dram_ctrl.cc revision 9832
1/* 2 * Copyright (c) 2010-2013 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2013 Amin Farmahini-Farahani 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Andreas Hansson 41 * Ani Udipi 42 */ 43 44#include "base/trace.hh" 45#include "debug/Drain.hh" 46#include "debug/DRAM.hh" 47#include "debug/DRAMWR.hh" 48#include "mem/simple_dram.hh" 49#include "sim/system.hh" 50 51using namespace std; 52 53SimpleDRAM::SimpleDRAM(const SimpleDRAMParams* p) : 54 AbstractMemory(p), 55 port(name() + ".port", *this), 56 retryRdReq(false), retryWrReq(false), 57 rowHitFlag(false), stopReads(false), actTicks(p->activation_limit, 0), 58 writeEvent(this), respondEvent(this), 59 refreshEvent(this), nextReqEvent(this), drainManager(NULL), 60 deviceBusWidth(p->device_bus_width), burstLength(p->burst_length), 61 deviceRowBufferSize(p->device_rowbuffer_size), 62 devicesPerRank(p->devices_per_rank), 63 burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8), 64 rowBufferSize(devicesPerRank * deviceRowBufferSize), 65 ranksPerChannel(p->ranks_per_channel), 66 banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0), 67 readBufferSize(p->read_buffer_size), 68 writeBufferSize(p->write_buffer_size), 69 writeThresholdPerc(p->write_thresh_perc), 70 tWTR(p->tWTR), tBURST(p->tBURST), 71 tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), 72 tRFC(p->tRFC), tREFI(p->tREFI), 73 tXAW(p->tXAW), activationLimit(p->activation_limit), 74 memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping), 75 pageMgmt(p->page_policy), 76 frontendLatency(p->static_frontend_latency), 77 backendLatency(p->static_backend_latency), 78 busBusyUntil(0), writeStartTime(0), 79 prevArrival(0), numReqs(0) 80{ 81 // create the bank states based on the dimensions of the ranks and 82 // banks 83 banks.resize(ranksPerChannel); 84 for (size_t c = 0; c < ranksPerChannel; ++c) { 85 banks[c].resize(banksPerRank); 86 } 87 88 // round the write threshold percent to a whole number of entries 89 // in the buffer 90 writeThreshold = writeBufferSize * writeThresholdPerc / 100.0; 91} 92 93void 94SimpleDRAM::init() 95{ 96 if (!port.isConnected()) { 97 fatal("SimpleDRAM %s is unconnected!\n", name()); 98 } else { 99 port.sendRangeChange(); 100 } 101 102 // we could deal with plenty options here, but for now do a quick 103 // sanity check 104 DPRINTF(DRAM, "Burst size %d bytes\n", burstSize); 105 106 // determine the rows per bank by looking at the total capacity 107 uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size()); 108 109 DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity, 110 AbstractMemory::size()); 111 112 columnsPerRowBuffer = rowBufferSize / burstSize; 113 114 DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n", 115 rowBufferSize, columnsPerRowBuffer); 116 117 rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel); 118 119 if (range.interleaved()) { 120 if (channels != range.stripes()) 121 panic("%s has %d interleaved address stripes but %d channel(s)\n", 122 name(), range.stripes(), channels); 123 124 if (addrMapping == Enums::RaBaChCo) { 125 if (rowBufferSize != range.granularity()) { 126 panic("Interleaving of %s doesn't match RaBaChCo address map\n", 127 name()); 128 } 129 } else if (addrMapping == Enums::RaBaCoCh) { 130 if (burstSize != range.granularity()) { 131 panic("Interleaving of %s doesn't match RaBaCoCh address map\n", 132 name()); 133 } 134 } else if (addrMapping == Enums::CoRaBaCh) { 135 if (burstSize != range.granularity()) 136 panic("Interleaving of %s doesn't match CoRaBaCh address map\n", 137 name()); 138 } 139 } 140} 141 142void 143SimpleDRAM::startup() 144{ 145 // print the configuration of the controller 146 printParams(); 147 148 // kick off the refresh 149 schedule(refreshEvent, curTick() + tREFI); 150} 151 152Tick 153SimpleDRAM::recvAtomic(PacketPtr pkt) 154{ 155 DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr()); 156 157 // do the actual memory access and turn the packet into a response 158 access(pkt); 159 160 Tick latency = 0; 161 if (!pkt->memInhibitAsserted() && pkt->hasData()) { 162 // this value is not supposed to be accurate, just enough to 163 // keep things going, mimic a closed page 164 latency = tRP + tRCD + tCL; 165 } 166 return latency; 167} 168 169bool 170SimpleDRAM::readQueueFull(unsigned int neededEntries) const 171{ 172 DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n", 173 readBufferSize, readQueue.size() + respQueue.size(), 174 neededEntries); 175 176 return 177 (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize; 178} 179 180bool 181SimpleDRAM::writeQueueFull(unsigned int neededEntries) const 182{ 183 DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n", 184 writeBufferSize, writeQueue.size(), neededEntries); 185 return (writeQueue.size() + neededEntries) > writeBufferSize; 186} 187 188SimpleDRAM::DRAMPacket* 189SimpleDRAM::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size) 190{ 191 // decode the address based on the address mapping scheme, with 192 // Ra, Co, Ba and Ch denoting rank, column, bank and channel, 193 // respectively 194 uint8_t rank; 195 uint16_t bank; 196 uint16_t row; 197 198 // truncate the address to the access granularity 199 Addr addr = dramPktAddr / burstSize; 200 201 // we have removed the lowest order address bits that denote the 202 // position within the column 203 if (addrMapping == Enums::RaBaChCo) { 204 // the lowest order bits denote the column to ensure that 205 // sequential cache lines occupy the same row 206 addr = addr / columnsPerRowBuffer; 207 208 // take out the channel part of the address 209 addr = addr / channels; 210 211 // after the channel bits, get the bank bits to interleave 212 // over the banks 213 bank = addr % banksPerRank; 214 addr = addr / banksPerRank; 215 216 // after the bank, we get the rank bits which thus interleaves 217 // over the ranks 218 rank = addr % ranksPerChannel; 219 addr = addr / ranksPerChannel; 220 221 // lastly, get the row bits 222 row = addr % rowsPerBank; 223 addr = addr / rowsPerBank; 224 } else if (addrMapping == Enums::RaBaCoCh) { 225 // take out the channel part of the address 226 addr = addr / channels; 227 228 // next, the column 229 addr = addr / columnsPerRowBuffer; 230 231 // after the column bits, we get the bank bits to interleave 232 // over the banks 233 bank = addr % banksPerRank; 234 addr = addr / banksPerRank; 235 236 // after the bank, we get the rank bits which thus interleaves 237 // over the ranks 238 rank = addr % ranksPerChannel; 239 addr = addr / ranksPerChannel; 240 241 // lastly, get the row bits 242 row = addr % rowsPerBank; 243 addr = addr / rowsPerBank; 244 } else if (addrMapping == Enums::CoRaBaCh) { 245 // optimise for closed page mode and utilise maximum 246 // parallelism of the DRAM (at the cost of power) 247 248 // take out the channel part of the address, not that this has 249 // to match with how accesses are interleaved between the 250 // controllers in the address mapping 251 addr = addr / channels; 252 253 // start with the bank bits, as this provides the maximum 254 // opportunity for parallelism between requests 255 bank = addr % banksPerRank; 256 addr = addr / banksPerRank; 257 258 // next get the rank bits 259 rank = addr % ranksPerChannel; 260 addr = addr / ranksPerChannel; 261 262 // next the column bits which we do not need to keep track of 263 // and simply skip past 264 addr = addr / columnsPerRowBuffer; 265 266 // lastly, get the row bits 267 row = addr % rowsPerBank; 268 addr = addr / rowsPerBank; 269 } else 270 panic("Unknown address mapping policy chosen!"); 271 272 assert(rank < ranksPerChannel); 273 assert(bank < banksPerRank); 274 assert(row < rowsPerBank); 275 276 DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n", 277 dramPktAddr, rank, bank, row); 278 279 // create the corresponding DRAM packet with the entry time and 280 // ready time set to the current tick, the latter will be updated 281 // later 282 return new DRAMPacket(pkt, rank, bank, row, dramPktAddr, size, 283 banks[rank][bank]); 284} 285 286void 287SimpleDRAM::addToReadQueue(PacketPtr pkt, unsigned int pktCount) 288{ 289 // only add to the read queue here. whenever the request is 290 // eventually done, set the readyTime, and call schedule() 291 assert(!pkt->isWrite()); 292 293 assert(pktCount != 0); 294 295 // if the request size is larger than burst size, the pkt is split into 296 // multiple DRAM packets 297 // Note if the pkt starting address is not aligened to burst size, the 298 // address of first DRAM packet is kept unaliged. Subsequent DRAM packets 299 // are aligned to burst size boundaries. This is to ensure we accurately 300 // check read packets against packets in write queue. 301 Addr addr = pkt->getAddr(); 302 unsigned pktsServicedByWrQ = 0; 303 BurstHelper* burst_helper = NULL; 304 for (int cnt = 0; cnt < pktCount; ++cnt) { 305 unsigned size = std::min((addr | (burstSize - 1)) + 1, 306 pkt->getAddr() + pkt->getSize()) - addr; 307 readPktSize[ceilLog2(size)]++; 308 readBursts++; 309 310 // First check write buffer to see if the data is already at 311 // the controller 312 bool foundInWrQ = false; 313 list<DRAMPacket*>::const_iterator i; 314 for (i = writeQueue.begin(); i != writeQueue.end(); ++i) { 315 // check if the read is subsumed in the write entry we are 316 // looking at 317 if ((*i)->addr <= addr && 318 (addr + size) <= ((*i)->addr + (*i)->size)) { 319 foundInWrQ = true; 320 servicedByWrQ++; 321 pktsServicedByWrQ++; 322 DPRINTF(DRAM, "Read to addr %lld with size %d serviced by " 323 "write queue\n", addr, size); 324 bytesRead += burstSize; 325 bytesConsumedRd += size; 326 break; 327 } 328 } 329 330 // If not found in the write q, make a DRAM packet and 331 // push it onto the read queue 332 if (!foundInWrQ) { 333 334 // Make the burst helper for split packets 335 if (pktCount > 1 && burst_helper == NULL) { 336 DPRINTF(DRAM, "Read to addr %lld translates to %d " 337 "dram requests\n", pkt->getAddr(), pktCount); 338 burst_helper = new BurstHelper(pktCount); 339 } 340 341 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size); 342 dram_pkt->burstHelper = burst_helper; 343 344 assert(!readQueueFull(1)); 345 rdQLenPdf[readQueue.size() + respQueue.size()]++; 346 347 DPRINTF(DRAM, "Adding to read queue\n"); 348 349 readQueue.push_back(dram_pkt); 350 351 // Update stats 352 uint32_t bank_id = banksPerRank * dram_pkt->rank + dram_pkt->bank; 353 assert(bank_id < ranksPerChannel * banksPerRank); 354 perBankRdReqs[bank_id]++; 355 356 avgRdQLen = readQueue.size() + respQueue.size(); 357 } 358 359 // Starting address of next dram pkt (aligend to burstSize boundary) 360 addr = (addr | (burstSize - 1)) + 1; 361 } 362 363 // If all packets are serviced by write queue, we send the repsonse back 364 if (pktsServicedByWrQ == pktCount) { 365 accessAndRespond(pkt, frontendLatency); 366 return; 367 } 368 369 // Update how many split packets are serviced by write queue 370 if (burst_helper != NULL) 371 burst_helper->burstsServiced = pktsServicedByWrQ; 372 373 // If we are not already scheduled to get the read request out of 374 // the queue, do so now 375 if (!nextReqEvent.scheduled() && !stopReads) { 376 DPRINTF(DRAM, "Request scheduled immediately\n"); 377 schedule(nextReqEvent, curTick()); 378 } 379} 380 381void 382SimpleDRAM::processWriteEvent() 383{ 384 assert(!writeQueue.empty()); 385 uint32_t numWritesThisTime = 0; 386 387 DPRINTF(DRAMWR, "Beginning DRAM Writes\n"); 388 Tick temp1 M5_VAR_USED = std::max(curTick(), busBusyUntil); 389 Tick temp2 M5_VAR_USED = std::max(curTick(), maxBankFreeAt()); 390 391 // @todo: are there any dangers with the untimed while loop? 392 while (!writeQueue.empty()) { 393 if (numWritesThisTime > writeThreshold) { 394 DPRINTF(DRAMWR, "Hit write threshold %d\n", writeThreshold); 395 break; 396 } 397 398 chooseNextWrite(); 399 DRAMPacket* dram_pkt = writeQueue.front(); 400 401 // sanity check 402 assert(dram_pkt->size <= burstSize); 403 404 // What's the earliest the request can be put on the bus 405 Tick schedTime = std::max(curTick(), busBusyUntil); 406 407 DPRINTF(DRAMWR, "Asking for latency estimate at %lld\n", 408 schedTime + tBURST); 409 410 pair<Tick, Tick> lat = estimateLatency(dram_pkt, schedTime + tBURST); 411 Tick accessLat = lat.second; 412 413 // look at the rowHitFlag set by estimateLatency 414 if (rowHitFlag) 415 writeRowHits++; 416 417 Bank& bank = dram_pkt->bank_ref; 418 419 if (pageMgmt == Enums::open) { 420 bank.openRow = dram_pkt->row; 421 bank.freeAt = schedTime + tBURST + std::max(accessLat, tCL); 422 busBusyUntil = bank.freeAt - tCL; 423 bank.bytesAccessed += burstSize; 424 425 if (!rowHitFlag) { 426 bank.tRASDoneAt = bank.freeAt + tRP; 427 recordActivate(bank.freeAt - tCL - tRCD); 428 busBusyUntil = bank.freeAt - tCL - tRCD; 429 430 // sample the number of bytes accessed and reset it as 431 // we are now closing this row 432 bytesPerActivate.sample(bank.bytesAccessed); 433 bank.bytesAccessed = 0; 434 } 435 } else if (pageMgmt == Enums::close) { 436 bank.freeAt = schedTime + tBURST + accessLat + tRP + tRP; 437 // Work backwards from bank.freeAt to determine activate time 438 recordActivate(bank.freeAt - tRP - tRP - tCL - tRCD); 439 busBusyUntil = bank.freeAt - tRP - tRP - tCL - tRCD; 440 DPRINTF(DRAMWR, "processWriteEvent::bank.freeAt for " 441 "banks_id %d is %lld\n", 442 dram_pkt->rank * banksPerRank + dram_pkt->bank, 443 bank.freeAt); 444 bytesPerActivate.sample(burstSize); 445 } else 446 panic("Unknown page management policy chosen\n"); 447 448 DPRINTF(DRAMWR, "Done writing to address %lld\n", dram_pkt->addr); 449 450 DPRINTF(DRAMWR, "schedtime is %lld, tBURST is %lld, " 451 "busbusyuntil is %lld\n", 452 schedTime, tBURST, busBusyUntil); 453 454 writeQueue.pop_front(); 455 delete dram_pkt; 456 457 numWritesThisTime++; 458 } 459 460 DPRINTF(DRAMWR, "Completed %d writes, bus busy for %lld ticks,"\ 461 "banks busy for %lld ticks\n", numWritesThisTime, 462 busBusyUntil - temp1, maxBankFreeAt() - temp2); 463 464 // Update stats 465 avgWrQLen = writeQueue.size(); 466 467 // turn the bus back around for reads again 468 busBusyUntil += tWTR; 469 stopReads = false; 470 471 if (retryWrReq) { 472 retryWrReq = false; 473 port.sendRetry(); 474 } 475 476 // if there is nothing left in any queue, signal a drain 477 if (writeQueue.empty() && readQueue.empty() && 478 respQueue.empty () && drainManager) { 479 drainManager->signalDrainDone(); 480 drainManager = NULL; 481 } 482 483 // Once you're done emptying the write queue, check if there's 484 // anything in the read queue, and call schedule if required. The 485 // retry above could already have caused it to be scheduled, so 486 // first check 487 if (!nextReqEvent.scheduled()) 488 schedule(nextReqEvent, busBusyUntil); 489} 490 491void 492SimpleDRAM::triggerWrites() 493{ 494 DPRINTF(DRAM, "Writes triggered at %lld\n", curTick()); 495 // Flag variable to stop any more read scheduling 496 stopReads = true; 497 498 writeStartTime = std::max(busBusyUntil, curTick()) + tWTR; 499 500 DPRINTF(DRAM, "Writes scheduled at %lld\n", writeStartTime); 501 502 assert(writeStartTime >= curTick()); 503 assert(!writeEvent.scheduled()); 504 schedule(writeEvent, writeStartTime); 505} 506 507void 508SimpleDRAM::addToWriteQueue(PacketPtr pkt, unsigned int pktCount) 509{ 510 // only add to the write queue here. whenever the request is 511 // eventually done, set the readyTime, and call schedule() 512 assert(pkt->isWrite()); 513 514 // if the request size is larger than burst size, the pkt is split into 515 // multiple DRAM packets 516 Addr addr = pkt->getAddr(); 517 for (int cnt = 0; cnt < pktCount; ++cnt) { 518 unsigned size = std::min((addr | (burstSize - 1)) + 1, 519 pkt->getAddr() + pkt->getSize()) - addr; 520 writePktSize[ceilLog2(size)]++; 521 writeBursts++; 522 523 // see if we can merge with an existing item in the write 524 // queue and keep track of whether we have merged or not, as 525 // there is only ever one item to merge with 526 bool merged = false; 527 auto w = writeQueue.begin(); 528 529 while(!merged && w != writeQueue.end()) { 530 // either of the two could be first, if they are the same 531 // it does not matter which way we go 532 if ((*w)->addr >= addr) { 533 if ((addr + size) >= ((*w)->addr + (*w)->size)) { 534 // check if the existing one is completely 535 // subsumed in the new one 536 DPRINTF(DRAM, "Merging write covering existing burst\n"); 537 merged = true; 538 // update both the address and the size 539 (*w)->addr = addr; 540 (*w)->size = size; 541 } else if ((addr + size) >= (*w)->addr && 542 ((*w)->addr + (*w)->size - addr) <= burstSize) { 543 // the new one is just before or partially 544 // overlapping with the existing one, and together 545 // they fit within a burst 546 DPRINTF(DRAM, "Merging write before existing burst\n"); 547 merged = true; 548 // the existing queue item needs to be adjusted with 549 // respect to both address and size 550 (*w)->addr = addr; 551 (*w)->size = (*w)->addr + (*w)->size - addr; 552 } 553 } else { 554 if (((*w)->addr + (*w)->size) >= (addr + size)) { 555 // check if the new one is completely subsumed in the 556 // existing one 557 DPRINTF(DRAM, "Merging write into existing burst\n"); 558 merged = true; 559 // no adjustments necessary 560 } else if (((*w)->addr + (*w)->size) >= addr && 561 (addr + size - (*w)->addr) <= burstSize) { 562 // the existing one is just before or partially 563 // overlapping with the new one, and together 564 // they fit within a burst 565 DPRINTF(DRAM, "Merging write after existing burst\n"); 566 merged = true; 567 // the address is right, and only the size has 568 // to be adjusted 569 (*w)->size = addr + size - (*w)->addr; 570 } 571 } 572 ++w; 573 } 574 575 // if the item was not merged we need to create a new write 576 // and enqueue it 577 if (!merged) { 578 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size); 579 580 assert(writeQueue.size() < writeBufferSize); 581 wrQLenPdf[writeQueue.size()]++; 582 583 DPRINTF(DRAM, "Adding to write queue\n"); 584 585 writeQueue.push_back(dram_pkt); 586 587 // Update stats 588 uint32_t bank_id = banksPerRank * dram_pkt->rank + dram_pkt->bank; 589 assert(bank_id < ranksPerChannel * banksPerRank); 590 perBankWrReqs[bank_id]++; 591 592 avgWrQLen = writeQueue.size(); 593 } 594 595 bytesConsumedWr += size; 596 bytesWritten += burstSize; 597 598 // Starting address of next dram pkt (aligend to burstSize boundary) 599 addr = (addr | (burstSize - 1)) + 1; 600 } 601 602 // we do not wait for the writes to be send to the actual memory, 603 // but instead take responsibility for the consistency here and 604 // snoop the write queue for any upcoming reads 605 // @todo, if a pkt size is larger than burst size, we might need a 606 // different front end latency 607 accessAndRespond(pkt, frontendLatency); 608 609 // If your write buffer is starting to fill up, drain it! 610 if (writeQueue.size() > writeThreshold && !stopReads){ 611 triggerWrites(); 612 } 613} 614 615void 616SimpleDRAM::printParams() const 617{ 618 // Sanity check print of important parameters 619 DPRINTF(DRAM, 620 "Memory controller %s physical organization\n" \ 621 "Number of devices per rank %d\n" \ 622 "Device bus width (in bits) %d\n" \ 623 "DRAM data bus burst %d\n" \ 624 "Row buffer size %d\n" \ 625 "Columns per row buffer %d\n" \ 626 "Rows per bank %d\n" \ 627 "Banks per rank %d\n" \ 628 "Ranks per channel %d\n" \ 629 "Total mem capacity %u\n", 630 name(), devicesPerRank, deviceBusWidth, burstSize, rowBufferSize, 631 columnsPerRowBuffer, rowsPerBank, banksPerRank, ranksPerChannel, 632 rowBufferSize * rowsPerBank * banksPerRank * ranksPerChannel); 633 634 string scheduler = memSchedPolicy == Enums::fcfs ? "FCFS" : "FR-FCFS"; 635 string address_mapping = addrMapping == Enums::RaBaChCo ? "RaBaChCo" : 636 (addrMapping == Enums::RaBaCoCh ? "RaBaCoCh" : "CoRaBaCh"); 637 string page_policy = pageMgmt == Enums::open ? "OPEN" : "CLOSE"; 638 639 DPRINTF(DRAM, 640 "Memory controller %s characteristics\n" \ 641 "Read buffer size %d\n" \ 642 "Write buffer size %d\n" \ 643 "Write buffer thresh %d\n" \ 644 "Scheduler %s\n" \ 645 "Address mapping %s\n" \ 646 "Page policy %s\n", 647 name(), readBufferSize, writeBufferSize, writeThreshold, 648 scheduler, address_mapping, page_policy); 649 650 DPRINTF(DRAM, "Memory controller %s timing specs\n" \ 651 "tRCD %d ticks\n" \ 652 "tCL %d ticks\n" \ 653 "tRP %d ticks\n" \ 654 "tBURST %d ticks\n" \ 655 "tRFC %d ticks\n" \ 656 "tREFI %d ticks\n" \ 657 "tWTR %d ticks\n" \ 658 "tXAW (%d) %d ticks\n", 659 name(), tRCD, tCL, tRP, tBURST, tRFC, tREFI, tWTR, 660 activationLimit, tXAW); 661} 662 663void 664SimpleDRAM::printQs() const { 665 666 list<DRAMPacket*>::const_iterator i; 667 668 DPRINTF(DRAM, "===READ QUEUE===\n\n"); 669 for (i = readQueue.begin() ; i != readQueue.end() ; ++i) { 670 DPRINTF(DRAM, "Read %lu\n", (*i)->addr); 671 } 672 DPRINTF(DRAM, "\n===RESP QUEUE===\n\n"); 673 for (i = respQueue.begin() ; i != respQueue.end() ; ++i) { 674 DPRINTF(DRAM, "Response %lu\n", (*i)->addr); 675 } 676 DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n"); 677 for (i = writeQueue.begin() ; i != writeQueue.end() ; ++i) { 678 DPRINTF(DRAM, "Write %lu\n", (*i)->addr); 679 } 680} 681 682bool 683SimpleDRAM::recvTimingReq(PacketPtr pkt) 684{ 685 /// @todo temporary hack to deal with memory corruption issues until 686 /// 4-phase transactions are complete 687 for (int x = 0; x < pendingDelete.size(); x++) 688 delete pendingDelete[x]; 689 pendingDelete.clear(); 690 691 // This is where we enter from the outside world 692 DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n", 693 pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 694 695 // simply drop inhibited packets for now 696 if (pkt->memInhibitAsserted()) { 697 DPRINTF(DRAM,"Inhibited packet -- Dropping it now\n"); 698 pendingDelete.push_back(pkt); 699 return true; 700 } 701 702 // Every million accesses, print the state of the queues 703 if (numReqs % 1000000 == 0) 704 printQs(); 705 706 // Calc avg gap between requests 707 if (prevArrival != 0) { 708 totGap += curTick() - prevArrival; 709 } 710 prevArrival = curTick(); 711 712 713 // Find out how many dram packets a pkt translates to 714 // If the burst size is equal or larger than the pkt size, then a pkt 715 // translates to only one dram packet. Otherwise, a pkt translates to 716 // multiple dram packets 717 unsigned size = pkt->getSize(); 718 unsigned offset = pkt->getAddr() & (burstSize - 1); 719 unsigned int dram_pkt_count = divCeil(offset + size, burstSize); 720 721 // check local buffers and do not accept if full 722 if (pkt->isRead()) { 723 assert(size != 0); 724 if (readQueueFull(dram_pkt_count)) { 725 DPRINTF(DRAM, "Read queue full, not accepting\n"); 726 // remember that we have to retry this port 727 retryRdReq = true; 728 numRdRetry++; 729 return false; 730 } else { 731 addToReadQueue(pkt, dram_pkt_count); 732 readReqs++; 733 numReqs++; 734 } 735 } else if (pkt->isWrite()) { 736 assert(size != 0); 737 if (writeQueueFull(dram_pkt_count)) { 738 DPRINTF(DRAM, "Write queue full, not accepting\n"); 739 // remember that we have to retry this port 740 retryWrReq = true; 741 numWrRetry++; 742 return false; 743 } else { 744 addToWriteQueue(pkt, dram_pkt_count); 745 writeReqs++; 746 numReqs++; 747 } 748 } else { 749 DPRINTF(DRAM,"Neither read nor write, ignore timing\n"); 750 neitherReadNorWrite++; 751 accessAndRespond(pkt, 1); 752 } 753 754 retryRdReq = false; 755 retryWrReq = false; 756 return true; 757} 758 759void 760SimpleDRAM::processRespondEvent() 761{ 762 DPRINTF(DRAM, 763 "processRespondEvent(): Some req has reached its readyTime\n"); 764 765 DRAMPacket* dram_pkt = respQueue.front(); 766 767 // Actually responds to the requestor 768 bytesConsumedRd += dram_pkt->size; 769 bytesRead += burstSize; 770 if (dram_pkt->burstHelper) { 771 // it is a split packet 772 dram_pkt->burstHelper->burstsServiced++; 773 if (dram_pkt->burstHelper->burstsServiced == 774 dram_pkt->burstHelper->burstCount) { 775 // we have now serviced all children packets of a system packet 776 // so we can now respond to the requester 777 // @todo we probably want to have a different front end and back 778 // end latency for split packets 779 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency); 780 delete dram_pkt->burstHelper; 781 dram_pkt->burstHelper = NULL; 782 } 783 } else { 784 // it is not a split packet 785 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency); 786 } 787 788 delete respQueue.front(); 789 respQueue.pop_front(); 790 791 // Update stats 792 avgRdQLen = readQueue.size() + respQueue.size(); 793 794 if (!respQueue.empty()) { 795 assert(respQueue.front()->readyTime >= curTick()); 796 assert(!respondEvent.scheduled()); 797 schedule(respondEvent, respQueue.front()->readyTime); 798 } else { 799 // if there is nothing left in any queue, signal a drain 800 if (writeQueue.empty() && readQueue.empty() && 801 drainManager) { 802 drainManager->signalDrainDone(); 803 drainManager = NULL; 804 } 805 } 806 807 // We have made a location in the queue available at this point, 808 // so if there is a read that was forced to wait, retry now 809 if (retryRdReq) { 810 retryRdReq = false; 811 port.sendRetry(); 812 } 813} 814 815void 816SimpleDRAM::chooseNextWrite() 817{ 818 // This method does the arbitration between write requests. The 819 // chosen packet is simply moved to the head of the write 820 // queue. The other methods know that this is the place to 821 // look. For example, with FCFS, this method does nothing 822 assert(!writeQueue.empty()); 823 824 if (writeQueue.size() == 1) { 825 DPRINTF(DRAMWR, "Single write request, nothing to do\n"); 826 return; 827 } 828 829 if (memSchedPolicy == Enums::fcfs) { 830 // Do nothing, since the correct request is already head 831 } else if (memSchedPolicy == Enums::frfcfs) { 832 list<DRAMPacket*>::iterator i = writeQueue.begin(); 833 bool foundRowHit = false; 834 while (!foundRowHit && i != writeQueue.end()) { 835 DRAMPacket* dram_pkt = *i; 836 const Bank& bank = dram_pkt->bank_ref; 837 if (bank.openRow == dram_pkt->row) { //FR part 838 DPRINTF(DRAMWR, "Write row buffer hit\n"); 839 writeQueue.erase(i); 840 writeQueue.push_front(dram_pkt); 841 foundRowHit = true; 842 } else { //FCFS part 843 ; 844 } 845 ++i; 846 } 847 } else 848 panic("No scheduling policy chosen\n"); 849 850 DPRINTF(DRAMWR, "Selected next write request\n"); 851} 852 853bool 854SimpleDRAM::chooseNextRead() 855{ 856 // This method does the arbitration between read requests. The 857 // chosen packet is simply moved to the head of the queue. The 858 // other methods know that this is the place to look. For example, 859 // with FCFS, this method does nothing 860 if (readQueue.empty()) { 861 DPRINTF(DRAM, "No read request to select\n"); 862 return false; 863 } 864 865 // If there is only one request then there is nothing left to do 866 if (readQueue.size() == 1) 867 return true; 868 869 if (memSchedPolicy == Enums::fcfs) { 870 // Do nothing, since the request to serve is already the first 871 // one in the read queue 872 } else if (memSchedPolicy == Enums::frfcfs) { 873 for (list<DRAMPacket*>::iterator i = readQueue.begin(); 874 i != readQueue.end() ; ++i) { 875 DRAMPacket* dram_pkt = *i; 876 const Bank& bank = dram_pkt->bank_ref; 877 // Check if it is a row hit 878 if (bank.openRow == dram_pkt->row) { //FR part 879 DPRINTF(DRAM, "Row buffer hit\n"); 880 readQueue.erase(i); 881 readQueue.push_front(dram_pkt); 882 break; 883 } else { //FCFS part 884 ; 885 } 886 } 887 } else 888 panic("No scheduling policy chosen!\n"); 889 890 DPRINTF(DRAM, "Selected next read request\n"); 891 return true; 892} 893 894void 895SimpleDRAM::accessAndRespond(PacketPtr pkt, Tick static_latency) 896{ 897 DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr()); 898 899 bool needsResponse = pkt->needsResponse(); 900 // do the actual memory access which also turns the packet into a 901 // response 902 access(pkt); 903 904 // turn packet around to go back to requester if response expected 905 if (needsResponse) { 906 // access already turned the packet into a response 907 assert(pkt->isResponse()); 908 909 // @todo someone should pay for this 910 pkt->busFirstWordDelay = pkt->busLastWordDelay = 0; 911 912 // queue the packet in the response queue to be sent out after 913 // the static latency has passed 914 port.schedTimingResp(pkt, curTick() + static_latency); 915 } else { 916 // @todo the packet is going to be deleted, and the DRAMPacket 917 // is still having a pointer to it 918 pendingDelete.push_back(pkt); 919 } 920 921 DPRINTF(DRAM, "Done\n"); 922 923 return; 924} 925 926pair<Tick, Tick> 927SimpleDRAM::estimateLatency(DRAMPacket* dram_pkt, Tick inTime) 928{ 929 // If a request reaches a bank at tick 'inTime', how much time 930 // *after* that does it take to finish the request, depending 931 // on bank status and page open policy. Note that this method 932 // considers only the time taken for the actual read or write 933 // to complete, NOT any additional time thereafter for tRAS or 934 // tRP. 935 Tick accLat = 0; 936 Tick bankLat = 0; 937 rowHitFlag = false; 938 939 const Bank& bank = dram_pkt->bank_ref; 940 if (pageMgmt == Enums::open) { // open-page policy 941 if (bank.openRow == dram_pkt->row) { 942 // When we have a row-buffer hit, 943 // we don't care about tRAS having expired or not, 944 // but do care about bank being free for access 945 rowHitFlag = true; 946 947 if (bank.freeAt < inTime) { 948 // CAS latency only 949 accLat += tCL; 950 bankLat += tCL; 951 } else { 952 accLat += 0; 953 bankLat += 0; 954 } 955 956 } else { 957 // Row-buffer miss, need to close existing row 958 // once tRAS has expired, then open the new one, 959 // then add cas latency. 