dram_ctrl.cc revision 12081:cb5fe81fd522
1/* 2 * Copyright (c) 2010-2017 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2013 Amin Farmahini-Farahani 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Andreas Hansson 41 * Ani Udipi 42 * Neha Agarwal 43 * Omar Naji 44 * Wendy Elsasser 45 */ 46 47#include "mem/dram_ctrl.hh" 48 49#include "base/bitfield.hh" 50#include "base/trace.hh" 51#include "debug/DRAM.hh" 52#include "debug/DRAMPower.hh" 53#include "debug/DRAMState.hh" 54#include "debug/Drain.hh" 55#include "sim/system.hh" 56 57using namespace std; 58using namespace Data; 59 60DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) : 61 AbstractMemory(p), 62 port(name() + ".port", *this), isTimingMode(false), 63 retryRdReq(false), retryWrReq(false), 64 busState(READ), 65 busStateNext(READ), 66 nextReqEvent(this), respondEvent(this), 67 deviceSize(p->device_size), 68 deviceBusWidth(p->device_bus_width), burstLength(p->burst_length), 69 deviceRowBufferSize(p->device_rowbuffer_size), 70 devicesPerRank(p->devices_per_rank), 71 burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8), 72 rowBufferSize(devicesPerRank * deviceRowBufferSize), 73 columnsPerRowBuffer(rowBufferSize / burstSize), 74 columnsPerStripe(range.interleaved() ? range.granularity() / burstSize : 1), 75 ranksPerChannel(p->ranks_per_channel), 76 bankGroupsPerRank(p->bank_groups_per_rank), 77 bankGroupArch(p->bank_groups_per_rank > 0), 78 banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0), 79 readBufferSize(p->read_buffer_size), 80 writeBufferSize(p->write_buffer_size), 81 writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0), 82 writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0), 83 minWritesPerSwitch(p->min_writes_per_switch), 84 writesThisTime(0), readsThisTime(0), 85 tCK(p->tCK), tWTR(p->tWTR), tRTW(p->tRTW), tCS(p->tCS), tBURST(p->tBURST), 86 tCCD_L(p->tCCD_L), tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS), 87 tWR(p->tWR), tRTP(p->tRTP), tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD), 88 tRRD_L(p->tRRD_L), tXAW(p->tXAW), tXP(p->tXP), tXS(p->tXS), 89 activationLimit(p->activation_limit), 90 memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping), 91 pageMgmt(p->page_policy), 92 maxAccessesPerRow(p->max_accesses_per_row), 93 frontendLatency(p->static_frontend_latency), 94 backendLatency(p->static_backend_latency), 95 busBusyUntil(0), prevArrival(0), 96 nextReqTime(0), activeRank(0), timeStampOffset(0) 97{ 98 // sanity check the ranks since we rely on bit slicing for the 99 // address decoding 100 fatal_if(!isPowerOf2(ranksPerChannel), "DRAM rank count of %d is not " 101 "allowed, must be a power of two\n", ranksPerChannel); 102 103 fatal_if(!isPowerOf2(burstSize), "DRAM burst size %d is not allowed, " 104 "must be a power of two\n", burstSize); 105 106 for (int i = 0; i < ranksPerChannel; i++) { 107 Rank* rank = new Rank(*this, p, i); 108 ranks.push_back(rank); 109 } 110 111 // perform a basic check of the write thresholds 112 if (p->write_low_thresh_perc >= p->write_high_thresh_perc) 113 fatal("Write buffer low threshold %d must be smaller than the " 114 "high threshold %d\n", p->write_low_thresh_perc, 115 p->write_high_thresh_perc); 116 117 // determine the rows per bank by looking at the total capacity 118 uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size()); 119 120 // determine the dram actual capacity from the DRAM config in Mbytes 121 uint64_t deviceCapacity = deviceSize / (1024 * 1024) * devicesPerRank * 122 ranksPerChannel; 123 124 // if actual DRAM size does not match memory capacity in system warn! 125 if (deviceCapacity != capacity / (1024 * 1024)) 126 warn("DRAM device capacity (%d Mbytes) does not match the " 127 "address range assigned (%d Mbytes)\n", deviceCapacity, 128 capacity / (1024 * 1024)); 129 130 DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity, 131 AbstractMemory::size()); 132 133 DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n", 134 rowBufferSize, columnsPerRowBuffer); 135 136 rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel); 137 138 // some basic sanity checks 139 if (tREFI <= tRP || tREFI <= tRFC) { 140 fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n", 141 tREFI, tRP, tRFC); 142 } 143 144 // basic bank group architecture checks -> 145 if (bankGroupArch) { 146 // must have at least one bank per bank group 147 if (bankGroupsPerRank > banksPerRank) { 148 fatal("banks per rank (%d) must be equal to or larger than " 149 "banks groups per rank (%d)\n", 150 banksPerRank, bankGroupsPerRank); 151 } 152 // must have same number of banks in each bank group 153 if ((banksPerRank % bankGroupsPerRank) != 0) { 154 fatal("Banks per rank (%d) must be evenly divisible by bank groups " 155 "per rank (%d) for equal banks per bank group\n", 156 banksPerRank, bankGroupsPerRank); 157 } 158 // tCCD_L should be greater than minimal, back-to-back burst delay 159 if (tCCD_L <= tBURST) { 160 fatal("tCCD_L (%d) should be larger than tBURST (%d) when " 161 "bank groups per rank (%d) is greater than 1\n", 162 tCCD_L, tBURST, bankGroupsPerRank); 163 } 164 // tRRD_L is greater than minimal, same bank group ACT-to-ACT delay 165 // some datasheets might specify it equal to tRRD 166 if (tRRD_L < tRRD) { 167 fatal("tRRD_L (%d) should be larger than tRRD (%d) when " 168 "bank groups per rank (%d) is greater than 1\n", 169 tRRD_L, tRRD, bankGroupsPerRank); 170 } 171 } 172 173} 174 175void 176DRAMCtrl::init() 177{ 178 AbstractMemory::init(); 179 180 if (!port.isConnected()) { 181 fatal("DRAMCtrl %s is unconnected!\n", name()); 182 } else { 183 port.sendRangeChange(); 184 } 185 186 // a bit of sanity checks on the interleaving, save it for here to 187 // ensure that the system pointer is initialised 188 if (range.interleaved()) { 189 if (channels != range.stripes()) 190 fatal("%s has %d interleaved address stripes but %d channel(s)\n", 191 name(), range.stripes(), channels); 192 193 if (addrMapping == Enums::RoRaBaChCo) { 194 if (rowBufferSize != range.granularity()) { 195 fatal("Channel interleaving of %s doesn't match RoRaBaChCo " 196 "address map\n", name()); 197 } 198 } else if (addrMapping == Enums::RoRaBaCoCh || 199 addrMapping == Enums::RoCoRaBaCh) { 200 // for the interleavings with channel bits in the bottom, 201 // if the system uses a channel striping granularity that 202 // is larger than the DRAM burst size, then map the 203 // sequential accesses within a stripe to a number of 204 // columns in the DRAM, effectively placing some of the 205 // lower-order column bits as the least-significant bits 206 // of the address (above the ones denoting the burst size) 207 assert(columnsPerStripe >= 1); 208 209 // channel striping has to be done at a granularity that 210 // is equal or larger to a cache line 211 if (system()->cacheLineSize() > range.granularity()) { 212 fatal("Channel interleaving of %s must be at least as large " 213 "as the cache line size\n", name()); 214 } 215 216 // ...and equal or smaller than the row-buffer size 217 if (rowBufferSize < range.granularity()) { 218 fatal("Channel interleaving of %s must be at most as large " 219 "as the row-buffer size\n", name()); 220 } 221 // this is essentially the check above, so just to be sure 222 assert(columnsPerStripe <= columnsPerRowBuffer); 223 } 224 } 225} 226 227void 228DRAMCtrl::startup() 229{ 230 // remember the memory system mode of operation 231 isTimingMode = system()->isTimingMode(); 232 233 if (isTimingMode) { 234 // timestamp offset should be in clock cycles for DRAMPower 235 timeStampOffset = divCeil(curTick(), tCK); 236 237 // update the start tick for the precharge accounting to the 238 // current tick 239 for (auto r : ranks) { 240 r->startup(curTick() + tREFI - tRP); 241 } 242 243 // shift the bus busy time sufficiently far ahead that we never 244 // have to worry about negative values when computing the time for 245 // the next request, this will add an insignificant bubble at the 246 // start of simulation 247 busBusyUntil = curTick() + tRP + tRCD + tCL; 248 } 249} 250 251Tick 252DRAMCtrl::recvAtomic(PacketPtr pkt) 253{ 254 DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr()); 255 256 panic_if(pkt->cacheResponding(), "Should not see packets where cache " 257 "is responding"); 258 259 // do the actual memory access and turn the packet into a response 260 access(pkt); 261 262 Tick latency = 0; 263 if (pkt->hasData()) { 264 // this value is not supposed to be accurate, just enough to 265 // keep things going, mimic a closed page 266 latency = tRP + tRCD + tCL; 267 } 268 return latency; 269} 270 271bool 272DRAMCtrl::readQueueFull(unsigned int neededEntries) const 273{ 274 DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n", 275 readBufferSize, readQueue.size() + respQueue.size(), 276 neededEntries); 277 278 return 279 (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize; 280} 281 282bool 283DRAMCtrl::writeQueueFull(unsigned int neededEntries) const 284{ 285 DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n", 286 writeBufferSize, writeQueue.size(), neededEntries); 287 return (writeQueue.size() + neededEntries) > writeBufferSize; 288} 289 290DRAMCtrl::DRAMPacket* 291DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size, 292 bool isRead) 293{ 294 // decode the address based on the address mapping scheme, with 295 // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and 296 // channel, respectively 297 uint8_t rank; 298 uint8_t bank; 299 // use a 64-bit unsigned during the computations as the row is 300 // always the top bits, and check before creating the DRAMPacket 301 uint64_t row; 302 303 // truncate the address to a DRAM burst, which makes it unique to 304 // a specific column, row, bank, rank and channel 305 Addr addr = dramPktAddr / burstSize; 306 307 // we have removed the lowest order address bits that denote the 308 // position within the column 309 if (addrMapping == Enums::RoRaBaChCo) { 310 // the lowest order bits denote the column to ensure that 311 // sequential cache lines occupy the same row 312 addr = addr / columnsPerRowBuffer; 313 314 // take out the channel part of the address 315 addr = addr / channels; 316 317 // after the channel bits, get the bank bits to interleave 318 // over the banks 319 bank = addr % banksPerRank; 320 addr = addr / banksPerRank; 321 322 // after the bank, we get the rank bits which thus interleaves 323 // over the ranks 324 rank = addr % ranksPerChannel; 325 addr = addr / ranksPerChannel; 326 327 // lastly, get the row bits, no need to remove them from addr 328 row = addr % rowsPerBank; 329 } else if (addrMapping == Enums::RoRaBaCoCh) { 330 // take out the lower-order column bits 331 addr = addr / columnsPerStripe; 332 333 // take out the channel part of the address 334 addr = addr / channels; 335 336 // next, the higher-order column bites 337 addr = addr / (columnsPerRowBuffer / columnsPerStripe); 338 339 // after the column bits, we get the bank bits to interleave 340 // over the banks 341 bank = addr % banksPerRank; 342 addr = addr / banksPerRank; 343 344 // after the bank, we get the rank bits which thus interleaves 345 // over the ranks 346 rank = addr % ranksPerChannel; 347 addr = addr / ranksPerChannel; 348 349 // lastly, get the row bits, no need to remove them from addr 350 row = addr % rowsPerBank; 351 } else if (addrMapping == Enums::RoCoRaBaCh) { 352 // optimise for closed page mode and utilise maximum 353 // parallelism of the DRAM (at the cost of power) 354 355 // take out the lower-order column bits 356 addr = addr / columnsPerStripe; 357 358 // take out the channel part of the address, not that this has 359 // to match with how accesses