dram_ctrl.cc revision 12084:5a3769ff3d55
1/*
2 * Copyright (c) 2010-2017 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2013 Amin Farmahini-Farahani
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Andreas Hansson
41 *          Ani Udipi
42 *          Neha Agarwal
43 *          Omar Naji
44 *          Wendy Elsasser
45 */
46
47#include "mem/dram_ctrl.hh"
48
49#include "base/bitfield.hh"
50#include "base/trace.hh"
51#include "debug/DRAM.hh"
52#include "debug/DRAMPower.hh"
53#include "debug/DRAMState.hh"
54#include "debug/Drain.hh"
55#include "sim/system.hh"
56
57using namespace std;
58using namespace Data;
59
60DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
61    AbstractMemory(p),
62    port(name() + ".port", *this), isTimingMode(false),
63    retryRdReq(false), retryWrReq(false),
64    busState(READ),
65    busStateNext(READ),
66    nextReqEvent([this]{ processNextReqEvent(); }, name()),
67    respondEvent([this]{ processRespondEvent(); }, name()),
68    deviceSize(p->device_size),
69    deviceBusWidth(p->device_bus_width), burstLength(p->burst_length),
70    deviceRowBufferSize(p->device_rowbuffer_size),
71    devicesPerRank(p->devices_per_rank),
72    burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8),
73    rowBufferSize(devicesPerRank * deviceRowBufferSize),
74    columnsPerRowBuffer(rowBufferSize / burstSize),
75    columnsPerStripe(range.interleaved() ? range.granularity() / burstSize : 1),
76    ranksPerChannel(p->ranks_per_channel),
77    bankGroupsPerRank(p->bank_groups_per_rank),
78    bankGroupArch(p->bank_groups_per_rank > 0),
79    banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0),
80    readBufferSize(p->read_buffer_size),
81    writeBufferSize(p->write_buffer_size),
82    writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0),
83    writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0),
84    minWritesPerSwitch(p->min_writes_per_switch),
85    writesThisTime(0), readsThisTime(0),
86    tCK(p->tCK), tWTR(p->tWTR), tRTW(p->tRTW), tCS(p->tCS), tBURST(p->tBURST),
87    tCCD_L(p->tCCD_L), tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS),
88    tWR(p->tWR), tRTP(p->tRTP), tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD),
89    tRRD_L(p->tRRD_L), tXAW(p->tXAW), tXP(p->tXP), tXS(p->tXS),
90    activationLimit(p->activation_limit),
91    memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
92    pageMgmt(p->page_policy),
93    maxAccessesPerRow(p->max_accesses_per_row),
94    frontendLatency(p->static_frontend_latency),
95    backendLatency(p->static_backend_latency),
96    busBusyUntil(0), prevArrival(0),
97    nextReqTime(0), activeRank(0), timeStampOffset(0)
98{
99    // sanity check the ranks since we rely on bit slicing for the
100    // address decoding
101    fatal_if(!isPowerOf2(ranksPerChannel), "DRAM rank count of %d is not "
102             "allowed, must be a power of two\n", ranksPerChannel);
103
104    fatal_if(!isPowerOf2(burstSize), "DRAM burst size %d is not allowed, "
105             "must be a power of two\n", burstSize);
106
107    for (int i = 0; i < ranksPerChannel; i++) {
108        Rank* rank = new Rank(*this, p, i);
109        ranks.push_back(rank);
110    }
111
112    // perform a basic check of the write thresholds
113    if (p->write_low_thresh_perc >= p->write_high_thresh_perc)
114        fatal("Write buffer low threshold %d must be smaller than the "
115              "high threshold %d\n", p->write_low_thresh_perc,
116              p->write_high_thresh_perc);
117
118    // determine the rows per bank by looking at the total capacity
119    uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size());
120
121    // determine the dram actual capacity from the DRAM config in Mbytes
122    uint64_t deviceCapacity = deviceSize / (1024 * 1024) * devicesPerRank *
123        ranksPerChannel;
124
125    // if actual DRAM size does not match memory capacity in system warn!
126    if (deviceCapacity != capacity / (1024 * 1024))
127        warn("DRAM device capacity (%d Mbytes) does not match the "
128             "address range assigned (%d Mbytes)\n", deviceCapacity,
129             capacity / (1024 * 1024));
130
131    DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
132            AbstractMemory::size());
133
134    DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n",
135            rowBufferSize, columnsPerRowBuffer);
136
137    rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel);
138
139    // some basic sanity checks
140    if (tREFI <= tRP || tREFI <= tRFC) {
141        fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n",
142              tREFI, tRP, tRFC);
143    }
144
145    // basic bank group architecture checks ->
146    if (bankGroupArch) {
147        // must have at least one bank per bank group
148        if (bankGroupsPerRank > banksPerRank) {
149            fatal("banks per rank (%d) must be equal to or larger than "
150                  "banks groups per rank (%d)\n",
151                  banksPerRank, bankGroupsPerRank);
152        }
153        // must have same number of banks in each bank group
154        if ((banksPerRank % bankGroupsPerRank) != 0) {
155            fatal("Banks per rank (%d) must be evenly divisible by bank groups "
156                  "per rank (%d) for equal banks per bank group\n",
157                  banksPerRank, bankGroupsPerRank);
158        }
159        // tCCD_L should be greater than minimal, back-to-back burst delay
160        if (tCCD_L <= tBURST) {
161            fatal("tCCD_L (%d) should be larger than tBURST (%d) when "
162                  "bank groups per rank (%d) is greater than 1\n",
163                  tCCD_L, tBURST, bankGroupsPerRank);
164        }
165        // tRRD_L is greater than minimal, same bank group ACT-to-ACT delay
166        // some datasheets might specify it equal to tRRD
167        if (tRRD_L < tRRD) {
168            fatal("tRRD_L (%d) should be larger than tRRD (%d) when "
169                  "bank groups per rank (%d) is greater than 1\n",
170                  tRRD_L, tRRD, bankGroupsPerRank);
171        }
172    }
173
174}
175
176void
177DRAMCtrl::init()
178{
179    AbstractMemory::init();
180
181   if (!port.isConnected()) {
182        fatal("DRAMCtrl %s is unconnected!\n", name());
183    } else {
184        port.sendRangeChange();
185    }
186
187    // a bit of sanity checks on the interleaving, save it for here to
188    // ensure that the system pointer is initialised
189    if (range.interleaved()) {
190        if (channels != range.stripes())
191            fatal("%s has %d interleaved address stripes but %d channel(s)\n",
192                  name(), range.stripes(), channels);
193
194        if (addrMapping == Enums::RoRaBaChCo) {
195            if (rowBufferSize != range.granularity()) {
196                fatal("Channel interleaving of %s doesn't match RoRaBaChCo "
197                      "address map\n", name());
198            }
199        } else if (addrMapping == Enums::RoRaBaCoCh ||
200                   addrMapping == Enums::RoCoRaBaCh) {
201            // for the interleavings with channel bits in the bottom,
202            // if the system uses a channel striping granularity that
203            // is larger than the DRAM burst size, then map the
204            // sequential accesses within a stripe to a number of
205            // columns in the DRAM, effectively placing some of the
206            // lower-order column bits as the least-significant bits
207            // of the address (above the ones denoting the burst size)
208            assert(columnsPerStripe >= 1);
209
210            // channel striping has to be done at a granularity that
211            // is equal or larger to a cache line
212            if (system()->cacheLineSize() > range.granularity()) {
213                fatal("Channel interleaving of %s must be at least as large "
214                      "as the cache line size\n", name());
215            }
216
217            // ...and equal or smaller than the row-buffer size
218            if (rowBufferSize < range.granularity()) {
219                fatal("Channel interleaving of %s must be at most as large "
220                      "as the row-buffer size\n", name());
221            }
222            // this is essentially the check above, so just to be sure
223            assert(columnsPerStripe <= columnsPerRowBuffer);
224        }
225    }
226}
227
228void
229DRAMCtrl::startup()
230{
231    // remember the memory system mode of operation
232    isTimingMode = system()->isTimingMode();
233
234    if (isTimingMode) {
235        // timestamp offset should be in clock cycles for DRAMPower
236        timeStampOffset = divCeil(curTick(), tCK);
237
238        // update the start tick for the precharge accounting to the
239        // current tick
240        for (auto r : ranks) {
241            r->startup(curTick() + tREFI - tRP);
242        }
243
244        // shift the bus busy time sufficiently far ahead that we never
245        // have to worry about negative values when computing the time for
246        // the next request, this will add an insignificant bubble at the
247        // start of simulation
248        busBusyUntil = curTick() + tRP + tRCD + tCL;
249    }
250}
251
252Tick
253DRAMCtrl::recvAtomic(PacketPtr pkt)
254{
255    DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
256
257    panic_if(pkt->cacheResponding(), "Should not see packets where cache "
258             "is responding");
259
260    // do the actual memory access and turn the packet into a response
261    access(pkt);
262
263    Tick latency = 0;
264    if (pkt->hasData()) {
265        // this value is not supposed to be accurate, just enough to
266        // keep things going, mimic a closed page
267        latency = tRP + tRCD + tCL;
268    }
269    return latency;
270}
271
272bool
273DRAMCtrl::readQueueFull(unsigned int neededEntries) const
274{
275    DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n",
276            readBufferSize, readQueue.size() + respQueue.size(),
277            neededEntries);
278
279    return
280        (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize;
281}
282
283bool
284DRAMCtrl::writeQueueFull(unsigned int neededEntries) const
285{
286    DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n",
287            writeBufferSize, writeQueue.size(), neededEntries);
288    return (writeQueue.size() + neededEntries) > writeBufferSize;
289}
290
291DRAMCtrl::DRAMPacket*
292DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size,
293                       bool isRead)
294{
295    // decode the address based on the address mapping scheme, with
296    // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and
297    // channel, respectively
298    uint8_t rank;
299    uint8_t bank;
300    // use a 64-bit unsigned during the computations as the row is
301    // always the top bits, and check before creating the DRAMPacket
302    uint64_t row;
303
304    // truncate the address to a DRAM burst, which makes it unique to
305    // a specific column, row, bank, rank and channel
306    Addr addr = dramPktAddr / burstSize;
307
308    // we have removed the lowest order address bits that denote the
309    // position within the column
310    if (addrMapping == Enums::RoRaBaChCo) {
311        // the lowest order bits denote the column to ensure that
312        // sequential cache lines occupy the same row
313        addr = addr / columnsPerRowBuffer;
314
315        // take out the channel part of the address
316        addr = addr / channels;
317
318        // after the channel bits, get the bank bits to interleave
319        // over the banks
320        bank = addr % banksPerRank;
321        addr = addr / banksPerRank;
322
323        // after the bank, we get the rank bits which thus interleaves
324        // over the ranks
325        rank = addr % ranksPerChannel;
326        addr = addr / ranksPerChannel;
327
328        // lastly, get the row bits, no need to remove them from addr
329        row = addr % rowsPerBank;
330    } else if (addrMapping == Enums::RoRaBaCoCh) {
331        // take out the lower-order column bits
332        addr = addr / columnsPerStripe;
333
334        // take out the channel part of the address
335        addr = addr / channels;
336
337        // next, the higher-order column bites
338        addr = addr / (columnsPerRowBuffer / columnsPerStripe);
339
340        // after the column bits, we get the bank bits to interleave
341        // over the banks
342        bank = addr % banksPerRank;
343        addr = addr / banksPerRank;
344
345        // after the bank, we get the rank bits which thus interleaves
346        // over the ranks
347        rank = addr % ranksPerChannel;
348        addr = addr / ranksPerChannel;
349
350        // lastly, get the row bits, no need to remove them from addr
351        row = addr % rowsPerBank;
352    } else if (addrMapping == Enums::RoCoRaBaCh) {
353        // optimise for closed page mode and utilise maximum
354        // parallelism of the DRAM (at the cost of power)
355
356        // take out the lower-order column bits
357        addr = addr / columnsPerStripe;
358
359        // take out the channel part of the address, not that this has
360        // to match with how accesses are interleaved between the
361        // controllers in the address mapping
362        addr = addr / channels;
363
364        // start with the bank bits, as this provides the maximum
365        // opportunity for parallelism between requests
366        bank = addr % banksPerRank;
367        addr = addr / banksPerRank;
368
369        // next get the rank bits
370        rank = addr % ranksPerChannel;
371        addr = addr / ranksPerChannel;
372
373        // next, the higher-order column bites
374        addr = addr / (columnsPerRowBuffer / columnsPerStripe);
375
376        // lastly, get the row bits, no need to remove them from addr
377        row = addr % rowsPerBank;
378    } else
379        panic("Unknown address mapping policy chosen!");
380
381    assert(rank < ranksPerChannel);
382    assert(bank < banksPerRank);
383    assert(row < rowsPerBank);
384    assert(row < Bank::NO_ROW);
385
386    DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
387            dramPktAddr, rank, bank, row);
388
389    // create the corresponding DRAM packet with the entry time and
390    // ready time set to the current tick, the latter will be updated
391    // later
392    uint16_t bank_id = banksPerRank * rank + bank;
393    return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr,
394                          size, ranks[rank]->banks[bank], *ranks[rank]);
395}
396
397void
398DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount)
399{
400    // only add to the read queue here. whenever the request is
401    // eventually done, set the readyTime, and call schedule()
402    assert(!pkt->isWrite());
403
404    assert(pktCount != 0);
405
406    // if the request size is larger than burst size, the pkt is split into
407    // multiple DRAM packets
408    // Note if the pkt starting address is not aligened to burst size, the
409    // address of first DRAM packet is kept unaliged. Subsequent DRAM packets
410    // are aligned to burst size boundaries. This is to ensure we accurately
411    // check read packets against packets in write queue.
