dram_ctrl.cc revision 11846:b9436a4bbbb9
1/* 2 * Copyright (c) 2010-2017 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2013 Amin Farmahini-Farahani 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Andreas Hansson 41 * Ani Udipi 42 * Neha Agarwal 43 * Omar Naji 44 * Wendy Elsasser 45 */ 46 47#include "mem/dram_ctrl.hh" 48 49#include "base/bitfield.hh" 50#include "base/trace.hh" 51#include "debug/DRAM.hh" 52#include "debug/DRAMPower.hh" 53#include "debug/DRAMState.hh" 54#include "debug/Drain.hh" 55#include "sim/system.hh" 56 57using namespace std; 58using namespace Data; 59 60DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) : 61 AbstractMemory(p), 62 port(name() + ".port", *this), isTimingMode(false), 63 retryRdReq(false), retryWrReq(false), 64 busState(READ), 65 busStateNext(READ), 66 nextReqEvent(this), respondEvent(this), 67 deviceSize(p->device_size), 68 deviceBusWidth(p->device_bus_width), burstLength(p->burst_length), 69 deviceRowBufferSize(p->device_rowbuffer_size), 70 devicesPerRank(p->devices_per_rank), 71 burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8), 72 rowBufferSize(devicesPerRank * deviceRowBufferSize), 73 columnsPerRowBuffer(rowBufferSize / burstSize), 74 columnsPerStripe(range.interleaved() ? range.granularity() / burstSize : 1), 75 ranksPerChannel(p->ranks_per_channel), 76 bankGroupsPerRank(p->bank_groups_per_rank), 77 bankGroupArch(p->bank_groups_per_rank > 0), 78 banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0), 79 readBufferSize(p->read_buffer_size), 80 writeBufferSize(p->write_buffer_size), 81 writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0), 82 writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0), 83 minWritesPerSwitch(p->min_writes_per_switch), 84 writesThisTime(0), readsThisTime(0), 85 tCK(p->tCK), tWTR(p->tWTR), tRTW(p->tRTW), tCS(p->tCS), tBURST(p->tBURST), 86 tCCD_L(p->tCCD_L), tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS), 87 tWR(p->tWR), tRTP(p->tRTP), tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD), 88 tRRD_L(p->tRRD_L), tXAW(p->tXAW), tXP(p->tXP), tXS(p->tXS), 89 activationLimit(p->activation_limit), 90 memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping), 91 pageMgmt(p->page_policy), 92 maxAccessesPerRow(p->max_accesses_per_row), 93 frontendLatency(p->static_frontend_latency), 94 backendLatency(p->static_backend_latency), 95 busBusyUntil(0), prevArrival(0), 96 nextReqTime(0), activeRank(0), timeStampOffset(0) 97{ 98 // sanity check the ranks since we rely on bit slicing for the 99 // address decoding 100 fatal_if(!isPowerOf2(ranksPerChannel), "DRAM rank count of %d is not " 101 "allowed, must be a power of two\n", ranksPerChannel); 102 103 fatal_if(!isPowerOf2(burstSize), "DRAM burst size %d is not allowed, " 104 "must be a power of two\n", burstSize); 105 106 for (int i = 0; i < ranksPerChannel; i++) { 107 Rank* rank = new Rank(*this, p); 108 ranks.push_back(rank); 109 110 rank->actTicks.resize(activationLimit, 0); 111 rank->banks.resize(banksPerRank); 112 rank->rank = i; 113 114 for (int b = 0; b < banksPerRank; b++) { 115 rank->banks[b].bank = b; 116 // GDDR addressing of banks to BG is linear. 117 // Here we assume that all DRAM generations address bank groups as 118 // follows: 119 if (bankGroupArch) { 120 // Simply assign lower bits to bank group in order to 121 // rotate across bank groups as banks are incremented 122 // e.g. with 4 banks per bank group and 16 banks total: 123 // banks 0,4,8,12 are in bank group 0 124 // banks 1,5,9,13 are in bank group 1 125 // banks 2,6,10,14 are in bank group 2 126 // banks 3,7,11,15 are in bank group 3 127 rank->banks[b].bankgr = b % bankGroupsPerRank; 128 } else { 129 // No bank groups; simply assign to bank number 130 rank->banks[b].bankgr = b; 131 } 132 } 133 } 134 135 // perform a basic check of the write thresholds 136 if (p->write_low_thresh_perc >= p->write_high_thresh_perc) 137 fatal("Write buffer low threshold %d must be smaller than the " 138 "high threshold %d\n", p->write_low_thresh_perc, 139 p->write_high_thresh_perc); 140 141 // determine the rows per bank by looking at the total capacity 142 uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size()); 143 144 // determine the dram actual capacity from the DRAM config in Mbytes 145 uint64_t deviceCapacity = deviceSize / (1024 * 1024) * devicesPerRank * 146 ranksPerChannel; 147 148 // if actual DRAM size does not match memory capacity in system warn! 149 if (deviceCapacity != capacity / (1024 * 1024)) 150 warn("DRAM device capacity (%d Mbytes) does not match the " 151 "address range assigned (%d Mbytes)\n", deviceCapacity, 152 capacity / (1024 * 1024)); 153 154 DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity, 155 AbstractMemory::size()); 156 157 DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n", 158 rowBufferSize, columnsPerRowBuffer); 159 160 rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel); 161 162 // some basic sanity checks 163 if (tREFI <= tRP || tREFI <= tRFC) { 164 fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n", 165 tREFI, tRP, tRFC); 166 } 167 168 // basic bank group architecture checks -> 169 if (bankGroupArch) { 170 // must have at least one bank per bank group 171 if (bankGroupsPerRank > banksPerRank) { 172 fatal("banks per rank (%d) must be equal to or larger than " 173 "banks groups per rank (%d)\n", 174 banksPerRank, bankGroupsPerRank); 175 } 176 // must have same number of banks in each bank group 177 if ((banksPerRank % bankGroupsPerRank) != 0) { 178 fatal("Banks per rank (%d) must be evenly divisible by bank groups " 179 "per rank (%d) for equal banks per bank group\n", 180 banksPerRank, bankGroupsPerRank); 181 } 182 // tCCD_L should be greater than minimal, back-to-back burst delay 183 if (tCCD_L <= tBURST) { 184 fatal("tCCD_L (%d) should be larger than tBURST (%d) when " 185 "bank groups per rank (%d) is greater than 1\n", 186 tCCD_L, tBURST, bankGroupsPerRank); 187 } 188 // tRRD_L is greater than minimal, same bank group ACT-to-ACT delay 189 // some datasheets might specify it equal to tRRD 190 if (tRRD_L < tRRD) { 191 fatal("tRRD_L (%d) should be larger than tRRD (%d) when " 192 "bank groups per rank (%d) is greater than 1\n", 193 tRRD_L, tRRD, bankGroupsPerRank); 194 } 195 } 196 197} 198 199void 200DRAMCtrl::init() 201{ 202 AbstractMemory::init(); 203 204 if (!port.isConnected()) { 205 fatal("DRAMCtrl %s is unconnected!