dram_ctrl.cc revision 12084:5a3769ff3d55
1/* 2 * Copyright (c) 2010-2017 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2013 Amin Farmahini-Farahani 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Andreas Hansson 41 * Ani Udipi 42 * Neha Agarwal 43 * Omar Naji 44 * Wendy Elsasser 45 */ 46 47#include "mem/dram_ctrl.hh" 48 49#include "base/bitfield.hh" 50#include "base/trace.hh" 51#include "debug/DRAM.hh" 52#include "debug/DRAMPower.hh" 53#include "debug/DRAMState.hh" 54#include "debug/Drain.hh" 55#include "sim/system.hh" 56 57using namespace std; 58using namespace Data; 59 60DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) : 61 AbstractMemory(p), 62 port(name() + ".port", *this), isTimingMode(false), 63 retryRdReq(false), retryWrReq(false), 64 busState(READ), 65 busStateNext(READ), 66 nextReqEvent([this]{ processNextReqEvent(); }, name()), 67 respondEvent([this]{ processRespondEvent(); }, name()), 68 deviceSize(p->device_size), 69 deviceBusWidth(p->device_bus_width), burstLength(p->burst_length), 70 deviceRowBufferSize(p->device_rowbuffer_size), 71 devicesPerRank(p->devices_per_rank), 72 burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8), 73 rowBufferSize(devicesPerRank * deviceRowBufferSize), 74 columnsPerRowBuffer(rowBufferSize / burstSize), 75 columnsPerStripe(range.interleaved() ? range.granularity() / burstSize : 1), 76 ranksPerChannel(p->ranks_per_channel), 77 bankGroupsPerRank(p->bank_groups_per_rank), 78 bankGroupArch(p->bank_groups_per_rank > 0), 79 banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0), 80 readBufferSize(p->read_buffer_size), 81 writeBufferSize(p->write_buffer_size), 82 writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0), 83 writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0), 84 minWritesPerSwitch(p->min_writes_per_switch), 85 writesThisTime(0), readsThisTime(0), 86 tCK(p->tCK), tWTR(p->tWTR), tRTW(p->tRTW), tCS(p->tCS), tBURST(p->tBURST), 87 tCCD_L(p->tCCD_L), tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS), 88 tWR(p->tWR), tRTP(p->tRTP), tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD), 89 tRRD_L(p->tRRD_L), tXAW(p->tXAW), tXP(p->tXP), tXS(p->tXS), 90 activationLimit(p->activation_limit), 91 memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping), 92 pageMgmt(p->page_policy), 93 maxAccessesPerRow(p->max_accesses_per_row), 94 frontendLatency(p->static_frontend_latency), 95 backendLatency(p->static_backend_latency), 96 busBusyUntil(0), prevArrival(0), 97 nextReqTime(0), activeRank(0), timeStampOffset(0) 98{ 99 // sanity check the ranks since we rely on bit slicing for the 100 // address decoding 101 fatal_if(!isPowerOf2(ranksPerChannel), "DRAM rank count of %d is not " 102 "allowed, must be a power of two\n", ranksPerChannel); 103 104 fatal_if(!isPowerOf2(burstSize), "DRAM burst size %d is not allowed, " 105 "must be a power of two\n", burstSize); 106 107 for (int i = 0; i < ranksPerChannel; i++) { 108 Rank* rank = new Rank(*this, p, i); 109 ranks.push_back(rank); 110 } 111 112 // perform a basic check of the write thresholds 113 if (p->write_low_thresh_perc >= p->write_high_thresh_perc) 114 fatal("Write buffer low threshold %d must be smaller than the " 115 "high threshold %d\n", p->write_low_thresh_perc, 116 p->write_high_thresh_perc); 117 118 // determine the rows per bank by looking at the total capacity 119 uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size()); 120 121 // determine the dram actual capacity from the DRAM config in Mbytes 122 uint64_t deviceCapacity = deviceSize / (1024 * 1024) * devicesPerRank * 123 ranksPerChannel; 124 125 // if actual DRAM size does not match memory capacity in system warn! 126 if (deviceCapacity != capacity / (1024 * 1024)) 127 warn("DRAM device capacity (%d Mbytes) does not match the " 128 "address range assigned (%d Mbytes)\n", deviceCapacity, 129 capacity / (1024 * 1024)); 130 131 DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity, 132 AbstractMemory::size()); 133 134 DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n", 135 rowBufferSize, columnsPerRowBuffer); 136 137 rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel); 138 139 // some basic sanity checks 140 if (tREFI <= tRP || tREFI <= tRFC) { 141 fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n", 142 tREFI, tRP, tRFC); 143 } 144 145 // basic bank group architecture checks -> 146 if (bankGroupArch) { 147 // must have at least one bank per bank group 148 if (bankGroupsPerRank > banksPerRank) { 149 fatal("banks per rank (%d) must be equal to or larger than " 150 "banks groups per rank (%d)\n", 151 banksPerRank, bankGroupsPerRank); 152 } 153 // must have same number of banks in each bank group 154 if ((banksPerRank % bankGroupsPerRank) != 0) { 155 fatal("Banks per rank (%d) must be evenly divisible by bank groups " 156 "per rank (%d) for equal banks per bank group\n", 157 banksPerRank, bankGroupsPerRank); 158 } 159 // tCCD_L should be greater than minimal, back-to-back burst delay 160 if (tCCD_L <= tBURST) { 161 fatal("tCCD_L (%d) should be larger than tBURST (%d) when " 162 "bank groups per rank (%d) is greater than 1\n", 163 tCCD_L, tBURST, bankGroupsPerRank); 164 } 165 // tRRD_L is greater than minimal, same bank group ACT-to-ACT delay 166 // some datasheets might specify it equal to tRRD 167 if (tRRD_L < tRRD) { 168 fatal("tRRD_L (%d) should be larger than tRRD (%d) when " 169 "bank groups per rank (%d) is greater than 1\n", 170 tRRD_L, tRRD, bankGroupsPerRank); 171 } 172 } 173 174} 175 176void 177DRAMCtrl::init() 178{ 179 AbstractMemory::init(); 180 181 if (!port.isConnected()) { 182 fatal("DRAMCtrl %s is unconnected!\n", name()); 183 } else { 184 port.sendRangeChange(); 185 } 186 187 // a bit of sanity checks on the interleaving, save it for here to 188 // ensure that the system pointer is initialised 189 if (range.interleaved()) { 190 if (channels != range.stripes()) 191 fatal("%s has %d interleaved address stripes but %d channel(s)\n", 192 name(), range.stripes(), channels); 193 194 if (addrMapping == Enums::RoRaBaChCo) { 195 if (rowBufferSize != range.granularity()) { 196 fatal("Channel interleaving of %s doesn't match RoRaBaChCo " 197 "address map\n", name()); 198 } 199 } else if (addrMapping == Enums::RoRaBaCoCh || 200 addrMapping == Enums::RoCoRaBaCh) { 201 // for the interleavings with channel bits in the bottom, 202 // if the system uses a channel striping granularity that 203 // is larger than the DRAM burst size, then map the 204 // sequential accesses within a stripe to a number of 205 // columns in the DRAM, effectively placing some of the 206 // lower-order column bits as the least-significant bits 207 // of the address (above the ones denoting the burst size) 208 assert(columnsPerStripe >= 1); 209 210 // channel striping has to be done at a granularity that 211 // is equal or larger to a cache line 212 if (system()->cacheLineSize() > range.granularity()) { 213 fatal("Channel interleaving of %s must be at least as large " 214 "as the cache line size\n", name()); 215 } 216 217 // ...and equal or smaller than the row-buffer size 218 if (rowBufferSize < range.granularity()) { 219 fatal("Channel interleaving of %s must be at most as large " 220 "as the row-buffer size\n", name()); 221 } 222 // this is essentially the check above, so just to be sure 223 assert(columnsPerStripe <= columnsPerRowBuffer); 224 } 225 } 226} 227 228void 229DRAMCtrl::startup() 230{ 231 // remember the memory system mode of operation 232 isTimingMode = system()->isTimingMode(); 233 234 if (isTimingMode) { 235 // timestamp offset should be in clock cycles for DRAMPower 236 timeStampOffset = divCeil(curTick(), tCK); 237 238 // update the start tick for the precharge accounting to the 239 // current tick 240 for (auto r : ranks) { 241 r->startup(curTick() + tREFI - tRP); 242 } 243 244 // shift the bus busy time sufficiently far ahead that we never 245 // have to worry about negative values when computing the time for 246 // the next request, this will add an insignificant bubble at the 247 // start of simulation 248 busBusyUntil = curTick() + tRP + tRCD + tCL; 249 } 250} 251 252Tick 253DRAMCtrl::recvAtomic(PacketPtr pkt) 254{ 255 DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr()); 256 257 panic_if(pkt->cacheResponding(), "Should not see packets where cache " 258 "is responding"); 259 260 // do the actual memory access and turn the packet into a response 261 access(pkt); 262 263 Tick latency = 0; 264 if (pkt->hasData()) { 265 // this value is not supposed to be accurate, just enough to 266 // keep things going, mimic a closed page 267 latency = tRP + tRCD + tCL; 268 } 269 return latency; 270} 271 272bool 273DRAMCtrl::readQueueFull(unsigned int neededEntries) const 274{ 275 DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n", 276 readBufferSize, readQueue.size() + respQueue.size(), 277 neededEntries); 278 279 return 280 (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize; 281} 282 283bool 284DRAMCtrl::writeQueueFull(unsigned int neededEntries) const 285{ 286 DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n", 287 writeBufferSize, writeQueue.size(), neededEntries); 288 return (writeQueue.size() + neededEntries) > writeBufferSize; 289} 290 291DRAMCtrl::DRAMPacket* 292DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size, 293 bool isRead) 294{ 295 // decode the address based on the address mapping scheme, with 296 // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and 297 // channel, respectively 298 uint8_t rank; 299 uint8_t bank; 300 // use a 64-bit unsigned during the computations as the row is 301 // always the top bits, and check before creating the DRAMPacket 302 uint64_t row; 303 304 // truncate the address to a DRAM burst, which makes it unique to 305 // a specific column, row, bank, rank and channel 306 Addr addr = dramPktAddr / burstSize; 307 308 // we have removed the lowest order address bits that denote the 309 // position within the column 310 if (addrMapping == Enums::RoRaBaChCo) { 311 // the lowest order bits denote the column to ensure that 312 // sequential cache lines occupy the same row 313 addr = addr / columnsPerRowBuffer; 314 315 // take out the channel part of the address 316 addr = addr / channels; 317 318 // after the channel bits, get the bank bits to interleave 319 // over the banks 320 bank = addr % banksPerRank; 321 addr = addr / banksPerRank; 322 323 // after the bank, we get the rank bits which thus interleaves 324 // over the ranks 325 rank = addr % ranksPerChannel; 326 addr = addr / ranksPerChannel; 327 328 // lastly, get the row bits, no need to remove them from addr 329 row = addr % rowsPerBank; 330 } else if (addrMapping == Enums::RoRaBaCoCh) { 331 // take out the lower-order column bits 332 addr = addr / columnsPerStripe; 333 334 // take out the channel part of the address 335 addr = addr / channels; 336 337 // next, the higher-order column bites 338 addr = addr / (columnsPerRowBuffer / columnsPerStripe); 339 340 // after the column bits, we get the bank bits to interleave 341 // over the banks 342 bank = addr % banksPerRank; 343 addr = addr / banksPerRank; 344 345 // after the bank, we get the rank bits which thus interleaves 346 // over the ranks 347 rank = addr % ranksPerChannel; 348 addr = addr / ranksPerChannel; 349 350 // lastly, get the row bits, no need to remove them from addr 351 row = addr % rowsPerBank; 352 } else if (addrMapping == Enums::RoCoRaBaCh) { 353 // optimise for closed page mode and utilise maximum 354 // parallelism of the DRAM (at the cost of power) 355 356 // take out the lower-order column bits 357 addr = addr / columnsPerStripe; 358 359 // take out the channel part of the address, not that this