412    Addr addr = pkt->getAddr();
413    unsigned pktsServicedByWrQ = 0;
414    BurstHelper* burst_helper = NULL;
415    for (int cnt = 0; cnt < pktCount; ++cnt) {
416        unsigned size = std::min((addr | (burstSize - 1)) + 1,
417                        pkt->getAddr() + pkt->getSize()) - addr;
418        readPktSize[ceilLog2(size)]++;
419        readBursts++;
420
421        // First check write buffer to see if the data is already at
422        // the controller
423        bool foundInWrQ = false;
424        Addr burst_addr = burstAlign(addr);
425        // if the burst address is not present then there is no need
426        // looking any further
427        if (isInWriteQueue.find(burst_addr) != isInWriteQueue.end()) {
428            for (const auto& p : writeQueue) {
429                // check if the read is subsumed in the write queue
430                // packet we are looking at
431                if (p->addr <= addr && (addr + size) <= (p->addr + p->size)) {
432                    foundInWrQ = true;
433                    servicedByWrQ++;
434                    pktsServicedByWrQ++;
435                    DPRINTF(DRAM, "Read to addr %lld with size %d serviced by "
436                            "write queue\n", addr, size);
437                    bytesReadWrQ += burstSize;
438                    break;
439                }
440            }
441        }
442
443        // If not found in the write q, make a DRAM packet and
444        // push it onto the read queue
445        if (!foundInWrQ) {
446
447            // Make the burst helper for split packets
448            if (pktCount > 1 && burst_helper == NULL) {
449                DPRINTF(DRAM, "Read to addr %lld translates to %d "
450                        "dram requests\n", pkt->getAddr(), pktCount);
451                burst_helper = new BurstHelper(pktCount);
452            }
453
454            DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true);
455            dram_pkt->burstHelper = burst_helper;
456
457            assert(!readQueueFull(1));
458            rdQLenPdf[readQueue.size() + respQueue.size()]++;
459
460            DPRINTF(DRAM, "Adding to read queue\n");
461
462            readQueue.push_back(dram_pkt);
463
464            // increment read entries of the rank
465            ++dram_pkt->rankRef.readEntries;
466
467            // Update stats
468            avgRdQLen = readQueue.size() + respQueue.size();
469        }
470
471        // Starting address of next dram pkt (aligend to burstSize boundary)
472        addr = (addr | (burstSize - 1)) + 1;
473    }
474
475    // If all packets are serviced by write queue, we send the repsonse back
476    if (pktsServicedByWrQ == pktCount) {
477        accessAndRespond(pkt, frontendLatency);
478        return;
479    }
480
481    // Update how many split packets are serviced by write queue
482    if (burst_helper != NULL)
483        burst_helper->burstsServiced = pktsServicedByWrQ;
484
485    // If we are not already scheduled to get a request out of the
486    // queue, do so now
487    if (!nextReqEvent.scheduled()) {
488        DPRINTF(DRAM, "Request scheduled immediately\n");
489        schedule(nextReqEvent, curTick());
490    }
491}
492
493void
494DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount)
495{
496    // only add to the write queue here. whenever the request is
497    // eventually done, set the readyTime, and call schedule()
498    assert(pkt->isWrite());
499
500    // if the request size is larger than burst size, the pkt is split into
501    // multiple DRAM packets
502    Addr addr = pkt->getAddr();
503    for (int cnt = 0; cnt < pktCount; ++cnt) {
504        unsigned size = std::min((addr | (burstSize - 1)) + 1,
505                        pkt->getAddr() + pkt->getSize()) - addr;
506        writePktSize[ceilLog2(size)]++;
507        writeBursts++;
508
509        // see if we can merge with an existing item in the write
510        // queue and keep track of whether we have merged or not
511        bool merged = isInWriteQueue.find(burstAlign(addr)) !=
512            isInWriteQueue.end();
513
514        // if the item was not merged we need to create a new write
515        // and enqueue it
516        if (!merged) {
517            DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false);
518
519            assert(writeQueue.size() < writeBufferSize);
520            wrQLenPdf[writeQueue.size()]++;
521
522            DPRINTF(DRAM, "Adding to write queue\n");
523
524            writeQueue.push_back(dram_pkt);
525            isInWriteQueue.insert(burstAlign(addr));
526            assert(writeQueue.size() == isInWriteQueue.size());
527
528            // Update stats
529            avgWrQLen = writeQueue.size();
530
531            // increment write entries of the rank
532            ++dram_pkt->rankRef.writeEntries;
533        } else {
534            DPRINTF(DRAM, "Merging write burst with existing queue entry\n");
535
536            // keep track of the fact that this burst effectively
537            // disappeared as it was merged with an existing one
538            mergedWrBursts++;
539        }
540
541        // Starting address of next dram pkt (aligend to burstSize boundary)
542        addr = (addr | (burstSize - 1)) + 1;
543    }
544
545    // we do not wait for the writes to be send to the actual memory,
546    // but instead take responsibility for the consistency here and
547    // snoop the write queue for any upcoming reads
548    // @todo, if a pkt size is larger than burst size, we might need a
549    // different front end latency
550    accessAndRespond(pkt, frontendLatency);
551
552    // If we are not already scheduled to get a request out of the
553    // queue, do so now
554    if (!nextReqEvent.scheduled()) {
555        DPRINTF(DRAM, "Request scheduled immediately\n");
556        schedule(nextReqEvent, curTick());
557    }
558}
559
560void
561DRAMCtrl::printQs() const {
562    DPRINTF(DRAM, "===READ QUEUE===\n\n");
563    for (auto i = readQueue.begin() ;  i != readQueue.end() ; ++i) {
564        DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
565    }
566    DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
567    for (auto i = respQueue.begin() ;  i != respQueue.end() ; ++i) {
568        DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
569    }
570    DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
571    for (auto i = writeQueue.begin() ;  i != writeQueue.end() ; ++i) {
572        DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
573    }
574}
575
576bool
577DRAMCtrl::recvTimingReq(PacketPtr pkt)
578{
579    // This is where we enter from the outside world
580    DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n",
581            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
582
583    panic_if(pkt->cacheResponding(), "Should not see packets where cache "
584             "is responding");
585
586    panic_if(!(pkt->isRead() || pkt->isWrite()),
587             "Should only see read and writes at memory controller\n");
588
589    // Calc avg gap between requests
590    if (prevArrival != 0) {
591        totGap += curTick() - prevArrival;
592    }
593    prevArrival = curTick();
594
595
596    // Find out how many dram packets a pkt translates to
597    // If the burst size is equal or larger than the pkt size, then a pkt
598    // translates to only one dram packet. Otherwise, a pkt translates to
599    // multiple dram packets
600    unsigned size = pkt->getSize();
601    unsigned offset = pkt->getAddr() & (burstSize - 1);
602    unsigned int dram_pkt_count = divCeil(offset + size, burstSize);
603
604    // check local buffers and do not accept if full
605    if (pkt->isRead()) {
606        assert(size != 0);
607        if (readQueueFull(dram_pkt_count)) {
608            DPRINTF(DRAM, "Read queue full, not accepting\n");
609            // remember that we have to retry this port
610            retryRdReq = true;
611            numRdRetry++;
612            return false;
613        } else {
614            addToReadQueue(pkt, dram_pkt_count);
615            readReqs++;
616            bytesReadSys += size;
617        }
618    } else {
619        assert(pkt->isWrite());
620        assert(size != 0);
621        if (writeQueueFull(dram_pkt_count)) {
622            DPRINTF(DRAM, "Write queue full, not accepting\n");
623            // remember that we have to retry this port
624            retryWrReq = true;
625            numWrRetry++;
626            return false;
627        } else {
628            addToWriteQueue(pkt, dram_pkt_count);
629            writeReqs++;
630            bytesWrittenSys += size;
631        }
632    }
633
634    return true;
635}
636
637void
638DRAMCtrl::processRespondEvent()
639{
640    DPRINTF(DRAM,
641            "processRespondEvent(): Some req has reached its readyTime\n");
642
643    DRAMPacket* dram_pkt = respQueue.front();
644
645    // if a read has reached its ready-time, decrement the number of reads
646    // At this point the packet has been handled and there is a possibility
647    // to switch to low-power mode if no other packet is available
648    --dram_pkt->rankRef.readEntries;
649    DPRINTF(DRAM, "number of read entries for rank %d is %d\n",
650            dram_pkt->rank, dram_pkt->rankRef.readEntries);
651
652    // counter should at least indicate one outstanding request
653    // for this read
654    assert(dram_pkt->rankRef.outstandingEvents > 0);
655    // read response received, decrement count
656    --dram_pkt->rankRef.outstandingEvents;
657
658    // at this moment should not have transitioned to a low-power state
659    assert((dram_pkt->rankRef.pwrState != PWR_SREF) &&
660           (dram_pkt->rankRef.pwrState != PWR_PRE_PDN) &&
661           (dram_pkt->rankRef.pwrState != PWR_ACT_PDN));
662
663    // track if this is the last packet before idling
664    // and that there are no outstanding commands to this rank
665    // if REF in progress, transition to LP state should not occur
666    // until REF completes
667    if ((dram_pkt->rankRef.refreshState == REF_IDLE) &&
668        (dram_pkt->rankRef.lowPowerEntryReady())) {
669        // verify that there are no events scheduled
670        assert(!dram_pkt->rankRef.activateEvent.scheduled());
671        assert(!dram_pkt->rankRef.prechargeEvent.scheduled());
672
673        // if coming from active state, schedule power event to
674        // active power-down else go to precharge power-down
675        DPRINTF(DRAMState, "Rank %d sleep at tick %d; current power state is "
676                "%d\n", dram_pkt->rank, curTick(), dram_pkt->rankRef.pwrState);
677
678        // default to ACT power-down unless already in IDLE state
679        // could be in IDLE if PRE issued before data returned
680        PowerState next_pwr_state = PWR_ACT_PDN;
681        if (dram_pkt->rankRef.pwrState == PWR_IDLE) {
682            next_pwr_state = PWR_PRE_PDN;
683        }
684
685        dram_pkt->rankRef.powerDownSleep(next_pwr_state, curTick());
686    }
687
688    if (dram_pkt->burstHelper) {
689        // it is a split packet
690        dram_pkt->burstHelper->burstsServiced++;
691        if (dram_pkt->burstHelper->burstsServiced ==
692            dram_pkt->burstHelper->burstCount) {
693            // we have now serviced all children packets of a system packet
694            // so we can now respond to the requester
695            // @todo we probably want to have a different front end and back
696            // end latency for split packets
697            accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
698            delete dram_pkt->burstHelper;
699            dram_pkt->burstHelper = NULL;
700        }
701    } else {
702        // it is not a split packet
703        accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
704    }
705
706    delete respQueue.front();
707    respQueue.pop_front();
708
709    if (!respQueue.empty()) {
710        assert(respQueue.front()->readyTime >= curTick());
711        assert(!respondEvent.scheduled());
712        schedule(respondEvent, respQueue.front()->readyTime);
713    } else {
714        // if there is nothing left in any queue, signal a drain
715        if (drainState() == DrainState::Draining &&
716            writeQueue.empty() && readQueue.empty() && allRanksDrained()) {
717
718            DPRINTF(Drain, "DRAM controller done draining\n");
719            signalDrainDone();
720        }
721    }
722
723    // We have made a location in the queue available at this point,
724    // so if there is a read that was forced to wait, retry now
725    if (retryRdReq) {
726        retryRdReq = false;
727        port.sendRetryReq();
728    }
729}
730
731bool
732DRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue, Tick extra_col_delay)
733{
734    // This method does the arbitration between requests. The chosen
735    // packet is simply moved to the head of the queue. The other
736    // methods know that this is the place to look. For example, with
737    // FCFS, this method does nothing
738    assert(!queue.empty());
739
740    // bool to indicate if a packet to an available rank is found
741    bool found_packet = false;
742    if (queue.size() == 1) {
743        DRAMPacket* dram_pkt = queue.front();
744        // available rank corresponds to state refresh idle
745        if (ranks[dram_pkt->rank]->isAvailable()) {
746            found_packet = true;
747            DPRINTF(DRAM, "Single request, going to a free rank\n");
748        } else {
749            DPRINTF(DRAM, "Single request, going to a busy rank\n");
750        }
751        return found_packet;
752    }
753
754    if (memSchedPolicy == Enums::fcfs) {
755        // check if there is a packet going to a free rank
756        for (auto i = queue.begin(); i != queue.end() ; ++i) {
