59 * The simple DRAM is a basic single-channel memory controller aiming
60 * to mimic a high-level DRAM controller and the most important timing
61 * constraints associated with the DRAM. The focus is really on
62 * modelling the impact on the system rather than the DRAM itself,
63 * hence the focus is on the controller model and not on the
64 * memory. By adhering to the correct timing constraints, ultimately
65 * there is no need for a memory model in addition to the controller
66 * model.
67 *
68 * As a basic design principle, this controller is not cycle callable,
69 * but instead uses events to decide when new decisions can be made,
70 * when resources become available, when things are to be considered
71 * done, and when to send things back. Through these simple
72 * principles, we achieve a performant model that is not
73 * cycle-accurate, but enables us to evaluate the system impact of a
74 * wide range of memory technologies, and also collect statistics
75 * about the use of the memory.
76 */
77class SimpleDRAM : public AbstractMemory
78{
79
80  private:
81
82    // For now, make use of a queued slave port to avoid dealing with
83    // flow control for the responses being sent back
84    class MemoryPort : public QueuedSlavePort
85    {
86
87        SlavePacketQueue queue;
88        SimpleDRAM& memory;
89
90      public:
91
92        MemoryPort(const std::string& name, SimpleDRAM& _memory);
93
94      protected:
95
96        Tick recvAtomic(PacketPtr pkt);
97
98        void recvFunctional(PacketPtr pkt);
99
100        bool recvTimingReq(PacketPtr);
101
102        virtual AddrRangeList getAddrRanges() const;
103
104    };
105
106    /**
107     * Our incoming port, for a multi-ported controller add a crossbar
108     * in front of it
109     */
110    MemoryPort port;
111
112    /**
113     * Remember if we have to retry a request when available.
114     */
115    bool retryRdReq;
116    bool retryWrReq;
117
118    /**
119     * Remember that a row buffer hit occured
120     */
121    bool rowHitFlag;
122
123    /**
124     * Use this flag to shutoff reads, i.e. do not schedule any reads
125     * beyond those already done so that we can turn the bus around
126     * and do a few writes, or refresh, or whatever
127     */
128    bool stopReads;
129
130    /**
131     * A basic class to track the bank state indirectly via
132     * times "freeAt" and "tRASDoneAt" and what page is currently open
133     */
134    class Bank
135    {
136
137      public:
138
139        static const uint32_t INVALID_ROW = -1;
140
141        uint32_t openRow;
142
143        Tick freeAt;
144        Tick tRASDoneAt;
145
146        Bank() : openRow(INVALID_ROW), freeAt(0), tRASDoneAt(0)
147        { }
148    };
149
150    /**
151     * A DRAM packet stores packets along with the timestamp of when
152     * the packet entered the queue, and also the decoded address.
153     */
154    class DRAMPacket {
155
156      public:
157
158        /** When did request enter the controller */
159        const Tick entryTime;
160
161        /** When will request leave the controller */
162        Tick readyTime;
163
164        /** This comes from the outside world */
165        const PacketPtr pkt;
166
167        /** Will be populated by address decoder */
168        const uint8_t rank;
169        const uint16_t bank;
170        const uint16_t row;
171        const Addr addr;
172        Bank& bank_ref;
173
174        DRAMPacket(PacketPtr _pkt, uint8_t _rank,
175                   uint16_t _bank, uint16_t _row, Addr _addr, Bank& _bank_ref)
176            : entryTime(curTick()), readyTime(curTick()),
177              pkt(_pkt), rank(_rank), bank(_bank), row(_row), addr(_addr),
178              bank_ref(_bank_ref)
179        { }
180
181    };
182
183    /**
184     * Bunch of things requires to setup "events" in gem5
185     * When event "writeEvent" occurs for example, the method
186     * processWriteEvent is called; no parameters are allowed
187     * in these methods
188     */
189    void processWriteEvent();
190    EventWrapper<SimpleDRAM, &SimpleDRAM::processWriteEvent> writeEvent;
191
192    void processRespondEvent();
193    EventWrapper<SimpleDRAM, &SimpleDRAM::processRespondEvent> respondEvent;
194
195    void processRefreshEvent();
196    EventWrapper<SimpleDRAM, &SimpleDRAM::processRefreshEvent> refreshEvent;
197
198    void processNextReqEvent();
199    EventWrapper<SimpleDRAM,&SimpleDRAM::processNextReqEvent> nextReqEvent;
200
201
202    /**
203     * Check if the read queue has room for more entries
204     *
205     * @return true if read queue is full, false otherwise
206     */
207    bool readQueueFull() const;
208
209    /**
210     * Check if the write queue has room for more entries
211     *
212     * @return true if write queue is full, false otherwise
213     */
214    bool writeQueueFull() const;
215
216    /**
217     * When a new read comes in, first check if the write q has a
218     * pending request to the same address.\ If not, decode the
219     * address to populate rank/bank/row, create a "dram_pkt", and
220     * push it to the back of the read queue.\ If this is the only
221     * read request in the system, schedule an event to start
222     * servicing it.