are interleaved between the 360 // controllers in the address mapping 361 addr = addr / channels; 362 363 // start with the bank bits, as this provides the maximum 364 // opportunity for parallelism between requests 365 bank = addr % banksPerRank; 366 addr = addr / banksPerRank; 367 368 // next get the rank bits 369 rank = addr % ranksPerChannel; 370 addr = addr / ranksPerChannel; 371 372 // next, the higher-order column bites 373 addr = addr / (columnsPerRowBuffer / columnsPerStripe); 374 375 // lastly, get the row bits, no need to remove them from addr 376 row = addr % rowsPerBank; 377 } else 378 panic("Unknown address mapping policy chosen!"); 379 380 assert(rank < ranksPerChannel); 381 assert(bank < banksPerRank); 382 assert(row < rowsPerBank); 383 assert(row < Bank::NO_ROW); 384 385 DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n", 386 dramPktAddr, rank, bank, row); 387 388 // create the corresponding DRAM packet with the entry time and 389 // ready time set to the current tick, the latter will be updated 390 // later 391 uint16_t bank_id = banksPerRank * rank + bank; 392 return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr, 393 size, ranks[rank]->banks[bank], *ranks[rank]); 394} 395 396void 397DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount) 398{ 399 // only add to the read queue here. whenever the request is 400 // eventually done, set the readyTime, and call schedule() 401 assert(!pkt->isWrite()); 402 403 assert(pktCount != 0); 404 405 // if the request size is larger than burst size, the pkt is split into 406 // multiple DRAM packets 407 // Note if the pkt starting address is not aligened to burst size, the 408 // address of first DRAM packet is kept unaliged. Subsequent DRAM packets 409 // are aligned to burst size boundaries. This is to ensure we accurately 410 // check read packets against packets in write queue. 411 Addr addr = pkt->getAddr(); 412 unsigned pktsServicedByWrQ = 0; 413 BurstHelper* burst_helper = NULL; 414 for (int cnt = 0; cnt < pktCount; ++cnt) { 415 unsigned size = std::min((addr | (burstSize - 1)) + 1, 416 pkt->getAddr() + pkt->getSize()) - addr; 417 readPktSize[ceilLog2(size)]++; 418 readBursts++; 419 420 // First check write buffer to see if the data is already at 421 // the controller 422 bool foundInWrQ = false; 423 Addr burst_addr = burstAlign(addr); 424 // if the burst address is not present then there is no need 425 // looking any further 426 if (isInWriteQueue.find(burst_addr) != isInWriteQueue.end()) { 427 for (const auto& p : writeQueue) { 428 // check if the read is subsumed in the write queue 429 // packet we are looking at 430 if (p->addr <= addr && (addr + size) <= (p->addr + p->size)) { 431 foundInWrQ = true; 432 servicedByWrQ++; 433 pktsServicedByWrQ++; 434 DPRINTF(DRAM, "Read to addr %lld with size %d serviced by " 435 "write queue\n", addr, size); 436 bytesReadWrQ += burstSize; 437 break; 438 } 439 } 440 } 441 442 // If not found in the write q, make a DRAM packet and 443 // push it onto the read queue 444 if (!foundInWrQ) { 445 446 // Make the burst helper for split packets 447 if (pktCount > 1 && burst_helper == NULL) { 448 DPRINTF(DRAM, "Read to addr %lld translates to %d " 449 "dram requests\n", pkt->getAddr(), pktCount); 450 burst_helper = new BurstHelper(pktCount); 451 } 452 453 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true); 454 dram_pkt->burstHelper = burst_helper; 455 456 assert(!readQueueFull(1)); 457 rdQLenPdf[readQueue.size() + respQueue.size()]++; 458 459 DPRINTF(DRAM, "Adding to read queue\n"); 460 461 readQueue.push_back(dram_pkt); 462 463 // increment read entries of the rank 464 ++dram_pkt->rankRef.readEntries; 465 466 // Update stats 467 avgRdQLen = readQueue.size() + respQueue.size(); 468 } 469 470 // Starting address of next dram pkt (aligend to burstSize boundary) 471 addr = (addr | (burstSize - 1)) + 1; 472 } 473 474 // If all packets are serviced by write queue, we send the repsonse back 475 if (pktsServicedByWrQ == pktCount) { 476 accessAndRespond(pkt, frontendLatency); 477 return; 478 } 479 480 // Update how many split packets are serviced by write queue 481 if (burst_helper != NULL) 482 burst_helper->burstsServiced = pktsServicedByWrQ; 483 484 // If we are not already scheduled to get a request out of the 485 // queue, do so now 486 if (!nextReqEvent.scheduled()) { 487 DPRINTF(DRAM, "Request scheduled immediately\n"); 488 schedule(nextReqEvent, curTick()); 489 } 490} 491 492void 493DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount) 494{ 495 // only add to the write queue here. whenever the request is 496 // eventually done, set the readyTime, and call schedule() 497 assert(pkt->isWrite()); 498 499 // if the request size is larger than burst size, the pkt is split into 500 // multiple DRAM packets 501 Addr addr = pkt->getAddr(); 502 for (int cnt = 0; cnt < pktCount; ++cnt) { 503 unsigned size = std::min((addr | (burstSize - 1)) + 1, 504 pkt->getAddr() + pkt->getSize()) - addr; 505 writePktSize[ceilLog2(size)]++; 506 writeBursts++; 507 508 // see if we can merge with an existing item in the write 509 // queue and keep track of whether we have merged or not 510 bool merged = isInWriteQueue.find(burstAlign(addr)) != 511 isInWriteQueue.end(); 512 513 // if the item was not merged we need to create a new write 514 // and enqueue it 515 if (!merged) { 516 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false); 517 518 assert(writeQueue.size() < writeBufferSize); 519 wrQLenPdf[writeQueue.size()]++; 520 521 DPRINTF(DRAM, "Adding to write queue\n"); 522 523 writeQueue.push_back(dram_pkt); 524 isInWriteQueue.insert(burstAlign(addr)); 525 assert(writeQueue.size() == isInWriteQueue.size()); 526 527 // Update stats 528 avgWrQLen = writeQueue.size(); 529 530 // increment write entries of the rank 531 ++dram_pkt->rankRef.writeEntries; 532 } else { 533 DPRINTF(DRAM, "Merging write burst with existing queue entry\n"); 534 535 // keep track of the fact that this burst effectively 536 // disappeared as it was merged with an existing one 537 mergedWrBursts++; 538 } 539 540 // Starting address of next dram pkt (aligend to burstSize boundary) 541 addr = (addr | (burstSize - 1)) + 1; 542 } 543 544 // we do not wait for the writes to be send to the actual memory, 545 // but instead take responsibility for the consistency here and 546 // snoop the write queue for any upcoming reads 547 // @todo, if a pkt size is larger than burst size, we might need a 548 // different front end latency 549 accessAndRespond(pkt, frontendLatency); 550 551 // If we are not already scheduled to get a request out of the 552 // queue, do so now 553 if (!nextReqEvent.scheduled()) { 554 DPRINTF(DRAM, "Request scheduled immediately\n"); 555 schedule(nextReqEvent, curTick()); 556 } 557} 558 559void 560DRAMCtrl::printQs() const { 561 DPRINTF(DRAM, "===READ QUEUE===\n\n"); 562 for (auto i = readQueue.begin() ; i != readQueue.end() ; ++i) { 563 DPRINTF(DRAM, "Read %lu\n", (*i)->addr); 564 } 565 DPRINTF(DRAM, "\n===RESP QUEUE===\n\n"); 566 for (auto i = respQueue.begin() ; i != respQueue.end() ; ++i) { 567 DPRINTF(DRAM, "Response %lu\n", (*i)->addr); 568 } 569 DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n"); 570 for (auto i = writeQueue.begin() ; i != writeQueue.end() ; ++i) { 571 DPRINTF(DRAM, "Write %lu\n", (*i)->addr); 572 } 573} 574 575bool 576DRAMCtrl::recvTimingReq(PacketPtr pkt) 577{ 578 // This is where we enter from the outside world 579 DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n", 580 pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 581 582 panic_if(pkt->cacheResponding(), "Should not see packets where cache " 583 "is responding"); 584 585 panic_if(!(pkt->isRead() || pkt->isWrite()), 586 "Should only see read and writes at memory controller\n"); 587 588 // Calc avg gap between requests 589 if (prevArrival != 0) { 590 totGap += curTick() - prevArrival; 591 } 592 prevArrival = curTick(); 593 594 595 // Find out how many dram packets a pkt translates to 596 // If the burst size is equal or larger than the pkt size, then a pkt 597 // translates to only one dram packet. Otherwise, a pkt translates to 598 // multiple dram packets 599 unsigned size = pkt->getSize(); 600 unsigned offset = pkt->getAddr() & (burstSize - 1); 601 unsigned int dram_pkt_count = divCeil(offset + size, burstSize); 602 603 // check local buffers and do not accept if full 604 if (pkt->isRead()) { 605 assert(size != 0); 606 if (readQueueFull(dram_pkt_count)) { 607 DPRINTF(DRAM, "Read queue full, not accepting\n"); 608 // remember that we have to retry this port 609 retryRdReq = true; 610 numRdRetry++; 611 return false; 612 } else { 613 addToReadQueue(pkt, dram_pkt_count); 614 readReqs++; 615 bytesReadSys += size; 616 } 617 } else { 618 assert(pkt->isWrite()); 619 assert(size != 0); 620 if (writeQueueFull(dram_pkt_count)) { 621 DPRINTF(DRAM, "Write queue full, not accepting\n"); 622 // remember that we have to retry this port 623 retryWrReq = true; 624 numWrRetry++; 625 return false; 626 } else { 627 addToWriteQueue(pkt, dram_pkt_count); 628 writeReqs++; 629 bytesWrittenSys += size; 630 } 631 } 632 633 return true; 634} 635 636void 637DRAMCtrl::processRespondEvent() 638{ 639 DPRINTF(DRAM, 640 "processRespondEvent(): Some req has reached its readyTime\n"); 641 642 DRAMPacket* dram_pkt = respQueue.front(); 643 644 // if a read has reached its ready-time, decrement the number of reads 645 // At this point the packet has been handled and there is a possibility 646 // to switch to low-power mode if no other packet is available 647 --dram_pkt->rankRef.readEntries; 648 DPRINTF(DRAM, "number of read entries for rank %d is %d\n", 649 dram_pkt->rank, dram_pkt->rankRef.readEntries); 650 651 // counter should at least indicate one outstanding request 652 // for this read 653 assert(dram_pkt->rankRef.outstandingEvents > 0); 654 // read response received, decrement count 655 --dram_pkt->rankRef.outstandingEvents; 656 657 // at this moment should not have transitioned to a low-power state 658 assert((dram_pkt->rankRef.pwrState != PWR_SREF) && 659 (dram_pkt->rankRef.pwrState != PWR_PRE_PDN) && 660 (dram_pkt->rankRef.pwrState != PWR_ACT_PDN)); 661 662 // track if this is the last packet before idling 663 // and that there are no outstanding commands to this rank 664 // if REF in progress, transition to LP state should not occur 665 // until REF completes 666 if ((dram_pkt->rankRef.refreshState == REF_IDLE) && 667 (dram_pkt->rankRef.lowPowerEntryReady())) { 668 // verify that there are no events scheduled 669 assert(!dram_pkt->rankRef.activateEvent.scheduled()); 670 assert(!dram_pkt->rankRef.prechargeEvent.scheduled()); 671 672 // if coming from active state, schedule power event to 673 // active power-down else go to precharge power-down 674 DPRINTF(DRAMState, "Rank %d sleep at tick %d; current power state is " 675 "%d\n", dram_pkt->rank, curTick(), dram_pkt->rankRef.pwrState); 676 677 // default to ACT power-down unless already in IDLE state 678 // could be in IDLE if PRE issued before data returned 679 PowerState next_pwr_state = PWR_ACT_PDN; 680 if (dram_pkt->rankRef.pwrState == PWR_IDLE) { 681 next_pwr_state = PWR_PRE_PDN; 682 } 683 684 dram_pkt->rankRef.powerDownSleep(next_pwr_state, curTick()); 685 } 686 687 if (dram_pkt->burstHelper) { 688 // it is a split packet 689 dram_pkt->burstHelper->burstsServiced++; 690 if (dram_pkt->burstHelper->burstsServiced == 691 dram_pkt->burstHelper->burstCount) { 692 // we have now serviced all children packets of a system packet 693 // so we can now respond to the requester 694 // @todo we probably want to have a different front end and back 695 // end