757            DRAMPacket* dram_pkt = *i;
758            if (ranks[dram_pkt->rank]->isAvailable()) {
759                queue.erase(i);
760                queue.push_front(dram_pkt);
761                found_packet = true;
762                break;
763            }
764        }
765    } else if (memSchedPolicy == Enums::frfcfs) {
766        found_packet = reorderQueue(queue, extra_col_delay);
767    } else
768        panic("No scheduling policy chosen\n");
769    return found_packet;
770}
771
772bool
773DRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue, Tick extra_col_delay)
774{
775    // Only determine this if needed
776    uint64_t earliest_banks = 0;
777    bool hidden_bank_prep = false;
778
779    // search for seamless row hits first, if no seamless row hit is
780    // found then determine if there are other packets that can be issued
781    // without incurring additional bus delay due to bank timing
782    // Will select closed rows first to enable more open row possibilies
783    // in future selections
784    bool found_hidden_bank = false;
785
786    // remember if we found a row hit, not seamless, but bank prepped
787    // and ready
788    bool found_prepped_pkt = false;
789
790    // if we have no row hit, prepped or not, and no seamless packet,
791    // just go for the earliest possible
792    bool found_earliest_pkt = false;
793
794    auto selected_pkt_it = queue.end();
795
796    // time we need to issue a column command to be seamless
797    const Tick min_col_at = std::max(busBusyUntil - tCL + extra_col_delay,
798                                     curTick());
799
800    for (auto i = queue.begin(); i != queue.end() ; ++i) {
801        DRAMPacket* dram_pkt = *i;
802        const Bank& bank = dram_pkt->bankRef;
803
804        // check if rank is available, if not, jump to the next packet
805        if (dram_pkt->rankRef.isAvailable()) {
806            // check if it is a row hit
807            if (bank.openRow == dram_pkt->row) {
808                // no additional rank-to-rank or same bank-group
809                // delays, or we switched read/write and might as well
810                // go for the row hit
811                if (bank.colAllowedAt <= min_col_at) {
812                    // FCFS within the hits, giving priority to
813                    // commands that can issue seamlessly, without
814                    // additional delay, such as same rank accesses
815                    // and/or different bank-group accesses
816                    DPRINTF(DRAM, "Seamless row buffer hit\n");
817                    selected_pkt_it = i;
818                    // no need to look through the remaining queue entries
819                    break;
820                } else if (!found_hidden_bank && !found_prepped_pkt) {
821                    // if we did not find a packet to a closed row that can
822                    // issue the bank commands without incurring delay, and
823                    // did not yet find a packet to a prepped row, remember
824                    // the current one
825                    selected_pkt_it = i;
826                    found_prepped_pkt = true;
827                    DPRINTF(DRAM, "Prepped row buffer hit\n");
828                }
829            } else if (!found_earliest_pkt) {
830                // if we have not initialised the bank status, do it
831                // now, and only once per scheduling decisions
832                if (earliest_banks == 0) {
833                    // determine entries with earliest bank delay
834                    pair<uint64_t, bool> bankStatus =
835                        minBankPrep(queue, min_col_at);
836                    earliest_banks = bankStatus.first;
837                    hidden_bank_prep = bankStatus.second;
838                }
839
840                // bank is amongst first available banks
841                // minBankPrep will give priority to packets that can
842                // issue seamlessly
843                if (bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) {
844                    found_earliest_pkt = true;
845                    found_hidden_bank = hidden_bank_prep;
846
847                    // give priority to packets that can issue
848                    // bank commands 'behind the scenes'
849                    // any additional delay if any will be due to
850                    // col-to-col command requirements
851                    if (hidden_bank_prep || !found_prepped_pkt)
852                        selected_pkt_it = i;
853                }
854            }
855        }
856    }
857
858    if (selected_pkt_it != queue.end()) {
859        DRAMPacket* selected_pkt = *selected_pkt_it;
860        queue.erase(selected_pkt_it);
861        queue.push_front(selected_pkt);
862        return true;
863    }
864
865    return false;
866}
867
868void
869DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency)
870{
871    DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
872
873    bool needsResponse = pkt->needsResponse();
874    // do the actual memory access which also turns the packet into a
875    // response
876    access(pkt);
877
878    // turn packet around to go back to requester if response expected
879    if (needsResponse) {
880        // access already turned the packet into a response
881        assert(pkt->isResponse());
882        // response_time consumes the static latency and is charged also
883        // with headerDelay that takes into account the delay provided by
884        // the xbar and also the payloadDelay that takes into account the
885        // number of data beats.
886        Tick response_time = curTick() + static_latency + pkt->headerDelay +
887                             pkt->payloadDelay;
888        // Here we reset the timing of the packet before sending it out.
889        pkt->headerDelay = pkt->payloadDelay = 0;
890
891        // queue the packet in the response queue to be sent out after
892        // the static latency has passed
893        port.schedTimingResp(pkt, response_time, true);
894    } else {
895        // @todo the packet is going to be deleted, and the DRAMPacket
896        // is still having a pointer to it
897        pendingDelete.reset(pkt);
898    }
899
900    DPRINTF(DRAM, "Done\n");
901
902    return;
903}
904
905void
906DRAMCtrl::activateBank(Rank& rank_ref, Bank& bank_ref,
907                       Tick act_tick, uint32_t row)
908{
909    assert(rank_ref.actTicks.size() == activationLimit);
910
911    DPRINTF(DRAM, "Activate at tick %d\n", act_tick);
912
913    // update the open row
914    assert(bank_ref.openRow == Bank::NO_ROW);
915    bank_ref.openRow = row;
916
917    // start counting anew, this covers both the case when we
918    // auto-precharged, and when this access is forced to
919    // precharge
920    bank_ref.bytesAccessed = 0;
921    bank_ref.rowAccesses = 0;
922
923    ++rank_ref.numBanksActive;
924    assert(rank_ref.numBanksActive <= banksPerRank);
925
926    DPRINTF(DRAM, "Activate bank %d, rank %d at tick %lld, now got %d active\n",
927            bank_ref.bank, rank_ref.rank, act_tick,
928            ranks[rank_ref.rank]->numBanksActive);
929
930    rank_ref.cmdList.push_back(Command(MemCommand::ACT, bank_ref.bank,
931                               act_tick));
932
933    DPRINTF(DRAMPower, "%llu,ACT,%d,%d\n", divCeil(act_tick, tCK) -
934            timeStampOffset, bank_ref.bank, rank_ref.rank);
935
936    // The next access has to respect tRAS for this bank
937    bank_ref.preAllowedAt = act_tick + tRAS;
938
939    // Respect the row-to-column command delay
940    bank_ref.colAllowedAt = std::max(act_tick + tRCD, bank_ref.colAllowedAt);
941
942    // start by enforcing tRRD
943    for (int i = 0; i < banksPerRank; i++) {
944        // next activate to any bank in this rank must not happen
945        // before tRRD
946        if (bankGroupArch && (bank_ref.bankgr == rank_ref.banks[i].bankgr)) {
947            // bank group architecture requires longer delays between
948            // ACT commands within the same bank group.  Use tRRD_L
949            // in this case
950            rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD_L,
951                                             rank_ref.banks[i].actAllowedAt);
952        } else {
953            // use shorter tRRD value when either
954            // 1) bank group architecture is not supportted
955            // 2) bank is in a different bank group
956            rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD,
957                                             rank_ref.banks[i].actAllowedAt);
958        }
959    }
960
961    // next, we deal with tXAW, if the activation limit is disabled
962    // then we directly schedule an activate power event
963    if (!rank_ref.actTicks.empty()) {
964        // sanity check
965        if (rank_ref.actTicks.back() &&
966           (act_tick - rank_ref.actTicks.back()) < tXAW) {
967            panic("Got %d activates in window %d (%llu - %llu) which "
968                  "is smaller than %llu\n", activationLimit, act_tick -
969                  rank_ref.actTicks.back(), act_tick,
970                  rank_ref.actTicks.back(), tXAW);
971        }
972
973        // shift the times used for the book keeping, the last element
974        // (highest index) is the oldest one and hence the lowest value
975        rank_ref.actTicks.pop_back();
976
977        // record an new activation (in the future)
978        rank_ref.actTicks.push_front(act_tick);
979
980        // cannot activate more than X times in time window tXAW, push the
981        // next one (the X + 1'st activate) to be tXAW away from the
982        // oldest in our window of X
983        if (rank_ref.actTicks.back() &&
984           (act_tick - rank_ref.actTicks.back()) < tXAW) {
985            DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate "
986                    "no earlier than %llu\n", activationLimit,
987                    rank_ref.actTicks.back() + tXAW);
988            for (int j = 0; j < banksPerRank; j++)
989                // next activate must not happen before end of window
990                rank_ref.banks[j].actAllowedAt =
991                    std::max(rank_ref.actTicks.back() + tXAW,
992                             rank_ref.banks[j].actAllowedAt);
993        }
994    }
995
996    // at the point when this activate takes place, make sure we
997    // transition to the active power state
998    if (!rank_ref.activateEvent.scheduled())
999        schedule(rank_ref.activateEvent, act_tick);
1000    else if (rank_ref.activateEvent.when() > act_tick)
1001        // move it sooner in time
1002        reschedule(rank_ref.activateEvent, act_tick);
1003}
1004
1005void
1006DRAMCtrl::prechargeBank(Rank& rank_ref, Bank& bank, Tick pre_at, bool trace)
1007{
1008    // make sure the bank has an open row
1009    assert(bank.openRow != Bank::NO_ROW);
1010
1011    // sample the bytes per activate here since we are closing
1012    // the page
1013    bytesPerActivate.sample(bank.bytesAccessed);
1014
1015    bank.openRow = Bank::NO_ROW;
1016
1017    // no precharge allowed before this one
1018    bank.preAllowedAt = pre_at;
1019
1020    Tick pre_done_at = pre_at + tRP;
1021
1022    bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at);
1023
1024    assert(rank_ref.numBanksActive != 0);
1025    --rank_ref.numBanksActive;
1026
1027    DPRINTF(DRAM, "Precharging bank %d, rank %d at tick %lld, now got "
1028            "%d active\n", bank.bank, rank_ref.rank, pre_at,
1029            rank_ref.numBanksActive);
1030
1031    if (trace) {
1032
1033        rank_ref.cmdList.push_back(Command(MemCommand::PRE, bank.bank,
1034                                   pre_at));
1035        DPRINTF(DRAMPower, "%llu,PRE,%d,%d\n", divCeil(pre_at, tCK) -
1036                timeStampOffset, bank.bank, rank_ref.rank);
1037    }
1038    // if we look at the current number of active banks we might be
1039    // tempted to think the DRAM is now idle, however this can be
1040    // undone by an activate that is scheduled to happen before we
1041    // would have reached the idle state, so schedule an event and
1042    // rather check once we actually make it to the point in time when
1043    // the (last) precharge takes place
1044    if (!rank_ref.prechargeEvent.scheduled()) {
1045        schedule(rank_ref.prechargeEvent, pre_done_at);
1046        // New event, increment count
1047        ++rank_ref.outstandingEvents;
1048    } else if (rank_ref.prechargeEvent.when() < pre_done_at) {
1049        reschedule(rank_ref.prechargeEvent, pre_done_at);
1050    }
1051}
1052
1053void
1054DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
1055{
1056    DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
1057            dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
1058
1059    // get the rank
1060    Rank& rank = dram_pkt->rankRef;
1061
1062    // are we in or transitioning to a low-power state and have not scheduled
1063    // a power-up event?
1064    // if so, wake up from power down to issue RD/WR burst
1065    if (rank.inLowPowerState) {
1066        assert(rank.pwrState != PWR_SREF);
1067        rank.scheduleWakeUpEvent(tXP);
1068    }
1069
1070    // get the bank
1071    Bank& bank = dram_pkt->bankRef;
1072
1073    // for the state we need to track if it is a row hit or not
1074    bool row_hit = true;
1075
1076    // respect any constraints on the command (e.g. tRCD or tCCD)
1077    Tick cmd_at = std::max(bank.colAllowedAt, curTick());
1078
1079    // Determine the access latency and update the bank state
1080    if (bank.openRow == dram_pkt->row) {
1081        // nothing to do
1082    } else {
1083        row_hit = false;
1084
1085        // If there is a page open, precharge it.