\n", name()); 206 } else { 207 port.sendRangeChange(); 208 } 209 210 // a bit of sanity checks on the interleaving, save it for here to 211 // ensure that the system pointer is initialised 212 if (range.interleaved()) { 213 if (channels != range.stripes()) 214 fatal("%s has %d interleaved address stripes but %d channel(s)\n", 215 name(), range.stripes(), channels); 216 217 if (addrMapping == Enums::RoRaBaChCo) { 218 if (rowBufferSize != range.granularity()) { 219 fatal("Channel interleaving of %s doesn't match RoRaBaChCo " 220 "address map\n", name()); 221 } 222 } else if (addrMapping == Enums::RoRaBaCoCh || 223 addrMapping == Enums::RoCoRaBaCh) { 224 // for the interleavings with channel bits in the bottom, 225 // if the system uses a channel striping granularity that 226 // is larger than the DRAM burst size, then map the 227 // sequential accesses within a stripe to a number of 228 // columns in the DRAM, effectively placing some of the 229 // lower-order column bits as the least-significant bits 230 // of the address (above the ones denoting the burst size) 231 assert(columnsPerStripe >= 1); 232 233 // channel striping has to be done at a granularity that 234 // is equal or larger to a cache line 235 if (system()->cacheLineSize() > range.granularity()) { 236 fatal("Channel interleaving of %s must be at least as large " 237 "as the cache line size\n", name()); 238 } 239 240 // ...and equal or smaller than the row-buffer size 241 if (rowBufferSize < range.granularity()) { 242 fatal("Channel interleaving of %s must be at most as large " 243 "as the row-buffer size\n", name()); 244 } 245 // this is essentially the check above, so just to be sure 246 assert(columnsPerStripe <= columnsPerRowBuffer); 247 } 248 } 249} 250 251void 252DRAMCtrl::startup() 253{ 254 // remember the memory system mode of operation 255 isTimingMode = system()->isTimingMode(); 256 257 if (isTimingMode) { 258 // timestamp offset should be in clock cycles for DRAMPower 259 timeStampOffset = divCeil(curTick(), tCK); 260 261 // update the start tick for the precharge accounting to the 262 // current tick 263 for (auto r : ranks) { 264 r->startup(curTick() + tREFI - tRP); 265 } 266 267 // shift the bus busy time sufficiently far ahead that we never 268 // have to worry about negative values when computing the time for 269 // the next request, this will add an insignificant bubble at the 270 // start of simulation 271 busBusyUntil = curTick() + tRP + tRCD + tCL; 272 } 273} 274 275Tick 276DRAMCtrl::recvAtomic(PacketPtr pkt) 277{ 278 DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr()); 279 280 panic_if(pkt->cacheResponding(), "Should not see packets where cache " 281 "is responding"); 282 283 // do the actual memory access and turn the packet into a response 284 access(pkt); 285 286 Tick latency = 0; 287 if (pkt->hasData()) { 288 // this value is not supposed to be accurate, just enough to 289 // keep things going, mimic a closed page 290 latency = tRP + tRCD + tCL; 291 } 292 return latency; 293} 294 295bool 296DRAMCtrl::readQueueFull(unsigned int neededEntries) const 297{ 298 DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n", 299 readBufferSize, readQueue.size() + respQueue.size(), 300 neededEntries); 301 302 return 303 (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize; 304} 305 306bool 307DRAMCtrl::writeQueueFull(unsigned int neededEntries) const 308{ 309 DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n", 310 writeBufferSize, writeQueue.size(), neededEntries); 311 return (writeQueue.size() + neededEntries) > writeBufferSize; 312} 313 314DRAMCtrl::DRAMPacket* 315DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size, 316 bool isRead) 317{ 318 // decode the address based on the address mapping scheme, with 319 // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and 320 // channel, respectively 321 uint8_t rank; 322 uint8_t bank; 323 // use a 64-bit unsigned during the computations as the row is 324 // always the top bits, and check before creating the DRAMPacket 325 uint64_t row; 326 327 // truncate the address to a DRAM burst, which makes it unique to 328 // a specific column, row, bank, rank and channel 329 Addr addr = dramPktAddr / burstSize; 330 331 // we have removed the lowest order address bits that denote the 332 // position within the column 333 if (addrMapping == Enums::RoRaBaChCo) { 334 // the lowest order bits denote the column to ensure that 335 // sequential cache lines occupy the same row 336 addr = addr / columnsPerRowBuffer; 337 338 // take out the channel part of the address 339 addr = addr / channels; 340 341 // after the channel bits, get the bank bits to interleave 342 // over the banks 343 bank = addr % banksPerRank; 344 addr = addr / banksPerRank; 345 346 // after the bank, we get the rank bits which thus interleaves 347 // over the ranks 348 rank = addr % ranksPerChannel; 349 addr = addr / ranksPerChannel; 350 351 // lastly, get the row bits, no need to remove them from addr 352 row = addr % rowsPerBank; 353 } else if (addrMapping == Enums::RoRaBaCoCh) { 354 // take out the lower-order column bits 355 addr = addr / columnsPerStripe; 356 357 // take out the channel part of the address 358 addr = addr / channels; 359 360 // next, the higher-order column bites 361 addr = addr / (columnsPerRowBuffer / columnsPerStripe); 362 363 // after the column bits, we get the bank bits to interleave 364 // over the banks 365 bank = addr % banksPerRank; 366 addr = addr / banksPerRank; 367 368 // after the bank, we get the rank bits which thus interleaves 369 // over the ranks 370 rank = addr % ranksPerChannel; 371 addr = addr / ranksPerChannel; 372 373 // lastly, get the row bits, no need to remove them from addr 374 row = addr % rowsPerBank; 375 } else if (addrMapping == Enums::RoCoRaBaCh) { 376 // optimise for closed page mode and utilise maximum 377 // parallelism of the DRAM (at the cost of power) 378 379 // take out the lower-order column bits 380 addr = addr / columnsPerStripe; 381 382 // take out the channel part of the address, not that this has 383 // to match with how accesses are interleaved between the 384 // controllers in the address mapping 385 addr = addr / channels; 386 387 // start with the bank bits, as this provides the maximum 388 // opportunity for parallelism between requests 389 bank = addr % banksPerRank; 390 addr = addr / banksPerRank; 391 392 // next get the rank bits 393 rank = addr % ranksPerChannel; 394 addr = addr / ranksPerChannel; 395 396 // next, the higher-order column bites 397 addr = addr / (columnsPerRowBuffer / columnsPerStripe); 398 399 // lastly, get the row bits, no need to remove them from addr 400 row = addr % rowsPerBank; 401 } else 402 panic("Unknown address mapping policy chosen!"); 403 404 assert(rank < ranksPerChannel); 405 assert(bank < banksPerRank); 406 assert(row < rowsPerBank); 407 assert(row < Bank::NO_ROW); 408 409 DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n", 410 dramPktAddr, rank, bank, row); 411 412 // create the corresponding DRAM packet with the entry time and 413 // ready time set to the current tick, the latter will be updated 414 // later 415 uint16_t bank_id = banksPerRank * rank + bank; 416 return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr, 417 size, ranks[rank]->banks[bank], *ranks[rank]); 418} 419 420void 421DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount) 422{ 423 // only add to the read queue here. whenever the request is 424 // eventually done, set the readyTime, and call schedule() 425 assert(!pkt->isWrite()); 426 427 assert(pktCount != 0); 428 429 // if the request size is larger than burst size, the pkt is split into 430 // multiple DRAM packets 431 // Note if the pkt starting address is not aligened to burst size, the 432 // address of first DRAM packet is kept unaliged. Subsequent DRAM packets 433 // are aligned to burst size boundaries. This is to ensure we accurately 434 // check read packets against packets in write queue. 