960 Tick freeTime = std::max(bank.tRASDoneAt, bank.freeAt); 961 962 if (freeTime > inTime) 963 accLat += freeTime - inTime; 964 965 accLat += tRP + tRCD + tCL; 966 bankLat += tRP + tRCD + tCL; 967 } 968 } else if (pageMgmt == Enums::close) { 969 // With a close page policy, no notion of 970 // bank.tRASDoneAt 971 if (bank.freeAt > inTime) 972 accLat += bank.freeAt - inTime; 973 974 // page already closed, simply open the row, and 975 // add cas latency 976 accLat += tRCD + tCL; 977 bankLat += tRCD + tCL; 978 } else 979 panic("No page management policy chosen\n"); 980 981 DPRINTF(DRAM, "Returning < %lld, %lld > from estimateLatency()\n", 982 bankLat, accLat); 983 984 return make_pair(bankLat, accLat); 985} 986 987void 988SimpleDRAM::processNextReqEvent() 989{ 990 scheduleNextReq(); 991} 992 993void 994SimpleDRAM::recordActivate(Tick act_tick) 995{ 996 assert(actTicks.size() == activationLimit); 997 998 DPRINTF(DRAM, "Activate at tick %d\n", act_tick); 999 1000 // if the activation limit is disabled then we are done 1001 if (actTicks.empty()) 1002 return; 1003 1004 // sanity check 1005 if (actTicks.back() && (act_tick - actTicks.back()) < tXAW) { 1006 // @todo For now, stick with a warning 1007 warn("Got %d activates in window %d (%d - %d) which is smaller " 1008 "than %d\n", activationLimit, act_tick - actTicks.back(), 1009 act_tick, actTicks.back(), tXAW); 1010 } 1011 1012 // shift the times used for the book keeping, the last element 1013 // (highest index) is the oldest one and hence the lowest value 1014 actTicks.pop_back(); 1015 1016 // record an new activation (in the future) 1017 actTicks.push_front(act_tick); 1018 1019 // cannot activate more than X times in time window tXAW, push the 1020 // next one (the X + 1'st activate) to be tXAW away from the 1021 // oldest in our window of X 1022 if (actTicks.back() && (act_tick - actTicks.back()) < tXAW) { 1023 DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate no earlier " 1024 "than %d\n", activationLimit, actTicks.back() + tXAW); 1025 for(int i = 0; i < ranksPerChannel; i++) 1026 for(int j = 0; j < banksPerRank; j++) 1027 // next activate must not happen before end of window 1028 banks[i][j].freeAt = std::max(banks[i][j].freeAt, 1029 actTicks.back() + tXAW); 1030 } 1031} 1032 1033void 1034SimpleDRAM::doDRAMAccess(DRAMPacket* dram_pkt) 1035{ 1036 1037 DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n", 1038 dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row); 1039 1040 // estimate the bank and access latency 1041 pair<Tick, Tick> lat = estimateLatency(dram_pkt, curTick()); 1042 Tick bankLat = lat.first; 1043 Tick accessLat = lat.second; 1044 1045 // This request was woken up at this time based on a prior call 1046 // to estimateLatency(). However, between then and now, both the 1047 // accessLatency and/or busBusyUntil may have changed. We need 1048 // to correct for that. 1049 1050 Tick addDelay = (curTick() + accessLat < busBusyUntil) ? 1051 busBusyUntil - (curTick() + accessLat) : 0; 1052 1053 Bank& bank = dram_pkt->bank_ref; 1054 1055 // Update bank state 1056 if (pageMgmt == Enums::open) { 1057 bank.openRow = dram_pkt->row; 1058 bank.freeAt = curTick() + addDelay + accessLat; 1059 bank.bytesAccessed += burstSize; 1060 1061 // If you activated a new row do to this access, the next access 1062 // will have to respect tRAS for this bank. Assume tRAS ~= 3 * tRP. 1063 // Also need to account for t_XAW 1064 if (!rowHitFlag) { 1065 bank.tRASDoneAt = bank.freeAt + tRP; 1066 recordActivate(bank.freeAt - tCL - tRCD); //since this is open page, 1067 //no tRP by default 1068 // sample the number of bytes accessed and reset it as 1069 // we are now closing this row 1070 bytesPerActivate.sample(bank.bytesAccessed); 1071 bank.bytesAccessed = 0; 1072 } 1073 } else if (pageMgmt == Enums::close) { // accounting for tRAS also 1074 // assuming that tRAS ~= 3 * tRP, and tRC ~= 4 * tRP, as is common 1075 // (refer Jacob/Ng/Wang and Micron datasheets) 1076 bank.freeAt = curTick() + addDelay + accessLat + tRP + tRP; 1077 recordActivate(bank.freeAt - tRP - tRP - tCL - tRCD); //essentially (freeAt - tRC) 1078 DPRINTF(DRAM,"doDRAMAccess::bank.freeAt is %lld\n",bank.freeAt); 1079 bytesPerActivate.sample(burstSize); 1080 } else 1081 panic("No page management policy chosen\n"); 1082 1083 // Update request parameters 1084 dram_pkt->readyTime = curTick() + addDelay + accessLat + tBURST; 1085 1086 1087 DPRINTF(DRAM, "Req %lld: curtick is %lld accessLat is %d " \ 1088 "readytime is %lld busbusyuntil is %lld. " \ 1089 "Scheduling at readyTime\n", dram_pkt->addr, 1090 curTick(), accessLat, dram_pkt->readyTime, busBusyUntil); 1091 1092 // Make sure requests are not overlapping on the databus 1093 assert (dram_pkt->readyTime - busBusyUntil >= tBURST); 1094 1095 // Update bus state 1096 busBusyUntil = dram_pkt->readyTime; 1097 1098 DPRINTF(DRAM,"Access time is %lld\n", 1099 dram_pkt->readyTime - dram_pkt->entryTime); 1100 1101 // Update stats 1102 totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime; 1103 totBankLat += bankLat; 1104 totBusLat += tBURST; 1105 totQLat += dram_pkt->readyTime - dram_pkt->entryTime - bankLat - tBURST; 1106 1107 if (rowHitFlag) 1108 readRowHits++; 1109 1110 // At this point we're done dealing with the request 1111 // It will be moved to a separate response queue with a 1112 // correct readyTime, and eventually be sent back at that 1113 //time 1114 moveToRespQ(); 1115 1116 // The absolute soonest you have to start thinking about the 1117 // next request is the longest access time that can occur before 1118 // busBusyUntil. Assuming you need to meet tRAS, then precharge, 1119 // open a new row, and access, it is ~4*tRCD. 1120 1121 1122 Tick newTime = (busBusyUntil > 4 * tRCD) ? 