1086        if (bank.openRow != Bank::NO_ROW) {
1087            prechargeBank(rank, bank, std::max(bank.preAllowedAt, curTick()));
1088        }
1089
1090        // next we need to account for the delay in activating the
1091        // page
1092        Tick act_tick = std::max(bank.actAllowedAt, curTick());
1093
1094        // Record the activation and deal with all the global timing
1095        // constraints caused be a new activation (tRRD and tXAW)
1096        activateBank(rank, bank, act_tick, dram_pkt->row);
1097
1098        // issue the command as early as possible
1099        cmd_at = bank.colAllowedAt;
1100    }
1101
1102    // we need to wait until the bus is available before we can issue
1103    // the command
1104    cmd_at = std::max(cmd_at, busBusyUntil - tCL);
1105
1106    // update the packet ready time
1107    dram_pkt->readyTime = cmd_at + tCL + tBURST;
1108
1109    // only one burst can use the bus at any one point in time
1110    assert(dram_pkt->readyTime - busBusyUntil >= tBURST);
1111
1112    // update the time for the next read/write burst for each
1113    // bank (add a max with tCCD/tCCD_L here)
1114    Tick cmd_dly;
1115    for (int j = 0; j < ranksPerChannel; j++) {
1116        for (int i = 0; i < banksPerRank; i++) {
1117            // next burst to same bank group in this rank must not happen
1118            // before tCCD_L.  Different bank group timing requirement is
1119            // tBURST; Add tCS for different ranks
1120            if (dram_pkt->rank == j) {
1121                if (bankGroupArch &&
1122                   (bank.bankgr == ranks[j]->banks[i].bankgr)) {
1123                    // bank group architecture requires longer delays between
1124                    // RD/WR burst commands to the same bank group.
1125                    // Use tCCD_L in this case
1126                    cmd_dly = tCCD_L;
1127                } else {
1128                    // use tBURST (equivalent to tCCD_S), the shorter
1129                    // cas-to-cas delay value, when either:
1130                    // 1) bank group architecture is not supportted
1131                    // 2) bank is in a different bank group
1132                    cmd_dly = tBURST;
1133                }
1134            } else {
1135                // different rank is by default in a different bank group
1136                // use tBURST (equivalent to tCCD_S), which is the shorter
1137                // cas-to-cas delay in this case
1138                // Add tCS to account for rank-to-rank bus delay requirements
1139                cmd_dly = tBURST + tCS;
1140            }
1141            ranks[j]->banks[i].colAllowedAt = std::max(cmd_at + cmd_dly,
1142                                             ranks[j]->banks[i].colAllowedAt);
1143        }
1144    }
1145
1146    // Save rank of current access
1147    activeRank = dram_pkt->rank;
1148
1149    // If this is a write, we also need to respect the write recovery
1150    // time before a precharge, in the case of a read, respect the
1151    // read to precharge constraint
1152    bank.preAllowedAt = std::max(bank.preAllowedAt,
1153                                 dram_pkt->isRead ? cmd_at + tRTP :
1154                                 dram_pkt->readyTime + tWR);
1155
1156    // increment the bytes accessed and the accesses per row
1157    bank.bytesAccessed += burstSize;
1158    ++bank.rowAccesses;
1159
1160    // if we reached the max, then issue with an auto-precharge
1161    bool auto_precharge = pageMgmt == Enums::close ||
1162        bank.rowAccesses == maxAccessesPerRow;
1163
1164    // if we did not hit the limit, we might still want to
1165    // auto-precharge
1166    if (!auto_precharge &&
1167        (pageMgmt == Enums::open_adaptive ||
1168         pageMgmt == Enums::close_adaptive)) {
1169        // a twist on the open and close page policies:
1170        // 1) open_adaptive page policy does not blindly keep the
1171        // page open, but close it if there are no row hits, and there
1172        // are bank conflicts in the queue
1173        // 2) close_adaptive page policy does not blindly close the
1174        // page, but closes it only if there are no row hits in the queue.
1175        // In this case, only force an auto precharge when there
1176        // are no same page hits in the queue
1177        bool got_more_hits = false;
1178        bool got_bank_conflict = false;
1179
1180        // either look at the read queue or write queue
1181        const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue :
1182            writeQueue;
1183        auto p = queue.begin();
1184        // make sure we are not considering the packet that we are
1185        // currently dealing with (which is the head of the queue)
1186        ++p;
1187
1188        // keep on looking until we find a hit or reach the end of the queue
1189        // 1) if a hit is found, then both open and close adaptive policies keep
1190        // the page open
1191        // 2) if no hit is found, got_bank_conflict is set to true if a bank
1192        // conflict request is waiting in the queue
1193        while (!got_more_hits && p != queue.end()) {
1194            bool same_rank_bank = (dram_pkt->rank == (*p)->rank) &&
1195                (dram_pkt->bank == (*p)->bank);
1196            bool same_row = dram_pkt->row == (*p)->row;
1197            got_more_hits |= same_rank_bank && same_row;
1198            got_bank_conflict |= same_rank_bank && !same_row;
1199            ++p;
1200        }
1201
1202        // auto pre-charge when either
1203        // 1) open_adaptive policy, we have not got any more hits, and
1204        //    have a bank conflict
1205        // 2) close_adaptive policy and we have not got any more hits
1206        auto_precharge = !got_more_hits &&
1207            (got_bank_conflict || pageMgmt == Enums::close_adaptive);
1208    }
1209
1210    // DRAMPower trace command to be written
1211    std::string mem_cmd = dram_pkt->isRead ? "RD" : "WR";
1212
1213    // MemCommand required for DRAMPower library
1214    MemCommand::cmds command = (mem_cmd == "RD") ? MemCommand::RD :
1215                                                   MemCommand::WR;
1216
1217    // Update bus state
1218    busBusyUntil = dram_pkt->readyTime;
1219
1220    DPRINTF(DRAM, "Access to %lld, ready at %lld bus busy until %lld.\n",
1221            dram_pkt->addr, dram_pkt->readyTime, busBusyUntil);
1222
1223    dram_pkt->rankRef.cmdList.push_back(Command(command, dram_pkt->bank,
1224                                        cmd_at));
1225
1226    DPRINTF(DRAMPower, "%llu,%s,%d,%d\n", divCeil(cmd_at, tCK) -
1227            timeStampOffset, mem_cmd, dram_pkt->bank, dram_pkt->rank);
1228
1229    // if this access should use auto-precharge, then we are
1230    // closing the row after the read/write burst
1231    if (auto_precharge) {
1232        // if auto-precharge push a PRE command at the correct tick to the
1233        // list used by DRAMPower library to calculate power
1234        prechargeBank(rank, bank, std::max(curTick(), bank.preAllowedAt));
1235
1236        DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId);
1237    }
1238
1239    // Update the minimum timing between the requests, this is a
1240    // conservative estimate of when we have to schedule the next
1241    // request to not introduce any unecessary bubbles. In most cases
1242    // we will wake up sooner than we have to.
1243    nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
1244
1245    // Update the stats and schedule the next request
1246    if (dram_pkt->isRead) {
1247        ++readsThisTime;
1248        if (row_hit)
1249            readRowHits++;
1250        bytesReadDRAM += burstSize;
1251        perBankRdBursts[dram_pkt->bankId]++;
1252
1253        // Update latency stats
1254        totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
1255        totBusLat += tBURST;
1256        totQLat += cmd_at - dram_pkt->entryTime;
1257    } else {
1258        ++writesThisTime;
1259        if (row_hit)
1260            writeRowHits++;
1261        bytesWritten += burstSize;
1262        perBankWrBursts[dram_pkt->bankId]++;
1263    }
1264}
1265
1266void
1267DRAMCtrl::processNextReqEvent()
1268{
1269    int busyRanks = 0;
1270    for (auto r : ranks) {
1271        if (!r->isAvailable()) {
1272            if (r->pwrState != PWR_SREF) {
1273                // rank is busy refreshing
1274                DPRINTF(DRAMState, "Rank %d is not available\n", r->rank);
1275                busyRanks++;
1276
1277                // let the rank know that if it was waiting to drain, it
1278                // is now done and ready to proceed
1279                r->checkDrainDone();
1280            }
1281
1282            // check if we were in self-refresh and haven't started
1283            // to transition out
1284            if ((r->pwrState == PWR_SREF) && r->inLowPowerState) {
1285                DPRINTF(DRAMState, "Rank %d is in self-refresh\n", r->rank);
1286                // if we have commands queued to this rank and we don't have
1287                // a minimum number of active commands enqueued,
1288                // exit self-refresh
1289                if (r->forceSelfRefreshExit()) {
1290                    DPRINTF(DRAMState, "rank %d was in self refresh and"
1291                           " should wake up\n", r->rank);
1292                    //wake up from self-refresh
1293                    r->scheduleWakeUpEvent(tXS);
1294                    // things are brought back into action once a refresh is
1295                    // performed after self-refresh
1296                    // continue with selection for other ranks
1297                }
1298            }
1299        }
1300    }
1301
1302    if (busyRanks == ranksPerChannel) {
1303        // if all ranks are refreshing wait for them to finish
1304        // and stall this state machine without taking any further
1305        // action, and do not schedule a new nextReqEvent
1306        return;
1307    }
1308
1309    // pre-emptively set to false.  Overwrite if in transitioning to
1310    // a new state
1311    bool switched_cmd_type = false;
1312    if (busState != busStateNext) {
1313        if (busState == READ) {
1314            DPRINTF(DRAM, "Switching to writes after %d reads with %d reads "
1315                    "waiting\n", readsThisTime, readQueue.size());
1316
1317            // sample and reset the read-related stats as we are now
1318            // transitioning to writes, and all reads are done
1319            rdPerTurnAround.sample(readsThisTime);
1320            readsThisTime = 0;
1321
1322            // now proceed to do the actual writes
1323            switched_cmd_type = true;
1324        } else {
1325            DPRINTF(DRAM, "Switching to reads after %d writes with %d writes "
1326                    "waiting\n", writesThisTime, writeQueue.size());
1327
1328            wrPerTurnAround.sample(writesThisTime);
1329            writesThisTime = 0;
1330
1331            switched_cmd_type = true;
1332        }
1333        // update busState to match next state until next transition
1334        busState = busStateNext;
1335    }
1336
1337    // when we get here it is either a read or a write
1338    if (busState == READ) {
1339
1340        // track if we should switch or not
1341        bool switch_to_writes = false;
1342
1343        if (readQueue.empty()) {
1344            // In the case there is no read request to go next,
1345            // trigger writes if we have passed the low threshold (or
1346            // if we are draining)
1347            if (!writeQueue.empty() &&
1348                (drainState() == DrainState::Draining ||
1349                 writeQueue.size() > writeLowThreshold)) {
1350
1351                switch_to_writes = true;
1352            } else {
1353                // check if we are drained
1354                // not done draining until in PWR_IDLE state
1355                // ensuring all banks are closed and
1356                // have exited low power states
1357                if (drainState() == DrainState::Draining &&
1358                    respQueue.empty() && allRanksDrained()) {
1359
1360                    DPRINTF(Drain, "DRAM controller done draining\n");
1361                    signalDrainDone();
1362                }
1363
1364                // nothing to do, not even any point in scheduling an
1365                // event for the next request
1366                return;
1367            }
1368        } else {
1369            // bool to check if there is a read to a free rank
1370            bool found_read = false;
1371
1372            // Figure out which read request goes next, and move it to the
1373            // front of the read queue
1374            // If we are changing command type, incorporate the minimum
1375            // bus turnaround delay which will be tCS (different rank) case
1376            found_read = chooseNext(readQueue,
1377                             switched_cmd_type ? tCS : 0);
1378
1379            // if no read to an available rank is found then return
1380            // at this point. There could be writes to the available ranks
1381            // which are above the required threshold. However, to
1382            // avoid adding more complexity to the code, return and wait
1383            // for a refresh event to kick things into action again.