435 Addr addr = pkt->getAddr(); 436 unsigned pktsServicedByWrQ = 0; 437 BurstHelper* burst_helper = NULL; 438 for (int cnt = 0; cnt < pktCount; ++cnt) { 439 unsigned size = std::min((addr | (burstSize - 1)) + 1, 440 pkt->getAddr() + pkt->getSize()) - addr; 441 readPktSize[ceilLog2(size)]++; 442 readBursts++; 443 444 // First check write buffer to see if the data is already at 445 // the controller 446 bool foundInWrQ = false; 447 Addr burst_addr = burstAlign(addr); 448 // if the burst address is not present then there is no need 449 // looking any further 450 if (isInWriteQueue.find(burst_addr) != isInWriteQueue.end()) { 451 for (const auto& p : writeQueue) { 452 // check if the read is subsumed in the write queue 453 // packet we are looking at 454 if (p->addr <= addr && (addr + size) <= (p->addr + p->size)) { 455 foundInWrQ = true; 456 servicedByWrQ++; 457 pktsServicedByWrQ++; 458 DPRINTF(DRAM, "Read to addr %lld with size %d serviced by " 459 "write queue\n", addr, size); 460 bytesReadWrQ += burstSize; 461 break; 462 } 463 } 464 } 465 466 // If not found in the write q, make a DRAM packet and 467 // push it onto the read queue 468 if (!foundInWrQ) { 469 470 // Make the burst helper for split packets 471 if (pktCount > 1 && burst_helper == NULL) { 472 DPRINTF(DRAM, "Read to addr %lld translates to %d " 473 "dram requests\n", pkt->getAddr(), pktCount); 474 burst_helper = new BurstHelper(pktCount); 475 } 476 477 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true); 478 dram_pkt->burstHelper = burst_helper; 479 480 assert(!readQueueFull(1)); 481 rdQLenPdf[readQueue.size() + respQueue.size()]++; 482 483 DPRINTF(DRAM, "Adding to read queue\n"); 484 485 readQueue.push_back(dram_pkt); 486 487 // increment read entries of the rank 488 ++dram_pkt->rankRef.readEntries; 489 490 // Update stats 491 avgRdQLen = readQueue.size() + respQueue.size(); 492 } 493 494 // Starting address of next dram pkt (aligend to burstSize boundary) 495 addr = (addr | (burstSize - 1)) + 1; 496 } 497 498 // If all packets are serviced by write queue, we send the repsonse back 499 if (pktsServicedByWrQ == pktCount) { 500 accessAndRespond(pkt, frontendLatency); 501 return; 502 } 503 504 // Update how many split packets are serviced by write queue 505 if (burst_helper != NULL) 506 burst_helper->burstsServiced = pktsServicedByWrQ; 507 508 // If we are not already scheduled to get a request out of the 509 // queue, do so now 510 if (!nextReqEvent.scheduled()) { 511 DPRINTF(DRAM, "Request scheduled immediately\n"); 512 schedule(nextReqEvent, curTick()); 513 } 514} 515 516void 517DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount) 518{ 519 // only add to the write queue here. whenever the request is 520 // eventually done, set the readyTime, and call schedule() 521 assert(pkt->isWrite()); 522 523 // if the request size is larger than burst size, the pkt is split into 524 // multiple DRAM packets 525 Addr addr = pkt->getAddr(); 526 for (int cnt = 0; cnt < pktCount; ++cnt) { 527 unsigned size = std::min((addr | (burstSize - 1)) + 1, 528 pkt->getAddr() + pkt->getSize()) - addr; 529 writePktSize[ceilLog2(size)]++; 530 writeBursts++; 531 532 // see if we can merge with an existing item in the write 533 // queue and keep track of whether we have merged or not 534 bool merged = isInWriteQueue.find(burstAlign(addr)) != 535 isInWriteQueue.end(); 536 537 // if the item was not merged we need to create a new write 538 // and enqueue it 539 if (!merged) { 540 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false); 541 542 assert(writeQueue.size() < writeBufferSize); 543 wrQLenPdf[writeQueue.size()]++; 544 545 DPRINTF(DRAM, "Adding to write queue\n"); 546 547 writeQueue.push_back(dram_pkt); 548 isInWriteQueue.insert(burstAlign(addr)); 549 assert(writeQueue.size() == isInWriteQueue.size()); 550 551 // Update stats 552 avgWrQLen = writeQueue.size(); 553 554 // increment write entries of the rank 555 ++dram_pkt->rankRef.writeEntries; 556 } else { 557 DPRINTF(DRAM, "Merging write burst with existing queue entry\n"); 558 559 // keep track of the fact that this burst effectively 560 // disappeared as it was merged with an existing one 561 mergedWrBursts++; 562 } 563 564 // Starting address of next dram pkt (aligend to burstSize boundary) 565 addr = (addr | (burstSize - 1)) + 1; 566 } 567 568 // we do not wait for the writes to be send to the actual memory, 569 // but instead take responsibility for the consistency here and 570 // snoop the write queue for any upcoming reads 571 // @todo, if a pkt size is larger than burst size, we might need a 572 // different front end latency 573 accessAndRespond(pkt, frontendLatency); 574 575 // If we are not already scheduled to get a request out of the 576 // queue, do so now 577 if (!nextReqEvent.scheduled()) { 578 DPRINTF(DRAM, "Request scheduled immediately\n"); 579 schedule(nextReqEvent, curTick()); 580 } 581} 582 583void 584DRAMCtrl::printQs() const { 585 DPRINTF(DRAM, "===READ QUEUE===\n\n"); 586 for (auto i = readQueue.begin() ; i != readQueue.end() ; ++i) { 587 DPRINTF(DRAM, "Read %lu\n", (*i)->addr); 588 } 589 DPRINTF(DRAM, "\n===RESP QUEUE===\n\n"); 590 for (auto i = respQueue.begin() ; i != respQueue.end() ; ++i) { 591 DPRINTF(DRAM, "Response %lu\n", (*i)->addr); 592 } 593 DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n"); 594 for (auto i = writeQueue.begin() ; i != writeQueue.end() ; ++i) { 595 DPRINTF(DRAM, "Write %lu\n", (*i)->addr); 596 } 597} 598 599bool 600DRAMCtrl::recvTimingReq(PacketPtr pkt) 601{ 602 // This is where we enter from the outside world 603 DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n", 604 pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 605 606 panic_if(pkt->cacheResponding(), "Should not see packets where cache " 607 "is responding"); 608 609 panic_if(!(pkt->isRead() || pkt->isWrite()), 610 "Should only see read and writes at memory controller\n"); 611 612 // Calc avg gap between requests 613 if (prevArrival != 0) { 614 totGap += curTick() - prevArrival; 615 } 616 prevArrival = curTick(); 617 618 619 // Find out how many dram packets a pkt translates to 620 // If the burst size is equal or larger than the pkt size, then a pkt 621 // translates to only one dram packet. Otherwise, a pkt translates to 622 // multiple dram packets 623 unsigned size = pkt->getSize(); 624 unsigned offset = pkt->getAddr() & (burstSize - 1); 625 unsigned int dram_pkt_count = divCeil(offset + size, burstSize); 626 627 // check local buffers and do not accept if full 628 if (pkt->isRead()) { 629 assert(size != 0); 630 if (readQueueFull(dram_pkt_count)) { 631 DPRINTF(DRAM, "Read queue full, not accepting\n"); 632 // remember that we have to retry this port 633 retryRdReq = true; 634 numRdRetry++; 635 return false; 636 } else { 637 addToReadQueue(pkt, dram_pkt_count); 638 readReqs++; 639 bytesReadSys += size; 640 } 641 } else { 642 assert(pkt->isWrite()); 643 assert(size != 0); 644 if (writeQueueFull(dram_pkt_count)) { 645 DPRINTF(DRAM, "Write queue full, not