latency for split packets 696 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency); 697 delete dram_pkt->burstHelper; 698 dram_pkt->burstHelper = NULL; 699 } 700 } else { 701 // it is not a split packet 702 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency); 703 } 704 705 delete respQueue.front(); 706 respQueue.pop_front(); 707 708 if (!respQueue.empty()) { 709 assert(respQueue.front()->readyTime >= curTick()); 710 assert(!respondEvent.scheduled()); 711 schedule(respondEvent, respQueue.front()->readyTime); 712 } else { 713 // if there is nothing left in any queue, signal a drain 714 if (drainState() == DrainState::Draining && 715 writeQueue.empty() && readQueue.empty() && allRanksDrained()) { 716 717 DPRINTF(Drain, "DRAM controller done draining\n"); 718 signalDrainDone(); 719 } 720 } 721 722 // We have made a location in the queue available at this point, 723 // so if there is a read that was forced to wait, retry now 724 if (retryRdReq) { 725 retryRdReq = false; 726 port.sendRetryReq(); 727 } 728} 729 730bool 731DRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue, Tick extra_col_delay) 732{ 733 // This method does the arbitration between requests. The chosen 734 // packet is simply moved to the head of the queue. The other 735 // methods know that this is the place to look. For example, with 736 // FCFS, this method does nothing 737 assert(!queue.empty()); 738 739 // bool to indicate if a packet to an available rank is found 740 bool found_packet = false; 741 if (queue.size() == 1) { 742 DRAMPacket* dram_pkt = queue.front(); 743 // available rank corresponds to state refresh idle 744 if (ranks[dram_pkt->rank]->isAvailable()) { 745 found_packet = true; 746 DPRINTF(DRAM, "Single request, going to a free rank\n"); 747 } else { 748 DPRINTF(DRAM, "Single request, going to a busy rank\n"); 749 } 750 return found_packet; 751 } 752 753 if (memSchedPolicy == Enums::fcfs) { 754 // check if there is a packet going to a free rank 755 for (auto i = queue.begin(); i != queue.end() ; ++i) { 756 DRAMPacket* dram_pkt = *i; 757 if (ranks[dram_pkt->rank]->isAvailable()) { 758 queue.erase(i); 759 queue.push_front(dram_pkt); 760 found_packet = true; 761 break; 762 } 763 } 764 } else if (memSchedPolicy == Enums::frfcfs) { 765 found_packet = reorderQueue(queue, extra_col_delay); 766 } else 767 panic("No scheduling policy chosen\n"); 768 return found_packet; 769} 770 771bool 772DRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue, Tick extra_col_delay) 773{ 774 // Only determine this if needed 775 uint64_t earliest_banks = 0; 776 bool hidden_bank_prep = false; 777 778 // search for seamless row hits first, if no seamless row hit is 779 // found then determine if there are other packets that can be issued 780 // without incurring additional bus delay due to bank timing 781 // Will select closed rows first to enable more open row possibilies 782 // in future selections 783 bool found_hidden_bank = false; 784 785 // remember if we found a row hit, not seamless, but bank prepped 786 // and ready 787 bool found_prepped_pkt = false; 788 789 // if we have no row hit, prepped or not, and no seamless packet, 790 // just go for the earliest possible 791 bool found_earliest_pkt = false; 792 793 auto selected_pkt_it = queue.end(); 794 795 // time we need to issue a column command to be seamless 796 const Tick min_col_at = std::max(busBusyUntil - tCL + extra_col_delay, 797 curTick()); 798 799 for (auto i = queue.begin(); i != queue.end() ; ++i) { 800 DRAMPacket* dram_pkt = *i; 801 const Bank& bank = dram_pkt->bankRef; 802 803 // check if rank is available, if not, jump to the next packet 804 if (dram_pkt->rankRef.isAvailable()) { 805 // check if it is a row hit 806 if (bank.openRow == dram_pkt->row) { 807 // no additional rank-to-rank or same bank-group 808 // delays, or we switched read/write and might as well 809 // go for the row hit 810 if (bank.colAllowedAt <= min_col_at) { 811 // FCFS within the hits, giving priority to 812 // commands that can issue seamlessly, without 813 // additional delay, such as same rank accesses 814 // and/or different bank-group accesses 815 DPRINTF(DRAM, "Seamless row buffer hit\n"); 816 selected_pkt_it = i; 817 // no need to look through the remaining queue entries 818 break; 819 } else if (!found_hidden_bank && !found_prepped_pkt) { 820 // if we did not find a packet to a closed row that can 821 // issue the bank commands without incurring delay, and 822 // did not yet find a packet to a prepped row, remember 823 // the current one 824 selected_pkt_it = i; 825 found_prepped_pkt = true; 826 DPRINTF(DRAM, "Prepped row buffer hit\n"); 827 } 828 } else if (!found_earliest_pkt) { 829 // if we have not initialised the bank status, do it 830 // now, and only once per scheduling decisions 831 if (earliest_banks == 0) { 832 // determine entries with earliest bank delay 833 pair<uint64_t, bool> bankStatus = 834 minBankPrep(queue, min_col_at); 835 earliest_banks = bankStatus.first; 836 hidden_bank_prep = bankStatus.second; 837 } 838 839 // bank is amongst first available banks 840 // minBankPrep will give priority to packets that can 841 // issue seamlessly 842 if (bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) { 843 found_earliest_pkt = true; 844 found_hidden_bank = hidden_bank_prep; 845 846 // give priority to packets that can issue 847 // bank commands 'behind the scenes' 848 // any additional delay if any will be due to 849 // col-to-col command requirements 850 if (hidden_bank_prep || !found_prepped_pkt) 851 selected_pkt_it = i; 852 } 853 } 854 } 855 } 856 857 if (selected_pkt_it != queue.end()) { 858 DRAMPacket* selected_pkt = *selected_pkt_it; 859 queue.erase(selected_pkt_it); 860 queue.push_front(selected_pkt); 861 return true; 862 } 863 864 return false; 865} 866 867void 868DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency) 869{ 870 DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr()); 871 872 bool needsResponse = pkt->needsResponse(); 873 // do the actual memory access which also turns the packet into a 874 // response 875 access(pkt); 876 877 // turn packet around to go back to requester if response expected 878 if (needsResponse) { 879 // access already turned the packet into a response 880 assert(pkt->isResponse()); 881 // response_time consumes the static latency and is charged also 882 // with headerDelay that takes into account the delay provided by 883 // the xbar and also the payloadDelay that takes into account the 884 // number of data beats. 885 Tick response_time = curTick() + static_latency + pkt->headerDelay + 886 pkt->payloadDelay; 887 // Here we reset the timing of the packet before sending it out. 888 pkt->headerDelay = pkt->payloadDelay = 0; 889 890 // queue the packet in the response queue to be sent out after 891 // the static latency has passed 892 port.schedTimingResp(pkt, response_time, true); 893 } else { 894 // @todo the packet is going to be deleted, and the DRAMPacket 895 // is still having a pointer to it 896 pendingDelete.reset(pkt); 897 } 898 899 DPRINTF(DRAM, "Done\n"); 900 901 return; 902} 903 904void 905DRAMCtrl::activateBank(Rank& rank_ref, Bank& bank_ref, 906 Tick act_tick, uint32_t row) 907{ 908 assert(rank_ref.actTicks.size() == activationLimit); 909 910 DPRINTF(DRAM, "Activate at tick %d\n", act_tick); 911 912 // update the open row 913 assert(bank_ref.openRow == Bank::NO_ROW); 914 bank_ref.openRow = row; 915 916 // start counting anew, this covers both the case when we 917 // auto-precharged, and when this access is forced to 918 // precharge 919 bank_ref.bytesAccessed = 0; 920 bank_ref.rowAccesses = 0; 921 922 ++rank_ref.numBanksActive; 923 assert(rank_ref.numBanksActive <= banksPerRank); 924 925 DPRINTF(DRAM, "Activate bank %d, rank %d at tick %lld, now got %d active\n", 926 bank_ref.bank, rank_ref.rank, act_tick, 927 ranks[rank_ref.rank]->numBanksActive); 928 929 rank_ref.cmdList.push_back(Command(MemCommand::ACT, bank_ref.bank, 930 act_tick)); 931 932 DPRINTF(DRAMPower, "%llu,ACT,%d,%d\n", divCeil(act_tick, tCK) - 933 timeStampOffset, bank_ref.bank, rank_ref.rank); 934 935 // The next access has to respect tRAS for this bank 936 bank_ref.preAllowedAt = act_tick + tRAS; 937 938 // Respect the row-to-column command delay 939 bank_ref.colAllowedAt = std::max(act_tick + tRCD, bank_ref.colAllowedAt); 940 941 // start by enforcing tRRD 942 for (int i = 0; i < banksPerRank; i++) { 943 // next activate to any bank in this rank must not happen 944 // before tRRD 945 if (bankGroupArch && (bank_ref.bankgr == rank_ref.banks[i].bankgr)) { 946 // bank group architecture requires longer delays between 947 // ACT commands within the same bank group. Use tRRD_L 948 // in this case 949 rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD_L, 950 rank_ref.banks[i].actAllowedAt); 951 } else { 952 // use shorter tRRD value when either 953 // 1) bank group architecture is not supportted 954 // 2) bank is in a different bank group 955 rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD, 956 rank_ref.banks[i].actAllowedAt); 957 } 958 } 959 960 // next, we deal with tXAW, if the activation limit is disabled 961 // then we directly schedule an activate power event 962 if (!rank_ref.actTicks.empty()) { 963 // sanity check 964 if (rank_ref.actTicks.back() && 965 (act_tick - rank_ref.actTicks.back()) < tXAW) { 966 panic("Got %d activates in window %d (%llu - %llu) which " 967 "is smaller than %llu\n", activationLimit, act_tick - 968 rank_ref.actTicks.back(), act_tick, 969 rank_ref.actTicks.back(), tXAW); 970 } 971 972 // shift the times used for the book keeping, the last element 973 // (highest index) is the oldest one and hence the lowest value 974 rank_ref.actTicks.pop_back(); 975 976 // record an new activation (in the future) 977 rank_ref.actTicks.push_front(act_tick); 978 979 // cannot activate more than X times in time window tXAW, push the 980 // next one (the X + 1'st activate) to be tXAW away from the 981 // oldest in our window of X 982 if (rank_ref.actTicks.back() && 983 (act_tick - rank_ref.actTicks.back()) < tXAW) { 984 DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate " 985 "no earlier than %llu\n", activationLimit, 986 rank_ref.actTicks.back() + tXAW); 987 for (int j = 0; j < banksPerRank; j++) 988 // next activate must not happen before end of window 989 rank_ref.banks[j].actAllowedAt = 990 std::max(rank_ref.actTicks.back() + tXAW, 991 rank_ref.banks[j].actAllowedAt); 992 } 993 } 994 995 // at the point when this activate takes place, make sure we 996 // transition to the active power state 997 if (!rank_ref.activateEvent.scheduled()) 998 schedule(rank_ref.activateEvent, act_tick); 999 else if (rank_ref.activateEvent.when() > act_tick) 1000 // move it sooner in time 1001 reschedule(rank_ref.activateEvent, act_tick); 1002} 1003 1004void 1005DRAMCtrl::prechargeBank(Rank& rank_ref, Bank& bank, Tick pre_at, bool trace) 1006{ 1007 // make sure the bank has an open row 1008 assert(bank.openRow != Bank::NO_ROW); 1009 1010 // sample the bytes per activate here since we are closing 1011 // the page 1012 bytesPerActivate.sample(bank.bytesAccessed); 1013 1014 bank.openRow = Bank::NO_ROW; 1015 1016 // no precharge allowed before this one 1017 bank.preAllowedAt = pre_at; 1018 1019 Tick pre_done_at = pre_at + tRP; 1020 1021 bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at); 1022 1023 assert(rank_ref.numBanksActive != 0); 1024 --rank_ref.numBanksActive; 1025 1026 DPRINTF(DRAM, "Precharging bank %d, rank %d at tick %lld, now got " 1027 "%d active\n", bank.bank, rank_ref.rank, pre_at, 1028 rank_ref.numBanksActive); 1029 1030 if (trace) { 1031 1032 rank_ref.cmdList.push_back(Command(MemCommand::PRE, bank.bank, 1033 pre_at)); 1034 DPRINTF(DRAMPower, "%llu,PRE,%d,%d\n", divCeil(pre_at, tCK) - 1035 timeStampOffset, bank.bank, rank_ref.rank); 1036 } 1037 // if we look at the current number of active banks we might be 1038 // tempted to think the DRAM is now idle, however this can be 1039 // undone by an activate that is scheduled to happen before we 1040 // would have reached the idle state, so schedule an event and 1041 // rather check once we actually make it to the point in time when 1042 // the (last) precharge takes place 1043 if (!rank_ref.prechargeEvent.scheduled()) { 1044 schedule(rank_ref.prechargeEvent, pre_done_at); 1045 // New event, increment count 1046 ++rank_ref.outstandingEvents; 1047 } else if (rank_ref.prechargeEvent.when() < pre_done_at) { 1048 reschedule(rank_ref.prechargeEvent, pre_done_at); 1049 } 1050} 1051 1052void 1053DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt) 1054{ 1055 DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n", 1056 dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row); 1057 1058 // get the rank 1059 Rank& rank = dram_pkt->rankRef; 1060 1061 // are we in or transitioning to a low-power state and have not scheduled 1062 // a power-up event? 