1384            if (!found_read)
1385                return;
1386
1387            DRAMPacket* dram_pkt = readQueue.front();
1388            assert(dram_pkt->rankRef.isAvailable());
1389
1390            // here we get a bit creative and shift the bus busy time not
1391            // just the tWTR, but also a CAS latency to capture the fact
1392            // that we are allowed to prepare a new bank, but not issue a
1393            // read command until after tWTR, in essence we capture a
1394            // bubble on the data bus that is tWTR + tCL
1395            if (switched_cmd_type && dram_pkt->rank == activeRank) {
1396                busBusyUntil += tWTR + tCL;
1397            }
1398
1399            doDRAMAccess(dram_pkt);
1400
1401            // At this point we're done dealing with the request
1402            readQueue.pop_front();
1403
1404            // Every respQueue which will generate an event, increment count
1405            ++dram_pkt->rankRef.outstandingEvents;
1406
1407            // sanity check
1408            assert(dram_pkt->size <= burstSize);
1409            assert(dram_pkt->readyTime >= curTick());
1410
1411            // Insert into response queue. It will be sent back to the
1412            // requestor at its readyTime
1413            if (respQueue.empty()) {
1414                assert(!respondEvent.scheduled());
1415                schedule(respondEvent, dram_pkt->readyTime);
1416            } else {
1417                assert(respQueue.back()->readyTime <= dram_pkt->readyTime);
1418                assert(respondEvent.scheduled());
1419            }
1420
1421            respQueue.push_back(dram_pkt);
1422
1423            // we have so many writes that we have to transition
1424            if (writeQueue.size() > writeHighThreshold) {
1425                switch_to_writes = true;
1426            }
1427        }
1428
1429        // switching to writes, either because the read queue is empty
1430        // and the writes have passed the low threshold (or we are
1431        // draining), or because the writes hit the hight threshold
1432        if (switch_to_writes) {
1433            // transition to writing
1434            busStateNext = WRITE;
1435        }
1436    } else {
1437        // bool to check if write to free rank is found
1438        bool found_write = false;
1439
1440        // If we are changing command type, incorporate the minimum
1441        // bus turnaround delay
1442        found_write = chooseNext(writeQueue,
1443                                 switched_cmd_type ? std::min(tRTW, tCS) : 0);
1444
1445        // if no writes to an available rank are found then return.
1446        // There could be reads to the available ranks. However, to avoid
1447        // adding more complexity to the code, return at this point and wait
1448        // for a refresh event to kick things into action again.
1449        if (!found_write)
1450            return;
1451
1452        DRAMPacket* dram_pkt = writeQueue.front();
1453        assert(dram_pkt->rankRef.isAvailable());
1454        // sanity check
1455        assert(dram_pkt->size <= burstSize);
1456
1457        // add a bubble to the data bus, as defined by the
1458        // tRTW when access is to the same rank as previous burst
1459        // Different rank timing is handled with tCS, which is
1460        // applied to colAllowedAt
1461        if (switched_cmd_type && dram_pkt->rank == activeRank) {
1462            busBusyUntil += tRTW;
1463        }
1464
1465        doDRAMAccess(dram_pkt);
1466
1467        writeQueue.pop_front();
1468
1469        // removed write from queue, decrement count
1470        --dram_pkt->rankRef.writeEntries;
1471
1472        // Schedule write done event to decrement event count
1473        // after the readyTime has been reached
1474        // Only schedule latest write event to minimize events
1475        // required; only need to ensure that final event scheduled covers
1476        // the time that writes are outstanding and bus is active
1477        // to holdoff power-down entry events
1478        if (!dram_pkt->rankRef.writeDoneEvent.scheduled()) {
1479            schedule(dram_pkt->rankRef.writeDoneEvent, dram_pkt->readyTime);
1480            // New event, increment count
1481            ++dram_pkt->rankRef.outstandingEvents;
1482
1483        } else if (dram_pkt->rankRef.writeDoneEvent.when() <
1484                   dram_pkt-> readyTime) {
1485            reschedule(dram_pkt->rankRef.writeDoneEvent, dram_pkt->readyTime);
1486        }
1487
1488        isInWriteQueue.erase(burstAlign(dram_pkt->addr));
1489        delete dram_pkt;
1490
1491        // If we emptied the write queue, or got sufficiently below the
1492        // threshold (using the minWritesPerSwitch as the hysteresis) and
1493        // are not draining, or we have reads waiting and have done enough
1494        // writes, then switch to reads.
1495        if (writeQueue.empty() ||
1496            (writeQueue.size() + minWritesPerSwitch < writeLowThreshold &&
1497             drainState() != DrainState::Draining) ||
1498            (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) {
1499            // turn the bus back around for reads again
1500            busStateNext = READ;
1501
1502            // note that the we switch back to reads also in the idle
1503            // case, which eventually will check for any draining and
1504            // also pause any further scheduling if there is really
1505            // nothing to do
1506        }
1507    }
1508    // It is possible that a refresh to another rank kicks things back into
1509    // action before reaching this point.
1510    if (!nextReqEvent.scheduled())
1511        schedule(nextReqEvent, std::max(nextReqTime, curTick()));
1512
1513    // If there is space available and we have writes waiting then let
1514    // them retry. This is done here to ensure that the retry does not
1515    // cause a nextReqEvent to be scheduled before we do so as part of
1516    // the next request processing
1517    if (retryWrReq && writeQueue.size() < writeBufferSize) {
1518        retryWrReq = false;
1519        port.sendRetryReq();
1520    }
1521}
1522
1523pair<uint64_t, bool>
1524DRAMCtrl::minBankPrep(const deque<DRAMPacket*>& queue,
1525                      Tick min_col_at) const
1526{
1527    uint64_t bank_mask = 0;
1528    Tick min_act_at = MaxTick;
1529
1530    // latest Tick for which ACT can occur without incurring additoinal
1531    // delay on the data bus
1532    const Tick hidden_act_max = std::max(min_col_at - tRCD, curTick());
1533
1534    // Flag condition when burst can issue back-to-back with previous burst
1535    bool found_seamless_bank = false;
1536
1537    // Flag condition when bank can be opened without incurring additional
1538    // delay on the data bus
1539    bool hidden_bank_prep = false;
1540
1541    // determine if we have queued transactions targetting the
1542    // bank in question
1543    vector<bool> got_waiting(ranksPerChannel * banksPerRank, false);
1544    for (const auto& p : queue) {
1545        if (p->rankRef.isAvailable())
1546            got_waiting[p->bankId] = true;
1547    }
1548
1549    // Find command with optimal bank timing
1550    // Will prioritize commands that can issue seamlessly.
1551    for (int i = 0; i < ranksPerChannel; i++) {
1552        for (int j = 0; j < banksPerRank; j++) {
1553            uint16_t bank_id = i * banksPerRank + j;
1554
1555            // if we have waiting requests for the bank, and it is
1556            // amongst the first available, update the mask
1557            if (got_waiting[bank_id]) {
1558                // make sure this rank is not currently refreshing.
1559                assert(ranks[i]->isAvailable());
1560                // simplistic approximation of when the bank can issue
1561                // an activate, ignoring any rank-to-rank switching
1562                // cost in this calculation
1563                Tick act_at = ranks[i]->banks[j].openRow == Bank::NO_ROW ?
1564                    std::max(ranks[i]->banks[j].actAllowedAt, curTick()) :
1565                    std::max(ranks[i]->banks[j].preAllowedAt, curTick()) + tRP;
1566
1567                // When is the earliest the R/W burst can issue?
1568                Tick col_at = std::max(ranks[i]->banks[j].colAllowedAt,
1569                                       act_at + tRCD);
1570
1571                // bank can issue burst back-to-back (seamlessly) with
1572                // previous burst
1573                bool new_seamless_bank = col_at <= min_col_at;
1574
1575                // if we found a new seamless bank or we have no
1576                // seamless banks, and got a bank with an earlier
1577                // activate time, it should be added to the bit mask
1578                if (new_seamless_bank ||
1579                    (!found_seamless_bank && act_at <= min_act_at)) {
1580                    // if we did not have a seamless bank before, and
1581                    // we do now, reset the bank mask, also reset it
1582                    // if we have not yet found a seamless bank and
1583                    // the activate time is smaller than what we have
1584                    // seen so far
1585                    if (!found_seamless_bank &&
1586                        (new_seamless_bank || act_at < min_act_at)) {
1587                        bank_mask = 0;
1588                    }
1589
1590                    found_seamless_bank |= new_seamless_bank;
1591
1592                    // ACT can occur 'behind the scenes'
1593                    hidden_bank_prep = act_at <= hidden_act_max;
1594
1595                    // set the bit corresponding to the available bank
1596                    replaceBits(bank_mask, bank_id, bank_id, 1);
1597                    min_act_at = act_at;
1598                }
1599            }
1600        }
1601    }
1602
1603    return make_pair(bank_mask, hidden_bank_prep);
1604}
1605
1606DRAMCtrl::Rank::Rank(DRAMCtrl& _memory, const DRAMCtrlParams* _p, int rank)
1607    : EventManager(&_memory), memory(_memory),
1608      pwrStateTrans(PWR_IDLE), pwrStatePostRefresh(PWR_IDLE),
1609      pwrStateTick(0), refreshDueAt(0), pwrState(PWR_IDLE),
1610      refreshState(REF_IDLE), inLowPowerState(false), rank(rank),
1611      readEntries(0), writeEntries(0), outstandingEvents(0),
1612      wakeUpAllowedAt(0), power(_p, false), banks(_p->banks_per_rank),
1613      numBanksActive(0), actTicks(_p->activation_limit, 0),
1614      writeDoneEvent([this]{ processWriteDoneEvent(); }, name()),
1615      activateEvent([this]{ processActivateEvent(); }, name()),
1616      prechargeEvent([this]{ processPrechargeEvent(); }, name()),
1617      refreshEvent([this]{ processRefreshEvent(); }, name()),
1618      powerEvent([this]{ processPowerEvent(); }, name()),
1619      wakeUpEvent([this]{ processWakeUpEvent(); }, name())
1620{
1621    for (int b = 0; b < _p->banks_per_rank; b++) {
1622        banks[b].bank = b;
1623        // GDDR addressing of banks to BG is linear.
1624        // Here we assume that all DRAM generations address bank groups as
1625        // follows:
1626        if (_p->bank_groups_per_rank > 0) {
1627            // Simply assign lower bits to bank group in order to
1628            // rotate across bank groups as banks are incremented
1629            // e.g. with 4 banks per bank group and 16 banks total:
1630            //    banks 0,4,8,12  are in bank group 0
1631            //    banks 1,5,9,13  are in bank group 1
1632            //    banks 2,6,10,14 are in bank group 2
1633            //    banks 3,7,11,15 are in bank group 3
1634            banks[b].bankgr = b % _p->bank_groups_per_rank;
1635        } else {
1636            // No bank groups; simply assign to bank number
1637            banks[b].bankgr = b;
1638        }
1639    }
1640}
1641
1642void
1643DRAMCtrl::Rank::startup(Tick ref_tick)
1644{
1645    assert(ref_tick > curTick());
1646
1647    pwrStateTick = curTick();
1648
1649    // kick off the refresh, and give ourselves enough time to
1650    // precharge
1651    schedule(refreshEvent, ref_tick);
1652}
1653
1654void
1655DRAMCtrl::Rank::suspend()
1656{
1657    deschedule(refreshEvent);
1658
1659    // Update the stats
1660    updatePowerStats();
1661
1662    // don't automatically transition back to LP state after next REF
1663    pwrStatePostRefresh = PWR_IDLE;
1664}
1665
1666bool
1667DRAMCtrl::Rank::lowPowerEntryReady() const
1668{
1669    bool no_queued_cmds = ((memory.busStateNext == READ) && (readEntries == 0))
1670                          || ((memory.busStateNext == WRITE) &&
1671                              (writeEntries == 0));
1672
1673    if (refreshState == REF_RUN) {
1674       // have not decremented outstandingEvents for refresh command
1675       // still check if there are no commands queued to force PD
1676       // entry after refresh completes
1677       return no_queued_cmds;
1678    } else {
1679       // ensure no commands in Q and no commands scheduled
1680       return (no_queued_cmds && (outstandingEvents == 0));
1681    }
1682}
1683
1684void
1685DRAMCtrl::Rank::checkDrainDone()
1686{
1687    // if this rank was waiting to drain it is now able to proceed to
1688    // precharge
1689    if (refreshState == REF_DRAIN) {
1690        DPRINTF(DRAM, "Refresh drain done, now precharging\n");
1691
1692        refreshState = REF_PD_EXIT;
1693
1694        // hand control back to the refresh event loop
1695        schedule(refreshEvent, curTick());
1696    }
1697}
1698
1699void
1700DRAMCtrl::Rank::flushCmdList()
1701{
1702    // at the moment sort the list of commands and update the counters
1703    // for DRAMPower libray when doing a refresh
1704    sort(cmdList.begin(), cmdList.end(), DRAMCtrl::sortTime);
1705
1706    auto next_iter = cmdList.begin();
1707    // push to commands to DRAMPower
1708    for ( ; next_iter != cmdList.end() ; ++next_iter) {
1709         Command cmd = *next_iter;
1710         if (cmd.timeStamp <= curTick()) {
1711             // Move all commands at or before curTick to DRAMPower
1712             power.powerlib.doCommand(cmd.type, cmd.bank,
1713                                      divCeil(cmd.timeStamp, memory.tCK) -
1714                                      memory.timeStampOffset);
1715         } else {
1716             // done - found all commands at or before curTick()
1717             // next_iter references the 1st command after curTick
1718             break;
1719         }
1720    }
1721    // reset cmdList to only contain commands after curTick
1722    // if there are no commands after curTick, updated cmdList will be empty
1723    // in this case, next_iter is cmdList.end()
1724    cmdList.assign(next_iter, cmdList.end());
1725}
1726
1727void
1728DRAMCtrl::Rank::processActivateEvent()
1729{
1730    // we should transition to the active state as soon as any bank is active
1731    if (pwrState != PWR_ACT)
1732        // note that at this point numBanksActive could be back at
1733        // zero again due to a precharge scheduled in the future
1734        schedulePowerEvent(PWR_ACT, curTick());
1735}
1736
1737void
1738DRAMCtrl::Rank::processPrechargeEvent()
1739{
1740    // counter should at least indicate one outstanding request
1741    // for this precharge
1742    assert(outstandingEvents > 0);
1743    // precharge complete, decrement count
1744    --outstandingEvents;
1745
1746    // if we reached zero, then special conditions apply as we track
1747    // if all banks are precharged for the power models
1748    if (numBanksActive == 0) {
1749        // no reads to this rank in the Q and no pending
1750        // RD/WR or refresh commands
1751        if (lowPowerEntryReady()) {
1752            // should still be in ACT state since bank still open
1753            assert(pwrState == PWR_ACT);
1754
1755            // All banks closed - switch to precharge power down state.