has 360 // to match with how accesses are interleaved between the 361 // controllers in the address mapping 362 addr = addr / channels; 363 364 // start with the bank bits, as this provides the maximum 365 // opportunity for parallelism between requests 366 bank = addr % banksPerRank; 367 addr = addr / banksPerRank; 368 369 // next get the rank bits 370 rank = addr % ranksPerChannel; 371 addr = addr / ranksPerChannel; 372 373 // next, the higher-order column bites 374 addr = addr / (columnsPerRowBuffer / columnsPerStripe); 375 376 // lastly, get the row bits, no need to remove them from addr 377 row = addr % rowsPerBank; 378 } else 379 panic("Unknown address mapping policy chosen!"); 380 381 assert(rank < ranksPerChannel); 382 assert(bank < banksPerRank); 383 assert(row < rowsPerBank); 384 assert(row < Bank::NO_ROW); 385 386 DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n", 387 dramPktAddr, rank, bank, row); 388 389 // create the corresponding DRAM packet with the entry time and 390 // ready time set to the current tick, the latter will be updated 391 // later 392 uint16_t bank_id = banksPerRank * rank + bank; 393 return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr, 394 size, ranks[rank]->banks[bank], *ranks[rank]); 395} 396 397void 398DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount) 399{ 400 // only add to the read queue here. whenever the request is 401 // eventually done, set the readyTime, and call schedule() 402 assert(!pkt->isWrite()); 403 404 assert(pktCount != 0); 405 406 // if the request size is larger than burst size, the pkt is split into 407 // multiple DRAM packets 408 // Note if the pkt starting address is not aligened to burst size, the 409 // address of first DRAM packet is kept unaliged. Subsequent DRAM packets 410 // are aligned to burst size boundaries. This is to ensure we accurately 411 // check read packets against packets in write queue. 412 Addr addr = pkt->getAddr(); 413 unsigned pktsServicedByWrQ = 0; 414 BurstHelper* burst_helper = NULL; 415 for (int cnt = 0; cnt < pktCount; ++cnt) { 416 unsigned size = std::min((addr | (burstSize - 1)) + 1, 417 pkt->getAddr() + pkt->getSize()) - addr; 418 readPktSize[ceilLog2(size)]++; 419 readBursts++; 420 421 // First check write buffer to see if the data is already at 422 // the controller 423 bool foundInWrQ = false; 424 Addr burst_addr = burstAlign(addr); 425 // if the burst address is not present then there is no need 426 // looking any further 427 if (isInWriteQueue.find(burst_addr) != isInWriteQueue.end()) { 428 for (const auto& p : writeQueue) { 429 // check if the read is subsumed in the write queue 430 // packet we are looking at 431 if (p->addr <= addr && (addr + size) <= (p->addr + p->size)) { 432 foundInWrQ = true; 433 servicedByWrQ++; 434 pktsServicedByWrQ++; 435 DPRINTF(DRAM, "Read to addr %lld with size %d serviced by " 436 "write queue\n", addr, size); 437 bytesReadWrQ += burstSize; 438 break; 439 } 440 } 441 } 442 443 // If not found in the write q, make a DRAM packet and 444 // push it onto the read queue 445 if (!foundInWrQ) { 446 447 // Make the burst helper for split packets 448 if (pktCount > 1 && burst_helper == NULL) { 449 DPRINTF(DRAM, "Read to addr %lld translates to %d " 450 "dram requests\n", pkt->getAddr(), pktCount); 451 burst_helper = new BurstHelper(pktCount); 452 } 453 454 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true); 455 dram_pkt->burstHelper = burst_helper; 456 457 assert(!readQueueFull(1)); 458 rdQLenPdf[readQueue.size() + respQueue.size()]++; 459 460 DPRINTF(DRAM, "Adding to read queue\n"); 461 462 readQueue.push_back(dram_pkt); 463 464 // increment read entries of the rank 465 ++dram_pkt->rankRef.readEntries; 466 467 // Update stats 468 avgRdQLen = readQueue.size() + respQueue.size(); 469 } 470 471 // Starting address of next dram pkt (aligend to burstSize boundary) 472 addr = (addr | (burstSize - 1)) + 1; 473 } 474 475 // If all packets are serviced by write queue, we send the repsonse back 476 if (pktsServicedByWrQ == pktCount) { 477 accessAndRespond(pkt, frontendLatency); 478 return; 479 } 480 481 // Update how many split packets are serviced by write queue 482 if (burst_helper != NULL) 483 burst_helper->burstsServiced = pktsServicedByWrQ; 484 485 // If we are not already scheduled to get a request out of the 486 // queue, do so now 487 if (!nextReqEvent.scheduled()) { 488 DPRINTF(DRAM, "Request scheduled immediately\n"); 489 schedule(nextReqEvent, curTick()); 490 } 491} 492 493void 494DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount) 495{ 496 // only add to the write queue here. whenever the request is 497 // eventually done, set the readyTime, and call schedule() 498 assert(pkt->isWrite()); 499 500 // if the request size is larger than burst size, the pkt is split into 501 // multiple DRAM packets 502 Addr addr = pkt->getAddr(); 503 for (int cnt = 0; cnt < pktCount; ++cnt) { 504 unsigned size = std::min((addr | (burstSize - 1)) + 1, 505 pkt->getAddr() + pkt->getSize()) - addr; 506 writePktSize[ceilLog2(size)]++; 507 writeBursts++; 508 509 // see if we can merge with an existing item in the write 510 // queue and keep track of whether we have merged or not 511 bool merged = isInWriteQueue.find(burstAlign(addr)) != 512 isInWriteQueue.end(); 513 514 // if the item was not merged we need to create a new write 515 // and enqueue it 516 if (!merged) { 517 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false); 518 519 assert(writeQueue.size() < writeBufferSize); 520 wrQLenPdf[writeQueue.size()]++; 521 522 DPRINTF(DRAM, "Adding to write queue\n"); 523 524 writeQueue.push_back(dram_pkt); 525 isInWriteQueue.insert(burstAlign(addr)); 526 assert(writeQueue.size() == isInWriteQueue.size()); 527 528 // Update stats 529 avgWrQLen = writeQueue.size(); 530 531 // increment write entries of the rank 532 ++dram_pkt->rankRef.writeEntries; 533 } else { 534 DPRINTF(DRAM, "Merging write burst with existing queue entry\n"); 535 536 // keep track of the fact that this burst effectively 537 // disappeared as it was merged with an existing one 538 mergedWrBursts++; 539 } 540 541 // Starting address of next dram pkt (aligend to burstSize boundary) 542 addr = (addr | (burstSize - 1)) + 1; 543 } 544 545 // we do not wait for the writes to be send to the actual memory, 546 // but instead take responsibility for the consistency here and 547 // snoop the write queue for any upcoming reads 548 // @todo, if a pkt size is larger than burst size, we might need a 549 // different front end latency 550 accessAndRespond(pkt, frontendLatency); 551 552 // If we are not already scheduled to get a request out of the 553 // queue, do so now 554 if (!nextReqEvent.scheduled()) { 555 DPRINTF(DRAM, "Request scheduled immediately\n"); 556 schedule(nextReqEvent, curTick()); 557 } 558} 559 560void 561DRAMCtrl::printQs() const { 562 DPRINTF(DRAM, "===READ QUEUE===\n\n"); 563 for (auto i = readQueue.begin() ; i != readQueue.end() ; ++i) { 564 DPRINTF(DRAM, "Read %lu\n", (*i)->addr); 565 } 566 DPRINTF(DRAM, "\n===RESP QUEUE===\n\n"); 567 for (auto i = respQueue.begin() ; i != respQueue.end() ; ++i) { 568 DPRINTF(DRAM, "Response %lu\n", (*i)->addr); 569 } 570 DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n"); 571 for (auto i = writeQueue.begin() ; i != writeQueue.end() ; ++i) { 572 DPRINTF(DRAM, "Write %lu\n", (*i)->addr); 573 } 574} 575 576bool 577DRAMCtrl::recvTimingReq(PacketPtr pkt) 578{ 579 // This is where we enter from the outside world 580 DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n", 581 pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 582 583 panic_if(pkt->cacheResponding(), "Should not see packets where cache " 584 "is responding"); 585 586 panic_if(!(pkt->isRead() || pkt->isWrite()), 587 "Should only see read and writes at memory controller\n"); 588 589 // Calc avg gap between requests 590 if (prevArrival != 0) { 591 totGap += curTick() - prevArrival; 592 } 593 prevArrival = curTick(); 594 595 596 // Find out how many dram packets a pkt translates to 597 // If the burst size is equal or larger than the pkt size, then a pkt 598 // translates to only one dram packet. Otherwise, a pkt translates to 599 // multiple dram packets 600 unsigned size = pkt->getSize(); 601 unsigned offset = pkt->getAddr() & (burstSize - 1); 602 unsigned int dram_pkt_count = divCeil(offset + size, burstSize); 603 604 // check local buffers and do not accept if full 605 if (pkt->isRead()) { 606 assert(size != 0); 607 if (readQueueFull(dram_pkt_count)) { 608 DPRINTF(DRAM, "Read queue full, not accepting\n"); 609 // remember that we have to retry this port 610 retryRdReq = true; 611 numRdRetry++; 612 return false; 613 } else { 614 addToReadQueue(pkt, dram_pkt_count); 615 readReqs++; 616 bytesReadSys += size; 617 } 618 } else { 619 assert(pkt->isWrite()); 620 assert(size != 0); 621 if (writeQueueFull(dram_pkt_count)) { 622 DPRINTF(DRAM, "Write queue full, not accepting\n"); 623 // remember that we have to retry this port 624 retryWrReq = true; 625 numWrRetry++; 626 return false; 627 } else { 628 addToWriteQueue(pkt, dram_pkt_count); 629 writeReqs++; 630 bytesWrittenSys += size; 631 } 632 } 633 634 return true; 635} 636 637void 638DRAMCtrl::processRespondEvent() 639{ 640 DPRINTF(DRAM, 641 "processRespondEvent(): Some req has reached its readyTime\n"); 642 643 DRAMPacket* dram_pkt = respQueue.front(); 644 645 // if a read has reached its ready-time, decrement the number of reads 646 // At this point the packet has been handled and there is a possibility 647 // to switch to low-power mode if no other packet is available 648 --dram_pkt->rankRef.readEntries; 649 DPRINTF(DRAM, "number of read entries for rank %d is %d\n", 650 dram_pkt->rank, dram_pkt->rankRef.readEntries); 651 652 // counter should at least indicate one outstanding request 653 // for this read 654 assert(dram_pkt->rankRef.outstandingEvents > 0); 655 // read response received, decrement count 656 --dram_pkt->rankRef.outstandingEvents; 657 658 // at this moment should not have transitioned to a low-power state 659 assert((dram_pkt->rankRef.pwrState != PWR_SREF) && 660 (dram_pkt->rankRef.pwrState != PWR_PRE_PDN) && 661 (dram_pkt->rankRef.pwrState != PWR_ACT_PDN)); 662 663 // track if this is the last packet before idling 664 // and that there are no outstanding commands to this rank 665 // if REF in progress, transition to LP state should not occur 666 // until REF completes 667 if ((dram_pkt->rankRef.refreshState == REF_IDLE) && 668 (dram_pkt->rankRef.lowPowerEntryReady())) { 669 // verify that there are no events scheduled 670 assert(!dram_pkt->rankRef.activateEvent.scheduled()); 671 assert(!dram_pkt->rankRef.prechargeEvent.scheduled()); 672 673 // if coming from active state, schedule power event to 674 // active power-down else go to precharge power-down 675 DPRINTF(DRAMState, "Rank %d sleep at tick %d; current power state is " 676 "%d\n", dram_pkt->rank, curTick(), dram_pkt->rankRef.pwrState); 677 678 // default to ACT power-down unless already in IDLE state 679 // could be in IDLE if PRE issued before data returned 680 PowerState next_pwr_state = PWR_ACT_PDN; 681 if (dram_pkt->rankRef.pwrState == PWR_IDLE) { 682 next_pwr_state = PWR_PRE_PDN; 683 } 684 685 dram_pkt->rankRef.powerDownSleep(next_pwr_state, curTick()); 686 } 687 688 if (dram_pkt->burstHelper) { 689 // it is a split packet 690 dram_pkt->burstHelper->burstsServiced++; 691 if (dram_pkt->burstHelper->burstsServiced == 692 dram_pkt->burstHelper->burstCount) { 693 // we have now serviced all children packets of a system packet 694 // so we can now respond to the requester 695 // @todo we probably want to have a different front end and back 696 // end