1063 // if so, wake up from power down to issue RD/WR burst 1064 if (rank.inLowPowerState) { 1065 assert(rank.pwrState != PWR_SREF); 1066 rank.scheduleWakeUpEvent(tXP); 1067 } 1068 1069 // get the bank 1070 Bank& bank = dram_pkt->bankRef; 1071 1072 // for the state we need to track if it is a row hit or not 1073 bool row_hit = true; 1074 1075 // respect any constraints on the command (e.g. tRCD or tCCD) 1076 Tick cmd_at = std::max(bank.colAllowedAt, curTick()); 1077 1078 // Determine the access latency and update the bank state 1079 if (bank.openRow == dram_pkt->row) { 1080 // nothing to do 1081 } else { 1082 row_hit = false; 1083 1084 // If there is a page open, precharge it. 1085 if (bank.openRow != Bank::NO_ROW) { 1086 prechargeBank(rank, bank, std::max(bank.preAllowedAt, curTick())); 1087 } 1088 1089 // next we need to account for the delay in activating the 1090 // page 1091 Tick act_tick = std::max(bank.actAllowedAt, curTick()); 1092 1093 // Record the activation and deal with all the global timing 1094 // constraints caused be a new activation (tRRD and tXAW) 1095 activateBank(rank, bank, act_tick, dram_pkt->row); 1096 1097 // issue the command as early as possible 1098 cmd_at = bank.colAllowedAt; 1099 } 1100 1101 // we need to wait until the bus is available before we can issue 1102 // the command 1103 cmd_at = std::max(cmd_at, busBusyUntil - tCL); 1104 1105 // update the packet ready time 1106 dram_pkt->readyTime = cmd_at + tCL + tBURST; 1107 1108 // only one burst can use the bus at any one point in time 1109 assert(dram_pkt->readyTime - busBusyUntil >= tBURST); 1110 1111 // update the time for the next read/write burst for each 1112 // bank (add a max with tCCD/tCCD_L here) 1113 Tick cmd_dly; 1114 for (int j = 0; j < ranksPerChannel; j++) { 1115 for (int i = 0; i < banksPerRank; i++) { 1116 // next burst to same bank group in this rank must not happen 1117 // before tCCD_L. Different bank group timing requirement is 1118 // tBURST; Add tCS for different ranks 1119 if (dram_pkt->rank == j) { 1120 if (bankGroupArch && 1121 (bank.bankgr == ranks[j]->banks[i].bankgr)) { 1122 // bank group architecture requires longer delays between 1123 // RD/WR burst commands to the same bank group. 1124 // Use tCCD_L in this case 1125 cmd_dly = tCCD_L; 1126 } else { 1127 // use tBURST (equivalent to tCCD_S), the shorter 1128 // cas-to-cas delay value, when either: 1129 // 1) bank group architecture is not supportted 1130 // 2) bank is in a different bank group 1131 cmd_dly = tBURST; 1132 } 1133 } else { 1134 // different rank is by default in a different bank group 1135 // use tBURST (equivalent to tCCD_S), which is the shorter 1136 // cas-to-cas delay in this case 1137 // Add tCS to account for rank-to-rank bus delay requirements 1138 cmd_dly = tBURST + tCS; 1139 } 1140 ranks[j]->banks[i].colAllowedAt = std::max(cmd_at + cmd_dly, 1141 ranks[j]->banks[i].colAllowedAt); 1142 } 1143 } 1144 1145 // Save rank of current access 1146 activeRank = dram_pkt->rank; 1147 1148 // If this is a write, we also need to respect the write recovery 1149 // time before a precharge, in the case of a read, respect the 1150 // read to precharge constraint 1151 bank.preAllowedAt = std::max(bank.preAllowedAt, 1152 dram_pkt->isRead ? cmd_at + tRTP : 1153 dram_pkt->readyTime + tWR); 1154 1155 // increment the bytes accessed and the accesses per row 1156 bank.bytesAccessed += burstSize; 1157 ++bank.rowAccesses; 1158 1159 // if we reached the max, then issue with an auto-precharge 1160 bool auto_precharge = pageMgmt == Enums::close || 1161 bank.rowAccesses == maxAccessesPerRow; 1162 1163 // if we did not hit the limit, we might still want to 1164 // auto-precharge 1165 if (!auto_precharge && 1166 (pageMgmt == Enums::open_adaptive || 1167 pageMgmt == Enums::close_adaptive)) { 1168 // a twist on the open and close page policies: 1169 // 1) open_adaptive page policy does not blindly keep the 1170 // page open, but close it if there are no row hits, and there 1171 // are bank conflicts in the queue 1172 // 2) close_adaptive page policy does not blindly close the 1173 // page, but closes it only if there are no row hits in the queue. 1174 // In this case, only force an auto precharge when there 1175 // are no same page hits in the queue 1176 bool got_more_hits = false; 1177 bool got_bank_conflict = false; 1178 1179 // either look at the read queue or write queue 1180 const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue : 1181 writeQueue; 1182 auto p = queue.begin(); 1183 // make sure we are not considering the packet that we are 1184 // currently dealing with (which is the head of the queue) 1185 ++p; 1186 1187 // keep on looking until we find a hit or reach the end of the queue 1188 // 1) if a hit is found, then both open and close adaptive policies keep 1189 // the page open 1190 // 2) if no hit is found, got_bank_conflict is set to true if a bank 1191 // conflict request is waiting in the queue 1192 while (!got_more_hits && p != queue.end()) { 1193 bool same_rank_bank = (dram_pkt->rank == (*p)->rank) && 1194 (dram_pkt->bank == (*p)->bank); 1195 bool same_row = dram_pkt->row == (*p)->row; 1196 got_more_hits |= same_rank_bank && same_row; 1197 got_bank_conflict |= same_rank_bank && !same_row; 1198 ++p; 1199 } 1200 1201 // auto pre-charge when either 1202 // 1) open_adaptive policy, we have not got any more hits, and 1203 // have a bank conflict 1204 // 2) close_adaptive policy and we have not got any more hits 1205 auto_precharge = !got_more_hits && 1206 (got_bank_conflict || pageMgmt == Enums::close_adaptive); 1207 } 1208 1209 // DRAMPower trace command to be written 1210 std::string mem_cmd = dram_pkt->isRead ? "RD" : "WR"; 1211 1212 // MemCommand required for DRAMPower library 1213 MemCommand::cmds command = (mem_cmd == "RD") ? MemCommand::RD : 1214 MemCommand::WR; 1215 1216 // Update bus state 1217 busBusyUntil = dram_pkt->readyTime; 1218 1219 DPRINTF(DRAM, "Access to %lld, ready at %lld bus busy until %lld.\n", 1220 dram_pkt->addr, dram_pkt->readyTime, busBusyUntil); 1221 1222 dram_pkt->rankRef.cmdList.push_back(Command(command, dram_pkt->bank, 1223 cmd_at)); 1224 1225 DPRINTF(DRAMPower, "%llu,%s,%d,%d\n", divCeil(cmd_at, tCK) - 1226 timeStampOffset, mem_cmd, dram_pkt->bank, dram_pkt->rank); 1227 1228 // if this access should use auto-precharge, then we are 1229 // closing the row after the read/write burst 1230 if (auto_precharge) { 1231 // if auto-precharge push a PRE command at the correct tick to the 1232 // list used by DRAMPower library to calculate power 1233 prechargeBank(rank, bank, std::max(curTick(), bank.preAllowedAt)); 1234 1235 DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId); 1236 } 1237 1238 // Update the minimum timing between the requests, this is a 1239 // conservative estimate of when we have to schedule the next 1240 // request to not introduce any unecessary bubbles. In most cases 1241 // we will wake up sooner than we have to. 1242 nextReqTime = busBusyUntil - (tRP + tRCD + tCL); 1243 1244 // Update the stats and schedule the next request 1245 if (dram_pkt->isRead) { 1246 ++readsThisTime; 1247 if (row_hit) 1248 readRowHits++; 1249 bytesReadDRAM += burstSize; 1250 perBankRdBursts[dram_pkt->bankId]++; 1251 1252 // Update latency stats 1253 totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime; 1254 totBusLat += tBURST; 1255 totQLat += cmd_at - dram_pkt->entryTime; 1256 } else { 1257 ++writesThisTime; 1258 if (row_hit) 1259 writeRowHits++; 1260 bytesWritten += burstSize; 1261 perBankWrBursts[dram_pkt->bankId]++; 1262 } 1263} 1264 1265void 1266DRAMCtrl::processNextReqEvent() 1267{ 1268 int busyRanks = 0; 1269 for (auto r : ranks) { 1270 if (!r->isAvailable()) { 1271 if (r->pwrState != PWR_SREF) { 1272 // rank is busy refreshing 1273 DPRINTF(DRAMState, "Rank %d is not available\n", r->rank); 1274 busyRanks++; 1275 1276 // let the rank know that if it was waiting to drain, it 1277 // is now done and ready to proceed 1278 r->checkDrainDone(); 1279 } 1280 1281 // check if we were in self-refresh and haven't started 1282 // to transition out 1283 if ((r->pwrState == PWR_SREF) && r->inLowPowerState) { 1284 DPRINTF(DRAMState, "Rank %d is in self-refresh\n", r->rank); 1285 // if we have commands queued to this rank and we don't have 1286 // a minimum number of active commands enqueued, 1287 // exit self-refresh 1288 if (r->forceSelfRefreshExit()) { 1289 DPRINTF(DRAMState, "rank %d was in self refresh and" 1290 " should wake up\n", r->rank); 1291 //wake up from self-refresh 1292 r->scheduleWakeUpEvent(tXS); 1293 // things are brought back into action once a refresh is 1294 // performed after self-refresh 1295 // continue with selection for other ranks 1296 } 1297 } 1298 } 1299 } 1300 1301 if (busyRanks == ranksPerChannel) { 1302 // if all ranks are refreshing wait for them to finish 1303 // and stall this state machine without taking any further 1304 // action, and do not schedule a new nextReqEvent 1305 return; 1306 } 1307 1308 // pre-emptively set to false. Overwrite if in transitioning to 1309 // a new state 1310 bool switched_cmd_type = false; 1311 if (busState != busStateNext) { 1312 if (busState == READ) { 1313 DPRINTF(DRAM, "Switching to writes after %d reads with %d reads " 1314 "waiting\n", readsThisTime, readQueue.size()); 1315 1316 // sample and reset the read-related stats as we are now 1317 // transitioning to writes, and all reads are done 1318 rdPerTurnAround.sample(readsThisTime); 1319 readsThisTime = 0; 1320 1321 // now proceed to do the actual writes 1322 switched_cmd_type = true; 1323 } else { 1324 DPRINTF(DRAM, "Switching to reads after %d writes with %d writes " 1325 "waiting\n", writesThisTime, writeQueue.size()); 1326 1327 wrPerTurnAround.sample(writesThisTime); 1328 writesThisTime = 0; 1329 1330 switched_cmd_type = true; 1331 } 1332 // update busState to match next state until next transition 1333 busState = busStateNext; 1334 } 1335 1336 // when we get here it is either a read or a write 1337 if (busState == READ) { 1338 1339 // track if we should switch or not 1340 bool switch_to_writes = false; 1341 1342 if (readQueue.empty()) { 1343 // In the case there is no read request to go next, 1344 // trigger writes if we have passed the low threshold (or 1345 // if we are draining) 1346 if (!writeQueue.empty() && 1347 (drainState() == DrainState::Draining || 1348 writeQueue.size() > writeLowThreshold)) { 1349 1350 switch_to_writes = true; 1351 } else { 1352 // check if we are drained 1353 // not done draining until in PWR_IDLE state 1354 // ensuring all banks are closed and 1355 // have exited low power states 1356 if (drainState() == DrainState::Draining && 1357 respQueue.empty() && allRanksDrained()) { 1358 1359 DPRINTF(Drain, "DRAM controller done draining\n"); 1360 signalDrainDone(); 1361 } 1362 1363 // nothing to do, not even any point in scheduling an 1364 // event for the next request 1365 return; 1366 } 1367 } else { 1368 // bool to check if there is a read to a free rank 1369 bool found_read = false; 1370 1371 // Figure out which read request goes next, and move it to the 1372 // front of the read queue 1373 // If we are changing command type, incorporate the minimum 1374 // bus turnaround delay which will be tCS (different rank) case 1375 found_read = chooseNext(readQueue, 1376 switched_cmd_type ? tCS : 0); 1377 1378 // if no read to an available rank is found then return 1379 // at this point. There could be writes to the available ranks 1380 // which are above the required threshold. However, to 1381 // avoid adding more complexity to the code, return and wait 1382 // for a refresh event to kick things into action again. 