1756            DPRINTF(DRAMState, "Rank %d sleep at tick %d\n",
1757                    rank, curTick());
1758            powerDownSleep(PWR_PRE_PDN, curTick());
1759        } else {
1760            // we should transition to the idle state when the last bank
1761            // is precharged
1762            schedulePowerEvent(PWR_IDLE, curTick());
1763        }
1764    }
1765}
1766
1767void
1768DRAMCtrl::Rank::processWriteDoneEvent()
1769{
1770    // counter should at least indicate one outstanding request
1771    // for this write
1772    assert(outstandingEvents > 0);
1773    // Write transfer on bus has completed
1774    // decrement per rank counter
1775    --outstandingEvents;
1776}
1777
1778void
1779DRAMCtrl::Rank::processRefreshEvent()
1780{
1781    // when first preparing the refresh, remember when it was due
1782    if ((refreshState == REF_IDLE) || (refreshState == REF_SREF_EXIT)) {
1783        // remember when the refresh is due
1784        refreshDueAt = curTick();
1785
1786        // proceed to drain
1787        refreshState = REF_DRAIN;
1788
1789        // make nonzero while refresh is pending to ensure
1790        // power down and self-refresh are not entered
1791        ++outstandingEvents;
1792
1793        DPRINTF(DRAM, "Refresh due\n");
1794    }
1795
1796    // let any scheduled read or write to the same rank go ahead,
1797    // after which it will
1798    // hand control back to this event loop
1799    if (refreshState == REF_DRAIN) {
1800        // if a request is at the moment being handled and this request is
1801        // accessing the current rank then wait for it to finish
1802        if ((rank == memory.activeRank)
1803            && (memory.nextReqEvent.scheduled())) {
1804            // hand control over to the request loop until it is
1805            // evaluated next
1806            DPRINTF(DRAM, "Refresh awaiting draining\n");
1807
1808            return;
1809        } else {
1810            refreshState = REF_PD_EXIT;
1811        }
1812    }
1813
1814    // at this point, ensure that rank is not in a power-down state
1815    if (refreshState == REF_PD_EXIT) {
1816        // if rank was sleeping and we have't started exit process,
1817        // wake-up for refresh
1818        if (inLowPowerState) {
1819            DPRINTF(DRAM, "Wake Up for refresh\n");
1820            // save state and return after refresh completes
1821            scheduleWakeUpEvent(memory.tXP);
1822            return;
1823        } else {
1824            refreshState = REF_PRE;
1825        }
1826    }
1827
1828    // at this point, ensure that all banks are precharged
1829    if (refreshState == REF_PRE) {
1830        // precharge any active bank
1831        if (numBanksActive != 0) {
1832            // at the moment, we use a precharge all even if there is
1833            // only a single bank open
1834            DPRINTF(DRAM, "Precharging all\n");
1835
1836            // first determine when we can precharge
1837            Tick pre_at = curTick();
1838
1839            for (auto &b : banks) {
1840                // respect both causality and any existing bank
1841                // constraints, some banks could already have a
1842                // (auto) precharge scheduled
1843                pre_at = std::max(b.preAllowedAt, pre_at);
1844            }
1845
1846            // make sure all banks per rank are precharged, and for those that
1847            // already are, update their availability
1848            Tick act_allowed_at = pre_at + memory.tRP;
1849
1850            for (auto &b : banks) {
1851                if (b.openRow != Bank::NO_ROW) {
1852                    memory.prechargeBank(*this, b, pre_at, false);
1853                } else {
1854                    b.actAllowedAt = std::max(b.actAllowedAt, act_allowed_at);
1855                    b.preAllowedAt = std::max(b.preAllowedAt, pre_at);
1856                }
1857            }
1858
1859            // precharge all banks in rank
1860            cmdList.push_back(Command(MemCommand::PREA, 0, pre_at));
1861
1862            DPRINTF(DRAMPower, "%llu,PREA,0,%d\n",
1863                    divCeil(pre_at, memory.tCK) -
1864                            memory.timeStampOffset, rank);
1865        } else if ((pwrState == PWR_IDLE) && (outstandingEvents == 1))  {
1866            // Banks are closed, have transitioned to IDLE state, and
1867            // no outstanding ACT,RD/WR,Auto-PRE sequence scheduled
1868            DPRINTF(DRAM, "All banks already precharged, starting refresh\n");
1869
1870            // go ahead and kick the power state machine into gear since
1871            // we are already idle
1872            schedulePowerEvent(PWR_REF, curTick());
1873        } else {
1874            // banks state is closed but haven't transitioned pwrState to IDLE
1875            // or have outstanding ACT,RD/WR,Auto-PRE sequence scheduled
1876            // should have outstanding precharge event in this case
1877            assert(prechargeEvent.scheduled());
1878            // will start refresh when pwrState transitions to IDLE
1879        }
1880
1881        assert(numBanksActive == 0);
1882
1883        // wait for all banks to be precharged, at which point the
1884        // power state machine will transition to the idle state, and
1885        // automatically move to a refresh, at that point it will also
1886        // call this method to get the refresh event loop going again
1887        return;
1888    }
1889
1890    // last but not least we perform the actual refresh
1891    if (refreshState == REF_START) {
1892        // should never get here with any banks active
1893        assert(numBanksActive == 0);
1894        assert(pwrState == PWR_REF);
1895
1896        Tick ref_done_at = curTick() + memory.tRFC;
1897
1898        for (auto &b : banks) {
1899            b.actAllowedAt = ref_done_at;
1900        }
1901
1902        // at the moment this affects all ranks
1903        cmdList.push_back(Command(MemCommand::REF, 0, curTick()));
1904
1905        // Update the stats
1906        updatePowerStats();
1907
1908        DPRINTF(DRAMPower, "%llu,REF,0,%d\n", divCeil(curTick(), memory.tCK) -
1909                memory.timeStampOffset, rank);
1910
1911        // Update for next refresh
1912        refreshDueAt += memory.tREFI;
1913
1914        // make sure we did not wait so long that we cannot make up
1915        // for it
1916        if (refreshDueAt < ref_done_at) {
1917            fatal("Refresh was delayed so long we cannot catch up\n");
1918        }
1919
1920        // Run the refresh and schedule event to transition power states
1921        // when refresh completes
1922        refreshState = REF_RUN;
1923        schedule(refreshEvent, ref_done_at);
1924        return;
1925    }
1926
1927    if (refreshState == REF_RUN) {
1928        // should never get here with any banks active
1929        assert(numBanksActive == 0);
1930        assert(pwrState == PWR_REF);
1931
1932        assert(!powerEvent.scheduled());
1933
1934        if ((memory.drainState() == DrainState::Draining) ||
1935            (memory.drainState() == DrainState::Drained)) {
1936            // if draining, do not re-enter low-power mode.
1937            // simply go to IDLE and wait
1938            schedulePowerEvent(PWR_IDLE, curTick());
1939        } else {
1940            // At the moment, we sleep when the refresh ends and wait to be
1941            // woken up again if previously in a low-power state.
1942            if (pwrStatePostRefresh != PWR_IDLE) {
1943                // power State should be power Refresh
1944                assert(pwrState == PWR_REF);
1945                DPRINTF(DRAMState, "Rank %d sleeping after refresh and was in "
1946                        "power state %d before refreshing\n", rank,
1947                        pwrStatePostRefresh);
1948                powerDownSleep(pwrState, curTick());
1949
1950            // Force PRE power-down if there are no outstanding commands
1951            // in Q after refresh.
1952            } else if (lowPowerEntryReady()) {
1953                DPRINTF(DRAMState, "Rank %d sleeping after refresh but was NOT"
1954                        " in a low power state before refreshing\n", rank);
1955                powerDownSleep(PWR_PRE_PDN, curTick());
1956
1957            } else {
1958                // move to the idle power state once the refresh is done, this
1959                // will also move the refresh state machine to the refresh
1960                // idle state
1961                schedulePowerEvent(PWR_IDLE, curTick());
1962            }
1963        }
1964
1965        // if transitioning to self refresh do not schedule a new refresh;
1966        // when waking from self refresh, a refresh is scheduled again.
1967        if (pwrStateTrans != PWR_SREF) {
1968            // compensate for the delay in actually performing the refresh
1969            // when scheduling the next one
1970            schedule(refreshEvent, refreshDueAt - memory.tRP);
1971
1972            DPRINTF(DRAMState, "Refresh done at %llu and next refresh"
1973                    " at %llu\n", curTick(), refreshDueAt);
1974        }
1975    }
1976}
1977
1978void
1979DRAMCtrl::Rank::schedulePowerEvent(PowerState pwr_state, Tick tick)
1980{
1981    // respect causality
1982    assert(tick >= curTick());
1983
1984    if (!powerEvent.scheduled()) {
1985        DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n",
1986                tick, pwr_state);
1987
1988        // insert the new transition
1989        pwrStateTrans = pwr_state;
1990
1991        schedule(powerEvent, tick);
1992    } else {
1993        panic("Scheduled power event at %llu to state %d, "
1994              "with scheduled event at %llu to %d\n", tick, pwr_state,
1995              powerEvent.when(), pwrStateTrans);
1996    }
1997}
1998
1999void
2000DRAMCtrl::Rank::powerDownSleep(PowerState pwr_state, Tick tick)
2001{
2002    // if low power state is active low, schedule to active low power state.
2003    // in reality tCKE is needed to enter active low power. This is neglected
2004    // here and could be added in the future.
2005    if (pwr_state == PWR_ACT_PDN) {
2006        schedulePowerEvent(pwr_state, tick);
2007        // push command to DRAMPower
2008        cmdList.push_back(Command(MemCommand::PDN_F_ACT, 0, tick));
2009        DPRINTF(DRAMPower, "%llu,PDN_F_ACT,0,%d\n", divCeil(tick,
2010                memory.tCK) - memory.timeStampOffset, rank);
2011    } else if (pwr_state == PWR_PRE_PDN) {
2012        // if low power state is precharge low, schedule to precharge low
2013        // power state. In reality tCKE is needed to enter active low power.
2014        // This is neglected here.
2015        schedulePowerEvent(pwr_state, tick);
2016        //push Command to DRAMPower
2017        cmdList.push_back(Command(MemCommand::PDN_F_PRE, 0, tick));
2018        DPRINTF(DRAMPower, "%llu,PDN_F_PRE,0,%d\n", divCeil(tick,
2019                memory.tCK) - memory.timeStampOffset, rank);
2020    } else if (pwr_state == PWR_REF) {
2021        // if a refresh just occured
2022        // transition to PRE_PDN now that all banks are closed
2023        // do not transition to SREF if commands are in Q; stay in PRE_PDN
2024        if (pwrStatePostRefresh == PWR_ACT_PDN || !lowPowerEntryReady()) {
2025            // prechage power down requires tCKE to enter. For simplicity
2026            // this is not considered.
2027            schedulePowerEvent(PWR_PRE_PDN, tick);
2028            //push Command to DRAMPower
2029            cmdList.push_back(Command(MemCommand::PDN_F_PRE, 0, tick));
2030            DPRINTF(DRAMPower, "%llu,PDN_F_PRE,0,%d\n", divCeil(tick,
2031                    memory.tCK) - memory.timeStampOffset, rank);
2032        } else {
2033            // last low power State was power precharge
2034            assert(pwrStatePostRefresh == PWR_PRE_PDN);
2035            // self refresh requires time tCKESR to enter. For simplicity,
2036            // this is not considered.