latency for split packets 697 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency); 698 delete dram_pkt->burstHelper; 699 dram_pkt->burstHelper = NULL; 700 } 701 } else { 702 // it is not a split packet 703 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency); 704 } 705 706 delete respQueue.front(); 707 respQueue.pop_front(); 708 709 if (!respQueue.empty()) { 710 assert(respQueue.front()->readyTime >= curTick()); 711 assert(!respondEvent.scheduled()); 712 schedule(respondEvent, respQueue.front()->readyTime); 713 } else { 714 // if there is nothing left in any queue, signal a drain 715 if (drainState() == DrainState::Draining && 716 writeQueue.empty() && readQueue.empty() && allRanksDrained()) { 717 718 DPRINTF(Drain, "DRAM controller done draining\n"); 719 signalDrainDone(); 720 } 721 } 722 723 // We have made a location in the queue available at this point, 724 // so if there is a read that was forced to wait, retry now 725 if (retryRdReq) { 726 retryRdReq = false; 727 port.sendRetryReq(); 728 } 729} 730 731bool 732DRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue, Tick extra_col_delay) 733{ 734 // This method does the arbitration between requests. The chosen 735 // packet is simply moved to the head of the queue. The other 736 // methods know that this is the place to look. For example, with 737 // FCFS, this method does nothing 738 assert(!queue.empty()); 739 740 // bool to indicate if a packet to an available rank is found 741 bool found_packet = false; 742 if (queue.size() == 1) { 743 DRAMPacket* dram_pkt = queue.front(); 744 // available rank corresponds to state refresh idle 745 if (ranks[dram_pkt->rank]->isAvailable()) { 746 found_packet = true; 747 DPRINTF(DRAM, "Single request, going to a free rank\n"); 748 } else { 749 DPRINTF(DRAM, "Single request, going to a busy rank\n"); 750 } 751 return found_packet; 752 } 753 754 if (memSchedPolicy == Enums::fcfs) { 755 // check if there is a packet going to a free rank 756 for (auto i = queue.begin(); i != queue.end() ; ++i) { 757 DRAMPacket* dram_pkt = *i; 758 if (ranks[dram_pkt->rank]->isAvailable()) { 759 queue.erase(i); 760 queue.push_front(dram_pkt); 761 found_packet = true; 762 break; 763 } 764 } 765 } else if (memSchedPolicy == Enums::frfcfs) { 766 found_packet = reorderQueue(queue, extra_col_delay); 767 } else 768 panic("No scheduling policy chosen\n"); 769 return found_packet; 770} 771 772bool 773DRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue, Tick extra_col_delay) 774{ 775 // Only determine this if needed 776 uint64_t earliest_banks = 0; 777 bool hidden_bank_prep = false; 778 779 // search for seamless row hits first, if no seamless row hit is 780 // found then determine if there are other packets that can be issued 781 // without incurring additional bus delay due to bank timing 782 // Will select closed rows first to enable more open row possibilies 783 // in future selections 784 bool found_hidden_bank = false; 785 786 // remember if we found a row hit, not seamless, but bank prepped 787 // and ready 788 bool found_prepped_pkt = false; 789 790 // if we have no row hit, prepped or not, and no seamless packet, 791 // just go for the earliest possible 792 bool found_earliest_pkt = false; 793 794 auto selected_pkt_it = queue.end(); 795 796 // time we need to issue a column command to be seamless 797 const Tick min_col_at = std::max(busBusyUntil - tCL + extra_col_delay, 798 curTick()); 799 800 for (auto i = queue.begin(); i != queue.end() ; ++i) { 801 DRAMPacket* dram_pkt = *i; 802 const Bank& bank = dram_pkt->bankRef; 803 804 // check if rank is available, if not, jump to the next packet 805 if (dram_pkt->rankRef.isAvailable()) { 806 // check if it is a row hit 807 if (bank.openRow == dram_pkt->row) { 808 // no additional rank-to-rank or same bank-group 809 // delays, or we switched read/write and might as well 810 // go for the row hit 811 if (bank.colAllowedAt <= min_col_at) { 812 // FCFS within the hits, giving priority to 813 // commands that can issue seamlessly, without 814 // additional delay, such as same rank accesses 815 // and/or different bank-group accesses 816 DPRINTF(DRAM, "Seamless row buffer hit\n"); 817 selected_pkt_it = i; 818 // no need to look through the remaining queue entries 819 break; 820 } else if (!found_hidden_bank && !found_prepped_pkt) { 821 // if we did not find a packet to a closed row that can 822 // issue the bank commands without incurring delay, and 823 // did not yet find a packet to a prepped row, remember 824 // the current one 825 selected_pkt_it = i; 826 found_prepped_pkt = true; 827 DPRINTF(DRAM, "Prepped row buffer hit\n"); 828 } 829 } else if (!found_earliest_pkt) { 830 // if we have not initialised the bank status, do it 831 // now, and only once per scheduling decisions 832 if (earliest_banks == 0) { 833 // determine entries with earliest bank delay 834 pair<uint64_t, bool> bankStatus = 835 minBankPrep(queue, min_col_at); 836 earliest_banks = bankStatus.first; 837 hidden_bank_prep = bankStatus.second; 838 } 839 840 // bank is amongst first available banks 841 // minBankPrep will give priority to packets that can 842 // issue seamlessly 843 if (bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) { 844 found_earliest_pkt = true; 845 found_hidden_bank = hidden_bank_prep; 846 847 // give priority to packets that can issue 848 // bank commands 'behind the scenes' 849 // any additional delay if any will be due to 850 // col-to-col command requirements 851 if (hidden_bank_prep || !found_prepped_pkt) 852 selected_pkt_it = i; 853 } 854 } 855 } 856 } 857 858 if (selected_pkt_it != queue.end()) { 859 DRAMPacket* selected_pkt = *selected_pkt_it; 860 queue.erase(selected_pkt_it); 861 queue.push_front(selected_pkt); 862 return true; 863 } 864 865 return false; 866} 867 868void 869DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency) 870{ 871 DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr()); 872 873 bool needsResponse = pkt->needsResponse(); 874 // do the actual memory access which also turns the packet into a 875 // response 876 access(pkt); 877 878 // turn packet around to go back to requester if response expected 879 if (needsResponse) { 880 // access already turned the packet into a response 881 assert(pkt->isResponse()); 882 // response_time consumes the static latency and is charged also 883 // with headerDelay that takes into account the delay provided by 884 // the xbar and also the payloadDelay that takes into account the 885 // number of data beats. 886 Tick response_time = curTick() + static_latency + pkt->headerDelay + 887 pkt->payloadDelay; 888 // Here we reset the timing of the packet before sending it out. 889 pkt->headerDelay = pkt->payloadDelay = 0; 890 891 // queue the packet in the response queue to be sent out after 892 // the static latency has passed 893 port.schedTimingResp(pkt, response_time, true); 894 } else { 895 // @todo the packet is going to be deleted, and the DRAMPacket 896 // is still having a pointer to it 897 pendingDelete.reset(pkt); 898 } 899 900 DPRINTF(DRAM, "Done\n"); 901 902 return; 903} 904 905void 906DRAMCtrl::activateBank(Rank& rank_ref, Bank& bank_ref, 907 Tick act_tick, uint32_t row) 908{ 909 assert(rank_ref.actTicks.size() == activationLimit); 910 911 DPRINTF(DRAM, "Activate at tick %d\n", act_tick); 912 913 // update the open row 914 assert(bank_ref.openRow == Bank::NO_ROW); 915 bank_ref.openRow = row; 916 917 // start counting anew, this covers both the case when we 918 // auto-precharged, and when this access is forced to 919 // precharge 920 bank_ref.bytesAccessed = 0; 921 bank_ref.rowAccesses = 0; 922 923 ++rank_ref.numBanksActive; 924 assert(rank_ref.numBanksActive <= banksPerRank); 925 926 DPRINTF(DRAM, "Activate bank %d, rank %d at tick %lld, now got %d active\n", 927 bank_ref.bank, rank_ref.rank, act_tick, 928 ranks[rank_ref.rank]->numBanksActive); 929 930 rank_ref.cmdList.push_back(Command(MemCommand::ACT, bank_ref.bank, 931 act_tick)); 932 933 DPRINTF(DRAMPower, "%llu,ACT,%d,%d\n", divCeil(act_tick, tCK) - 934 timeStampOffset, bank_ref.bank, rank_ref.rank); 935 936 // The next access has to respect tRAS for this bank 937 bank_ref.preAllowedAt = act_tick + tRAS; 938 939 // Respect the row-to-column command delay 940 bank_ref.colAllowedAt = std::max(act_tick + tRCD, bank_ref.colAllowedAt); 941 942 // start by enforcing tRRD 943 for (int i = 0; i < banksPerRank; i++) { 944 // next activate to any bank in this rank must not happen 945 // before tRRD 946 if (bankGroupArch && (bank_ref.bankgr == rank_ref.banks[i].bankgr)) { 947 // bank group architecture requires longer delays between 948 // ACT commands within the same bank group. Use tRRD_L 949 // in this case 950 rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD_L, 951 rank_ref.banks[i].actAllowedAt); 952 } else { 953 // use shorter tRRD value when either 954 // 1) bank group architecture is not supportted 955 // 2) bank is in a different bank group 956 rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD, 957 rank_ref.banks[i].actAllowedAt); 958 } 959 } 960 961 // next, we deal with tXAW, if the activation limit is disabled 962 // then we directly schedule an activate power event 963 if (!rank_ref.actTicks.empty()) { 964 // sanity check 965 if (rank_ref.actTicks.back() && 966 (act_tick - rank_ref.actTicks.back()) < tXAW) { 967 panic("Got %d activates in window %d (%llu - %llu) which " 968 "is smaller than %llu\n", activationLimit, act_tick - 969 rank_ref.actTicks.back(), act_tick, 970 rank_ref.actTicks.back(), tXAW); 971 } 972 973 // shift the times used for the book keeping, the last element 974 // (highest index) is the oldest one and hence the lowest value 975 rank_ref.actTicks.pop_back(); 976 977 // record an new activation (in the future) 978 rank_ref.actTicks.push_front(act_tick); 979 980 // cannot activate more than X times in time window tXAW, push the 981 // next one (the X + 1'st activate) to be tXAW away from the 982 // oldest in our window of X 983 if (rank_ref.actTicks.back() && 984 (act_tick - rank_ref.actTicks.back()) < tXAW) { 985 DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate " 986 "no earlier than %llu\n", activationLimit, 987 rank_ref.actTicks.back() + tXAW); 988 for (int j = 0; j < banksPerRank; j++) 989 // next activate must not happen before end of window 990 rank_ref.banks[j].actAllowedAt = 991 std::max(rank_ref.actTicks.back() + tXAW, 992 rank_ref.banks[j].actAllowedAt); 993 } 994 } 995 996 // at the point when this activate takes place, make sure we 997 // transition to the active power state 998 if (!rank_ref.activateEvent.scheduled()) 999 schedule(rank_ref.activateEvent, act_tick); 1000 else if (rank_ref.activateEvent.when() > act_tick) 1001 // move it sooner in time 1002 reschedule(rank_ref.activateEvent, act_tick); 1003} 1004 1005void 1006DRAMCtrl::prechargeBank(Rank& rank_ref, Bank& bank, Tick pre_at, bool trace) 1007{ 1008 // make sure the bank has an open row 1009 assert(bank.openRow != Bank::NO_ROW); 1010 1011 // sample the bytes per activate here since we are closing 1012 // the page 1013 bytesPerActivate.sample(bank.bytesAccessed); 1014 1015 bank.openRow = Bank::NO_ROW; 1016 1017 // no precharge allowed before this one 1018 bank.preAllowedAt = pre_at; 1019 1020 Tick pre_done_at = pre_at + tRP; 1021 1022 bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at); 1023 1024 assert(rank_ref.numBanksActive != 0); 1025 --rank_ref.numBanksActive; 1026 1027 DPRINTF(DRAM, "Precharging bank %d, rank %d at tick %lld, now got " 1028 "%d active\n", bank.bank, rank_ref.rank, pre_at, 1029 rank_ref.numBanksActive); 1030 1031 if (trace) { 1032 1033 rank_ref.cmdList.push_back(Command(MemCommand::PRE, bank.bank, 1034 pre_at)); 1035 DPRINTF(DRAMPower, "%llu,PRE,%d,%d\n", divCeil(pre_at, tCK) - 1036 timeStampOffset, bank.bank, rank_ref.rank); 1037 } 1038 // if we look at the current number of active banks we might be 1039 // tempted to think the DRAM is now idle, however this can be 1040 // undone by an activate that is scheduled to happen before we 1041 // would have reached the idle state, so schedule an event and 1042 // rather check once we actually make it to the point in time when 1043 // the (last) precharge takes place 1044 if (!rank_ref.prechargeEvent.scheduled()) { 1045 schedule(rank_ref.prechargeEvent, pre_done_at); 1046 // New event, increment count 1047 ++rank_ref.outstandingEvents; 1048 } else if (rank_ref.prechargeEvent.when() < pre_done_at) { 1049 reschedule(rank_ref.prechargeEvent, pre_done_at); 1050 } 1051} 1052 1053void 1054DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt) 1055{ 1056 DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n", 1057 dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row); 1058 1059 // get the rank 1060 Rank& rank = dram_pkt->rankRef; 1061 1062 // are we in or transitioning to a low-power state and have not scheduled 1063 // a power-up event? 