1123 std::max(busBusyUntil - 4 * tRCD, curTick()) : 1124 curTick(); 1125 1126 if (!nextReqEvent.scheduled() && !stopReads){ 1127 schedule(nextReqEvent, newTime); 1128 } else { 1129 if (newTime < nextReqEvent.when()) 1130 reschedule(nextReqEvent, newTime); 1131 } 1132 1133 1134} 1135 1136void 1137SimpleDRAM::moveToRespQ() 1138{ 1139 // Remove from read queue 1140 DRAMPacket* dram_pkt = readQueue.front(); 1141 readQueue.pop_front(); 1142 1143 // sanity check 1144 assert(dram_pkt->size <= burstSize); 1145 1146 // Insert into response queue sorted by readyTime 1147 // It will be sent back to the requestor at its 1148 // readyTime 1149 if (respQueue.empty()) { 1150 respQueue.push_front(dram_pkt); 1151 assert(!respondEvent.scheduled()); 1152 assert(dram_pkt->readyTime >= curTick()); 1153 schedule(respondEvent, dram_pkt->readyTime); 1154 } else { 1155 bool done = false; 1156 list<DRAMPacket*>::iterator i = respQueue.begin(); 1157 while (!done && i != respQueue.end()) { 1158 if ((*i)->readyTime > dram_pkt->readyTime) { 1159 respQueue.insert(i, dram_pkt); 1160 done = true; 1161 } 1162 ++i; 1163 } 1164 1165 if (!done) 1166 respQueue.push_back(dram_pkt); 1167 1168 assert(respondEvent.scheduled()); 1169 1170 if (respQueue.front()->readyTime < respondEvent.when()) { 1171 assert(respQueue.front()->readyTime >= curTick()); 1172 reschedule(respondEvent, respQueue.front()->readyTime); 1173 } 1174 } 1175} 1176 1177void 1178SimpleDRAM::scheduleNextReq() 1179{ 1180 DPRINTF(DRAM, "Reached scheduleNextReq()\n"); 1181 1182 // Figure out which read request goes next, and move it to the 1183 // front of the read queue 1184 if (!chooseNextRead()) { 1185 // In the case there is no read request to go next, see if we 1186 // are asked to drain, and if so trigger writes, this also 1187 // ensures that if we hit the write limit we will do this 1188 // multiple times until we are completely drained 1189 if (drainManager && !writeQueue.empty() && !writeEvent.scheduled()) 1190 triggerWrites(); 1191 } else { 1192 doDRAMAccess(readQueue.front()); 1193 } 1194} 1195 1196Tick 1197SimpleDRAM::maxBankFreeAt() const 1198{ 1199 Tick banksFree = 0; 1200 1201 for(int i = 0; i < ranksPerChannel; i++) 1202 for(int j = 0; j < banksPerRank; j++) 1203 banksFree = std::max(banks[i][j].freeAt, banksFree); 1204 1205 return banksFree; 1206} 1207 1208void 1209SimpleDRAM::processRefreshEvent() 1210{ 1211 DPRINTF(DRAM, "Refreshing at tick %ld\n", curTick()); 1212 1213 Tick banksFree = std::max(curTick(), maxBankFreeAt()) + tRFC; 1214 1215 for(int i = 0; i < ranksPerChannel; i++) 1216 for(int j = 0; j < banksPerRank; j++) 1217 banks[i][j].freeAt = banksFree; 1218 1219 schedule(refreshEvent, curTick() + tREFI); 1220} 1221 1222void 1223SimpleDRAM::regStats() 1224{ 1225 using namespace Stats; 1226 1227 AbstractMemory::regStats(); 1228 1229 readReqs 1230 .name(name() + ".readReqs") 1231 .desc("Total number of read requests accepted by DRAM controller"); 1232 1233 writeReqs 1234 .name(name() + ".writeReqs") 1235 .desc("Total number of write requests accepted by DRAM controller"); 1236 1237 readBursts 1238 .name(name() + ".readBursts") 1239 .desc("Total number of DRAM read bursts. " 1240 "Each DRAM read request translates to either one or multiple " 1241 "DRAM read bursts"); 1242 1243 writeBursts 1244 .name(name() + ".writeBursts") 1245 .desc("Total number of DRAM write bursts. " 1246 "Each DRAM write request translates to either one or multiple " 1247 "DRAM write bursts"); 1248 1249 servicedByWrQ 1250 .name(name() + ".servicedByWrQ") 1251 .desc("Number of DRAM read bursts serviced by write Q"); 1252 1253 neitherReadNorWrite 1254 .name(name() + ".neitherReadNorWrite") 1255 .desc("Reqs where no action is needed"); 1256 1257 perBankRdReqs 1258 .init(banksPerRank * ranksPerChannel) 1259 .name(name() + ".perBankRdReqs") 1260 .desc("Track reads on a per bank basis"); 1261 1262 perBankWrReqs 1263 .init(banksPerRank * ranksPerChannel) 1264 .name(name() + ".perBankWrReqs") 1265 .desc("Track writes on a per bank basis"); 1266 1267 avgRdQLen 1268 .name(name() + ".avgRdQLen") 1269 .desc("Average read queue length over time") 1270 .precision(2); 1271 1272 avgWrQLen 1273 .name(name() + ".avgWrQLen") 1274 .desc("Average write queue length over time") 1275 .precision(2); 1276 1277 totQLat 1278 .name(name() + ".totQLat") 1279 .desc("Total cycles spent in queuing delays"); 1280 1281 totBankLat 1282 .name(name() + ".totBankLat") 1283 .desc("Total cycles spent in bank access"); 1284 1285 totBusLat 1286 .name(name() + ".totBusLat") 1287 .desc("Total cycles spent in databus access"); 1288 1289 totMemAccLat 1290 .name(name() + ".totMemAccLat") 1291 .desc("Sum of mem lat for all requests"); 1292 1293 avgQLat 1294 .name(name() + ".avgQLat") 1295 .desc("Average queueing delay per request") 1296 .precision(2); 1297 1298 avgQLat = totQLat / (readBursts - servicedByWrQ); 1299 1300 avgBankLat 1301 .name(name() + ".avgBankLat") 1302 .desc("Average bank access latency per request") 1303 .precision(2); 1304 1305 avgBankLat = totBankLat / (readBursts - servicedByWrQ); 1306 1307 avgBusLat 1308 .name(name() + ".avgBusLat") 1309 .desc("Average bus latency per request") 1310 .precision(2); 1311 1312 avgBusLat = totBusLat / (readBursts - servicedByWrQ); 1313 1314 avgMemAccLat 1315 .name(name() + ".avgMemAccLat") 1316 .desc("Average memory access latency") 1317 .precision(2); 1318 1319 avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ); 1320 1321 numRdRetry 1322 .name(name() + ".numRdRetry") 1323 .desc("Number