accepting\n"); 646 // remember that we have to retry this port 647 retryWrReq = true; 648 numWrRetry++; 649 return false; 650 } else { 651 addToWriteQueue(pkt, dram_pkt_count); 652 writeReqs++; 653 bytesWrittenSys += size; 654 } 655 } 656 657 return true; 658} 659 660void 661DRAMCtrl::processRespondEvent() 662{ 663 DPRINTF(DRAM, 664 "processRespondEvent(): Some req has reached its readyTime\n"); 665 666 DRAMPacket* dram_pkt = respQueue.front(); 667 668 // if a read has reached its ready-time, decrement the number of reads 669 // At this point the packet has been handled and there is a possibility 670 // to switch to low-power mode if no other packet is available 671 --dram_pkt->rankRef.readEntries; 672 DPRINTF(DRAM, "number of read entries for rank %d is %d\n", 673 dram_pkt->rank, dram_pkt->rankRef.readEntries); 674 675 // counter should at least indicate one outstanding request 676 // for this read 677 assert(dram_pkt->rankRef.outstandingEvents > 0); 678 // read response received, decrement count 679 --dram_pkt->rankRef.outstandingEvents; 680 681 // at this moment should not have transitioned to a low-power state 682 assert((dram_pkt->rankRef.pwrState != PWR_SREF) && 683 (dram_pkt->rankRef.pwrState != PWR_PRE_PDN) && 684 (dram_pkt->rankRef.pwrState != PWR_ACT_PDN)); 685 686 // track if this is the last packet before idling 687 // and that there are no outstanding commands to this rank 688 // if REF in progress, transition to LP state should not occur 689 // until REF completes 690 if ((dram_pkt->rankRef.refreshState == REF_IDLE) && 691 (dram_pkt->rankRef.lowPowerEntryReady())) { 692 // verify that there are no events scheduled 693 assert(!dram_pkt->rankRef.activateEvent.scheduled()); 694 assert(!dram_pkt->rankRef.prechargeEvent.scheduled()); 695 696 // if coming from active state, schedule power event to 697 // active power-down else go to precharge power-down 698 DPRINTF(DRAMState, "Rank %d sleep at tick %d; current power state is " 699 "%d\n", dram_pkt->rank, curTick(), dram_pkt->rankRef.pwrState); 700 701 // default to ACT power-down unless already in IDLE state 702 // could be in IDLE if PRE issued before data returned 703 PowerState next_pwr_state = PWR_ACT_PDN; 704 if (dram_pkt->rankRef.pwrState == PWR_IDLE) { 705 next_pwr_state = PWR_PRE_PDN; 706 } 707 708 dram_pkt->rankRef.powerDownSleep(next_pwr_state, curTick()); 709 } 710 711 if (dram_pkt->burstHelper) { 712 // it is a split packet 713 dram_pkt->burstHelper->burstsServiced++; 714 if (dram_pkt->burstHelper->burstsServiced == 715 dram_pkt->burstHelper->burstCount) { 716 // we have now serviced all children packets of a system packet 717 // so we can now respond to the requester 718 // @todo we probably want to have a different front end and back 719 // end latency for split packets 720 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency); 721 delete dram_pkt->burstHelper; 722 dram_pkt->burstHelper = NULL; 723 } 724 } else { 725 // it is not a split packet 726 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency); 727 } 728 729 delete respQueue.front(); 730 respQueue.pop_front(); 731 732 if (!respQueue.empty()) { 733 assert(respQueue.front()->readyTime >= curTick()); 734 assert(!respondEvent.scheduled()); 735 schedule(respondEvent, respQueue.front()->readyTime); 736 } else { 737 // if there is nothing left in any queue, signal a drain 738 if (drainState() == DrainState::Draining && 739 writeQueue.empty() && readQueue.empty() && allRanksDrained()) { 740 741 DPRINTF(Drain, "DRAM controller done draining\n"); 742 signalDrainDone(); 743 } 744 } 745 746 // We have made a location in the queue available at this point, 747 // so if there is a read that was forced to wait, retry now 748 if (retryRdReq) { 749 retryRdReq = false; 750 port.sendRetryReq(); 751 } 752} 753 754bool 755DRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue, Tick extra_col_delay) 756{ 757 // This method does the arbitration between requests. The chosen 758 // packet is simply moved to the head of the queue. The other 759 // methods know that this is the place to look. For example, with 760 // FCFS, this method does nothing 761 assert(!queue.empty()); 762 763 // bool to indicate if a packet to an available rank is found 764 bool found_packet = false; 765 if (queue.size() == 1) { 766 DRAMPacket* dram_pkt = queue.front(); 767 // available rank corresponds to state refresh idle 768 if (ranks[dram_pkt->rank]->isAvailable()) { 769 found_packet = true; 770 DPRINTF(DRAM, "Single request, going to a free rank\n"); 771 } else { 772 DPRINTF(DRAM, "Single request, going to a busy rank\n"); 773 } 774 return found_packet; 775 } 776 777 if (memSchedPolicy == Enums::fcfs) { 778 // check if there is a packet going to a free rank 779 for (auto i = queue.begin(); i != queue.end() ; ++i) { 780 DRAMPacket* dram_pkt = *i; 781 if (ranks[dram_pkt->rank]->isAvailable()) { 782 queue.erase(i); 783 queue.push_front(dram_pkt); 784 found_packet = true; 785 break; 786 } 787 } 788 } else if (memSchedPolicy == Enums::frfcfs) { 789 found_packet = reorderQueue(queue, extra_col_delay); 790 } else 791 panic("No scheduling policy chosen\n"); 792 return found_packet; 793} 794 795bool 796DRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue, Tick extra_col_delay) 797{ 798 // Only determine this if needed 799 uint64_t earliest_banks = 0; 800 bool hidden_bank_prep = false; 801 802 // search for seamless row hits first, if no seamless row hit is 803 // found then determine if there are other packets that can be issued 804 // without incurring additional bus delay due to bank timing 805 // Will select closed rows first to enable more open row possibilies 806 // in future selections 807 bool found_hidden_bank = false; 808 809 // remember if we found a row hit, not seamless, but bank prepped 810 // and ready 811 bool found_prepped_pkt = false; 812 813 // if we have no row hit, prepped or not, and no seamless packet, 814 // just go for the earliest possible 815 bool found_earliest_pkt = false; 816 817 auto selected_pkt_it = queue.end(); 818 819 // time we need to issue a column command to be seamless 820 const Tick min_col_at = std::max(busBusyUntil - tCL + extra_col_delay, 821 curTick()); 822 823 for (auto i = queue.begin(); i != queue.end() ; ++i) { 824 DRAMPacket* dram_pkt = *i; 825 const Bank& bank = dram_pkt->bankRef; 826 827 // check if rank is available, if not, jump to the next packet 828 if (dram_pkt->rankRef.isAvailable()) { 829 // check if it is a row hit 830 if (bank.openRow == dram_pkt->row) { 831 // no additional rank-to-rank or same bank-group 832 // delays, or we switched read/write and might as well 833 // go for the row hit 834 if (bank.colAllowedAt <= min_col_at) { 835 // FCFS within the hits, giving priority to 836 // commands that can issue seamlessly, without 837 // additional delay, such as same rank accesses 838 // and/or different bank-group accesses 839 DPRINTF(DRAM, "Seamless row buffer hit\n"); 840 selected_pkt_it = i; 841 // no need to look through the remaining queue entries 842 break; 843 } else if (!found_hidden_bank && !found_prepped_pkt) { 844 // if we did not find a packet to a closed row