1064 // if so, wake up from power down to issue RD/WR burst 1065 if (rank.inLowPowerState) { 1066 assert(rank.pwrState != PWR_SREF); 1067 rank.scheduleWakeUpEvent(tXP); 1068 } 1069 1070 // get the bank 1071 Bank& bank = dram_pkt->bankRef; 1072 1073 // for the state we need to track if it is a row hit or not 1074 bool row_hit = true; 1075 1076 // respect any constraints on the command (e.g. tRCD or tCCD) 1077 Tick cmd_at = std::max(bank.colAllowedAt, curTick()); 1078 1079 // Determine the access latency and update the bank state 1080 if (bank.openRow == dram_pkt->row) { 1081 // nothing to do 1082 } else { 1083 row_hit = false; 1084 1085 // If there is a page open, precharge it. 1086 if (bank.openRow != Bank::NO_ROW) { 1087 prechargeBank(rank, bank, std::max(bank.preAllowedAt, curTick())); 1088 } 1089 1090 // next we need to account for the delay in activating the 1091 // page 1092 Tick act_tick = std::max(bank.actAllowedAt, curTick()); 1093 1094 // Record the activation and deal with all the global timing 1095 // constraints caused be a new activation (tRRD and tXAW) 1096 activateBank(rank, bank, act_tick, dram_pkt->row); 1097 1098 // issue the command as early as possible 1099 cmd_at = bank.colAllowedAt; 1100 } 1101 1102 // we need to wait until the bus is available before we can issue 1103 // the command 1104 cmd_at = std::max(cmd_at, busBusyUntil - tCL); 1105 1106 // update the packet ready time 1107 dram_pkt->readyTime = cmd_at + tCL + tBURST; 1108 1109 // only one burst can use the bus at any one point in time 1110 assert(dram_pkt->readyTime - busBusyUntil >= tBURST); 1111 1112 // update the time for the next read/write burst for each 1113 // bank (add a max with tCCD/tCCD_L here) 1114 Tick cmd_dly; 1115 for (int j = 0; j < ranksPerChannel; j++) { 1116 for (int i = 0; i < banksPerRank; i++) { 1117 // next burst to same bank group in this rank must not happen 1118 // before tCCD_L. Different bank group timing requirement is 1119 // tBURST; Add tCS for different ranks 1120 if (dram_pkt->rank == j) { 1121 if (bankGroupArch && 1122 (bank.bankgr == ranks[j]->banks[i].bankgr)) { 1123 // bank group architecture requires longer delays between 1124 // RD/WR burst commands to the same bank group. 1125 // Use tCCD_L in this case 1126 cmd_dly = tCCD_L; 1127 } else { 1128 // use tBURST (equivalent to tCCD_S), the shorter 1129 // cas-to-cas delay value, when either: 1130 // 1) bank group architecture is not supportted 1131 // 2) bank is in a different bank group 1132 cmd_dly = tBURST; 1133 } 1134 } else { 1135 // different rank is by default in a different bank group 1136 // use tBURST (equivalent to tCCD_S), which is the shorter 1137 // cas-to-cas delay in this case 1138 // Add tCS to account for rank-to-rank bus delay requirements 1139 cmd_dly = tBURST + tCS; 1140 } 1141 ranks[j]->banks[i].colAllowedAt = std::max(cmd_at + cmd_dly, 1142 ranks[j]->banks[i].colAllowedAt); 1143 } 1144 } 1145 1146 // Save rank of current access 1147 activeRank = dram_pkt->rank; 1148 1149 // If this is a write, we also need to respect the write recovery 1150 // time before a precharge, in the case of a read, respect the 1151 // read to precharge constraint 1152 bank.preAllowedAt = std::max(bank.preAllowedAt, 1153 dram_pkt->isRead ? cmd_at + tRTP : 1154 dram_pkt->readyTime + tWR); 1155 1156 // increment the bytes accessed and the accesses per row 1157 bank.bytesAccessed += burstSize; 1158 ++bank.rowAccesses; 1159 1160 // if we reached the max, then issue with an auto-precharge 1161 bool auto_precharge = pageMgmt == Enums::close || 1162 bank.rowAccesses == maxAccessesPerRow; 1163 1164 // if we did not hit the limit, we might still want to 1165 // auto-precharge 1166 if (!auto_precharge && 1167 (pageMgmt == Enums::open_adaptive || 1168 pageMgmt == Enums::close_adaptive)) { 1169 // a twist on the open and close page policies: 1170 // 1) open_adaptive page policy does not blindly keep the 1171 // page open, but close it if there are no row hits, and there 1172 // are bank conflicts in the queue 1173 // 2) close_adaptive page policy does not blindly close the 1174 // page, but closes it only if there are no row hits in the queue. 1175 // In this case, only force an auto precharge when there 1176 // are no same page hits in the queue 1177 bool got_more_hits = false; 1178 bool got_bank_conflict = false; 1179 1180 // either look at the read queue or write queue 1181 const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue : 1182 writeQueue; 1183 auto p = queue.begin(); 1184 // make sure we are not considering the packet that we are 1185 // currently dealing with (which is the head of the queue) 1186 ++p; 1187 1188 // keep on looking until we find a hit or reach the end of the queue 1189 // 1) if a hit is found, then both open and close adaptive policies keep 1190 // the page open 1191 // 2) if no hit is found, got_bank_conflict is set to true if a bank 1192 // conflict request is waiting in the queue 1193 while (!got_more_hits && p != queue.end()) { 1194 bool same_rank_bank = (dram_pkt->rank == (*p)->rank) && 1195 (dram_pkt->bank == (*p)->bank); 1196 bool same_row = dram_pkt->row == (*p)->row; 1197 got_more_hits |= same_rank_bank && same_row; 1198 got_bank_conflict |= same_rank_bank && !same_row; 1199 ++p; 1200 } 1201 1202 // auto pre-charge when either 1203 // 1) open_adaptive policy, we have not got any more hits, and 1204 // have a bank conflict 1205 // 2) close_adaptive policy and we have not got any more hits 1206 auto_precharge = !got_more_hits && 1207 (got_bank_conflict || pageMgmt == Enums::close_adaptive); 1208 } 1209 1210 // DRAMPower trace command to be written 1211 std::string mem_cmd = dram_pkt->isRead ? "RD" : "WR"; 1212 1213 // MemCommand required for DRAMPower library 1214 MemCommand::cmds command = (mem_cmd == "RD") ? MemCommand::RD : 1215 MemCommand::WR; 1216 1217 // Update bus state 1218 busBusyUntil = dram_pkt->readyTime; 1219 1220 DPRINTF(DRAM, "Access to %lld, ready at %lld bus busy until %lld.\n", 1221 dram_pkt->addr, dram_pkt->readyTime, busBusyUntil); 1222 1223 dram_pkt->rankRef.cmdList.push_back(Command(command, dram_pkt->bank, 1224 cmd_at)); 1225 1226 DPRINTF(DRAMPower, "%llu,%s,%d,%d\n", divCeil(cmd_at, tCK) - 1227 timeStampOffset, mem_cmd, dram_pkt->bank, dram_pkt->rank); 1228 1229 // if this access should use auto-precharge, then we are 1230 // closing the row after the read/write burst 1231 if (auto_precharge) { 1232 // if auto-precharge push a PRE command at the correct tick to the 1233 // list used by DRAMPower library to calculate power 1234 prechargeBank(rank, bank, std::max(curTick(), bank.preAllowedAt)); 1235 1236 DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId); 1237 } 1238 1239 // Update the minimum timing between the requests, this is a 1240 // conservative estimate of when we have to schedule the next 1241 // request to not introduce any unecessary bubbles. In most cases 1242 // we will wake up sooner than we have to. 1243 nextReqTime = busBusyUntil - (tRP + tRCD + tCL); 1244 1245 // Update the stats and schedule the next request 1246 if (dram_pkt->isRead) { 1247 ++readsThisTime; 1248 if (row_hit) 1249 readRowHits++; 1250 bytesReadDRAM += burstSize; 1251 perBankRdBursts[dram_pkt->bankId]++; 1252 1253 // Update latency stats 1254 totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime; 1255 totBusLat += tBURST; 1256 totQLat += cmd_at - dram_pkt->entryTime; 1257 } else { 1258 ++writesThisTime; 1259 if (row_hit) 1260 writeRowHits++; 1261 bytesWritten += burstSize; 1262 perBankWrBursts[dram_pkt->bankId]++; 1263 } 1264} 1265 1266void 1267DRAMCtrl::processNextReqEvent() 1268{ 1269 int busyRanks = 0; 1270 for (auto r : ranks) { 1271 if (!r->isAvailable()) { 1272 if (r->pwrState != PWR_SREF) { 1273 // rank is busy refreshing 1274 DPRINTF(DRAMState, "Rank %d is not available\n", r->rank); 1275 busyRanks++; 1276 1277 // let the rank know that if it was waiting to drain, it 1278 // is now done and ready to proceed 1279 r->checkDrainDone(); 1280 } 1281 1282 // check if we were in self-refresh and haven't started 1283 // to transition out 1284 if ((r->pwrState == PWR_SREF) && r->inLowPowerState) { 1285 DPRINTF(DRAMState, "Rank %d is in self-refresh\n", r->rank); 1286 // if we have commands queued to this rank and we don't have 1287 // a minimum number of active commands enqueued, 1288 // exit self-refresh 1289 if (r->forceSelfRefreshExit()) { 1290 DPRINTF(DRAMState, "rank %d was in self refresh and" 1291 " should wake up\n", r->rank); 1292 //wake up from self-refresh 1293 r->scheduleWakeUpEvent(tXS); 1294 // things are brought back into action once a refresh is 1295 // performed after self-refresh 1296 // continue with selection for other ranks 1297 } 1298 } 1299 } 1300 } 1301 1302 if (busyRanks == ranksPerChannel) { 1303 // if all ranks are refreshing wait for them to finish 1304 // and stall this state machine without taking any further 1305 // action, and do not schedule a new nextReqEvent 1306 return; 1307 } 1308 1309 // pre-emptively set to false. Overwrite if in transitioning to 1310 // a new state 1311 bool switched_cmd_type = false; 1312 if (busState != busStateNext) { 1313 if (busState == READ) { 1314 DPRINTF(DRAM, "Switching to writes after %d reads with %d reads " 1315 "waiting\n", readsThisTime, readQueue.size()); 1316 1317 // sample and reset the read-related stats as we are now 1318 // transitioning to writes, and all reads are done 1319 rdPerTurnAround.sample(readsThisTime); 1320 readsThisTime = 0; 1321 1322 // now proceed to do the actual writes 1323 switched_cmd_type = true; 1324 } else { 1325 DPRINTF(DRAM, "Switching to reads after %d writes with %d writes " 1326 "waiting\n", writesThisTime, writeQueue.size()); 1327 1328 wrPerTurnAround.sample(writesThisTime); 1329 writesThisTime = 0; 1330 1331 switched_cmd_type = true; 1332 } 1333 // update busState to match next state until next transition 1334 busState = busStateNext; 1335 } 1336 1337 // when we get here it is either a read or a write 1338 if (busState == READ) { 1339 1340 // track if we should switch or not 1341 bool switch_to_writes = false; 1342 1343 if (readQueue.empty()) { 1344 // In the case there is no read request to go next, 1345 // trigger writes if we have passed the low threshold (or 1346 // if we are draining) 1347 if (!writeQueue.empty() && 1348 (drainState() == DrainState::Draining || 1349 writeQueue.size() > writeLowThreshold)) { 1350 1351 switch_to_writes = true; 1352 } else { 1353 // check if we are drained 1354 // not done draining until in PWR_IDLE state 1355 // ensuring all banks are closed and 1356 // have exited low power states 1357 if (drainState() == DrainState::Draining && 1358 respQueue.empty() && allRanksDrained()) { 1359 1360 DPRINTF(Drain, "DRAM controller done draining\n"); 1361 signalDrainDone(); 1362 } 1363 1364 // nothing to do, not even any point in scheduling an 1365 // event for the next request 1366 return; 1367 } 1368 } else { 1369 // bool to check if there is a read to a free rank 1370 bool found_read = false; 1371 1372 // Figure out which read request goes next, and move it to the 1373 // front of the read queue 1374 // If we are changing command type, incorporate the minimum 1375 // bus turnaround delay which will be tCS (different rank) case 1376 found_read = chooseNext(readQueue, 1377 switched_cmd_type ? tCS : 0); 1378 1379 // if no read to an available rank is found then return 1380 // at this point. There could be writes to the available ranks 1381 // which are above the required threshold. However, to 1382 // avoid adding more complexity to the code, return and wait 1383 // for a refresh event to kick things into action again. 