1383 if (!found_read) 1384 return; 1385 1386 DRAMPacket* dram_pkt = readQueue.front(); 1387 assert(dram_pkt->rankRef.isAvailable()); 1388 1389 // here we get a bit creative and shift the bus busy time not 1390 // just the tWTR, but also a CAS latency to capture the fact 1391 // that we are allowed to prepare a new bank, but not issue a 1392 // read command until after tWTR, in essence we capture a 1393 // bubble on the data bus that is tWTR + tCL 1394 if (switched_cmd_type && dram_pkt->rank == activeRank) { 1395 busBusyUntil += tWTR + tCL; 1396 } 1397 1398 doDRAMAccess(dram_pkt); 1399 1400 // At this point we're done dealing with the request 1401 readQueue.pop_front(); 1402 1403 // Every respQueue which will generate an event, increment count 1404 ++dram_pkt->rankRef.outstandingEvents; 1405 1406 // sanity check 1407 assert(dram_pkt->size <= burstSize); 1408 assert(dram_pkt->readyTime >= curTick()); 1409 1410 // Insert into response queue. It will be sent back to the 1411 // requestor at its readyTime 1412 if (respQueue.empty()) { 1413 assert(!respondEvent.scheduled()); 1414 schedule(respondEvent, dram_pkt->readyTime); 1415 } else { 1416 assert(respQueue.back()->readyTime <= dram_pkt->readyTime); 1417 assert(respondEvent.scheduled()); 1418 } 1419 1420 respQueue.push_back(dram_pkt); 1421 1422 // we have so many writes that we have to transition 1423 if (writeQueue.size() > writeHighThreshold) { 1424 switch_to_writes = true; 1425 } 1426 } 1427 1428 // switching to writes, either because the read queue is empty 1429 // and the writes have passed the low threshold (or we are 1430 // draining), or because the writes hit the hight threshold 1431 if (switch_to_writes) { 1432 // transition to writing 1433 busStateNext = WRITE; 1434 } 1435 } else { 1436 // bool to check if write to free rank is found 1437 bool found_write = false; 1438 1439 // If we are changing command type, incorporate the minimum 1440 // bus turnaround delay 1441 found_write = chooseNext(writeQueue, 1442 switched_cmd_type ? std::min(tRTW, tCS) : 0); 1443 1444 // if no writes to an available rank are found then return. 1445 // There could be reads to the available ranks. However, to avoid 1446 // adding more complexity to the code, return at this point and wait 1447 // for a refresh event to kick things into action again. 1448 if (!found_write) 1449 return; 1450 1451 DRAMPacket* dram_pkt = writeQueue.front(); 1452 assert(dram_pkt->rankRef.isAvailable()); 1453 // sanity check 1454 assert(dram_pkt->size <= burstSize); 1455 1456 // add a bubble to the data bus, as defined by the 1457 // tRTW when access is to the same rank as previous burst 1458 // Different rank timing is handled with tCS, which is 1459 // applied to colAllowedAt 1460 if (switched_cmd_type && dram_pkt->rank == activeRank) { 1461 busBusyUntil += tRTW; 1462 } 1463 1464 doDRAMAccess(dram_pkt); 1465 1466 writeQueue.pop_front(); 1467 1468 // removed write from queue, decrement count 1469 --dram_pkt->rankRef.writeEntries; 1470 1471 // Schedule write done event to decrement event count 1472 // after the readyTime has been reached 1473 // Only schedule latest write event to minimize events 1474 // required; only need to ensure that final event scheduled covers 1475 // the time that writes are outstanding and bus is active 1476 // to holdoff power-down entry events 1477 if (!dram_pkt->rankRef.writeDoneEvent.scheduled()) { 1478 schedule(dram_pkt->rankRef.writeDoneEvent, dram_pkt->readyTime); 1479 // New event, increment count 1480 ++dram_pkt->rankRef.outstandingEvents; 1481 1482 } else if (dram_pkt->rankRef.writeDoneEvent.when() < 1483 dram_pkt-> readyTime) { 1484 reschedule(dram_pkt->rankRef.writeDoneEvent, dram_pkt->readyTime); 1485 } 1486 1487 isInWriteQueue.erase(burstAlign(dram_pkt->addr)); 1488 delete dram_pkt; 1489 1490 // If we emptied the write queue, or got sufficiently below the 1491 // threshold (using the minWritesPerSwitch as the hysteresis) and 1492 // are not draining, or we have reads waiting and have done enough 1493 // writes, then switch to reads. 1494 if (writeQueue.empty() || 1495 (writeQueue.size() + minWritesPerSwitch < writeLowThreshold && 1496 drainState() != DrainState::Draining) || 1497 (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) { 1498 // turn the bus back around for reads again 1499 busStateNext = READ; 1500 1501 // note that the we switch back to reads also in the idle 1502 // case, which eventually will check for any draining and 1503 // also pause any further scheduling if there is really 1504 // nothing to do 1505 } 1506 } 1507 // It is possible that a refresh to another rank kicks things back into 1508 // action before reaching this point. 1509 if (!nextReqEvent.scheduled()) 1510 schedule(nextReqEvent, std::max(nextReqTime, curTick())); 1511 1512 // If there is space available and we have writes waiting then let 1513 // them retry. This is done here to ensure that the retry does not 1514 // cause a nextReqEvent to be scheduled before we do so as part of 1515 // the next request processing 1516 if (retryWrReq && writeQueue.size() < writeBufferSize) { 1517 retryWrReq = false; 1518 port.sendRetryReq(); 1519 } 1520} 1521 1522pair<uint64_t, bool> 1523DRAMCtrl::minBankPrep(const deque<DRAMPacket*>& queue, 1524 Tick min_col_at) const 1525{ 1526 uint64_t bank_mask = 0; 1527 Tick min_act_at = MaxTick; 1528 1529 // latest Tick for which ACT can occur without incurring additoinal 1530 // delay on the data bus 1531 const Tick hidden_act_max = std::max(min_col_at - tRCD, curTick()); 1532 1533 // Flag condition when burst can issue back-to-back with previous burst 1534 bool found_seamless_bank = false; 1535 1536 // Flag condition when bank can be opened without incurring additional 1537 // delay on the data bus 1538 bool hidden_bank_prep = false; 1539 1540 // determine if we have queued transactions targetting the 1541 // bank in question 1542 vector<bool> got_waiting(ranksPerChannel * banksPerRank, false); 1543 for (const auto& p : queue) { 1544 if (p->rankRef.isAvailable()) 1545 got_waiting[p->bankId] = true; 1546 } 1547 1548 // Find command with optimal bank timing 1549 // Will prioritize commands that can issue seamlessly. 1550 for (int i = 0; i < ranksPerChannel; i++) { 1551 for (int j = 0; j < banksPerRank; j++) { 1552 uint16_t bank_id = i * banksPerRank + j; 1553 1554 // if we have waiting requests for the bank, and it is 1555 // amongst the first available, update the mask 1556 if (got_waiting[bank_id]) { 1557 // make sure this rank is not currently refreshing. 1558 assert(ranks[i]->isAvailable()); 1559 // simplistic approximation of when the bank can issue 1560 // an activate, ignoring any rank-to-rank switching 1561 // cost in this calculation 1562 Tick act_at = ranks[i]->banks[j].openRow == Bank::NO_ROW ? 1563 std::max(ranks[i]->banks[j].actAllowedAt, curTick()) : 1564 std::max(ranks[i]->banks[j].preAllowedAt, curTick()) + tRP; 1565 1566 // When is the earliest the R/W burst can issue? 1567 Tick col_at = std::max(ranks[i]->banks[j].colAllowedAt, 1568 act_at + tRCD); 1569 1570 // bank can issue burst back-to-back (seamlessly) with 1571 // previous burst 1572 bool new_seamless_bank = col_at <= min_col_at; 1573 1574 // if we found a new seamless bank or we have no 1575 // seamless banks, and got a bank with an earlier 1576 // activate time, it should be added to the bit mask 1577 if (new_seamless_bank || 1578 (!found_seamless_bank && act_at <= min_act_at)) { 1579 // if we did not have a seamless bank before, and 1580 // we do now, reset the bank mask, also reset it 1581 // if we have not yet found a seamless bank and 1582 // the activate time is smaller than what we have 1583 // seen so far 1584 if (!found_seamless_bank && 1585 (new_seamless_bank || act_at < min_act_at)) { 1586 bank_mask = 0; 1587 } 1588 1589 found_seamless_bank |= new_seamless_bank; 1590 1591 // ACT can occur 'behind the scenes' 1592 hidden_bank_prep = act_at <= hidden_act_max; 1593 1594 // set the bit corresponding to the available bank 1595 replaceBits(bank_mask, bank_id, bank_id, 1); 1596 min_act_at = act_at; 1597 } 1598 } 1599 } 1600 } 1601 1602 return make_pair(bank_mask, hidden_bank_prep); 1603} 1604 1605DRAMCtrl::Rank::Rank(DRAMCtrl& _memory, const DRAMCtrlParams* _p, int rank) 1606 : EventManager(&_memory), memory(_memory), 1607 pwrStateTrans(PWR_IDLE), pwrStatePostRefresh(PWR_IDLE), 1608 pwrStateTick(0), refreshDueAt(0), pwrState(PWR_IDLE), 1609 refreshState(REF_IDLE), inLowPowerState(false), rank(rank), 1610 readEntries(0), writeEntries(0), outstandingEvents(0), 1611 wakeUpAllowedAt(0), power(_p, false), banks(_p->banks_per_rank), 1612 numBanksActive(0), actTicks(_p->activation_limit, 0), 1613 writeDoneEvent(*this), activateEvent(*this), prechargeEvent(*this), 1614 refreshEvent(*this), powerEvent(*this), wakeUpEvent(*this) 1615{ 1616 for (int b = 0; b < _p->banks_per_rank; b++) { 1617 banks[b].bank = b; 1618 // GDDR addressing of banks to BG is linear. 