that can 845 // issue the bank commands without incurring delay, and 846 // did not yet find a packet to a prepped row, remember 847 // the current one 848 selected_pkt_it = i; 849 found_prepped_pkt = true; 850 DPRINTF(DRAM, "Prepped row buffer hit\n"); 851 } 852 } else if (!found_earliest_pkt) { 853 // if we have not initialised the bank status, do it 854 // now, and only once per scheduling decisions 855 if (earliest_banks == 0) { 856 // determine entries with earliest bank delay 857 pair<uint64_t, bool> bankStatus = 858 minBankPrep(queue, min_col_at); 859 earliest_banks = bankStatus.first; 860 hidden_bank_prep = bankStatus.second; 861 } 862 863 // bank is amongst first available banks 864 // minBankPrep will give priority to packets that can 865 // issue seamlessly 866 if (bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) { 867 found_earliest_pkt = true; 868 found_hidden_bank = hidden_bank_prep; 869 870 // give priority to packets that can issue 871 // bank commands 'behind the scenes' 872 // any additional delay if any will be due to 873 // col-to-col command requirements 874 if (hidden_bank_prep || !found_prepped_pkt) 875 selected_pkt_it = i; 876 } 877 } 878 } 879 } 880 881 if (selected_pkt_it != queue.end()) { 882 DRAMPacket* selected_pkt = *selected_pkt_it; 883 queue.erase(selected_pkt_it); 884 queue.push_front(selected_pkt); 885 return true; 886 } 887 888 return false; 889} 890 891void 892DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency) 893{ 894 DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr()); 895 896 bool needsResponse = pkt->needsResponse(); 897 // do the actual memory access which also turns the packet into a 898 // response 899 access(pkt); 900 901 // turn packet around to go back to requester if response expected 902 if (needsResponse) { 903 // access already turned the packet into a response 904 assert(pkt->isResponse()); 905 // response_time consumes the static latency and is charged also 906 // with headerDelay that takes into account the delay provided by 907 // the xbar and also the payloadDelay that takes into account the 908 // number of data beats. 909 Tick response_time = curTick() + static_latency + pkt->headerDelay + 910 pkt->payloadDelay; 911 // Here we reset the timing of the packet before sending it out. 912 pkt->headerDelay = pkt->payloadDelay = 0; 913 914 // queue the packet in the response queue to be sent out after 915 // the static latency has passed 916 port.schedTimingResp(pkt, response_time, true); 917 } else { 918 // @todo the packet is going to be deleted, and the DRAMPacket 919 // is still having a pointer to it 920 pendingDelete.reset(pkt); 921 } 922 923 DPRINTF(DRAM, "Done\n"); 924 925 return; 926} 927 928void 929DRAMCtrl::activateBank(Rank& rank_ref, Bank& bank_ref, 930 Tick act_tick, uint32_t row) 931{ 932 assert(rank_ref.actTicks.size() == activationLimit); 933 934 DPRINTF(DRAM, "Activate at tick %d\n", act_tick); 935 936 // update the open row 937 assert(bank_ref.openRow == Bank::NO_ROW); 938 bank_ref.openRow = row; 939 940 // start counting anew, this covers both the case when we 941 // auto-precharged, and when this access is forced to 942 // precharge 943 bank_ref.bytesAccessed = 0; 944 bank_ref.rowAccesses = 0; 945 946 ++rank_ref.numBanksActive; 947 assert(rank_ref.numBanksActive <= banksPerRank); 948 949 DPRINTF(DRAM, "Activate bank %d, rank %d at tick %lld, now got %d active\n", 950 bank_ref.bank, rank_ref.rank, act_tick, 951 ranks[rank_ref.rank]->numBanksActive); 952 953 rank_ref.cmdList.push_back(Command(MemCommand::ACT, bank_ref.bank, 954 act_tick)); 955 956 DPRINTF(DRAMPower, "%llu,ACT,%d,%d\n", divCeil(act_tick, tCK) - 957 timeStampOffset, bank_ref.bank, rank_ref.rank); 958 959 // The next access has to respect tRAS for this bank 960 bank_ref.preAllowedAt = act_tick + tRAS; 961 962 // Respect the row-to-column command delay 963 bank_ref.colAllowedAt = std::max(act_tick + tRCD, bank_ref.colAllowedAt); 964 965 // start by enforcing tRRD 966 for (int i = 0; i < banksPerRank; i++) { 967 // next activate to any bank in this rank must not happen 968 // before tRRD 969 if (bankGroupArch && (bank_ref.bankgr == rank_ref.banks[i].bankgr)) { 970 // bank group architecture requires longer delays between 971 // ACT commands within the same bank group. Use tRRD_L 972 // in this case 973 rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD_L, 974 rank_ref.banks[i].actAllowedAt); 975 } else { 976 // use shorter tRRD value when either 977 // 1) bank group architecture is not supportted 978 // 2) bank is in a different bank group 979 rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD, 980 rank_ref.banks[i].actAllowedAt); 981 } 982 } 983 984 // next, we deal with tXAW, if the activation limit is disabled 985 // then we directly schedule an activate power event 986 if (!rank_ref.actTicks.empty()) { 987 // sanity check 988 if (rank_ref.actTicks.back() && 989 (act_tick - rank_ref.actTicks.back()) < tXAW) { 990 panic("Got %d activates in window %d (%llu - %llu) which " 991 "is smaller than %llu\n", activationLimit, act_tick - 992 rank_ref.actTicks.back(), act_tick, 993 rank_ref.actTicks.back(), tXAW); 994 } 995 996 // shift the times used for the book keeping, the last element 997 // (highest index) is the oldest one and hence the lowest value 998 rank_ref.actTicks.pop_back(); 999 1000 // record an new activation (in the future) 1001 rank_ref.actTicks.push_front(act_tick); 1002 1003 // cannot activate more than X times in time window tXAW, push the 1004 // next one (the X + 1'st activate) to be tXAW away from the 1005 // oldest in our window of X 1006 if (rank_ref.actTicks.back() && 1007 (act_tick - rank_ref.actTicks.back()) < tXAW) { 1008 DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate " 1009 "no earlier than %llu\n", activationLimit, 1010 rank_ref.actTicks.back() + tXAW); 1011 for (int j = 0; j < banksPerRank; j++) 1012 // next activate must not happen before end of window 1013 rank_ref.banks[j].actAllowedAt = 1014 std::max(rank_ref.actTicks.back() + tXAW, 1015 rank_ref.banks[j].actAllowedAt); 1016 } 1017 } 1018 1019 // at the point when this activate takes place, make sure we 1020 // transition to the active power state 1021 if (!rank_ref.activateEvent.scheduled()) 1022 schedule(rank_ref.activateEvent, act_tick); 1023 else if (rank_ref.activateEvent.when() > act_tick) 1024 // move it sooner in time 1025 reschedule(rank_ref.activateEvent, act_tick); 1026} 1027 1028void 1029DRAMCtrl::prechargeBank(Rank& rank_ref, Bank& bank, Tick pre_at, bool trace) 1030{ 1031 // make sure the bank has an open row 1032 assert(bank.openRow != Bank::NO_ROW); 1033 1034 // sample the bytes per activate here since we are closing 1035 // the page 1036 bytesPerActivate.sample(bank.bytesAccessed); 1037 1038 bank.openRow = Bank::NO_ROW; 1039 1040 // no precharge allowed before this one 1041 bank.preAllowedAt = pre_at; 1042 1043 Tick pre_done_at = pre_at + tRP; 1044 1045 bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at); 1046 1047 assert(rank_ref.numBanksActive != 0); 1048 --rank_ref.numBanksActive; 1049 1050 DPRINTF(DRAM, "Precharging bank %d, rank %d