1384 if (!found_read) 1385 return; 1386 1387 DRAMPacket* dram_pkt = readQueue.front(); 1388 assert(dram_pkt->rankRef.isAvailable()); 1389 1390 // here we get a bit creative and shift the bus busy time not 1391 // just the tWTR, but also a CAS latency to capture the fact 1392 // that we are allowed to prepare a new bank, but not issue a 1393 // read command until after tWTR, in essence we capture a 1394 // bubble on the data bus that is tWTR + tCL 1395 if (switched_cmd_type && dram_pkt->rank == activeRank) { 1396 busBusyUntil += tWTR + tCL; 1397 } 1398 1399 doDRAMAccess(dram_pkt); 1400 1401 // At this point we're done dealing with the request 1402 readQueue.pop_front(); 1403 1404 // Every respQueue which will generate an event, increment count 1405 ++dram_pkt->rankRef.outstandingEvents; 1406 1407 // sanity check 1408 assert(dram_pkt->size <= burstSize); 1409 assert(dram_pkt->readyTime >= curTick()); 1410 1411 // Insert into response queue. It will be sent back to the 1412 // requestor at its readyTime 1413 if (respQueue.empty()) { 1414 assert(!respondEvent.scheduled()); 1415 schedule(respondEvent, dram_pkt->readyTime); 1416 } else { 1417 assert(respQueue.back()->readyTime <= dram_pkt->readyTime); 1418 assert(respondEvent.scheduled()); 1419 } 1420 1421 respQueue.push_back(dram_pkt); 1422 1423 // we have so many writes that we have to transition 1424 if (writeQueue.size() > writeHighThreshold) { 1425 switch_to_writes = true; 1426 } 1427 } 1428 1429 // switching to writes, either because the read queue is empty 1430 // and the writes have passed the low threshold (or we are 1431 // draining), or because the writes hit the hight threshold 1432 if (switch_to_writes) { 1433 // transition to writing 1434 busStateNext = WRITE; 1435 } 1436 } else { 1437 // bool to check if write to free rank is found 1438 bool found_write = false; 1439 1440 // If we are changing command type, incorporate the minimum 1441 // bus turnaround delay 1442 found_write = chooseNext(writeQueue, 1443 switched_cmd_type ? std::min(tRTW, tCS) : 0); 1444 1445 // if no writes to an available rank are found then return. 1446 // There could be reads to the available ranks. However, to avoid 1447 // adding more complexity to the code, return at this point and wait 1448 // for a refresh event to kick things into action again. 1449 if (!found_write) 1450 return; 1451 1452 DRAMPacket* dram_pkt = writeQueue.front(); 1453 assert(dram_pkt->rankRef.isAvailable()); 1454 // sanity check 1455 assert(dram_pkt->size <= burstSize); 1456 1457 // add a bubble to the data bus, as defined by the 1458 // tRTW when access is to the same rank as previous burst 1459 // Different rank timing is handled with tCS, which is 1460 // applied to colAllowedAt 1461 if (switched_cmd_type && dram_pkt->rank == activeRank) { 1462 busBusyUntil += tRTW; 1463 } 1464 1465 doDRAMAccess(dram_pkt); 1466 1467 writeQueue.pop_front(); 1468 1469 // removed write from queue, decrement count 1470 --dram_pkt->rankRef.writeEntries; 1471 1472 // Schedule write done event to decrement event count 1473 // after the readyTime has been reached 1474 // Only schedule latest write event to minimize events 1475 // required; only need to ensure that final event scheduled covers 1476 // the time that writes are outstanding and bus is active 1477 // to holdoff power-down entry events 1478 if (!dram_pkt->rankRef.writeDoneEvent.scheduled()) { 1479 schedule(dram_pkt->rankRef.writeDoneEvent, dram_pkt->readyTime); 1480 // New event, increment count 1481 ++dram_pkt->rankRef.outstandingEvents; 1482 1483 } else if (dram_pkt->rankRef.writeDoneEvent.when() < 1484 dram_pkt-> readyTime) { 1485 reschedule(dram_pkt->rankRef.writeDoneEvent, dram_pkt->readyTime); 1486 } 1487 1488 isInWriteQueue.erase(burstAlign(dram_pkt->addr)); 1489 delete dram_pkt; 1490 1491 // If we emptied the write queue, or got sufficiently below the 1492 // threshold (using the minWritesPerSwitch as the hysteresis) and 1493 // are not draining, or we have reads waiting and have done enough 1494 // writes, then switch to reads. 1495 if (writeQueue.empty() || 1496 (writeQueue.size() + minWritesPerSwitch < writeLowThreshold && 1497 drainState() != DrainState::Draining) || 1498 (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) { 1499 // turn the bus back around for reads again 1500 busStateNext = READ; 1501 1502 // note that the we switch back to reads also in the idle 1503 // case, which eventually will check for any draining and 1504 // also pause any further scheduling if there is really 1505 // nothing to do 1506 } 1507 } 1508 // It is possible that a refresh to another rank kicks things back into 1509 // action before reaching this point. 1510 if (!nextReqEvent.scheduled()) 1511 schedule(nextReqEvent, std::max(nextReqTime, curTick())); 1512 1513 // If there is space available and we have writes waiting then let 1514 // them retry. This is done here to ensure that the retry does not 1515 // cause a nextReqEvent to be scheduled before we do so as part of 1516 // the next request processing 1517 if (retryWrReq && writeQueue.size() < writeBufferSize) { 1518 retryWrReq = false; 1519 port.sendRetryReq(); 1520 } 1521} 1522 1523pair<uint64_t, bool> 1524DRAMCtrl::minBankPrep(const deque<DRAMPacket*>& queue, 1525 Tick min_col_at) const 1526{ 1527 uint64_t bank_mask = 0; 1528 Tick min_act_at = MaxTick; 1529 1530 // latest Tick for which ACT can occur without incurring additoinal 1531 // delay on the data bus 1532 const Tick hidden_act_max = std::max(min_col_at - tRCD, curTick()); 1533 1534 // Flag condition when burst can issue back-to-back with previous burst 1535 bool found_seamless_bank = false; 1536 1537 // Flag condition when bank can be opened without incurring additional 1538 // delay on the data bus 1539 bool hidden_bank_prep = false; 1540 1541 // determine if we have queued transactions targetting the 1542 // bank in question 1543 vector<bool> got_waiting(ranksPerChannel * banksPerRank, false); 1544 for (const auto& p : queue) { 1545 if (p->rankRef.isAvailable()) 1546 got_waiting[p->bankId] = true; 1547 } 1548 1549 // Find command with optimal bank timing 1550 // Will prioritize commands that can issue seamlessly. 1551 for (int i = 0; i < ranksPerChannel; i++) { 1552 for (int j = 0; j < banksPerRank; j++) { 1553 uint16_t bank_id = i * banksPerRank + j; 1554 1555 // if we have waiting requests for the bank, and it is 1556 // amongst the first available, update the mask 1557 if (got_waiting[bank_id]) { 1558 // make sure this rank is not currently refreshing. 1559 assert(ranks[i]->isAvailable()); 1560 // simplistic approximation of when the bank can issue 1561 // an activate, ignoring any rank-to-rank switching 1562 // cost in this calculation 1563 Tick act_at = ranks[i]->banks[j].openRow == Bank::NO_ROW ? 1564 std::max(ranks[i]->banks[j].actAllowedAt, curTick()) : 1565 std::max(ranks[i]->banks[j].preAllowedAt, curTick()) + tRP; 1566 1567 // When is the earliest the R/W burst can issue? 1568 Tick col_at = std::max(ranks[i]->banks[j].colAllowedAt, 1569 act_at + tRCD); 1570 1571 // bank can issue burst back-to-back (seamlessly) with 1572 // previous burst 1573 bool new_seamless_bank = col_at <= min_col_at; 1574 1575 // if we found a new seamless bank or we have no 1576 // seamless banks, and got a bank with an earlier 1577 // activate time, it should be added to the bit mask 1578 if (new_seamless_bank || 1579 (!found_seamless_bank && act_at <= min_act_at)) { 1580 // if we did not have a seamless bank before, and 1581 // we do now, reset the bank mask, also reset it 1582 // if we have not yet found a seamless bank and 1583 // the activate time is smaller than what we have 1584 // seen so far 1585 if (!found_seamless_bank && 1586 (new_seamless_bank || act_at < min_act_at)) { 1587 bank_mask = 0; 1588 } 1589 1590 found_seamless_bank |= new_seamless_bank; 1591 1592 // ACT can occur 'behind the scenes' 1593 hidden_bank_prep = act_at <= hidden_act_max; 1594 1595 // set the bit corresponding to the available bank 1596 replaceBits(bank_mask, bank_id, bank_id, 1); 1597 min_act_at = act_at; 1598 } 1599 } 1600 } 1601 } 1602 1603 return make_pair(bank_mask, hidden_bank_prep); 1604} 1605 1606DRAMCtrl::Rank::Rank(DRAMCtrl& _memory, const DRAMCtrlParams* _p, int rank) 1607 : EventManager(&_memory), memory(_memory), 1608 pwrStateTrans(PWR_IDLE), pwrStatePostRefresh(PWR_IDLE), 1609 pwrStateTick(0), refreshDueAt(0), pwrState(PWR_IDLE), 1610 refreshState(REF_IDLE), inLowPowerState(false), rank(rank), 1611 readEntries(0), writeEntries(0), outstandingEvents(0), 1612 wakeUpAllowedAt(0), power(_p, false), banks(_p->banks_per_rank), 1613 numBanksActive(0), actTicks(_p->activation_limit, 0), 1614 writeDoneEvent([this]{ processWriteDoneEvent(); }, name()), 1615 activateEvent([this]{ processActivateEvent(); }, name()), 1616 prechargeEvent([this]{ processPrechargeEvent(); }, name()), 1617 refreshEvent([this]{ processRefreshEvent(); }, name()), 1618 powerEvent([this]{ processPowerEvent(); }, name()), 1619 wakeUpEvent([this]{ processWakeUpEvent(); }, name()) 1620{ 1621 for (int b = 0; b < _p->banks_per_rank; b++) { 1622 banks[b].bank = b; 1623 // GDDR addressing of banks to BG is linear. 