1619 // Here we assume that all DRAM generations address bank groups as 1620 // follows: 1621 if (_p->bank_groups_per_rank > 0) { 1622 // Simply assign lower bits to bank group in order to 1623 // rotate across bank groups as banks are incremented 1624 // e.g. with 4 banks per bank group and 16 banks total: 1625 // banks 0,4,8,12 are in bank group 0 1626 // banks 1,5,9,13 are in bank group 1 1627 // banks 2,6,10,14 are in bank group 2 1628 // banks 3,7,11,15 are in bank group 3 1629 banks[b].bankgr = b % _p->bank_groups_per_rank; 1630 } else { 1631 // No bank groups; simply assign to bank number 1632 banks[b].bankgr = b; 1633 } 1634 } 1635} 1636 1637void 1638DRAMCtrl::Rank::startup(Tick ref_tick) 1639{ 1640 assert(ref_tick > curTick()); 1641 1642 pwrStateTick = curTick(); 1643 1644 // kick off the refresh, and give ourselves enough time to 1645 // precharge 1646 schedule(refreshEvent, ref_tick); 1647} 1648 1649void 1650DRAMCtrl::Rank::suspend() 1651{ 1652 deschedule(refreshEvent); 1653 1654 // Update the stats 1655 updatePowerStats(); 1656 1657 // don't automatically transition back to LP state after next REF 1658 pwrStatePostRefresh = PWR_IDLE; 1659} 1660 1661bool 1662DRAMCtrl::Rank::lowPowerEntryReady() const 1663{ 1664 bool no_queued_cmds = ((memory.busStateNext == READ) && (readEntries == 0)) 1665 || ((memory.busStateNext == WRITE) && 1666 (writeEntries == 0)); 1667 1668 if (refreshState == REF_RUN) { 1669 // have not decremented outstandingEvents for refresh command 1670 // still check if there are no commands queued to force PD 1671 // entry after refresh completes 1672 return no_queued_cmds; 1673 } else { 1674 // ensure no commands in Q and no commands scheduled 1675 return (no_queued_cmds && (outstandingEvents == 0)); 1676 } 1677} 1678 1679void 1680DRAMCtrl::Rank::checkDrainDone() 1681{ 1682 // if this rank was waiting to drain it is now able to proceed to 1683 // precharge 1684 if (refreshState == REF_DRAIN) { 1685 DPRINTF(DRAM, "Refresh drain done, now precharging\n"); 1686 1687 refreshState = REF_PD_EXIT; 1688 1689 // hand control back to the refresh event loop 1690 schedule(refreshEvent, curTick()); 1691 } 1692} 1693 1694void 1695DRAMCtrl::Rank::flushCmdList() 1696{ 1697 // at the moment sort the list of commands and update the counters 1698 // for DRAMPower libray when doing a refresh 1699 sort(cmdList.begin(), cmdList.end(), DRAMCtrl::sortTime); 1700 1701 auto next_iter = cmdList.begin(); 1702 // push to commands to DRAMPower 1703 for ( ; next_iter != cmdList.end() ; ++next_iter) { 1704 Command cmd = *next_iter; 1705 if (cmd.timeStamp <= curTick()) { 1706 // Move all commands at or before curTick to DRAMPower 1707 power.powerlib.doCommand(cmd.type, cmd.bank, 1708 divCeil(cmd.timeStamp, memory.tCK) - 1709 memory.timeStampOffset); 1710 } else { 1711 // done - found all commands at or before curTick() 1712 // next_iter references the 1st command after curTick 1713 break; 1714 } 1715 } 1716 // reset cmdList to only contain commands after curTick 1717 // if there are no commands after curTick, updated cmdList will be empty 1718 // in this case, next_iter is cmdList.end() 1719 cmdList.assign(next_iter, cmdList.end()); 1720} 1721 1722void 1723DRAMCtrl::Rank::processActivateEvent() 1724{ 1725 // we should transition to the active state as soon as any bank is active 1726 if (pwrState != PWR_ACT) 1727 // note that at this point numBanksActive could be back at 1728 // zero again due to a precharge scheduled in the future 1729 schedulePowerEvent(PWR_ACT, curTick()); 1730} 1731 1732void 1733DRAMCtrl::Rank::processPrechargeEvent() 1734{ 1735 // counter should at least indicate one outstanding request 1736 // for this precharge 1737 assert(outstandingEvents > 0); 1738 // precharge complete, decrement count 1739 --outstandingEvents; 1740 1741 // if we reached zero, then special conditions apply as we track 1742 // if all banks are precharged for the power models 1743 if (numBanksActive == 0) { 1744 // no reads to this rank in the Q and no pending 1745 // RD/WR or refresh commands 1746 if (lowPowerEntryReady()) { 1747 // should still be in ACT state since bank still open 1748 assert(pwrState == PWR_ACT); 1749 1750 // All banks closed - switch to precharge power down state. 1751 DPRINTF(DRAMState, "Rank %d sleep at tick %d\n", 1752 rank, curTick()); 1753 powerDownSleep(PWR_PRE_PDN, curTick()); 1754 } else { 1755 // we should transition to the idle state when the last bank 1756 // is precharged 1757 schedulePowerEvent(PWR_IDLE, curTick()); 1758 } 1759 } 1760} 1761 1762void 1763DRAMCtrl::Rank::processWriteDoneEvent() 1764{ 1765 // counter should at least indicate one outstanding request 1766 // for this write 1767 assert(outstandingEvents > 0); 1768 // Write transfer on bus has completed 1769 // decrement per rank counter 1770 --outstandingEvents; 1771} 1772 1773void 1774DRAMCtrl::Rank::processRefreshEvent() 1775{ 1776 // when first preparing the refresh, remember when it was due 1777 if ((refreshState == REF_IDLE) || (refreshState == REF_SREF_EXIT)) { 1778 // remember when the refresh is due 1779 refreshDueAt = curTick(); 1780 1781 // proceed to drain 1782 refreshState = REF_DRAIN; 1783 1784 // make nonzero while refresh is pending to ensure 1785 // power down and self-refresh are not entered 1786 ++outstandingEvents; 1787 1788 DPRINTF(DRAM, "Refresh due\n"); 1789 } 1790 1791 // let any scheduled read or write to the same rank go ahead, 1792 // after which it will 1793 // hand control back to this event loop 1794 if (refreshState == REF_DRAIN) { 1795 // if a request is at the moment being handled and this request is 1796 // accessing the current rank then wait for it to finish 1797 if ((rank == memory.activeRank) 1798 && (memory.nextReqEvent.scheduled())) { 1799 // hand control over to the request loop until it is 1800 // evaluated next 1801 DPRINTF(DRAM, "Refresh awaiting draining\n"); 1802 1803 return; 1804 } else { 1805 refreshState = REF_PD_EXIT; 1806 } 1807 } 1808 1809 // at this point, ensure that rank is not in a power-down state 1810 if (refreshState == REF_PD_EXIT) { 1811 // if rank was sleeping and we have't started exit process, 1812 // wake-up for refresh 1813 if (inLowPowerState) { 1814 DPRINTF(DRAM, "Wake Up for refresh\n"); 1815 // save state and return after refresh completes 1816 scheduleWakeUpEvent(memory.tXP); 1817 return; 1818 } else { 1819 refreshState = REF_PRE; 1820 } 1821 } 1822 1823 // at this point, ensure that all banks are precharged 1824 if (refreshState == REF_PRE) { 1825 // precharge any active bank 1826 if (numBanksActive != 0) { 1827 // at the moment, we use a precharge all even if there is 1828 // only a single bank open 1829 DPRINTF(DRAM, "Precharging all\n"); 1830 1831 // first determine when we can precharge 1832 Tick pre_at = curTick(); 1833 1834 for (auto &b : banks) { 1835 // respect both causality and any existing bank 1836 // constraints, some banks could already have a 1837 // (auto) precharge scheduled 1838 pre_at = std::max(b.preAllowedAt, pre_at); 1839 } 1840 1841 // make sure all banks per rank are precharged, and for those that 1842 // already are, update their availability 1843 Tick act_allowed_at = pre_at + memory.tRP; 1844 1845 for (auto &b : banks) { 1846 if (b.openRow != Bank::NO_ROW) { 1847 memory.prechargeBank(*this, b, pre_at, false); 1848 } else { 1849 b.actAllowedAt = std::max(b.actAllowedAt, act_allowed_at); 1850 b.preAllowedAt = std::max(b.preAllowedAt, pre_at); 1851 } 1852 } 1853 1854 // precharge all banks in rank 1855 cmdList.push_back(Command(MemCommand::PREA, 0, pre_at)); 1856 1857 DPRINTF(DRAMPower, "%llu,PREA,0,%d\n", 1858 divCeil(pre_at, memory.tCK) - 1859 memory.timeStampOffset, rank); 1860 } else if ((pwrState == PWR_IDLE) && (outstandingEvents == 1)) { 1861 // Banks are closed, have transitioned to IDLE state, and 1862 // no outstanding ACT,RD/WR,Auto-PRE sequence scheduled 1863 DPRINTF(DRAM, "All banks already precharged, starting refresh\n"); 1864 1865 // go ahead and kick the power state machine into gear since 1866 // we are already idle 1867 schedulePowerEvent(PWR_REF, curTick()); 1868 } else { 1869 // banks state is closed but haven't transitioned pwrState to IDLE 1870 // or have outstanding ACT,RD/WR,Auto-PRE sequence scheduled 1871 // should have outstanding precharge event in this case 1872 assert(prechargeEvent.scheduled()); 1873 // will start refresh when pwrState transitions to IDLE 1874 } 1875 1876 assert(numBanksActive == 0); 1877 1878 // wait for all banks to be precharged, at which point the 1879 // power state machine will transition to the idle state, and 1880 // automatically move to a refresh, at that point it will also 1881 // call this method to get the refresh event loop going again 1882 return; 1883 } 1884 1885 // last but not least we perform the actual refresh 1886 if (refreshState == REF_START) { 1887 // should never get here with any banks active 1888 assert(numBanksActive == 0); 1889 assert(pwrState == PWR_REF); 1890 1891 Tick ref_done_at = curTick() + memory.tRFC; 1892 1893 for (auto &b : banks) { 1894 b.actAllowedAt = ref_done_at; 1895 } 1896 1897 // at the moment this affects all ranks 1898 cmdList.push_back(Command(MemCommand::REF, 0, curTick())); 1899 1900 // Update the stats 1901 updatePowerStats(); 1902 1903 DPRINTF(DRAMPower, "%llu,REF,0,%d\n", divCeil(curTick(), memory.tCK) - 1904 memory.timeStampOffset, rank); 1905 1906 // Update for next refresh 1907 refreshDueAt += memory.tREFI; 1908 1909 // make sure we did not wait so long that we cannot make up 1910 // for it 1911 if (refreshDueAt < ref_done_at) { 1912 fatal("Refresh was delayed so long we cannot catch up\n"); 1913 } 1914 1915 // Run the refresh and schedule event to transition power states 1916 // when refresh completes 1917 refreshState = REF_RUN; 1918 schedule(refreshEvent, ref_done_at); 1919 return; 1920 } 1921 1922 if (refreshState == REF_RUN) { 1923 // should never get here with any banks active 1924 assert(numBanksActive == 0); 1925 assert(pwrState == PWR_REF); 1926 1927 assert(!powerEvent.scheduled()); 1928 1929 if ((memory.drainState() == DrainState::Draining) || 1930 (memory.drainState() == DrainState::Drained)) { 1931 // if draining, do not re-enter low-power mode. 1932 // simply go to IDLE and wait 1933 schedulePowerEvent(PWR_IDLE, curTick()); 1934 } else { 1935 // At the moment, we sleep when the refresh ends and wait to be 1936 // woken up again if previously in a low-power state. 1937 if (pwrStatePostRefresh != PWR_IDLE) { 1938 // power State should be power Refresh 1939 assert(pwrState == PWR_REF); 1940 DPRINTF(DRAMState, "Rank %d sleeping after refresh and was in " 1941 "power state %d before refreshing\n", rank, 1942 pwrStatePostRefresh); 1943 powerDownSleep(pwrState, curTick()); 1944 1945 // Force PRE power-down if there are no outstanding commands 1946 // in Q after refresh. 1947 } else if (lowPowerEntryReady()) { 1948 DPRINTF(DRAMState, "Rank %d sleeping after refresh but was NOT" 1949 " in a low power state before refreshing\n", rank); 1950 powerDownSleep(PWR_PRE_PDN, curTick()); 1951 1952 } else { 1953 // move to the idle power state once the refresh is done, this 1954 // will also move the refresh state machine to the refresh 1955 // idle state 1956 schedulePowerEvent(PWR_IDLE, curTick()); 1957 } 1958 } 1959 1960 // if transitioning to self refresh do not schedule a new refresh; 1961 // when waking from self refresh, a refresh is scheduled again. 1962 if (pwrStateTrans != PWR_SREF) { 1963 // compensate for the delay in actually performing the refresh 1964 // when scheduling the next one 1965 schedule(refreshEvent, refreshDueAt - memory.tRP); 1966 1967 DPRINTF(DRAMState, "Refresh done at %llu and next refresh" 1968 " at %llu\n", curTick(), refreshDueAt); 1969 } 1970 } 1971} 1972 1973void 1974DRAMCtrl::Rank::schedulePowerEvent(PowerState pwr_state, Tick tick) 1975{ 1976 // respect causality 1977 assert(tick >= curTick()); 1978 1979 if (!powerEvent.scheduled()) { 1980 DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n", 1981 tick, pwr_state); 1982 1983 // insert the new transition 1984 pwrStateTrans = pwr_state; 1985 1986 schedule(powerEvent, tick); 1987 } else { 1988 panic("Scheduled power event at %llu to state %d, " 1989 "with scheduled event at %llu to %d\n", tick, pwr_state, 1990 powerEvent.when(), pwrStateTrans); 1991 } 1992} 1993 1994void 1995DRAMCtrl::Rank::powerDownSleep(PowerState pwr_state, Tick tick) 1996{ 1997 // if low power state is active low, schedule to active low power state. 1998 // in reality tCKE is needed to enter active low power. This is neglected 1999 // here and could be added in the future. 2000 if (pwr_state == PWR_ACT_PDN) { 2001 schedulePowerEvent(pwr_state, tick); 2002 // push command to DRAMPower 2003 cmdList.push_back(Command(MemCommand::PDN_F_ACT, 0, tick)); 2004 DPRINTF(DRAMPower, "%llu,PDN_F_ACT,0,%d\n", divCeil(tick, 2005 memory.tCK) - memory.timeStampOffset, rank); 2006 } else if (pwr_state == PWR_PRE_PDN) { 2007 // if low power state is precharge low, schedule to precharge low 2008 // power state. In reality tCKE is needed to enter active low power. 