of times rd buffer was full causing retry"); 1324 1325 numWrRetry 1326 .name(name() + ".numWrRetry") 1327 .desc("Number of times wr buffer was full causing retry"); 1328 1329 readRowHits 1330 .name(name() + ".readRowHits") 1331 .desc("Number of row buffer hits during reads"); 1332 1333 writeRowHits 1334 .name(name() + ".writeRowHits") 1335 .desc("Number of row buffer hits during writes"); 1336 1337 readRowHitRate 1338 .name(name() + ".readRowHitRate") 1339 .desc("Row buffer hit rate for reads") 1340 .precision(2); 1341 1342 readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100; 1343 1344 writeRowHitRate 1345 .name(name() + ".writeRowHitRate") 1346 .desc("Row buffer hit rate for writes") 1347 .precision(2); 1348 1349 writeRowHitRate = (writeRowHits / writeBursts) * 100; 1350 1351 readPktSize 1352 .init(ceilLog2(burstSize) + 1) 1353 .name(name() + ".readPktSize") 1354 .desc("Categorize read packet sizes"); 1355 1356 writePktSize 1357 .init(ceilLog2(burstSize) + 1) 1358 .name(name() + ".writePktSize") 1359 .desc("Categorize write packet sizes"); 1360 1361 rdQLenPdf 1362 .init(readBufferSize) 1363 .name(name() + ".rdQLenPdf") 1364 .desc("What read queue length does an incoming req see"); 1365 1366 wrQLenPdf 1367 .init(writeBufferSize) 1368 .name(name() + ".wrQLenPdf") 1369 .desc("What write queue length does an incoming req see"); 1370 1371 bytesPerActivate 1372 .init(rowBufferSize) 1373 .name(name() + ".bytesPerActivate") 1374 .desc("Bytes accessed per row activation") 1375 .flags(nozero); 1376 1377 bytesRead 1378 .name(name() + ".bytesRead") 1379 .desc("Total number of bytes read from memory"); 1380 1381 bytesWritten 1382 .name(name() + ".bytesWritten") 1383 .desc("Total number of bytes written to memory"); 1384 1385 bytesConsumedRd 1386 .name(name() + ".bytesConsumedRd") 1387 .desc("bytesRead derated as per pkt->getSize()"); 1388 1389 bytesConsumedWr 1390 .name(name() + ".bytesConsumedWr") 1391 .desc("bytesWritten derated as per pkt->getSize()"); 1392 1393 avgRdBW 1394 .name(name() + ".avgRdBW") 1395 .desc("Average achieved read bandwidth in MB/s") 1396 .precision(2); 1397 1398 avgRdBW = (bytesRead / 1000000) / simSeconds; 1399 1400 avgWrBW 1401 .name(name() + ".avgWrBW") 1402 .desc("Average achieved write bandwidth in MB/s") 1403 .precision(2); 1404 1405 avgWrBW = (bytesWritten / 1000000) / simSeconds; 1406 1407 avgConsumedRdBW 1408 .name(name() + ".avgConsumedRdBW") 1409 .desc("Average consumed read bandwidth in MB/s") 1410 .precision(2); 1411 1412 avgConsumedRdBW = (bytesConsumedRd / 1000000) / simSeconds; 1413 1414 avgConsumedWrBW 1415 .name(name() + ".avgConsumedWrBW") 1416 .desc("Average consumed write bandwidth in MB/s") 1417 .precision(2); 1418 1419 avgConsumedWrBW = (bytesConsumedWr / 1000000) / simSeconds; 1420 1421 peakBW 1422 .name(name() + ".peakBW") 1423 .desc("Theoretical peak bandwidth in MB/s") 1424 .precision(2); 1425 1426 peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000; 1427 1428 busUtil 1429 .name(name() + ".busUtil") 1430 .desc("Data bus utilization in percentage") 1431 .precision(2); 1432 1433 busUtil = (avgRdBW + avgWrBW) / peakBW * 100; 1434 1435 totGap 1436 .name(name() + ".totGap") 1437 .desc("Total gap between requests"); 1438 1439 avgGap 1440 .name(name() + ".avgGap") 1441 .desc("Average gap between requests") 1442 .precision(2); 1443 1444 avgGap = totGap / (readReqs + writeReqs); 1445} 1446 1447void 1448SimpleDRAM::recvFunctional(PacketPtr pkt) 1449{ 1450 // rely on the abstract memory 1451 functionalAccess(pkt); 1452} 1453 1454BaseSlavePort& 1455SimpleDRAM::getSlavePort(const string &if_name, PortID idx) 1456{ 1457 if (if_name != "port") { 1458 return MemObject::getSlavePort(if_name, idx); 1459 } else { 1460 return port; 1461 } 1462} 1463 1464unsigned int 1465SimpleDRAM::drain(DrainManager *dm) 1466{ 1467 unsigned int count = port.drain(dm); 1468 1469 // if there is anything in any of our internal queues, keep track 1470 // of that as well 1471 if (!(writeQueue.empty() && readQueue.empty() && 1472 respQueue.empty())) { 1473 DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d," 1474 " resp: %d\n", writeQueue.size(), readQueue.size(), 1475 respQueue.size()); 1476 ++count; 1477 drainManager = dm; 1478 // the only part that is not drained automatically over time 1479 // is the write queue, thus trigger writes if there are any 1480 // waiting and no reads waiting, otherwise wait until the 1481 // reads are done 1482 if (readQueue.empty() && !writeQueue.empty() && 1483 !writeEvent.scheduled()) 1484 triggerWrites(); 1485 } 1486 1487 if (count) 1488 setDrainState(Drainable::Draining); 1489 else 1490 setDrainState(Drainable::Drained); 1491 return count; 1492} 1493 1494SimpleDRAM::MemoryPort::MemoryPort(const std::string& name, SimpleDRAM& _memory) 1495 : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this), 1496 memory(_memory) 1497{ } 1498 1499AddrRangeList 1500SimpleDRAM::MemoryPort::getAddrRanges() const 1501{ 1502 AddrRangeList ranges; 1503 ranges.push_back(memory.getAddrRange()); 1504 return ranges; 1505} 1506 1507void 1508SimpleDRAM::MemoryPort::recvFunctional(PacketPtr pkt) 1509{ 1510 pkt->pushLabel(memory.name()); 1511 1512 if (!queue.checkFunctional(pkt)) { 1513 // Default implementation of SimpleTimingPort::recvFunctional() 1514 // calls recvAtomic() and throws away the latency; we can save a 1515 // little here by just not calculating the latency. 1516 memory.recvFunctional(pkt); 1517 } 1518 1519 pkt->popLabel(); 1520} 1521 1522Tick 1523SimpleDRAM::MemoryPort::recvAtomic(PacketPtr pkt) 1524{ 1525 return memory.recvAtomic(pkt); 1526} 1527 1528bool 1529SimpleDRAM::MemoryPort::recvTimingReq(PacketPtr pkt) 1530{ 1531 // pass it to the memory controller 1532 return memory.recvTimingReq(pkt); 1533} 1534 1535SimpleDRAM* 1536SimpleDRAMParams::create() 1537{ 1538 return new SimpleDRAM(this); 1539} 1540