1624 // Here we assume that all DRAM generations address bank groups as 1625 // follows: 1626 if (_p->bank_groups_per_rank > 0) { 1627 // Simply assign lower bits to bank group in order to 1628 // rotate across bank groups as banks are incremented 1629 // e.g. with 4 banks per bank group and 16 banks total: 1630 // banks 0,4,8,12 are in bank group 0 1631 // banks 1,5,9,13 are in bank group 1 1632 // banks 2,6,10,14 are in bank group 2 1633 // banks 3,7,11,15 are in bank group 3 1634 banks[b].bankgr = b % _p->bank_groups_per_rank; 1635 } else { 1636 // No bank groups; simply assign to bank number 1637 banks[b].bankgr = b; 1638 } 1639 } 1640} 1641 1642void 1643DRAMCtrl::Rank::startup(Tick ref_tick) 1644{ 1645 assert(ref_tick > curTick()); 1646 1647 pwrStateTick = curTick(); 1648 1649 // kick off the refresh, and give ourselves enough time to 1650 // precharge 1651 schedule(refreshEvent, ref_tick); 1652} 1653 1654void 1655DRAMCtrl::Rank::suspend() 1656{ 1657 deschedule(refreshEvent); 1658 1659 // Update the stats 1660 updatePowerStats(); 1661 1662 // don't automatically transition back to LP state after next REF 1663 pwrStatePostRefresh = PWR_IDLE; 1664} 1665 1666bool 1667DRAMCtrl::Rank::lowPowerEntryReady() const 1668{ 1669 bool no_queued_cmds = ((memory.busStateNext == READ) && (readEntries == 0)) 1670 || ((memory.busStateNext == WRITE) && 1671 (writeEntries == 0)); 1672 1673 if (refreshState == REF_RUN) { 1674 // have not decremented outstandingEvents for refresh command 1675 // still check if there are no commands queued to force PD 1676 // entry after refresh completes 1677 return no_queued_cmds; 1678 } else { 1679 // ensure no commands in Q and no commands scheduled 1680 return (no_queued_cmds && (outstandingEvents == 0)); 1681 } 1682} 1683 1684void 1685DRAMCtrl::Rank::checkDrainDone() 1686{ 1687 // if this rank was waiting to drain it is now able to proceed to 1688 // precharge 1689 if (refreshState == REF_DRAIN) { 1690 DPRINTF(DRAM, "Refresh drain done, now precharging\n"); 1691 1692 refreshState = REF_PD_EXIT; 1693 1694 // hand control back to the refresh event loop 1695 schedule(refreshEvent, curTick()); 1696 } 1697} 1698 1699void 1700DRAMCtrl::Rank::flushCmdList() 1701{ 1702 // at the moment sort the list of commands and update the counters 1703 // for DRAMPower libray when doing a refresh 1704 sort(cmdList.begin(), cmdList.end(), DRAMCtrl::sortTime); 1705 1706 auto next_iter = cmdList.begin(); 1707 // push to commands to DRAMPower 1708 for ( ; next_iter != cmdList.end() ; ++next_iter) { 1709 Command cmd = *next_iter; 1710 if (cmd.timeStamp <= curTick()) { 1711 // Move all commands at or before curTick to DRAMPower 1712 power.powerlib.doCommand(cmd.type, cmd.bank, 1713 divCeil(cmd.timeStamp, memory.tCK) - 1714 memory.timeStampOffset); 1715 } else { 1716 // done - found all commands at or before curTick() 1717 // next_iter references the 1st command after curTick 1718 break; 1719 } 1720 } 1721 // reset cmdList to only contain commands after curTick 1722 // if there are no commands after curTick, updated cmdList will be empty 1723 // in this case, next_iter is cmdList.end() 1724 cmdList.assign(next_iter, cmdList.end()); 1725} 1726 1727void 1728DRAMCtrl::Rank::processActivateEvent() 1729{ 1730 // we should transition to the active state as soon as any bank is active 1731 if (pwrState != PWR_ACT) 1732 // note that at this point numBanksActive could be back at 1733 // zero again due to a precharge scheduled in the future 1734 schedulePowerEvent(PWR_ACT, curTick()); 1735} 1736 1737void 1738DRAMCtrl::Rank::processPrechargeEvent() 1739{ 1740 // counter should at least indicate one outstanding request 1741 // for this precharge 1742 assert(outstandingEvents > 0); 1743 // precharge complete, decrement count 1744 --outstandingEvents; 1745 1746 // if we reached zero, then special conditions apply as we track 1747 // if all banks are precharged for the power models 1748 if (numBanksActive == 0) { 1749 // no reads to this rank in the Q and no pending 1750 // RD/WR or refresh commands 1751 if (lowPowerEntryReady()) { 1752 // should still be in ACT state since bank still open 1753 assert(pwrState == PWR_ACT); 1754 1755 // All banks closed - switch to precharge power down state. 1756 DPRINTF(DRAMState, "Rank %d sleep at tick %d\n", 1757 rank, curTick()); 1758 powerDownSleep(PWR_PRE_PDN, curTick()); 1759 } else { 1760 // we should transition to the idle state when the last bank 1761 // is precharged 1762 schedulePowerEvent(PWR_IDLE, curTick()); 1763 } 1764 } 1765} 1766 1767void 1768DRAMCtrl::Rank::processWriteDoneEvent() 1769{ 1770 // counter should at least indicate one outstanding request 1771 // for this write 1772 assert(outstandingEvents > 0); 1773 // Write transfer on bus has completed 1774 // decrement per rank counter 1775 --outstandingEvents; 1776} 1777 1778void 1779DRAMCtrl::Rank::processRefreshEvent() 1780{ 1781 // when first preparing the refresh, remember when it was due 1782 if ((refreshState == REF_IDLE) || (refreshState == REF_SREF_EXIT)) { 1783 // remember when the refresh is due 1784 refreshDueAt = curTick(); 1785 1786 // proceed to drain 1787 refreshState = REF_DRAIN; 1788 1789 // make nonzero while refresh is pending to ensure 1790 // power down and self-refresh are not entered 1791 ++outstandingEvents; 1792 1793 DPRINTF(DRAM, "Refresh due\n"); 1794 } 1795 1796 // let any scheduled read or write to the same rank go ahead, 1797 // after which it will 1798 // hand control back to this event loop 1799 if (refreshState == REF_DRAIN) { 1800 // if a request is at the moment being handled and this request is 1801 // accessing the current rank then wait for it to finish 1802 if ((rank == memory.activeRank) 1803 && (memory.nextReqEvent.scheduled())) { 1804 // hand control over to the request loop until it is 1805 // evaluated next 1806 DPRINTF(DRAM, "Refresh awaiting draining\n"); 1807 1808 return; 1809 } else { 1810 refreshState = REF_PD_EXIT; 1811 } 1812 } 1813 1814 // at this point, ensure that rank is not in a power-down state 1815 if (refreshState == REF_PD_EXIT) { 1816 // if rank was sleeping and we have't started exit process, 1817 // wake-up for refresh 1818 if (inLowPowerState) { 1819 DPRINTF(DRAM, "Wake Up for refresh\n"); 1820 // save state and return after refresh completes 1821 scheduleWakeUpEvent(memory.tXP); 1822 return; 1823 } else { 1824 refreshState = REF_PRE; 1825 } 1826 } 1827 1828 // at this point, ensure that all banks are precharged 1829 if (refreshState == REF_PRE) { 1830 // precharge any active bank 1831 if (numBanksActive != 0) { 1832 // at the moment, we use a precharge all even if there is 1833 // only a single bank open 1834 DPRINTF(DRAM, "Precharging all\n"); 1835 1836 // first determine when we can precharge 1837 Tick pre_at = curTick(); 1838 1839 for (auto &b : banks) { 1840 // respect both causality and any existing bank 1841 // constraints, some banks could already have a 1842 // (auto) precharge scheduled 1843 pre_at = std::max(b.preAllowedAt, pre_at); 1844 } 1845 1846 // make sure all banks per rank are precharged, and for those that 1847 // already are, update their availability 1848 Tick act_allowed_at = pre_at + memory.tRP; 1849 1850 for (auto &b : banks) { 1851 if (b.openRow != Bank::NO_ROW) { 1852 memory.prechargeBank(*this, b, pre_at, false); 1853 } else { 1854 b.actAllowedAt = std::max(b.actAllowedAt, act_allowed_at); 1855 b.preAllowedAt = std::max(b.preAllowedAt, pre_at); 1856 } 1857 } 1858 1859 // precharge all banks in rank 1860 cmdList.push_back(Command(MemCommand::PREA, 0, pre_at)); 1861 1862 DPRINTF(DRAMPower, "%llu,PREA,0,%d\n", 1863 divCeil(pre_at, memory.tCK) - 1864 memory.timeStampOffset, rank); 1865 } else if ((pwrState == PWR_IDLE) && (outstandingEvents == 1)) { 1866 // Banks are closed, have transitioned to IDLE state, and 1867 // no outstanding ACT,RD/WR,Auto-PRE sequence scheduled 1868 DPRINTF(DRAM, "All banks already precharged, starting refresh\n"); 1869 1870 // go ahead and kick the power state machine into gear since 1871 // we are already idle 1872 schedulePowerEvent(PWR_REF, curTick()); 1873 } else { 1874 // banks state is closed but haven't transitioned pwrState to IDLE 1875 // or have outstanding ACT,RD/WR,Auto-PRE sequence scheduled 1876 // should have outstanding precharge event in this case 1877 assert(prechargeEvent.scheduled()); 1878 // will start refresh when pwrState transitions to IDLE 1879 } 1880 1881 assert(numBanksActive == 0); 1882 1883 // wait for all banks to be precharged, at which point the 1884 // power state machine will transition to the idle state, and 1885 // automatically move to a refresh, at that point it will also 1886 // call this method to get the refresh event loop going again 1887 return; 1888 } 1889 1890 // last but not least we perform the actual refresh 1891 if (refreshState == REF_START) { 1892 // should never get here with any banks active 1893 assert(numBanksActive == 0); 1894 assert(pwrState == PWR_REF); 1895 1896 Tick ref_done_at = curTick() + memory.tRFC; 1897 1898 for (auto &b : banks) { 1899 b.actAllowedAt = ref_done_at; 1900 } 1901 1902 // at the moment this affects all ranks 1903 cmdList.push_back(Command(MemCommand::REF, 0, curTick())); 1904 1905 // Update the stats 1906 updatePowerStats(); 1907 1908 DPRINTF(DRAMPower, "%llu,REF,0,%d\n", divCeil(curTick(), memory.tCK) - 1909 memory.timeStampOffset, rank); 1910 1911 // Update for next refresh 1912 refreshDueAt += memory.tREFI; 1913 1914 // make sure we did not wait so long that we cannot make up 1915 // for it 1916 if (refreshDueAt < ref_done_at) { 1917 fatal("Refresh was delayed so long we cannot catch up\n"); 1918 } 1919 1920 // Run the refresh and schedule event to transition power states 1921 // when refresh completes 1922 refreshState = REF_RUN; 1923 schedule(refreshEvent, ref_done_at); 1924 return; 1925 } 1926 1927 if (refreshState == REF_RUN) { 1928 // should never get here with any banks active 1929 assert(numBanksActive == 0); 1930 assert(pwrState == PWR_REF); 1931 1932 assert(!powerEvent.scheduled()); 1933 1934 if ((memory.drainState() == DrainState::Draining) || 1935 (memory.drainState() == DrainState::Drained)) { 1936 // if draining, do not re-enter low-power mode. 1937 // simply go to IDLE and wait 1938 schedulePowerEvent(PWR_IDLE, curTick()); 1939 } else { 1940 // At the moment, we sleep when the refresh ends and wait to be 1941 // woken up again if previously in a low-power state. 1942 if (pwrStatePostRefresh != PWR_IDLE) { 1943 // power State should be power Refresh 1944 assert(pwrState == PWR_REF); 1945 DPRINTF(DRAMState, "Rank %d sleeping after refresh and was in " 1946 "power state %d before refreshing\n", rank, 1947 pwrStatePostRefresh); 1948 powerDownSleep(pwrState, curTick()); 1949 1950 // Force PRE power-down if there are no outstanding commands 1951 // in Q after refresh. 1952 } else if (lowPowerEntryReady()) { 1953 DPRINTF(DRAMState, "Rank %d sleeping after refresh but was NOT" 1954 " in a low power state before refreshing\n", rank); 1955 powerDownSleep(PWR_PRE_PDN, curTick()); 1956 1957 } else { 1958 // move to the idle power state once the refresh is done, this 1959 // will also move the refresh state machine to the refresh 1960 // idle state 1961 schedulePowerEvent(PWR_IDLE, curTick()); 1962 } 1963 } 1964 1965 // if transitioning to self refresh do not schedule a new refresh; 1966 // when waking from self refresh, a refresh is scheduled again. 1967 if (pwrStateTrans != PWR_SREF) { 1968 // compensate for the delay in actually performing the refresh 1969 // when scheduling the next one 1970 schedule(refreshEvent, refreshDueAt - memory.tRP); 1971 1972 DPRINTF(DRAMState, "Refresh done at %llu and next refresh" 1973 " at %llu\n", curTick(), refreshDueAt); 1974 } 1975 } 1976} 1977 1978void 1979DRAMCtrl::Rank::schedulePowerEvent(PowerState pwr_state, Tick tick) 1980{ 1981 // respect causality 1982 assert(tick >= curTick()); 1983 1984 if (!powerEvent.scheduled()) { 1985 DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n", 1986 tick, pwr_state); 1987 1988 // insert the new transition 1989 pwrStateTrans = pwr_state; 1990 1991 schedule(powerEvent, tick); 1992 } else { 1993 panic("Scheduled power event at %llu to state %d, " 1994 "with scheduled event at %llu to %d\n", tick, pwr_state, 1995 powerEvent.when(), pwrStateTrans); 1996 } 1997} 1998 1999void 2000DRAMCtrl::Rank::powerDownSleep(PowerState pwr_state, Tick tick) 2001{ 2002 // if low power state is active low, schedule to active low power state. 2003 // in reality tCKE is needed to enter active low power. This is neglected 2004 // here and could be added in the future. 2005 if (pwr_state == PWR_ACT_PDN) { 2006 schedulePowerEvent(pwr_state, tick); 2007 // push command to DRAMPower 2008 cmdList.push_back(Command(MemCommand::PDN_F_ACT, 0, tick)); 2009 DPRINTF(DRAMPower, "%llu,PDN_F_ACT,0,%d\n", divCeil(tick, 2010 memory.tCK) - memory.timeStampOffset, rank); 2011 } else if (pwr_state == PWR_PRE_PDN) { 2012 // if low power state is precharge low, schedule to precharge low 2013 // power state. In reality tCKE is needed to enter active low power. 