2037            schedulePowerEvent(PWR_SREF, tick);
2038            // push Command to DRAMPower
2039            cmdList.push_back(Command(MemCommand::SREN, 0, tick));
2040            DPRINTF(DRAMPower, "%llu,SREN,0,%d\n", divCeil(tick,
2041                    memory.tCK) - memory.timeStampOffset, rank);
2042        }
2043    }
2044    // Ensure that we don't power-down and back up in same tick
2045    // Once we commit to PD entry, do it and wait for at least 1tCK
2046    // This could be replaced with tCKE if/when that is added to the model
2047    wakeUpAllowedAt = tick + memory.tCK;
2048
2049    // Transitioning to a low power state, set flag
2050    inLowPowerState = true;
2051}
2052
2053void
2054DRAMCtrl::Rank::scheduleWakeUpEvent(Tick exit_delay)
2055{
2056    Tick wake_up_tick = std::max(curTick(), wakeUpAllowedAt);
2057
2058    DPRINTF(DRAMState, "Scheduling wake-up for rank %d at tick %d\n",
2059            rank, wake_up_tick);
2060
2061    // if waking for refresh, hold previous state
2062    // else reset state back to IDLE
2063    if (refreshState == REF_PD_EXIT) {
2064        pwrStatePostRefresh = pwrState;
2065    } else {
2066        // don't automatically transition back to LP state after next REF
2067        pwrStatePostRefresh = PWR_IDLE;
2068    }
2069
2070    // schedule wake-up with event to ensure entry has completed before
2071    // we try to wake-up
2072    schedule(wakeUpEvent, wake_up_tick);
2073
2074    for (auto &b : banks) {
2075        // respect both causality and any existing bank
2076        // constraints, some banks could already have a
2077        // (auto) precharge scheduled
2078        b.colAllowedAt = std::max(wake_up_tick + exit_delay, b.colAllowedAt);
2079        b.preAllowedAt = std::max(wake_up_tick + exit_delay, b.preAllowedAt);
2080        b.actAllowedAt = std::max(wake_up_tick + exit_delay, b.actAllowedAt);
2081    }
2082    // Transitioning out of low power state, clear flag
2083    inLowPowerState = false;
2084
2085    // push to DRAMPower
2086    // use pwrStateTrans for cases where we have a power event scheduled
2087    // to enter low power that has not yet been processed
2088    if (pwrStateTrans == PWR_ACT_PDN) {
2089        cmdList.push_back(Command(MemCommand::PUP_ACT, 0, wake_up_tick));
2090        DPRINTF(DRAMPower, "%llu,PUP_ACT,0,%d\n", divCeil(wake_up_tick,
2091                memory.tCK) - memory.timeStampOffset, rank);
2092
2093    } else if (pwrStateTrans == PWR_PRE_PDN) {
2094        cmdList.push_back(Command(MemCommand::PUP_PRE, 0, wake_up_tick));
2095        DPRINTF(DRAMPower, "%llu,PUP_PRE,0,%d\n", divCeil(wake_up_tick,
2096                memory.tCK) - memory.timeStampOffset, rank);
2097    } else if (pwrStateTrans == PWR_SREF) {
2098        cmdList.push_back(Command(MemCommand::SREX, 0, wake_up_tick));
2099        DPRINTF(DRAMPower, "%llu,SREX,0,%d\n", divCeil(wake_up_tick,
2100                memory.tCK) - memory.timeStampOffset, rank);
2101    }
2102}
2103
2104void
2105DRAMCtrl::Rank::processWakeUpEvent()
2106{
2107    // Should be in a power-down or self-refresh state
2108    assert((pwrState == PWR_ACT_PDN) || (pwrState == PWR_PRE_PDN) ||
2109           (pwrState == PWR_SREF));
2110
2111    // Check current state to determine transition state
2112    if (pwrState == PWR_ACT_PDN) {
2113        // banks still open, transition to PWR_ACT
2114        schedulePowerEvent(PWR_ACT, curTick());
2115    } else {
2116        // transitioning from a precharge power-down or self-refresh state
2117        // banks are closed - transition to PWR_IDLE
2118        schedulePowerEvent(PWR_IDLE, curTick());
2119    }
2120}
2121
2122void
2123DRAMCtrl::Rank::processPowerEvent()
2124{
2125    assert(curTick() >= pwrStateTick);
2126    // remember where we were, and for how long
2127    Tick duration = curTick() - pwrStateTick;
2128    PowerState prev_state = pwrState;
2129
2130    // update the accounting
2131    pwrStateTime[prev_state] += duration;
2132
2133    // track to total idle time
2134    if ((prev_state == PWR_PRE_PDN) || (prev_state == PWR_ACT_PDN) ||
2135        (prev_state == PWR_SREF)) {
2136        totalIdleTime += duration;
2137    }
2138
2139    pwrState = pwrStateTrans;
2140    pwrStateTick = curTick();
2141
2142    // if rank was refreshing, make sure to start scheduling requests again
2143    if (prev_state == PWR_REF) {
2144        // bus IDLED prior to REF
2145        // counter should be one for refresh command only
2146        assert(outstandingEvents == 1);
2147        // REF complete, decrement count
2148        --outstandingEvents;
2149
2150        DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration);
2151        // if sleeping after refresh
2152        if (pwrState != PWR_IDLE) {
2153            assert((pwrState == PWR_PRE_PDN) || (pwrState == PWR_SREF));
2154            DPRINTF(DRAMState, "Switching to power down state after refreshing"
2155                    " rank %d at %llu tick\n", rank, curTick());
2156        }
2157        if (pwrState != PWR_SREF) {
2158            // rank is not available in SREF
2159            // don't transition to IDLE in this case
2160            refreshState = REF_IDLE;
2161        }
2162        // a request event could be already scheduled by the state
2163        // machine of the other rank
2164        if (!memory.nextReqEvent.scheduled()) {
2165            DPRINTF(DRAM, "Scheduling next request after refreshing rank %d\n",
2166                    rank);
2167            schedule(memory.nextReqEvent, curTick());
2168        }
2169    } else if (pwrState == PWR_ACT) {
2170        if (refreshState == REF_PD_EXIT) {
2171            // kick the refresh event loop into action again
2172            assert(prev_state == PWR_ACT_PDN);
2173
2174            // go back to REF event and close banks
2175            refreshState = REF_PRE;
2176            schedule(refreshEvent, curTick());
2177        }
2178    } else if (pwrState == PWR_IDLE) {
2179        DPRINTF(DRAMState, "All banks precharged\n");
2180        if (prev_state == PWR_SREF) {
2181            // set refresh state to REF_SREF_EXIT, ensuring isAvailable
2182            // continues to return false during tXS after SREF exit
2183            // Schedule a refresh which kicks things back into action
2184            // when it finishes
2185            refreshState = REF_SREF_EXIT;
2186            schedule(refreshEvent, curTick() + memory.tXS);
2187        } else {
2188            // if we have a pending refresh, and are now moving to
2189            // the idle state, directly transition to a refresh
2190            if ((refreshState == REF_PRE) || (refreshState == REF_PD_EXIT)) {
2191                // ensure refresh is restarted only after final PRE command.
2192                // do not restart refresh if controller is in an intermediate
2193                // state, after PRE_PDN exit, when banks are IDLE but an
2194                // ACT is scheduled.
2195                if (!activateEvent.scheduled()) {
2196                    // there should be nothing waiting at this point
2197                    assert(!powerEvent.scheduled());
2198                    // update the state in zero time and proceed below
2199                    pwrState = PWR_REF;
2200                } else {
2201                    // must have PRE scheduled to transition back to IDLE
2202                    // and re-kick off refresh
2203                    assert(prechargeEvent.scheduled());
2204                }
2205            }
2206       }
2207    }
2208
2209    // we transition to the refresh state, let the refresh state
2210    // machine know of this state update and let it deal with the
2211    // scheduling of the next power state transition as well as the
2212    // following refresh
2213    if (pwrState == PWR_REF) {
2214        assert(refreshState == REF_PRE || refreshState == REF_PD_EXIT);
2215        DPRINTF(DRAMState, "Refreshing\n");
2216
2217        // kick the refresh event loop into action again, and that
2218        // in turn will schedule a transition to the idle power
2219        // state once the refresh is done
2220        if (refreshState == REF_PD_EXIT) {
2221            // Wait for PD exit timing to complete before issuing REF
2222            schedule(refreshEvent, curTick() + memory.tXP);
2223        } else {
2224            schedule(refreshEvent, curTick());
2225        }
2226        // Banks transitioned to IDLE, start REF
2227        refreshState = REF_START;
2228    }
2229}
2230
2231void
2232DRAMCtrl::Rank::updatePowerStats()
2233{
2234    // All commands up to refresh have completed
2235    // flush cmdList to DRAMPower
2236    flushCmdList();
2237
2238    // update the counters for DRAMPower, passing false to
2239    // indicate that this is not the last command in the
2240    // list. DRAMPower requires this information for the
2241    // correct calculation of the background energy at the end
2242    // of the simulation. Ideally we would want to call this
2243    // function with true once at the end of the
2244    // simulation. However, the discarded energy is extremly
2245    // small and does not effect the final results.