at tick %lld, now got " 1051 "%d active\n", bank.bank, rank_ref.rank, pre_at, 1052 rank_ref.numBanksActive); 1053 1054 if (trace) { 1055 1056 rank_ref.cmdList.push_back(Command(MemCommand::PRE, bank.bank, 1057 pre_at)); 1058 DPRINTF(DRAMPower, "%llu,PRE,%d,%d\n", divCeil(pre_at, tCK) - 1059 timeStampOffset, bank.bank, rank_ref.rank); 1060 } 1061 // if we look at the current number of active banks we might be 1062 // tempted to think the DRAM is now idle, however this can be 1063 // undone by an activate that is scheduled to happen before we 1064 // would have reached the idle state, so schedule an event and 1065 // rather check once we actually make it to the point in time when 1066 // the (last) precharge takes place 1067 if (!rank_ref.prechargeEvent.scheduled()) { 1068 schedule(rank_ref.prechargeEvent, pre_done_at); 1069 // New event, increment count 1070 ++rank_ref.outstandingEvents; 1071 } else if (rank_ref.prechargeEvent.when() < pre_done_at) { 1072 reschedule(rank_ref.prechargeEvent, pre_done_at); 1073 } 1074} 1075 1076void 1077DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt) 1078{ 1079 DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n", 1080 dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row); 1081 1082 // get the rank 1083 Rank& rank = dram_pkt->rankRef; 1084 1085 // are we in or transitioning to a low-power state and have not scheduled 1086 // a power-up event? 1087 // if so, wake up from power down to issue RD/WR burst 1088 if (rank.inLowPowerState) { 1089 assert(rank.pwrState != PWR_SREF); 1090 rank.scheduleWakeUpEvent(tXP); 1091 } 1092 1093 // get the bank 1094 Bank& bank = dram_pkt->bankRef; 1095 1096 // for the state we need to track if it is a row hit or not 1097 bool row_hit = true; 1098 1099 // respect any constraints on the command (e.g. tRCD or tCCD) 1100 Tick cmd_at = std::max(bank.colAllowedAt, curTick()); 1101 1102 // Determine the access latency and update the bank state 1103 if (bank.openRow == dram_pkt->row) { 1104 // nothing to do 1105 } else { 1106 row_hit = false; 1107 1108 // If there is a page open, precharge it. 1109 if (bank.openRow != Bank::NO_ROW) { 1110 prechargeBank(rank, bank, std::max(bank.preAllowedAt, curTick())); 1111 } 1112 1113 // next we need to account for the delay in activating the 1114 // page 1115 Tick act_tick = std::max(bank.actAllowedAt, curTick()); 1116 1117 // Record the activation and deal with all the global timing 1118 // constraints caused be a new activation (tRRD and tXAW) 1119 activateBank(rank, bank, act_tick, dram_pkt->row); 1120 1121 // issue the command as early as possible 1122 cmd_at = bank.colAllowedAt; 1123 } 1124 1125 // we need to wait until the bus is available before we can issue 1126 // the command 1127 cmd_at = std::max(cmd_at, busBusyUntil - tCL); 1128 1129 // update the packet ready time 1130 dram_pkt->readyTime = cmd_at + tCL + tBURST; 1131 1132 // only one burst can use the bus at any one point in time 1133 assert(dram_pkt->readyTime - busBusyUntil >= tBURST); 1134 1135 // update the time for the next read/write burst for each 1136 // bank (add a max with tCCD/tCCD_L here) 1137 Tick cmd_dly; 1138 for (int j = 0; j < ranksPerChannel; j++) { 1139 for (int i = 0; i < banksPerRank; i++) { 1140 // next burst to same bank group in this rank must not happen 1141 // before tCCD_L. Different bank group timing requirement is 1142 // tBURST; Add tCS for different ranks 1143 if (dram_pkt->rank == j) { 1144 if (bankGroupArch && 1145 (bank.bankgr == ranks[j]->banks[i].bankgr)) { 1146 // bank group architecture requires longer delays between 1147 // RD/WR burst commands to the same bank group. 1148 // Use tCCD_L in this case 1149 cmd_dly = tCCD_L; 1150 } else { 1151 // use tBURST (equivalent to tCCD_S), the shorter 1152 // cas-to-cas delay value, when either: 1153 // 1) bank group architecture is not supportted 1154 // 2) bank is in a different bank group 1155 cmd_dly = tBURST; 1156 } 1157 } else { 1158 // different rank is by default in a different bank group 1159 // use tBURST (equivalent to tCCD_S), which is the shorter 1160 // cas-to-cas delay in this case 1161 // Add tCS to account for rank-to-rank bus delay requirements 1162 cmd_dly = tBURST + tCS; 1163 } 1164 ranks[j]->banks[i].colAllowedAt = std::max(cmd_at + cmd_dly, 1165 ranks[j]->banks[i].colAllowedAt); 1166 } 1167 } 1168 1169 // Save rank of current access 1170 activeRank = dram_pkt->rank; 1171 1172 // If this is a write, we also need to respect the write recovery 1173 // time before a precharge, in the case of a read, respect the 1174 // read to precharge constraint 1175 bank.preAllowedAt = std::max(bank.preAllowedAt, 1176 dram_pkt->isRead ? cmd_at + tRTP : 1177 dram_pkt->readyTime + tWR); 1178 1179 // increment the bytes accessed and the accesses per row 1180 bank.bytesAccessed += burstSize; 1181 ++bank.rowAccesses; 1182 1183 // if we reached the max, then issue with an auto-precharge 1184 bool auto_precharge = pageMgmt == Enums::close || 1185 bank.rowAccesses == maxAccessesPerRow; 1186 1187 // if we did not hit the limit, we might still want to 1188 // auto-precharge 1189 if (!auto_precharge && 1190 (pageMgmt == Enums::open_adaptive || 1191 pageMgmt == Enums::close_adaptive)) { 1192 // a twist on the open and close page policies: 1193 // 1) open_adaptive page policy does not blindly keep the 1194 // page open, but close it if there are no row hits, and there 1195 // are bank conflicts in the queue 1196 // 2) close_adaptive page policy does not blindly close the 1197 // page, but closes it only if there are no row hits in the queue. 1198 // In this case, only force an auto precharge when there 1199 // are no same page hits in the queue 1200 bool got_more_hits = false; 1201 bool got_bank_conflict = false; 1202 1203 // either look at the read queue or write queue 1204 const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue : 1205 writeQueue; 1206 auto p = queue.begin(); 1207 // make sure we are not considering the packet that we are 1208 // currently dealing with (which is the head of the queue) 1209 ++p; 1210 1211 // keep on looking until we find a hit or reach the end of the queue 1212 // 1) if a hit is found, then both open and close adaptive policies keep 1213 // the page open 1214 // 2) if no hit is found, got_bank_conflict is set to true if a bank 1215 // conflict request is waiting in the queue 1216 while (!got_more_hits && p != queue.end()) { 1217 bool same_rank_bank = (dram_pkt->rank == (*p)->rank) && 1218 (dram_pkt->bank == (*p)->bank); 1219 bool same_row = dram_pkt->row == (*p)->row; 1220 got_more_hits |= same_rank_bank && same_row; 1221 got_bank_conflict |= same_rank_bank && !same_row; 1222 ++p; 1223 } 1224 1225 // auto pre-charge when either 1226 // 1) open_adaptive policy, we have not got any more hits, and 1227 // have a bank conflict 1228 // 2) close_adaptive policy and we have not got any more hits 1229 auto_precharge = !got_more_hits && 1230 (got_bank_conflict || pageMgmt == Enums::close_adaptive); 1231 } 1232 1233 // DRAMPower trace command to be written 1234 std::string mem_cmd = dram_pkt->isRead ? "RD" : "WR"; 1235 1236 // MemCommand required for DRAMPower library 1237 MemCommand::cmds command = (mem_cmd == "RD") ? MemCommand::RD : 1238 MemCommand::WR; 1239 1240 // Update bus state 1241 busBusyUntil = dram_pkt->readyTime; 1242 1243 DPRINTF(DRAM, "Access to %lld, ready at %lld bus busy until %lld.