2014 // This is neglected here. 2015 schedulePowerEvent(pwr_state, tick); 2016 //push Command to DRAMPower 2017 cmdList.push_back(Command(MemCommand::PDN_F_PRE, 0, tick)); 2018 DPRINTF(DRAMPower, "%llu,PDN_F_PRE,0,%d\n", divCeil(tick, 2019 memory.tCK) - memory.timeStampOffset, rank); 2020 } else if (pwr_state == PWR_REF) { 2021 // if a refresh just occured 2022 // transition to PRE_PDN now that all banks are closed 2023 // do not transition to SREF if commands are in Q; stay in PRE_PDN 2024 if (pwrStatePostRefresh == PWR_ACT_PDN || !lowPowerEntryReady()) { 2025 // prechage power down requires tCKE to enter. For simplicity 2026 // this is not considered. 2027 schedulePowerEvent(PWR_PRE_PDN, tick); 2028 //push Command to DRAMPower 2029 cmdList.push_back(Command(MemCommand::PDN_F_PRE, 0, tick)); 2030 DPRINTF(DRAMPower, "%llu,PDN_F_PRE,0,%d\n", divCeil(tick, 2031 memory.tCK) - memory.timeStampOffset, rank); 2032 } else { 2033 // last low power State was power precharge 2034 assert(pwrStatePostRefresh == PWR_PRE_PDN); 2035 // self refresh requires time tCKESR to enter. For simplicity, 2036 // this is not considered. 2037 schedulePowerEvent(PWR_SREF, tick); 2038 // push Command to DRAMPower 2039 cmdList.push_back(Command(MemCommand::SREN, 0, tick)); 2040 DPRINTF(DRAMPower, "%llu,SREN,0,%d\n", divCeil(tick, 2041 memory.tCK) - memory.timeStampOffset, rank); 2042 } 2043 } 2044 // Ensure that we don't power-down and back up in same tick 2045 // Once we commit to PD entry, do it and wait for at least 1tCK 2046 // This could be replaced with tCKE if/when that is added to the model 2047 wakeUpAllowedAt = tick + memory.tCK; 2048 2049 // Transitioning to a low power state, set flag 2050 inLowPowerState = true; 2051} 2052 2053void 2054DRAMCtrl::Rank::scheduleWakeUpEvent(Tick exit_delay) 2055{ 2056 Tick wake_up_tick = std::max(curTick(), wakeUpAllowedAt); 2057 2058 DPRINTF(DRAMState, "Scheduling wake-up for rank %d at tick %d\n", 2059 rank, wake_up_tick); 2060 2061 // if waking for refresh, hold previous state 2062 // else reset state back to IDLE 2063 if (refreshState == REF_PD_EXIT) { 2064 pwrStatePostRefresh = pwrState; 2065 } else { 2066 // don't automatically transition back to LP state after next REF 2067 pwrStatePostRefresh = PWR_IDLE; 2068 } 2069 2070 // schedule wake-up with event to ensure entry has completed before 2071 // we try to wake-up 2072 schedule(wakeUpEvent, wake_up_tick); 2073 2074 for (auto &b : banks) { 2075 // respect both causality and any existing bank 2076 // constraints, some banks could already have a 2077 // (auto) precharge scheduled 2078 b.colAllowedAt = std::max(wake_up_tick + exit_delay, b.colAllowedAt); 2079 b.preAllowedAt = std::max(wake_up_tick + exit_delay, b.preAllowedAt); 2080 b.actAllowedAt = std::max(wake_up_tick + exit_delay, b.actAllowedAt); 2081 } 2082 // Transitioning out of low power state, clear flag 2083 inLowPowerState = false; 2084 2085 // push to DRAMPower 2086 // use pwrStateTrans for cases where we have a power event scheduled 2087 // to enter low power that has not yet been processed 2088 if (pwrStateTrans == PWR_ACT_PDN) { 2089 cmdList.push_back(Command(MemCommand::PUP_ACT, 0, wake_up_tick)); 2090 DPRINTF(DRAMPower, "%llu,PUP_ACT,0,%d\n", divCeil(wake_up_tick, 2091 memory.tCK) - memory.timeStampOffset, rank); 2092 2093 } else if (pwrStateTrans == PWR_PRE_PDN) { 2094 cmdList.push_back(Command(MemCommand::PUP_PRE, 0, wake_up_tick)); 2095 DPRINTF(DRAMPower, "%llu,PUP_PRE,0,%d\n", divCeil(wake_up_tick, 2096 memory.tCK) - memory.timeStampOffset, rank); 2097 } else if (pwrStateTrans == PWR_SREF) { 2098 cmdList.push_back(Command(MemCommand::SREX, 0, wake_up_tick)); 2099 DPRINTF(DRAMPower, "%llu,SREX,0,%d\n", divCeil(wake_up_tick, 2100 memory.tCK) - memory.timeStampOffset, rank); 2101 } 2102} 2103 2104void 2105DRAMCtrl::Rank::processWakeUpEvent() 2106{ 2107 // Should be in a power-down or self-refresh state 2108 assert((pwrState == PWR_ACT_PDN) || (pwrState == PWR_PRE_PDN) || 2109 (pwrState == PWR_SREF)); 2110 2111 // Check current state to determine transition state 2112 if (pwrState == PWR_ACT_PDN) { 2113 // banks still open, transition to PWR_ACT 2114 schedulePowerEvent(PWR_ACT, curTick()); 2115 } else { 2116 // transitioning from a precharge power-down or self-refresh state 2117 // banks are closed - transition to PWR_IDLE 2118 schedulePowerEvent(PWR_IDLE, curTick()); 2119 } 2120} 2121 2122void 2123DRAMCtrl::Rank::processPowerEvent() 2124{ 2125 assert(curTick() >= pwrStateTick); 2126 // remember where we were, and for how long 2127 Tick duration = curTick() - pwrStateTick; 2128 PowerState prev_state = pwrState; 2129 2130 // update the accounting 2131 pwrStateTime[prev_state] += duration; 2132 2133 // track to total idle time 2134 if ((prev_state == PWR_PRE_PDN) || (prev_state == PWR_ACT_PDN) || 2135 (prev_state == PWR_SREF)) { 2136 totalIdleTime += duration; 2137 } 2138 2139 pwrState = pwrStateTrans; 2140 pwrStateTick = curTick(); 2141 2142 // if rank was refreshing, make sure to start scheduling requests again 2143 if (prev_state == PWR_REF) { 2144 // bus IDLED prior to REF 2145 // counter should be one for refresh command only 2146 assert(outstandingEvents == 1); 2147 // REF complete, decrement count 2148 --outstandingEvents; 2149 2150 DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration); 2151 // if sleeping after refresh 2152 if (pwrState != PWR_IDLE) { 2153 assert((pwrState == PWR_PRE_PDN) || (pwrState == PWR_SREF)); 2154 DPRINTF(DRAMState, "Switching to power down state after refreshing" 2155 " rank %d at %llu tick\n", rank, curTick()); 2156 } 2157 if (pwrState != PWR_SREF) { 2158 // rank is not available in SREF 2159 // don't transition to IDLE in this case 2160 refreshState = REF_IDLE; 2161 } 2162 // a request event could be already scheduled by the state 2163 // machine of the other rank 2164 if (!memory.nextReqEvent.scheduled()) { 2165 DPRINTF(DRAM, "Scheduling next request after refreshing rank %d\n", 2166 rank); 2167 schedule(memory.nextReqEvent, curTick()); 2168 } 2169 } else if (pwrState == PWR_ACT) { 2170 if (refreshState == REF_PD_EXIT) { 2171 // kick the refresh event loop into action again 2172 assert(prev_state == PWR_ACT_PDN); 2173 2174 // go back to REF event and close banks 2175 refreshState = REF_PRE; 2176 schedule(refreshEvent, curTick()); 2177 } 2178 } else if (pwrState == PWR_IDLE) { 2179 DPRINTF(DRAMState, "All banks precharged\n"); 2180 if (prev_state == PWR_SREF) { 2181 // set refresh state to REF_SREF_EXIT, ensuring isAvailable 2182 // continues to return false during tXS after SREF exit 2183 // Schedule a refresh which kicks things back into action 2184 // when it finishes 2185 refreshState = REF_SREF_EXIT; 2186 schedule(refreshEvent, curTick() + memory.tXS); 2187 } else { 2188 // if we have a pending refresh, and are now moving to 2189 // the idle state, directly transition to a refresh 2190 if ((refreshState == REF_PRE) || (refreshState == REF_PD_EXIT)) { 2191 // ensure refresh is restarted only after final PRE command. 2192 // do not restart refresh if controller is in an intermediate 2193 // state, after PRE_PDN exit, when banks are IDLE but an 2194 // ACT is scheduled. 2195 if (!activateEvent.scheduled()) { 2196 // there should be nothing waiting at this point 2197 assert(!powerEvent.scheduled()); 2198 // update the state in zero time and proceed below 2199 pwrState = PWR_REF; 2200 } else { 2201 // must have PRE scheduled to transition back to IDLE 2202 // and re-kick off refresh 2203 assert(prechargeEvent.scheduled()); 2204 } 2205 } 2206 } 2207 } 2208 2209 // we transition to the refresh state, let the refresh state 2210 // machine know of this state update and let it deal with the 2211 // scheduling of the next power state transition as well as the 2212 // following refresh 2213 if (pwrState == PWR_REF) { 2214 assert(refreshState == REF_PRE || refreshState == REF_PD_EXIT); 2215 DPRINTF(DRAMState, "Refreshing\n"); 2216 2217 // kick the refresh event loop into action again, and that 2218 // in turn will schedule a transition to the idle power 2219 // state once the refresh is done 2220 if (refreshState == REF_PD_EXIT) { 2221 // Wait for PD exit timing to complete before issuing REF 2222 schedule(refreshEvent, curTick() + memory.tXP); 2223 } else { 2224 schedule(refreshEvent, curTick()); 2225 } 2226 // Banks transitioned to IDLE, start REF 2227 refreshState = REF_START; 2228 } 2229} 2230 2231void 2232DRAMCtrl::Rank::updatePowerStats() 2233{ 2234 // All commands up to refresh have completed 2235 // flush cmdList to DRAMPower 2236 flushCmdList(); 2237 2238 // update the counters for DRAMPower, passing false to 2239 // indicate that this is not the last command in the 2240 // list. DRAMPower requires this information for the 2241 // correct calculation of the background energy at the end 2242 // of the simulation. Ideally we would want to call this 2243 // function with true once at the end of the 2244 // simulation. However, the discarded energy is extremly 2245 // small and does not effect the final results. 2246 power.powerlib.updateCounters(false); 2247 2248 // call the energy function 2249 power.powerlib.calcEnergy(); 2250 2251 // Get the energy and power from DRAMPower 2252 Data::MemoryPowerModel::Energy energy = 2253 power.powerlib.getEnergy(); 2254 Data::MemoryPowerModel::Power rank_power = 2255 power.powerlib.getPower(); 2256 2257 actEnergy = energy.act_energy * memory.devicesPerRank; 2258 preEnergy = energy.pre_energy * memory.devicesPerRank; 2259 readEnergy = energy.read_energy * memory.devicesPerRank; 2260 writeEnergy = energy.write_energy * memory.devicesPerRank; 2261 refreshEnergy = energy.ref_energy * memory.devicesPerRank; 2262 actBackEnergy = energy.act_stdby_energy * memory.devicesPerRank; 2263 preBackEnergy = energy.pre_stdby_energy * memory.devicesPerRank; 2264 actPowerDownEnergy = energy.f_act_pd_energy * memory.devicesPerRank; 2265 prePowerDownEnergy = energy.f_pre_pd_energy * memory.devicesPerRank; 2266 selfRefreshEnergy = energy.sref_energy * memory.devicesPerRank; 2267 totalEnergy = energy.total_energy * memory.devicesPerRank; 2268 averagePower = rank_power.average_power * memory.devicesPerRank; 2269} 2270 2271void 2272DRAMCtrl::Rank::computeStats() 2273{ 2274 DPRINTF(DRAM,"Computing final stats\n"); 2275 2276 // Force DRAM power to update counters based on time spent in 2277 // current state up to curTick() 2278 cmdList.push_back(Command(MemCommand::NOP, 0, curTick())); 2279 2280 // Update the stats 2281 updatePowerStats(); 2282 2283 // final update of power state times 2284 pwrStateTime[pwrState] += (curTick() - pwrStateTick); 2285 pwrStateTick = curTick(); 2286 2287} 2288 2289void 2290DRAMCtrl::Rank::regStats() 2291{ 2292 using namespace Stats; 2293 2294 pwrStateTime 2295 .init(6) 2296 .name(name() + ".memoryStateTime") 2297 .desc("Time in different power states"); 2298 pwrStateTime.subname(0, "IDLE"); 2299 pwrStateTime.subname(1, "REF"); 2300 pwrStateTime.subname(2, "SREF"); 2301 pwrStateTime.subname(3, "PRE_PDN"); 2302 pwrStateTime.subname(4, "ACT"); 2303 pwrStateTime.subname(5, "ACT_PDN"); 2304 2305 actEnergy 2306 .name(name() + ".actEnergy") 2307 .desc("Energy for activate commands per rank (pJ)"); 2308 2309 preEnergy 2310 .name(name() + ".preEnergy") 2311 .desc("Energy for precharge commands per rank (pJ)"); 2312 2313 readEnergy 2314 .name(name() + ".readEnergy") 2315 .desc("Energy for read commands per rank (pJ)"); 2316 2317 writeEnergy 2318 .name(name() + ".writeEnergy") 2319 .desc("Energy for write commands per rank (pJ)"); 2320 2321 refreshEnergy 2322 .name(name() + ".refreshEnergy") 2323 .desc("Energy for refresh commands per rank (pJ)"); 2324 2325 actBackEnergy 2326 .name(name() + ".actBackEnergy") 2327 .desc("Energy for active background per rank (pJ)"); 2328 2329 preBackEnergy 2330 .name(name() + ".preBackEnergy") 2331 .desc("Energy for precharge background per rank (pJ)"); 2332 2333 actPowerDownEnergy 2334 .name(name() + ".actPowerDownEnergy") 2335 .desc("Energy for active power-down per rank (pJ)"); 2336 2337 prePowerDownEnergy 2338 .name(name() + ".prePowerDownEnergy") 2339 .desc("Energy for precharge power-down per rank (pJ)"); 2340 2341 selfRefreshEnergy 2342 .name(name() + ".selfRefreshEnergy") 2343 .desc("Energy for self refresh per rank (pJ)"); 2344 2345 totalEnergy 2346 .name(name() + ".totalEnergy") 2347 .desc("Total energy per rank (pJ)"); 2348 2349 averagePower 2350 .name(name() + ".averagePower") 2351 .desc("Core power per rank (mW)"); 2352 2353 totalIdleTime 2354 .name(name() + ".totalIdleTime") 2355 .desc("Total Idle time Per DRAM Rank"); 2356 2357 registerDumpCallback(new RankDumpCallback(this)); 2358} 2359void 2360DRAMCtrl::regStats() 2361{ 2362 using namespace Stats; 2363 2364 AbstractMemory::regStats(); 2365 2366 for (auto r : ranks) { 2367 r->regStats(); 2368 } 2369 2370 readReqs 2371 .name(name() + ".readReqs") 2372 .desc("Number of read requests accepted"); 2373 2374 writeReqs 2375 .name(name() + ".writeReqs") 2376 .desc("Number of write requests accepted"); 2377 2378 readBursts 2379 .name(name() + ".readBursts") 2380 .desc("Number of DRAM read bursts, " 2381 "including those serviced by the write queue"); 2382 2383 writeBursts 2384 .name(name() + ".writeBursts") 2385 .desc("Number of DRAM write bursts, " 2386 "including those merged in the write queue"); 2387 2388 servicedByWrQ 2389 .name(name() + ".servicedByWrQ") 2390 .desc("Number of DRAM read bursts serviced by the write queue"); 2391 2392 mergedWrBursts 2393 .name(name() + ".mergedWrBursts") 2394 .desc("Number of DRAM write bursts merged with an existing one"); 2395 2396 neitherReadNorWrite 2397 .name(name() + ".neitherReadNorWriteReqs") 2398 .desc("Number of requests that are neither read nor write"); 2399 2400 perBankRdBursts 2401 .init(banksPerRank * ranksPerChannel) 2402 .name(name() + ".perBankRdBursts") 2403 .desc("Per bank write bursts"); 2404 2405 perBankWrBursts 2406 .init(banksPerRank * ranksPerChannel) 2407 .name(name() + ".perBankWrBursts") 2408 .desc("Per bank write bursts"); 2409 2410 avgRdQLen 2411 .name(name() + ".avgRdQLen") 2412 .desc("Average read queue length when enqueuing") 2413 .precision(2); 2414 2415 avgWrQLen 2416 .name(name() + ".avgWrQLen") 2417 .desc("Average write queue length when enqueuing") 2418 .precision(2); 2419 2420 totQLat 2421 .name(name() + ".totQLat") 2422 .desc("Total ticks spent queuing"); 2423 2424 totBusLat 2425 .name(name() + ".totBusLat") 2426 .desc("Total ticks spent in databus transfers"); 2427 2428 totMemAccLat 2429 .name(name() + ".totMemAccLat") 2430 .desc("Total ticks spent from burst creation until serviced " 2431 "by the DRAM"); 2432 2433 avgQLat 2434 .name(name() + ".avgQLat") 2435 .desc("Average queueing delay per DRAM burst") 2436 .precision(2); 2437 2438 avgQLat = totQLat / (readBursts - servicedByWrQ); 2439 2440 avgBusLat 2441 .name(name() + ".avgBusLat") 2442 .desc("Average bus latency per DRAM burst") 2443 .precision(2); 2444 2445 avgBusLat = totBusLat / (readBursts - servicedByWrQ); 2446 2447 avgMemAccLat 2448 .name(name() + ".avgMemAccLat") 2449 .desc("Average memory access latency per DRAM burst") 2450 .precision(2); 2451 2452 avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ); 2453 2454 numRdRetry 2455 .name(name() + ".numRdRetry") 2456 .desc("Number of times read queue was full causing retry"); 2457 2458 numWrRetry 2459 .name(name() + ".numWrRetry") 2460 .desc("Number of times write queue was full causing retry"); 2461 2462 readRowHits 2463 .name(name() + ".readRowHits") 2464 .desc("Number of row buffer hits during reads"); 2465 2466 writeRowHits 2467 .name(name() + ".writeRowHits") 2468 .desc("Number of row buffer hits during writes"); 2469 2470 readRowHitRate 2471 .name(name() + ".readRowHitRate") 2472 .desc("Row buffer hit rate for reads") 2473 .precision(2); 2474 2475 readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100; 2476 2477 writeRowHitRate 2478 .name(name() + ".writeRowHitRate") 2479 .desc("Row buffer hit rate for writes") 2480 .precision(2); 2481 2482 writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100; 2483 2484 readPktSize 2485 .init(ceilLog2(burstSize) + 1) 2486 .name(name() + ".readPktSize") 2487 .desc("Read request sizes (log2)"); 2488 2489 writePktSize 2490 .init(ceilLog2(burstSize) + 1) 2491 .name(name() + ".writePktSize") 2492 .desc("Write request sizes (log2)"); 2493 2494 rdQLenPdf 2495 .init(readBufferSize) 2496 .name(name() + ".rdQLenPdf") 2497 .desc("What read queue length does an incoming req see"); 2498 2499 wrQLenPdf 2500 .init(writeBufferSize) 2501 .name(name() + ".wrQLenPdf") 2502 .desc("What write queue length does an incoming req see"); 2503 2504 bytesPerActivate 2505 .init(maxAccessesPerRow) 2506 .name(name() + ".bytesPerActivate") 2507 .desc("Bytes accessed per row activation") 2508 .flags(nozero); 2509 2510 rdPerTurnAround 2511 .init(readBufferSize) 2512 .name(name() + ".rdPerTurnAround") 2513 .desc("Reads before turning the bus around for writes") 2514 .flags(nozero); 2515 2516 wrPerTurnAround 2517 .init(writeBufferSize) 2518 .name(name() + ".wrPerTurnAround") 2519 .desc("Writes before turning the bus around for reads") 2520 .flags(nozero); 2521 2522 bytesReadDRAM 2523 .name(name() + ".bytesReadDRAM") 2524 .desc("Total number of bytes read from DRAM"); 2525 2526 bytesReadWrQ 2527 .name(name() + ".bytesReadWrQ") 2528 .desc("Total number of bytes read from write queue"); 2529 2530 bytesWritten 2531 .name(name() + ".bytesWritten") 2532 .desc("Total number of bytes written to DRAM"); 2533 2534 bytesReadSys 2535 .name(name() + ".bytesReadSys") 2536 .desc("Total read bytes from the system interface side"); 2537 2538 bytesWrittenSys 2539 .name(name() + ".bytesWrittenSys") 2540 .desc("Total written bytes from the system interface side"); 2541 2542 avgRdBW 2543 .name(name() + ".avgRdBW") 2544 .desc("Average DRAM read bandwidth in MiByte/s") 2545 .precision(2); 2546 2547 avgRdBW = (bytesReadDRAM / 1000000) / simSeconds; 2548 2549 avgWrBW 2550 .name(name() + ".avgWrBW") 2551 .desc("Average achieved write bandwidth in MiByte/s") 2552 .precision(2); 2553 2554 avgWrBW = (bytesWritten / 1000000) / simSeconds; 2555 2556 avgRdBWSys 2557 .name(name() + ".avgRdBWSys") 2558 .desc("Average system read bandwidth in MiByte/s") 2559 .precision(2); 2560 2561 avgRdBWSys = (bytesReadSys / 1000000) / simSeconds; 2562 2563 avgWrBWSys 2564 .name(name() + ".avgWrBWSys") 2565 .desc("Average system write bandwidth in MiByte/s") 2566 .precision(2); 2567 2568 avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds; 2569 2570 peakBW 2571 .name(name() + ".peakBW") 2572 .desc("Theoretical peak bandwidth in MiByte/s") 2573 .precision(2); 2574 2575 peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000; 2576 2577 busUtil 2578 .name(name() + ".busUtil") 2579 .desc("Data bus utilization in percentage") 2580 .precision(2); 2581 busUtil = (avgRdBW + avgWrBW) / peakBW * 100; 2582 2583 totGap 2584 .name(name() + ".totGap") 2585 .desc("Total gap between requests"); 2586 2587 avgGap 2588 .name(name() + ".avgGap") 2589 .desc("Average gap between requests") 2590 .precision(2); 2591 2592 avgGap = totGap / (readReqs + writeReqs); 2593 2594 // Stats for DRAM Power calculation based on Micron datasheet 2595 busUtilRead 2596 .name(name() + ".busUtilRead") 2597 .desc("Data bus utilization in percentage for reads") 2598 .precision(2); 2599 2600 busUtilRead = avgRdBW / peakBW * 100; 2601 2602 busUtilWrite 2603 .name(name() + ".busUtilWrite") 2604 .desc("Data bus utilization in percentage for writes") 2605 .precision(2); 2606 2607 busUtilWrite = avgWrBW / peakBW * 100; 2608 2609 pageHitRate 2610 .name(name() + ".pageHitRate") 2611 .desc("Row buffer hit rate, read and write combined") 2612 .precision(2); 2613 2614 pageHitRate = (writeRowHits + readRowHits) / 2615 (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100; 2616} 2617 2618void 2619DRAMCtrl::recvFunctional(PacketPtr pkt) 2620{ 2621 // rely on the abstract memory 2622 functionalAccess(pkt); 2623} 2624 2625BaseSlavePort& 2626DRAMCtrl::getSlavePort(const string &if_name, PortID idx) 2627{ 2628 if (if_name != "port") { 2629 return MemObject::getSlavePort(if_name, idx); 2630 } else { 2631 return port; 2632 } 2633} 2634 2635DrainState 2636DRAMCtrl::drain() 2637{ 2638 // if there is anything in any of our internal queues, keep track 2639 // of that as well 2640 if (!(writeQueue.empty() && readQueue.empty() && respQueue.empty() && 2641 allRanksDrained())) { 2642 2643 DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d," 2644 " resp: %d\n", writeQueue.size(), readQueue.size(), 2645 respQueue.size()); 2646 2647 // the only queue that is not drained automatically over time 2648 // is the write queue, thus kick things into action if needed 2649 if (!writeQueue.empty() && !nextReqEvent.scheduled()) { 2650 schedule(nextReqEvent, curTick()); 2651 } 2652 2653 // also need to kick off events to exit self-refresh 2654 for (auto r : ranks) { 2655 // force self-refresh exit, which in turn will issue auto-refresh 2656 if (r->pwrState == PWR_SREF) { 2657 DPRINTF(DRAM,"Rank%d: Forcing self-refresh wakeup in drain\n", 2658 r->rank); 2659 r->scheduleWakeUpEvent(tXS); 2660 } 2661 } 2662 2663 return DrainState::Draining; 2664 } else { 2665 return DrainState::Drained; 2666 } 2667} 2668 2669bool 2670DRAMCtrl::allRanksDrained() const 2671{ 2672 // true until proven false 2673 bool all_ranks_drained = true; 2674 for (auto r : ranks) { 2675 // then verify that the power state is IDLE 2676 // ensuring all banks are closed and rank is not in a low power state 2677 all_ranks_drained = r->inPwrIdleState() && all_ranks_drained; 2678 } 2679 return all_ranks_drained; 2680} 2681 2682void 2683DRAMCtrl::drainResume() 2684{ 2685 if (!isTimingMode && system()->isTimingMode()) { 2686 // if we switched to timing mode, kick things into action, 2687 // and behave as if we restored from a checkpoint 2688 startup(); 2689 } else if (isTimingMode && !system()->isTimingMode()) { 2690 // if we switch from timing mode, stop the refresh events to 2691 // not cause issues with KVM 2692 for (auto r : ranks) { 2693 r->suspend(); 2694 } 2695 } 2696 2697 // update the mode 2698 isTimingMode = system()->isTimingMode(); 2699} 2700 2701DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory) 2702 : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this), 2703 memory(_memory) 2704{ } 2705 2706AddrRangeList 2707DRAMCtrl::MemoryPort::getAddrRanges() const 2708{ 2709 AddrRangeList ranges; 2710 ranges.push_back(memory.getAddrRange()); 2711 return ranges; 2712} 2713 2714void 2715DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt) 2716{ 2717 pkt->pushLabel(memory.name()); 2718 2719 if (!queue.checkFunctional(pkt)) { 2720 // Default implementation of SimpleTimingPort::recvFunctional() 2721 // calls recvAtomic() and throws away the latency; we can save a 2722 // little here by just not calculating the latency. 2723 memory.recvFunctional(pkt); 2724 } 2725 2726 pkt->popLabel(); 2727} 2728 2729Tick 2730DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt) 2731{ 2732 return memory.recvAtomic(pkt); 2733} 2734 2735bool 2736DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt) 2737{ 2738 // pass it to the memory controller 2739 return memory.recvTimingReq(pkt); 2740} 2741 2742DRAMCtrl* 2743DRAMCtrlParams::create() 2744{ 2745 return new DRAMCtrl(this); 2746} 2747