223     *
224     * @param pkt The request packet from the outside world
225     */
226    void addToReadQueue(PacketPtr pkt);
227
228    /**
229     * Decode the incoming pkt, create a dram_pkt and push to the
230     * back of the write queue. \If the write q length is more than
231     * the threshold specified by the user, ie the queue is beginning
232     * to get full, stop reads, and start draining writes.
233     *
234     * @param pkt The request packet from the outside world
235     */
236    void addToWriteQueue(PacketPtr pkt);
237
238    /**
239     * Actually do the DRAM access - figure out the latency it
240     * will take to service the req based on bank state, channel state etc
241     * and then update those states to account for this request.\ Based
242     * on this, update the packet's "readyTime" and move it to the
243     * response q from where it will eventually go back to the outside
244     * world.
245     *
246     * @param pkt The DRAM packet created from the outside world pkt
247     */
248    void doDRAMAccess(DRAMPacket* dram_pkt);
249
250    /**
251     * Check when the channel is free to turnaround, add turnaround
252     * delay and schedule a whole bunch of writes.
253     */
254    void triggerWrites();
255
256    /**
257     * When a packet reaches its "readyTime" in the response Q,
258     * use the "access()" method in AbstractMemory to actually
259     * create the response packet, and send it back to the outside
260     * world requestor.
261     *
262     * @param pkt The packet from the outside world
263     */
264    void accessAndRespond(PacketPtr pkt);
265
266    /**
267     * Address decoder to figure out physical mapping onto ranks,
268     * banks, and rows.
269     *
270     * @param pkt The packet from the outside world
271     * @return A DRAMPacket pointer with the decoded information
272     */
273    DRAMPacket* decodeAddr(PacketPtr pkt);
274
275    /**
276     * The memory schduler/arbiter - picks which request needs to
277     * go next, based on the specified policy such as fcfs or frfcfs
278     * and moves it to the head of the read queue
279     *
280     * @return True if a request was chosen, False if Q is empty
281     */
282    bool chooseNextReq();
283
284    /**
285     * Calls chooseNextReq() to pick the right request, then calls
286     * doDRAMAccess on that request in order to actually service
287     * that request
288     */
289    void scheduleNextReq();
290
291    /**
292     *Looks at the state of the banks, channels, row buffer hits etc
293     * to estimate how long a request will take to complete.
294     *
295     * @param dram_pkt The request for which we want to estimate latency
296     * @param inTime The tick at which you want to probe the memory
297     *
298     * @return A pair of ticks, one indicating how many ticks *after*
299     *         inTime the request require, and the other indicating how
300     *         much of that was just the bank access time, ignoring the
301     *         ticks spent simply waiting for resources to become free
302     */
303    std::pair<Tick, Tick> estimateLatency(DRAMPacket* dram_pkt, Tick inTime);
304
305    /**
306     * Move the request at the head of the read queue to the response
307     * queue, sorting by readyTime.\ If it is the only packet in the
308     * response queue, schedule a respond event to send it back to the
309     * outside world
310     */
311    void moveToRespQ();
312
313    /**
314     * Scheduling policy within the write Q
315     */
316    void chooseNextWrite();
317
318    /**
319     * Looking at all banks, determine the moment in time when they
320     * are all free.
321     *
322     * @return The tick when all banks are free
323     */
324    Tick maxBankFreeAt() const;
325
326    void printParams() const;
327    void printQs() const;
328
329    /**
330     * The controller's main read and write queues
331     */
332    std::list<DRAMPacket*> dramReadQueue;
333    std::list<DRAMPacket*> dramWriteQueue;
334
335    /**
336     * Response queue where read packets wait after we're done working
337     * with them, but it's not time to send the response yet.\ It is
338     * seperate mostly to keep the code clean and help with gem5 events,
339     * but for all logical purposes such as sizing the read queue, this
340     * and the main read queue need to be added together.