\n", 1244 dram_pkt->addr, dram_pkt->readyTime, busBusyUntil); 1245 1246 dram_pkt->rankRef.cmdList.push_back(Command(command, dram_pkt->bank, 1247 cmd_at)); 1248 1249 DPRINTF(DRAMPower, "%llu,%s,%d,%d\n", divCeil(cmd_at, tCK) - 1250 timeStampOffset, mem_cmd, dram_pkt->bank, dram_pkt->rank); 1251 1252 // if this access should use auto-precharge, then we are 1253 // closing the row after the read/write burst 1254 if (auto_precharge) { 1255 // if auto-precharge push a PRE command at the correct tick to the 1256 // list used by DRAMPower library to calculate power 1257 prechargeBank(rank, bank, std::max(curTick(), bank.preAllowedAt)); 1258 1259 DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId); 1260 } 1261 1262 // Update the minimum timing between the requests, this is a 1263 // conservative estimate of when we have to schedule the next 1264 // request to not introduce any unecessary bubbles. In most cases 1265 // we will wake up sooner than we have to. 1266 nextReqTime = busBusyUntil - (tRP + tRCD + tCL); 1267 1268 // Update the stats and schedule the next request 1269 if (dram_pkt->isRead) { 1270 ++readsThisTime; 1271 if (row_hit) 1272 readRowHits++; 1273 bytesReadDRAM += burstSize; 1274 perBankRdBursts[dram_pkt->bankId]++; 1275 1276 // Update latency stats 1277 totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime; 1278 totBusLat += tBURST; 1279 totQLat += cmd_at - dram_pkt->entryTime; 1280 } else { 1281 ++writesThisTime; 1282 if (row_hit) 1283 writeRowHits++; 1284 bytesWritten += burstSize; 1285 perBankWrBursts[dram_pkt->bankId]++; 1286 } 1287} 1288 1289void 1290DRAMCtrl::processNextReqEvent() 1291{ 1292 int busyRanks = 0; 1293 for (auto r : ranks) { 1294 if (!r->isAvailable()) { 1295 if (r->pwrState != PWR_SREF) { 1296 // rank is busy refreshing 1297 DPRINTF(DRAMState, "Rank %d is not available\n", r->rank); 1298 busyRanks++; 1299 1300 // let the rank know that if it was waiting to drain, it 1301 // is now done and ready to proceed 1302 r->checkDrainDone(); 1303 } 1304 1305 // check if we were in self-refresh and haven't started 1306 // to transition out 1307 if ((r->pwrState == PWR_SREF) && r->inLowPowerState) { 1308 DPRINTF(DRAMState, "Rank %d is in self-refresh\n", r->rank); 1309 // if we have commands queued to this rank and we don't have 1310 // a minimum number of active commands enqueued, 1311 // exit self-refresh 1312 if (r->forceSelfRefreshExit()) { 1313 DPRINTF(DRAMState, "rank %d was in self refresh and" 1314 " should wake up\n", r->rank); 1315 //wake up from self-refresh 1316 r->scheduleWakeUpEvent(tXS); 1317 // things are brought back into action once a refresh is 1318 // performed after self-refresh 1319 // continue with selection for other ranks 1320 } 1321 } 1322 } 1323 } 1324 1325 if (busyRanks == ranksPerChannel) { 1326 // if all ranks are refreshing wait for them to finish 1327 // and stall this state machine without taking any further 1328 // action, and do not schedule a new nextReqEvent 1329 return; 1330 } 1331 1332 // pre-emptively set to false. Overwrite if in transitioning to 1333 // a new state 1334 bool switched_cmd_type = false; 1335 if (busState != busStateNext) { 1336 if (busState == READ) { 1337 DPRINTF(DRAM, "Switching to writes after %d reads with %d reads " 1338 "waiting\n", readsThisTime, readQueue.size()); 1339 1340 // sample and reset the read-related stats as we are now 1341 // transitioning to writes, and all reads are done 1342 rdPerTurnAround.sample(readsThisTime); 1343 readsThisTime = 0; 1344 1345 // now proceed to do the actual writes 1346 switched_cmd_type = true; 1347 } else { 1348 DPRINTF(DRAM, "Switching to reads after %d writes with %d writes " 1349 "waiting\n", writesThisTime, writeQueue.size()); 1350 1351 wrPerTurnAround.sample(writesThisTime); 1352 writesThisTime = 0; 1353 1354 switched_cmd_type = true; 1355 } 1356 // update busState to match next state until next transition 1357 busState = busStateNext; 1358 } 1359 1360 // when we get here it is either a read or a write 1361 if (busState == READ) { 1362 1363 // track if we should switch or not 1364 bool switch_to_writes = false; 1365 1366 if (readQueue.empty()) { 1367 // In the case there is no read request to go next, 1368 // trigger writes if we have passed the low threshold (or 1369 // if we are draining) 1370 if (!writeQueue.empty() && 1371 (drainState() == DrainState::Draining || 1372 writeQueue.size() > writeLowThreshold)) { 1373 1374 switch_to_writes = true; 1375 } else { 1376 // check if we are drained 1377 // not done draining until in PWR_IDLE state 1378 // ensuring all banks are closed and 1379 // have exited low power states 1380 if (drainState() == DrainState::Draining && 1381 respQueue.empty() && allRanksDrained()) { 1382 1383 DPRINTF(Drain, "DRAM controller done draining\n"); 1384 signalDrainDone(); 1385 } 1386 1387 // nothing to do, not even any point in scheduling an 1388 // event for the next request 1389 return; 1390 } 1391 } else { 1392 // bool to check if there is a read to a free rank 1393 bool found_read = false; 1394 1395 // Figure out which read request goes next, and move it to the 1396 // front of the read queue 1397 // If we are changing command type, incorporate the minimum 1398 // bus turnaround delay which will be tCS (different rank) case 1399 found_read = chooseNext(readQueue, 1400 switched_cmd_type ? tCS : 0); 1401 1402 // if no read to an available rank is found then return 1403 // at this point. There could be writes to the available ranks 1404 // which are above the required threshold. However, to 1405 // avoid adding more complexity to the code, return and wait 1406 // for a refresh event to kick things into action again. 1407 if (!found_read) 1408 return; 1409 1410 DRAMPacket* dram_pkt = readQueue.front(); 1411 assert(dram_pkt->rankRef.isAvailable()); 1412 1413 // here we get a bit creative and shift the bus busy time not 1414 // just the tWTR, but also a CAS latency to capture the fact 1415 // that we are allowed to prepare a new bank, but not issue a 1416 // read command until after tWTR, in essence we capture a 1417 // bubble on the data bus that is tWTR + tCL 1418 if (switched_cmd_type && dram_pkt->rank == activeRank) { 1419 busBusyUntil += tWTR + tCL; 1420 } 1421 1422 doDRAMAccess(dram_pkt); 1423 1424 // At this point we're done dealing with the request 1425 readQueue.pop_front(); 1426 1427 // Every respQueue which will generate an event, increment count 1428 ++dram_pkt->rankRef.outstandingEvents; 1429 1430 // sanity check 1431 assert(dram_pkt->size <= burstSize); 1432 assert(dram_pkt->readyTime >= curTick()); 1433 1434 // Insert into response queue. It will be sent back to the 1435 // requestor at its readyTime 1436 if (respQueue.empty()) { 1437 assert(!respondEvent.scheduled()); 1438 schedule(respondEvent, dram_pkt->readyTime); 1439 } else { 1440 assert(respQueue.back()->readyTime <= dram_pkt->readyTime); 1441 assert(respondEvent.scheduled()); 1442 } 1443 1444 respQueue.push_back(dram_pkt); 1445 1446 // we have so many writes that we have to transition 1447 if (writeQueue.size() > writeHighThreshold) { 1448 switch_to_writes = true; 1449 } 1450 } 1451 1452 // switching to writes, either because the read queue is empty 1453 // and the writes have passed the low threshold (or we are 1454 // draining), or because the writes hit the hight threshold 1455 if (switch_to_writes) { 1456 // transition to writing 1457 busStateNext = WRITE; 1458 } 1459 } else { 1460 // bool to check if write to free rank is found 1461 bool found_write = false; 1462 1463 // If we are changing command type, incorporate the minimum 1464 // bus turnaround delay 1465 found_write = chooseNext(writeQueue, 1466 switched_cmd_type ? std::min(tRTW, tCS) : 0); 1467 1468 // if no writes to an available rank are found then return. 