2246    power.powerlib.updateCounters(false);
2247
2248    // call the energy function
2249    power.powerlib.calcEnergy();
2250
2251    // Get the energy and power from DRAMPower
2252    Data::MemoryPowerModel::Energy energy =
2253        power.powerlib.getEnergy();
2254    Data::MemoryPowerModel::Power rank_power =
2255        power.powerlib.getPower();
2256
2257    actEnergy = energy.act_energy * memory.devicesPerRank;
2258    preEnergy = energy.pre_energy * memory.devicesPerRank;
2259    readEnergy = energy.read_energy * memory.devicesPerRank;
2260    writeEnergy = energy.write_energy * memory.devicesPerRank;
2261    refreshEnergy = energy.ref_energy * memory.devicesPerRank;
2262    actBackEnergy = energy.act_stdby_energy * memory.devicesPerRank;
2263    preBackEnergy = energy.pre_stdby_energy * memory.devicesPerRank;
2264    actPowerDownEnergy = energy.f_act_pd_energy * memory.devicesPerRank;
2265    prePowerDownEnergy = energy.f_pre_pd_energy * memory.devicesPerRank;
2266    selfRefreshEnergy = energy.sref_energy * memory.devicesPerRank;
2267    totalEnergy = energy.total_energy * memory.devicesPerRank;
2268    averagePower = rank_power.average_power * memory.devicesPerRank;
2269}
2270
2271void
2272DRAMCtrl::Rank::computeStats()
2273{
2274    DPRINTF(DRAM,"Computing final stats\n");
2275
2276    // Force DRAM power to update counters based on time spent in
2277    // current state up to curTick()
2278    cmdList.push_back(Command(MemCommand::NOP, 0, curTick()));
2279
2280    // Update the stats
2281    updatePowerStats();
2282
2283    // final update of power state times
2284    pwrStateTime[pwrState] += (curTick() - pwrStateTick);
2285    pwrStateTick = curTick();
2286
2287}
2288
2289void
2290DRAMCtrl::Rank::regStats()
2291{
2292    using namespace Stats;
2293
2294    pwrStateTime
2295        .init(6)
2296        .name(name() + ".memoryStateTime")
2297        .desc("Time in different power states");
2298    pwrStateTime.subname(0, "IDLE");
2299    pwrStateTime.subname(1, "REF");
2300    pwrStateTime.subname(2, "SREF");
2301    pwrStateTime.subname(3, "PRE_PDN");
2302    pwrStateTime.subname(4, "ACT");
2303    pwrStateTime.subname(5, "ACT_PDN");
2304
2305    actEnergy
2306        .name(name() + ".actEnergy")
2307        .desc("Energy for activate commands per rank (pJ)");
2308
2309    preEnergy
2310        .name(name() + ".preEnergy")
2311        .desc("Energy for precharge commands per rank (pJ)");
2312
2313    readEnergy
2314        .name(name() + ".readEnergy")
2315        .desc("Energy for read commands per rank (pJ)");
2316
2317    writeEnergy
2318        .name(name() + ".writeEnergy")
2319        .desc("Energy for write commands per rank (pJ)");
2320
2321    refreshEnergy
2322        .name(name() + ".refreshEnergy")
2323        .desc("Energy for refresh commands per rank (pJ)");
2324
2325    actBackEnergy
2326        .name(name() + ".actBackEnergy")
2327        .desc("Energy for active background per rank (pJ)");
2328
2329    preBackEnergy
2330        .name(name() + ".preBackEnergy")
2331        .desc("Energy for precharge background per rank (pJ)");
2332
2333    actPowerDownEnergy
2334        .name(name() + ".actPowerDownEnergy")
2335        .desc("Energy for active power-down per rank (pJ)");
2336
2337    prePowerDownEnergy
2338        .name(name() + ".prePowerDownEnergy")
2339        .desc("Energy for precharge power-down per rank (pJ)");
2340
2341    selfRefreshEnergy
2342        .name(name() + ".selfRefreshEnergy")
2343        .desc("Energy for self refresh per rank (pJ)");
2344
2345    totalEnergy
2346        .name(name() + ".totalEnergy")
2347        .desc("Total energy per rank (pJ)");
2348
2349    averagePower
2350        .name(name() + ".averagePower")
2351        .desc("Core power per rank (mW)");
2352
2353    totalIdleTime
2354        .name(name() + ".totalIdleTime")
2355        .desc("Total Idle time Per DRAM Rank");
2356
2357    registerDumpCallback(new RankDumpCallback(this));
2358}
2359void
2360DRAMCtrl::regStats()
2361{
2362    using namespace Stats;
2363
2364    AbstractMemory::regStats();
2365
2366    for (auto r : ranks) {
2367        r->regStats();
2368    }
2369
2370    readReqs
2371        .name(name() + ".readReqs")
2372        .desc("Number of read requests accepted");
2373
2374    writeReqs
2375        .name(name() + ".writeReqs")
2376        .desc("Number of write requests accepted");
2377
2378    readBursts
2379        .name(name() + ".readBursts")
2380        .desc("Number of DRAM read bursts, "
2381              "including those serviced by the write queue");
2382
2383    writeBursts
2384        .name(name() + ".writeBursts")
2385        .desc("Number of DRAM write bursts, "
2386              "including those merged in the write queue");
2387
2388    servicedByWrQ
2389        .name(name() + ".servicedByWrQ")
2390        .desc("Number of DRAM read bursts serviced by the write queue");
2391
2392    mergedWrBursts
2393        .name(name() + ".mergedWrBursts")
2394        .desc("Number of DRAM write bursts merged with an existing one");
2395
2396    neitherReadNorWrite
2397        .name(name() + ".neitherReadNorWriteReqs")
2398        .desc("Number of requests that are neither read nor write");
2399
2400    perBankRdBursts
2401        .init(banksPerRank * ranksPerChannel)
2402        .name(name() + ".perBankRdBursts")
2403        .desc("Per bank write bursts");
2404
2405    perBankWrBursts
2406        .init(banksPerRank * ranksPerChannel)
2407        .name(name() + ".perBankWrBursts")
2408        .desc("Per bank write bursts");
2409
2410    avgRdQLen
2411        .name(name() + ".avgRdQLen")
2412        .desc("Average read queue length when enqueuing")
2413        .precision(2);
2414
2415    avgWrQLen
2416        .name(name() + ".avgWrQLen")
2417        .desc("Average write queue length when enqueuing")
2418        .precision(2);
2419
2420    totQLat
2421        .name(name() + ".totQLat")
2422        .desc("Total ticks spent queuing");
2423
2424    totBusLat
2425        .name(name() + ".totBusLat")
2426        .desc("Total ticks spent in databus transfers");
2427
2428    totMemAccLat
2429        .name(name() + ".totMemAccLat")
2430        .desc("Total ticks spent from burst creation until serviced "
2431              "by the DRAM");
2432
2433    avgQLat
2434        .name(name() + ".avgQLat")
2435        .desc("Average queueing delay per DRAM burst")
2436        .precision(2);
2437
2438    avgQLat = totQLat / (readBursts - servicedByWrQ);
2439
2440    avgBusLat
2441        .name(name() + ".avgBusLat")
2442        .desc("Average bus latency per DRAM burst")
2443        .precision(2);
2444
2445    avgBusLat = totBusLat / (readBursts - servicedByWrQ);
2446
2447    avgMemAccLat
2448        .name(name() + ".avgMemAccLat")
2449        .desc("Average memory access latency per DRAM burst")
2450        .precision(2);
2451
2452    avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ);
2453
2454    numRdRetry
2455        .name(name() + ".numRdRetry")
2456        .desc("Number of times read queue was full causing retry");
2457
2458    numWrRetry
2459        .name(name() + ".numWrRetry")
2460        .desc("Number of times write queue was full causing retry");
2461
2462    readRowHits
2463        .name(name() + ".readRowHits")
2464        .desc("Number of row buffer hits during reads");
2465
2466    writeRowHits
2467        .name(name() + ".writeRowHits")
2468        .desc("Number of row buffer hits during writes");
2469
2470    readRowHitRate
2471        .name(name() + ".readRowHitRate")
2472        .desc("Row buffer hit rate for reads")
2473        .precision(2);
2474
2475    readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100;
2476
2477    writeRowHitRate
2478        .name(name() + ".writeRowHitRate")
2479        .desc("Row buffer hit rate for writes")
2480        .precision(2);
2481
2482    writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100;
2483
2484    readPktSize
2485        .init(ceilLog2(burstSize) + 1)
2486        .name(name() + ".readPktSize")
2487        .desc("Read request sizes (log2)");
2488
2489     writePktSize
2490        .init(ceilLog2(burstSize) + 1)
2491        .name(name() + ".writePktSize")
2492        .desc("Write request sizes (log2)");
2493
2494     rdQLenPdf
2495        .init(readBufferSize)
2496        .name(name() + ".rdQLenPdf")
2497        .desc("What read queue length does an incoming req see");
2498
2499     wrQLenPdf
2500        .init(writeBufferSize)
2501        .name(name() + ".wrQLenPdf")
2502        .desc("What write queue length does an incoming req see");
2503
2504     bytesPerActivate
2505         .init(maxAccessesPerRow)
2506         .name(name() + ".bytesPerActivate")
2507         .desc("Bytes accessed per row activation")
2508         .flags(nozero);
2509
2510     rdPerTurnAround
2511         .init(readBufferSize)
2512         .name(name() + ".rdPerTurnAround")
2513         .desc("Reads before turning the bus around for writes")
2514         .flags(nozero);
2515
2516     wrPerTurnAround
2517         .init(writeBufferSize)
2518         .name(name() + ".wrPerTurnAround")
2519         .desc("Writes before turning the bus around for reads")
2520         .flags(nozero);
2521
2522    bytesReadDRAM
2523        .name(name() + ".bytesReadDRAM")
2524        .desc("Total number of bytes read from DRAM");
2525
2526    bytesReadWrQ
2527        .name(name() + ".bytesReadWrQ")
2528        .desc("Total number of bytes read from write queue");
2529
2530    bytesWritten
2531        .name(name() + ".bytesWritten")
2532        .desc("Total number of bytes written to DRAM");
2533
2534    bytesReadSys
2535        .name(name() + ".bytesReadSys")
2536        .desc("Total read bytes from the system interface side");
2537
2538    bytesWrittenSys
2539        .name(name() + ".bytesWrittenSys")
2540        .desc("Total written bytes from the system interface side");
2541
2542    avgRdBW
2543        .name(name() + ".avgRdBW")
2544        .desc("Average DRAM read bandwidth in MiByte/s")
2545        .precision(2);
2546
2547    avgRdBW = (bytesReadDRAM / 1000000) / simSeconds;
2548
2549    avgWrBW
2550        .name(name() + ".avgWrBW")
2551        .desc("Average achieved write bandwidth in MiByte/s")
2552        .precision(2);
2553
2554    avgWrBW = (bytesWritten / 1000000) / simSeconds;
2555
2556    avgRdBWSys
2557        .name(name() + ".avgRdBWSys")
2558        .desc("Average system read bandwidth in MiByte/s")
2559        .precision(2);
2560
2561    avgRdBWSys = (bytesReadSys / 1000000) / simSeconds;
2562
2563    avgWrBWSys
2564        .name(name() + ".avgWrBWSys")
2565        .desc("Average system write bandwidth in MiByte/s")
2566        .precision(2);
2567
2568    avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds;
2569
2570    peakBW
2571        .name(name() + ".peakBW")
2572        .desc("Theoretical peak bandwidth in MiByte/s")
2573        .precision(2);
2574
2575    peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000;
2576
2577    busUtil
2578        .name(name() + ".busUtil")
2579        .desc("Data bus utilization in percentage")
2580        .precision(2);
2581    busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
2582
2583    totGap
2584        .name(name() + ".totGap")
2585        .desc("Total gap between requests");
2586
2587    avgGap
2588        .name(name() + ".avgGap")
2589        .desc("Average gap between requests")
2590        .precision(2);
2591
2592    avgGap = totGap / (readReqs + writeReqs);
2593
2594    // Stats for DRAM Power calculation based on Micron datasheet
2595    busUtilRead
2596        .name(name() + ".busUtilRead")
2597        .desc("Data bus utilization in percentage for reads")
2598        .precision(2);
2599
2600    busUtilRead = avgRdBW / peakBW * 100;
2601
2602    busUtilWrite
2603        .name(name() + ".busUtilWrite")
2604        .desc("Data bus utilization in percentage for writes")
2605        .precision(2);
2606
2607    busUtilWrite = avgWrBW / peakBW * 100;
2608
2609    pageHitRate
2610        .name(name() + ".pageHitRate")
2611        .desc("Row buffer hit rate, read and write combined")
2612        .precision(2);
2613
2614    pageHitRate = (writeRowHits + readRowHits) /
2615        (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100;
2616}
2617
2618void
2619DRAMCtrl::recvFunctional(PacketPtr pkt)
2620{
2621    // rely on the abstract memory
2622    functionalAccess(pkt);
2623}
2624
2625BaseSlavePort&
2626DRAMCtrl::getSlavePort(const string &if_name, PortID idx)
2627{
2628    if (if_name != "port") {
2629        return MemObject::getSlavePort(if_name, idx);
2630    } else {
2631        return port;
2632    }
2633}
2634
2635DrainState
2636DRAMCtrl::drain()
2637{
2638    // if there is anything in any of our internal queues, keep track
2639    // of that as well
2640    if (!(writeQueue.empty() && readQueue.empty() && respQueue.empty() &&
2641          allRanksDrained())) {
2642
2643        DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
2644                " resp: %d\n", writeQueue.size(), readQueue.size(),
2645                respQueue.size());
2646
2647        // the only queue that is not drained automatically over time
2648        // is the write queue, thus kick things into action if needed
2649        if (!writeQueue.empty() && !nextReqEvent.scheduled()) {
2650            schedule(nextReqEvent, curTick());
2651        }
2652
2653        // also need to kick off events to exit self-refresh
2654        for (auto r : ranks) {
2655            // force self-refresh exit, which in turn will issue auto-refresh
2656            if (r->pwrState == PWR_SREF) {
2657                DPRINTF(DRAM,"Rank%d: Forcing self-refresh wakeup in drain\n",
2658                        r->rank);
2659                r->scheduleWakeUpEvent(tXS);
2660            }
2661        }
2662
2663        return DrainState::Draining;
2664    } else {
2665        return DrainState::Drained;
2666    }
2667}
2668
2669bool
2670DRAMCtrl::allRanksDrained() const
2671{
2672    // true until proven false
2673    bool all_ranks_drained = true;
2674    for (auto r : ranks) {
2675        // then verify that the power state is IDLE
2676        // ensuring all banks are closed and rank is not in a low power state
2677        all_ranks_drained = r->inPwrIdleState() && all_ranks_drained;
2678    }
2679    return all_ranks_drained;
2680}
2681
2682void
2683DRAMCtrl::drainResume()
2684{
2685    if (!isTimingMode && system()->isTimingMode()) {
2686        // if we switched to timing mode, kick things into action,
2687        // and behave as if we restored from a checkpoint
2688        startup();
2689    } else if (isTimingMode && !system()->isTimingMode()) {
2690        // if we switch from timing mode, stop the refresh events to
2691        // not cause issues with KVM
2692        for (auto r : ranks) {
2693            r->suspend();
2694        }
2695    }
2696
2697    // update the mode
2698    isTimingMode = system()->isTimingMode();
2699}
2700
2701DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory)
2702    : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
2703      memory(_memory)
2704{ }
2705
2706AddrRangeList
2707DRAMCtrl::MemoryPort::getAddrRanges() const
2708{
2709    AddrRangeList ranges;
2710    ranges.push_back(memory.getAddrRange());
2711    return ranges;
2712}
2713
2714void
2715DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt)
2716{
2717    pkt->pushLabel(memory.name());
2718
2719    if (!queue.checkFunctional(pkt)) {
2720        // Default implementation of SimpleTimingPort::recvFunctional()
2721        // calls recvAtomic() and throws away the latency; we can save a
2722        // little here by just not calculating the latency.
2723        memory.recvFunctional(pkt);
2724    }
2725
2726    pkt->popLabel();
2727}
2728
2729Tick
2730DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt)
2731{
2732    return memory.recvAtomic(pkt);
2733}
2734
2735bool
2736DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt)
2737{
2738    // pass it to the memory controller
2739    return memory.recvTimingReq(pkt);
2740}
2741
2742DRAMCtrl*
2743DRAMCtrlParams::create()
2744{
2745    return new DRAMCtrl(this);
2746}
2747