341     */
342    std::list<DRAMPacket*> dramRespQueue;
343
344    /** If we need to drain, keep the drain event around until we're done
345     * here.
346     */
347    Event *drainEvent;
348
349    /**
350     * Multi-dimensional vector of banks, first dimension is ranks,
351     * second is bank
352     */
353    std::vector<std::vector<Bank> > banks;
354
355    /**
356     * The following are basic design parameters of the memory
357     * controller, and are initialized based on parameter values. The
358     * bytesPerCacheLine is based on the neighbouring port and thus
359     * determined outside the constructor. Similarly, the rowsPerBank
360     * is determined based on the capacity, number of ranks and banks,
361     * the cache line size, and the row buffer size.
362     */
363    uint32_t bytesPerCacheLine;
364    const uint32_t linesPerRowBuffer;
365    const uint32_t ranksPerChannel;
366    const uint32_t banksPerRank;
367    uint32_t rowsPerBank;
368    const uint32_t readBufferSize;
369    const uint32_t writeBufferSize;
370    const double writeThresholdPerc;
371    uint32_t writeThreshold;
372
373    /**
374     * Basic memory timing parameters initialized based on parameter
375     * values.
376     */
377    const Tick tWTR;
378    const Tick tBURST;
379    const Tick tRCD;
380    const Tick tCL;
381    const Tick tRP;
382    const Tick tRFC;
383    const Tick tREFI;
384
385    /**
386     * Memory controller configuration initialized based on parameter
387     * values.
388     */
389    Enums::MemSched memSchedPolicy;
390    Enums::AddrMap addrMapping;
391    Enums::PageManage pageMgmt;
392
393    /**
394     * Till when has the main data bus been spoken for already?
395     */
396    Tick busBusyUntil;
397
398    Tick prevdramaccess;
399    Tick writeStartTime;
400    Tick prevArrival;
401    int numReqs;
402
403    // All statistics that the model needs to capture
404    Stats::Scalar readReqs;
405    Stats::Scalar writeReqs;
406    Stats::Scalar cpuReqs;
407    Stats::Scalar bytesRead;
408    Stats::Scalar bytesWritten;
409    Stats::Scalar bytesConsumedRd;
410    Stats::Scalar bytesConsumedWr;
411    Stats::Scalar servicedByWrQ;
412    Stats::Scalar neitherReadNorWrite;
413    Stats::Vector perBankRdReqs;
414    Stats::Vector perBankWrReqs;
415    Stats::Scalar numRdRetry;
416    Stats::Scalar numWrRetry;
417    Stats::Scalar totGap;
418    Stats::Vector readPktSize;
419    Stats::Vector writePktSize;
420    Stats::Vector neitherPktSize;
421    Stats::Vector rdQLenPdf;
422    Stats::Vector wrQLenPdf;
423
424
425    // Latencies summed over all requests
426    Stats::Scalar totQLat;
427    Stats::Scalar totMemAccLat;
428    Stats::Scalar totBusLat;
429    Stats::Scalar totBankLat;
430
431    // Average latencies per request
432    Stats::Formula avgQLat;
433    Stats::Formula avgBankLat;
434    Stats::Formula avgBusLat;
435    Stats::Formula avgMemAccLat;
436
437    // Average bandwidth
438    Stats::Formula avgRdBW;
439    Stats::Formula avgWrBW;
440    Stats::Formula avgConsumedRdBW;
441    Stats::Formula avgConsumedWrBW;
442    Stats::Formula peakBW;
443    Stats::Formula busUtil;
444
445    // Average queue lengths
446    Stats::Average avgRdQLen;
447    Stats::Average avgWrQLen;
448
449    // Row hit count and rate
450    Stats::Scalar readRowHits;
451    Stats::Scalar writeRowHits;
452    Stats::Formula readRowHitRate;
453    Stats::Formula writeRowHitRate;
454    Stats::Formula avgGap;
455
456  public:
457
458    void regStats();
459
460    SimpleDRAM(const SimpleDRAMParams* p);
461
462    unsigned int drain(Event* de);
463
464    virtual SlavePort& getSlavePort(const std::string& if_name,
465                                    int idx = InvalidPortID);
466
467    virtual void init();
468    virtual void startup();
469
470  protected:
471
472    Tick recvAtomic(PacketPtr pkt);
473    void recvFunctional(PacketPtr pkt);
474    bool recvTimingReq(PacketPtr pkt);
475
476};
477
478#endif //__MEM_SIMPLE_DRAM_HH__
479