2009 // This is neglected here. 2010 schedulePowerEvent(pwr_state, tick); 2011 //push Command to DRAMPower 2012 cmdList.push_back(Command(MemCommand::PDN_F_PRE, 0, tick)); 2013 DPRINTF(DRAMPower, "%llu,PDN_F_PRE,0,%d\n", divCeil(tick, 2014 memory.tCK) - memory.timeStampOffset, rank); 2015 } else if (pwr_state == PWR_REF) { 2016 // if a refresh just occured 2017 // transition to PRE_PDN now that all banks are closed 2018 // do not transition to SREF if commands are in Q; stay in PRE_PDN 2019 if (pwrStatePostRefresh == PWR_ACT_PDN || !lowPowerEntryReady()) { 2020 // prechage power down requires tCKE to enter. For simplicity 2021 // this is not considered. 2022 schedulePowerEvent(PWR_PRE_PDN, tick); 2023 //push Command to DRAMPower 2024 cmdList.push_back(Command(MemCommand::PDN_F_PRE, 0, tick)); 2025 DPRINTF(DRAMPower, "%llu,PDN_F_PRE,0,%d\n", divCeil(tick, 2026 memory.tCK) - memory.timeStampOffset, rank); 2027 } else { 2028 // last low power State was power precharge 2029 assert(pwrStatePostRefresh == PWR_PRE_PDN); 2030 // self refresh requires time tCKESR to enter. For simplicity, 2031 // this is not considered. 2032 schedulePowerEvent(PWR_SREF, tick); 2033 // push Command to DRAMPower 2034 cmdList.push_back(Command(MemCommand::SREN, 0, tick)); 2035 DPRINTF(DRAMPower, "%llu,SREN,0,%d\n", divCeil(tick, 2036 memory.tCK) - memory.timeStampOffset, rank); 2037 } 2038 } 2039 // Ensure that we don't power-down and back up in same tick 2040 // Once we commit to PD entry, do it and wait for at least 1tCK 2041 // This could be replaced with tCKE if/when that is added to the model 2042 wakeUpAllowedAt = tick + memory.tCK; 2043 2044 // Transitioning to a low power state, set flag 2045 inLowPowerState = true; 2046} 2047 2048void 2049DRAMCtrl::Rank::scheduleWakeUpEvent(Tick exit_delay) 2050{ 2051 Tick wake_up_tick = std::max(curTick(), wakeUpAllowedAt); 2052 2053 DPRINTF(DRAMState, "Scheduling wake-up for rank %d at tick %d\n", 2054 rank, wake_up_tick); 2055 2056 // if waking for refresh, hold previous state 2057 // else reset state back to IDLE 2058 if (refreshState == REF_PD_EXIT) { 2059 pwrStatePostRefresh = pwrState; 2060 } else { 2061 // don't automatically transition back to LP state after next REF 2062 pwrStatePostRefresh = PWR_IDLE; 2063 } 2064 2065 // schedule wake-up with event to ensure entry has completed before 2066 // we try to wake-up 2067 schedule(wakeUpEvent, wake_up_tick); 2068 2069 for (auto &b : banks) { 2070 // respect both causality and any existing bank 2071 // constraints, some banks could already have a 2072 // (auto) precharge scheduled 2073 b.colAllowedAt = std::max(wake_up_tick + exit_delay, b.colAllowedAt); 2074 b.preAllowedAt = std::max(wake_up_tick + exit_delay, b.preAllowedAt); 2075 b.actAllowedAt = std::max(wake_up_tick + exit_delay, b.actAllowedAt); 2076 } 2077 // Transitioning out of low power state, clear flag 2078 inLowPowerState = false; 2079 2080 // push to DRAMPower 2081 // use pwrStateTrans for cases where we have a power event scheduled 2082 // to enter low power that has not yet been processed 2083 if (pwrStateTrans == PWR_ACT_PDN) { 2084 cmdList.push_back(Command(MemCommand::PUP_ACT, 0, wake_up_tick)); 2085 DPRINTF(DRAMPower, "%llu,PUP_ACT,0,%d\n", divCeil(wake_up_tick, 2086 memory.tCK) - memory.timeStampOffset, rank); 2087 2088 } else if (pwrStateTrans == PWR_PRE_PDN) { 2089 cmdList.push_back(Command(MemCommand::PUP_PRE, 0, wake_up_tick)); 2090 DPRINTF(DRAMPower, "%llu,PUP_PRE,0,%d\n", divCeil(wake_up_tick, 2091 memory.tCK) - memory.timeStampOffset, rank); 2092 } else if (pwrStateTrans == PWR_SREF) { 2093 cmdList.push_back(Command(MemCommand::SREX, 0, wake_up_tick)); 2094 DPRINTF(DRAMPower, "%llu,SREX,0,%d\n", divCeil(wake_up_tick, 2095 memory.tCK) - memory.timeStampOffset, rank); 2096 } 2097} 2098 2099void 2100DRAMCtrl::Rank::processWakeUpEvent() 2101{ 2102 // Should be in a power-down or self-refresh state 2103 assert((pwrState == PWR_ACT_PDN) || (pwrState == PWR_PRE_PDN) || 2104 (pwrState == PWR_SREF)); 2105 2106 // Check current state to determine transition state 2107 if (pwrState == PWR_ACT_PDN) { 2108 // banks still open, transition to PWR_ACT 2109 schedulePowerEvent(PWR_ACT, curTick()); 2110 } else { 2111 // transitioning from a precharge power-down or self-refresh state 2112 // banks are closed - transition to PWR_IDLE 2113 schedulePowerEvent(PWR_IDLE, curTick()); 2114 } 2115} 2116 2117void 2118DRAMCtrl::Rank::processPowerEvent() 2119{ 2120 assert(curTick() >= pwrStateTick); 2121 // remember where we were, and for how long 2122 Tick duration = curTick() - pwrStateTick; 2123 PowerState prev_state = pwrState; 2124 2125 // update the accounting 2126 pwrStateTime[prev_state] += duration; 2127 2128 // track to total idle time 2129 if ((prev_state == PWR_PRE_PDN) || (prev_state == PWR_ACT_PDN) || 2130 (prev_state == PWR_SREF)) { 2131 totalIdleTime += duration; 2132 } 2133 2134 pwrState = pwrStateTrans; 2135 pwrStateTick = curTick(); 2136 2137 // if rank was refreshing, make sure to start scheduling requests again 2138 if (prev_state == PWR_REF) { 2139 // bus IDLED prior to REF 2140 // counter should be one for refresh command only 2141 assert(outstandingEvents == 1); 2142 // REF complete, decrement count 2143 --outstandingEvents; 2144 2145 DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration); 2146 // if sleeping after refresh 2147 if (pwrState != PWR_IDLE) { 2148 assert((pwrState == PWR_PRE_PDN) || (pwrState == PWR_SREF)); 2149 DPRINTF(DRAMState, "Switching to power down state after refreshing" 2150 " rank %d at %llu tick\n", rank, curTick()); 2151 } 2152 if (pwrState != PWR_SREF) { 2153 // rank is not available in SREF 2154 // don't transition to IDLE in this case 2155 refreshState = REF_IDLE; 2156 } 2157 // a request event could be already scheduled by the state 2158 // machine of the other rank 2159 if (!memory.nextReqEvent.scheduled()) { 2160 DPRINTF(DRAM, "Scheduling next request after refreshing rank %d\n", 2161 rank); 2162 schedule(memory.nextReqEvent, curTick()); 2163 } 2164 } else if (pwrState == PWR_ACT) { 2165 if (refreshState == REF_PD_EXIT) { 2166 // kick the refresh event loop into action again 2167 assert(prev_state == PWR_ACT_PDN); 2168 2169 // go back to REF event and close banks 2170 refreshState = REF_PRE; 2171 schedule(refreshEvent, curTick()); 2172 } 2173 } else if (pwrState == PWR_IDLE) { 2174 DPRINTF(DRAMState, "All banks precharged\n"); 2175 if (prev_state == PWR_SREF) { 2176 // set refresh state to REF_SREF_EXIT, ensuring isAvailable 2177 // continues to return false during tXS after SREF exit 2178 // Schedule a refresh which kicks things back into action 2179 // when it finishes 2180 refreshState = REF_SREF_EXIT; 2181 schedule(refreshEvent, curTick() + memory.tXS); 2182 } else { 2183 // if we have a pending refresh, and are now moving to 2184 // the idle state, directly transition to a refresh 2185 if ((refreshState == REF_PRE) || (refreshState == REF_PD_EXIT)) { 2186 // ensure refresh is restarted only after final PRE command. 2187 // do not restart refresh if controller is in an intermediate 2188 // state, after PRE_PDN exit, when banks are IDLE but an 2189 // ACT is scheduled. 2190 if (!activateEvent.scheduled()) { 2191 // there should be nothing waiting at this point 2192 assert(!powerEvent.scheduled()); 2193 // update the state in zero time and proceed below 2194 pwrState = PWR_REF; 2195 } else { 2196 // must have PRE scheduled to transition back to IDLE 2197 // and re-kick off refresh 2198 assert(prechargeEvent.scheduled()); 2199 } 2200 } 2201 } 2202 } 2203 2204 // we transition to the refresh state, let the refresh state 2205 // machine know of this state update and let it deal with the 2206 // scheduling of the next power state transition as well as the 2207 // following refresh 2208 if (pwrState == PWR_REF) { 2209 assert(refreshState == REF_PRE || refreshState == REF_PD_EXIT); 2210 DPRINTF(DRAMState, "Refreshing\n"); 2211 2212 // kick the refresh event loop into action again, and that 2213 // in turn will schedule a transition to the idle power 2214 // state once the refresh is done 2215 if (refreshState == REF_PD_EXIT) { 2216 // Wait for PD exit timing to complete before issuing REF 2217 schedule(refreshEvent, curTick() + memory.tXP); 2218 } else { 2219 schedule(refreshEvent, curTick()); 2220 } 2221 // Banks transitioned to IDLE, start REF 2222 refreshState = REF_START; 2223 } 2224} 2225 2226void 2227DRAMCtrl::Rank::updatePowerStats() 2228{ 2229 // All commands up to refresh have completed 2230 // flush cmdList to DRAMPower 2231 flushCmdList(); 2232 2233 // update the counters for DRAMPower, passing false to 2234 // indicate that this is not the last command in the 2235 // list. DRAMPower requires this information for the 2236 // correct calculation of the background energy at the end 2237 // of the simulation. Ideally we would want to call this 2238 // function with true once at the end of the 2239 // simulation. However, the discarded energy is extremly 2240 // small and does not effect the final results. 2241 power.powerlib.updateCounters(false); 2242 2243 // call the energy function 2244 power.powerlib.calcEnergy(); 2245 2246 // Get the energy and power from DRAMPower 2247 Data::MemoryPowerModel::Energy energy = 2248 power.powerlib.getEnergy(); 2249 Data::MemoryPowerModel::Power rank_power = 2250 power.powerlib.getPower(); 2251 2252 actEnergy = energy.act_energy * memory.devicesPerRank; 2253 preEnergy = energy.pre_energy * memory.devicesPerRank; 2254 readEnergy = energy.read_energy * memory.devicesPerRank; 2255 writeEnergy = energy.write_energy * memory.devicesPerRank; 2256 refreshEnergy = energy.ref_energy * memory.devicesPerRank; 2257 actBackEnergy = energy.act_stdby_energy * memory.devicesPerRank; 2258 preBackEnergy = energy.pre_stdby_energy * memory.devicesPerRank; 2259 actPowerDownEnergy = energy.f_act_pd_energy * memory.devicesPerRank; 2260 prePowerDownEnergy = energy.f_pre_pd_energy * memory.devicesPerRank; 2261 selfRefreshEnergy = energy.sref_energy * memory.devicesPerRank; 2262 totalEnergy = energy.total_energy * memory.devicesPerRank; 2263 averagePower = rank_power.average_power * memory.devicesPerRank; 2264} 2265 2266void 2267DRAMCtrl::Rank::computeStats() 2268{ 2269 DPRINTF(DRAM,"Computing final stats\n"); 2270 2271 // Force DRAM power to update counters based on time spent in 2272 // current state up to curTick() 2273 cmdList.push_back(Command(MemCommand::NOP, 0, curTick())); 2274 2275 // Update the stats 2276 updatePowerStats(); 2277 2278 // final update of power state times 2279 pwrStateTime[pwrState] += (curTick() - pwrStateTick); 2280 pwrStateTick = curTick(); 2281 2282} 2283 2284void 2285DRAMCtrl::Rank::regStats() 2286{ 2287 using namespace Stats; 2288 2289 pwrStateTime 2290 .init(6) 2291 .name(name() + ".memoryStateTime") 2292 .desc("Time in different power states"); 2293 pwrStateTime.subname(0, "IDLE"); 2294 pwrStateTime.subname(1, "REF"); 2295 pwrStateTime.subname(2, "SREF"); 2296 pwrStateTime.subname(3, "PRE_PDN"); 2297 pwrStateTime.subname(4, "ACT"); 2298 pwrStateTime.subname(5, "ACT_PDN"); 2299 2300 actEnergy 2301 .name(name() + ".actEnergy") 2302 .desc("Energy for activate commands per rank (pJ)"); 2303 2304 preEnergy 2305 .name(name() + ".preEnergy") 2306 .desc("Energy for precharge commands per rank (pJ)"); 2307 2308 readEnergy 2309 .name(name() + ".readEnergy") 2310 .desc("Energy for read commands per rank (pJ)"); 2311 2312 writeEnergy 2313 .name(name() + ".writeEnergy") 2314 .desc("Energy for write commands per rank (pJ)"); 2315 2316 refreshEnergy 2317 .name(name() + ".refreshEnergy") 2318 .desc("Energy for refresh commands per rank (pJ)"); 2319 2320 actBackEnergy 2321 .name(name() + ".actBackEnergy") 2322 .desc("Energy for active background per rank (pJ)"); 2323 2324 preBackEnergy 2325 .name(name() + ".preBackEnergy") 2326 .desc("Energy for precharge background per rank (pJ)"); 2327 2328 actPowerDownEnergy 2329 .name(name() + ".actPowerDownEnergy") 2330 .desc("Energy for active power-down per rank (pJ)"); 2331 2332 prePowerDownEnergy 2333 .name(name() + ".prePowerDownEnergy") 2334 .desc("Energy for precharge power-down per rank (pJ)"); 2335 2336 selfRefreshEnergy 2337 .name(name() + ".selfRefreshEnergy") 2338 .desc("Energy for self refresh per rank (pJ)"); 2339 2340 totalEnergy 2341 .name(name() + ".totalEnergy") 2342 .desc("Total energy per rank (pJ)"); 2343 2344 averagePower 2345 .name(name() + ".averagePower") 2346 .desc("Core power per rank (mW)"); 2347 2348 totalIdleTime 2349 .name(name() + ".totalIdleTime") 2350 .desc("Total Idle time Per DRAM Rank"); 2351 2352 registerDumpCallback(new RankDumpCallback(this)); 2353} 2354void 2355DRAMCtrl::regStats() 2356{ 2357 using namespace Stats; 2358 2359 AbstractMemory::regStats(); 2360 2361 for (auto r : ranks) { 2362 r->regStats(); 2363 } 2364 2365 readReqs 2366 .name(name() + ".readReqs") 2367 .desc("Number of read requests accepted"); 2368 2369 writeReqs 2370 .name(name() + ".writeReqs") 2371 .desc("Number of write requests accepted"); 2372 2373 readBursts 2374 .name(name() + ".readBursts") 2375 .desc("Number of DRAM read bursts, " 2376 "including those serviced by the write queue"); 2377 2378 writeBursts 2379 .name(name() + ".writeBursts") 2380 .desc("Number of DRAM write bursts, " 2381 "including those merged in the write queue"); 2382 2383 servicedByWrQ 2384 .name(name() + ".servicedByWrQ") 2385 .desc("Number of DRAM read bursts serviced by the write queue"); 2386 2387 mergedWrBursts 2388 .name(name() + ".mergedWrBursts") 2389 .desc("Number of DRAM write bursts merged with an existing one"); 2390 2391 neitherReadNorWrite 2392 .name(name() + ".neitherReadNorWriteReqs") 2393 .desc("Number of requests that are neither read nor write"); 2394 2395 perBankRdBursts 2396 .init(banksPerRank * ranksPerChannel) 2397 .name(name() + ".perBankRdBursts") 2398 .desc("Per bank write bursts"); 2399 2400 perBankWrBursts 2401 .init(banksPerRank * ranksPerChannel) 2402 .name(name() + ".perBankWrBursts") 2403 .desc("Per bank write bursts"); 2404 2405 avgRdQLen 2406 .name(name() + ".avgRdQLen") 2407 .desc("Average read queue length when enqueuing") 2408 .precision(2); 2409 2410 avgWrQLen 2411 .name(name() + ".avgWrQLen") 2412 .desc("Average write queue length when enqueuing") 2413 .precision(2); 2414 2415 totQLat 2416 .name(name() + ".totQLat") 2417 .desc("Total ticks spent queuing"); 2418 2419 totBusLat 2420 .name(name() + ".totBusLat") 2421 .desc("Total ticks spent in databus transfers"); 2422 2423 totMemAccLat 2424 .name(name() + ".totMemAccLat") 2425 .desc("Total ticks spent from burst creation until serviced " 2426 "by the DRAM"); 2427 2428 avgQLat 2429 .name(name() + ".avgQLat") 2430 .desc("Average queueing delay per DRAM burst") 2431 .precision(2); 2432 2433 avgQLat = totQLat / (readBursts - servicedByWrQ); 2434 2435 avgBusLat 2436 .name(name() + ".avgBusLat") 2437 .desc("Average bus latency per DRAM burst") 2438 .precision(2); 2439 2440 avgBusLat = totBusLat / (readBursts - servicedByWrQ); 2441 2442 avgMemAccLat 2443 .name(name() + ".avgMemAccLat") 2444 .desc("Average memory access latency per DRAM burst") 2445 .precision(2); 2446 2447 avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ); 2448 2449 numRdRetry 2450 .name(name() + ".numRdRetry") 2451 .desc("Number of times read queue was full causing retry"); 2452 2453 numWrRetry 2454 .name(name() + ".numWrRetry") 2455 .desc("Number of times write queue was full causing retry"); 2456 2457 readRowHits 2458 .name(name() + ".readRowHits") 2459 .desc("Number of row buffer hits during reads"); 2460 2461 writeRowHits 2462 .name(name() + ".writeRowHits") 2463 .desc("Number of row buffer hits during writes"); 2464 2465 readRowHitRate 2466 .name(name() + ".readRowHitRate") 2467 .desc("Row buffer hit rate for reads") 2468 .precision(2); 2469 2470 readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100; 2471 2472 writeRowHitRate 2473 .name(name() + ".writeRowHitRate") 2474 .desc("Row buffer hit rate for writes") 2475 .precision(2); 2476 2477 writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100; 2478 2479 readPktSize 2480 .init(ceilLog2(burstSize) + 1) 2481 .name(name() + ".readPktSize") 2482 .desc("Read request sizes (log2)"); 2483 2484 writePktSize 2485 .init(ceilLog2(burstSize) + 1) 2486 .name(name() + ".writePktSize") 2487 .desc("Write request sizes (log2)"); 2488 2489 rdQLenPdf 2490 .init(readBufferSize) 2491 .name(name() + ".rdQLenPdf") 2492 .desc("What read queue length does an incoming req see"); 2493 2494 wrQLenPdf 2495 .init(writeBufferSize) 2496 .name(name() + ".wrQLenPdf") 2497 .desc("What write queue length does an incoming req see"); 2498 2499 bytesPerActivate 2500 .init(maxAccessesPerRow) 2501 .name(name() + ".bytesPerActivate") 2502 .desc("Bytes accessed per row activation") 2503 .flags(nozero); 2504 2505 rdPerTurnAround 2506 .init(readBufferSize) 2507 .name(name() + ".rdPerTurnAround") 2508 .desc("Reads before turning the bus around for writes") 2509 .flags(nozero); 2510 2511 wrPerTurnAround 2512 .init(writeBufferSize) 2513 .name(name() + ".wrPerTurnAround") 2514 .desc("Writes before turning the bus around for reads") 2515 .flags(nozero); 2516 2517 bytesReadDRAM 2518 .name(name() + ".bytesReadDRAM") 2519 .desc("Total number of bytes read from DRAM"); 2520 2521 bytesReadWrQ 2522 .name(name() + ".bytesReadWrQ") 2523 .desc("Total number of bytes read from write queue"); 2524 2525 bytesWritten 2526 .name(name() + ".bytesWritten") 2527 .desc("Total number of bytes written to DRAM"); 2528 2529 bytesReadSys 2530 .name(name() + ".bytesReadSys") 2531 .desc("Total read bytes from the system interface side"); 2532 2533 bytesWrittenSys 2534 .name(name() + ".bytesWrittenSys") 2535 .desc("Total written bytes from the system interface side"); 2536 2537 avgRdBW 2538 .name(name() + ".avgRdBW") 2539 .desc("Average DRAM read bandwidth in MiByte/s") 2540 .precision(2); 2541 2542 avgRdBW = (bytesReadDRAM / 1000000) / simSeconds; 2543 2544 avgWrBW 2545 .name(name() + ".avgWrBW") 2546 .desc("Average achieved write bandwidth in MiByte/s") 2547 .precision(2); 2548 2549 avgWrBW = (bytesWritten / 1000000) / simSeconds; 2550 2551 avgRdBWSys 2552 .name(name() + ".avgRdBWSys") 2553 .desc("Average system read bandwidth in MiByte/s") 2554 .precision(2); 2555 2556 avgRdBWSys = (bytesReadSys / 1000000) / simSeconds; 2557 2558 avgWrBWSys 2559 .name(name() + ".avgWrBWSys") 2560 .desc("Average system write bandwidth in MiByte/s") 2561 .precision(2); 2562 2563 avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds; 2564 2565 peakBW 2566 .name(name() + ".peakBW") 2567 .desc("Theoretical peak bandwidth in MiByte/s") 2568 .precision(2); 2569 2570 peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000; 2571 2572 busUtil 2573 .name(name() + ".busUtil") 2574 .desc("Data bus utilization in percentage") 2575 .precision(2); 2576 busUtil = (avgRdBW + avgWrBW) / peakBW * 100; 2577 2578 totGap 2579 .name(name() + ".totGap") 2580 .desc("Total gap between requests"); 2581 2582 avgGap 2583 .name(name() + ".avgGap") 2584 .desc("Average gap between requests") 2585 .precision(2); 2586 2587 avgGap = totGap / (readReqs + writeReqs); 2588 2589 // Stats for DRAM Power calculation based on Micron datasheet 2590 busUtilRead 2591 .name(name() + ".busUtilRead") 2592 .desc("Data bus utilization in percentage for reads") 2593 .precision(2); 2594 2595 busUtilRead = avgRdBW / peakBW * 100; 2596 2597 busUtilWrite 2598 .name(name() + ".busUtilWrite") 2599 .desc("Data bus utilization in percentage for writes") 2600 .precision(2); 2601 2602 busUtilWrite = avgWrBW / peakBW * 100; 2603 2604 pageHitRate 2605 .name(name() + ".pageHitRate") 2606 .desc("Row buffer hit rate, read and write combined") 2607 .precision(2); 2608 2609 pageHitRate = (writeRowHits + readRowHits) / 2610 (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100; 2611} 2612 2613void 2614DRAMCtrl::recvFunctional(PacketPtr pkt) 2615{ 2616 // rely on the abstract memory 2617 functionalAccess(pkt); 2618} 2619 2620BaseSlavePort& 2621DRAMCtrl::getSlavePort(const string &if_name, PortID idx) 2622{ 2623 if (if_name != "port") { 2624 return MemObject::getSlavePort(if_name, idx); 2625 } else { 2626 return port; 2627 } 2628} 2629 2630DrainState 2631DRAMCtrl::drain() 2632{ 2633 // if there is anything in any of our internal queues, keep track 2634 // of that as well 2635 if (!(writeQueue.empty() && readQueue.empty() && respQueue.empty() && 2636 allRanksDrained())) { 2637 2638 DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d," 2639 " resp: %d\n", writeQueue.size(), readQueue.size(), 2640 respQueue.size()); 2641 2642 // the only queue that is not drained automatically over time 2643 // is the write queue, thus kick things into action if needed 2644 if (!writeQueue.empty() && !nextReqEvent.scheduled()) { 2645 schedule(nextReqEvent, curTick()); 2646 } 2647 2648 // also need to kick off events to exit self-refresh 2649 for (auto r : ranks) { 2650 // force self-refresh exit, which in turn will issue auto-refresh 2651 if (r->pwrState == PWR_SREF) { 2652 DPRINTF(DRAM,"Rank%d: Forcing self-refresh wakeup in drain\n", 2653 r->rank); 2654 r->scheduleWakeUpEvent(tXS); 2655 } 2656 } 2657 2658 return DrainState::Draining; 2659 } else { 2660 return DrainState::Drained; 2661 } 2662} 2663 2664bool 2665DRAMCtrl::allRanksDrained() const 2666{ 2667 // true until proven false 2668 bool all_ranks_drained = true; 2669 for (auto r : ranks) { 2670 // then verify that the power state is IDLE 2671 // ensuring all banks are closed and rank is not in a low power state 2672 all_ranks_drained = r->inPwrIdleState() && all_ranks_drained; 2673 } 2674 return all_ranks_drained; 2675} 2676 2677void 2678DRAMCtrl::drainResume() 2679{ 2680 if (!isTimingMode && system()->isTimingMode()) { 2681 // if we switched to timing mode, kick things into action, 2682 // and behave as if we restored from a checkpoint 2683 startup(); 2684 } else if (isTimingMode && !system()->isTimingMode()) { 2685 // if we switch from timing mode, stop the refresh events to 2686 // not cause issues with KVM 2687 for (auto r : ranks) { 2688 r->suspend(); 2689 } 2690 } 2691 2692 // update the mode 2693 isTimingMode = system()->isTimingMode(); 2694} 2695 2696DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory) 2697 : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this), 2698 memory(_memory) 2699{ } 2700 2701AddrRangeList 2702DRAMCtrl::MemoryPort::getAddrRanges() const 2703{ 2704 AddrRangeList ranges; 2705 ranges.push_back(memory.getAddrRange()); 2706 return ranges; 2707} 2708 2709void 2710DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt) 2711{ 2712 pkt->pushLabel(memory.name()); 2713 2714 if (!queue.checkFunctional(pkt)) { 2715 // Default implementation of SimpleTimingPort::recvFunctional() 2716 // calls recvAtomic() and throws away the latency; we can save a 2717 // little here by just not calculating the latency. 2718 memory.recvFunctional(pkt); 2719 } 2720 2721 pkt->popLabel(); 2722} 2723 2724Tick 2725DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt) 2726{ 2727 return memory.recvAtomic(pkt); 2728} 2729 2730bool 2731DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt) 2732{ 2733 // pass it to the memory controller 2734 return memory.recvTimingReq(pkt); 2735} 2736 2737DRAMCtrl* 2738DRAMCtrlParams::create() 2739{ 2740 return new DRAMCtrl(this); 2741} 2742