1469 // There could be reads to the available ranks. However, to avoid 1470 // adding more complexity to the code, return at this point and wait 1471 // for a refresh event to kick things into action again. 1472 if (!found_write) 1473 return; 1474 1475 DRAMPacket* dram_pkt = writeQueue.front(); 1476 assert(dram_pkt->rankRef.isAvailable()); 1477 // sanity check 1478 assert(dram_pkt->size <= burstSize); 1479 1480 // add a bubble to the data bus, as defined by the 1481 // tRTW when access is to the same rank as previous burst 1482 // Different rank timing is handled with tCS, which is 1483 // applied to colAllowedAt 1484 if (switched_cmd_type && dram_pkt->rank == activeRank) { 1485 busBusyUntil += tRTW; 1486 } 1487 1488 doDRAMAccess(dram_pkt); 1489 1490 writeQueue.pop_front(); 1491 1492 // removed write from queue, decrement count 1493 --dram_pkt->rankRef.writeEntries; 1494 1495 // Schedule write done event to decrement event count 1496 // after the readyTime has been reached 1497 // Only schedule latest write event to minimize events 1498 // required; only need to ensure that final event scheduled covers 1499 // the time that writes are outstanding and bus is active 1500 // to holdoff power-down entry events 1501 if (!dram_pkt->rankRef.writeDoneEvent.scheduled()) { 1502 schedule(dram_pkt->rankRef.writeDoneEvent, dram_pkt->readyTime); 1503 // New event, increment count 1504 ++dram_pkt->rankRef.outstandingEvents; 1505 1506 } else if (dram_pkt->rankRef.writeDoneEvent.when() < 1507 dram_pkt-> readyTime) { 1508 reschedule(dram_pkt->rankRef.writeDoneEvent, dram_pkt->readyTime); 1509 } 1510 1511 isInWriteQueue.erase(burstAlign(dram_pkt->addr)); 1512 delete dram_pkt; 1513 1514 // If we emptied the write queue, or got sufficiently below the 1515 // threshold (using the minWritesPerSwitch as the hysteresis) and 1516 // are not draining, or we have reads waiting and have done enough 1517 // writes, then switch to reads. 1518 if (writeQueue.empty() || 1519 (writeQueue.size() + minWritesPerSwitch < writeLowThreshold && 1520 drainState() != DrainState::Draining) || 1521 (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) { 1522 // turn the bus back around for reads again 1523 busStateNext = READ; 1524 1525 // note that the we switch back to reads also in the idle 1526 // case, which eventually will check for any draining and 1527 // also pause any further scheduling if there is really 1528 // nothing to do 1529 } 1530 } 1531 // It is possible that a refresh to another rank kicks things back into 1532 // action before reaching this point. 1533 if (!nextReqEvent.scheduled()) 1534 schedule(nextReqEvent, std::max(nextReqTime, curTick())); 1535 1536 // If there is space available and we have writes waiting then let 1537 // them retry. This is done here to ensure that the retry does not 1538 // cause a nextReqEvent to be scheduled before we do so as part of 1539 // the next request processing 1540 if (retryWrReq && writeQueue.size() < writeBufferSize) { 1541 retryWrReq = false; 1542 port.sendRetryReq(); 1543 } 1544} 1545 1546pair<uint64_t, bool> 1547DRAMCtrl::minBankPrep(const deque<DRAMPacket*>& queue, 1548 Tick min_col_at) const 1549{ 1550 uint64_t bank_mask = 0; 1551 Tick min_act_at = MaxTick; 1552 1553 // latest Tick for which ACT can occur without incurring additoinal 1554 // delay on the data bus 1555 const Tick hidden_act_max = std::max(min_col_at - tRCD, curTick()); 1556 1557 // Flag condition when burst can issue back-to-back with previous burst 1558 bool found_seamless_bank = false; 1559 1560 // Flag condition when bank can be opened without incurring additional 1561 // delay on the data bus 1562 bool hidden_bank_prep = false; 1563 1564 // determine if we have queued transactions targetting the 1565 // bank in question 1566 vector<bool> got_waiting(ranksPerChannel * banksPerRank, false); 1567 for (const auto& p : queue) { 1568 if (p->rankRef.isAvailable()) 1569 got_waiting[p->bankId] = true; 1570 } 1571 1572 // Find command with optimal bank timing 1573 // Will prioritize commands that can issue seamlessly. 1574 for (int i = 0; i < ranksPerChannel; i++) { 1575 for (int j = 0; j < banksPerRank; j++) { 1576 uint16_t bank_id = i * banksPerRank + j; 1577 1578 // if we have waiting requests for the bank, and it is 1579 // amongst the first available, update the mask 1580 if (got_waiting[bank_id]) { 1581 // make sure this rank is not currently refreshing. 1582 assert(ranks[i]->isAvailable()); 1583 // simplistic approximation of when the bank can issue 1584 // an activate, ignoring any rank-to-rank switching 1585 // cost in this calculation 1586 Tick act_at = ranks[i]->banks[j].openRow == Bank::NO_ROW ? 1587 std::max(ranks[i]->banks[j].actAllowedAt, curTick()) : 1588 std::max(ranks[i]->banks[j].preAllowedAt, curTick()) + tRP; 1589 1590 // When is the earliest the R/W burst can issue? 1591 Tick col_at = std::max(ranks[i]->banks[j].colAllowedAt, 1592 act_at + tRCD); 1593 1594 // bank can issue burst back-to-back (seamlessly) with 1595 // previous burst 1596 bool new_seamless_bank = col_at <= min_col_at; 1597 1598 // if we found a new seamless bank or we have no 1599 // seamless banks, and got a bank with an earlier 1600 // activate time, it should be added to the bit mask 1601 if (new_seamless_bank || 1602 (!found_seamless_bank && act_at <= min_act_at)) { 1603 // if we did not have a seamless bank before, and 1604 // we do now, reset the bank mask, also reset it 1605 // if we have not yet found a seamless bank and 1606 // the activate time is smaller than what we have 1607 // seen so far 1608 if (!found_seamless_bank && 1609 (new_seamless_bank || act_at < min_act_at)) { 1610 bank_mask = 0; 1611 } 1612 1613 found_seamless_bank |= new_seamless_bank; 1614 1615 // ACT can occur 'behind the scenes' 1616 hidden_bank_prep = act_at <= hidden_act_max; 1617 1618 // set the bit corresponding to the available bank 1619 replaceBits(bank_mask, bank_id, bank_id, 1); 1620 min_act_at = act_at; 1621 } 1622 } 1623 } 1624 } 1625 1626 return make_pair(bank_mask, hidden_bank_prep); 1627} 1628 1629DRAMCtrl::Rank::Rank(DRAMCtrl& _memory, const DRAMCtrlParams* _p) 1630 : EventManager(&_memory), memory(_memory), 1631 pwrStateTrans(PWR_IDLE), pwrStatePostRefresh(PWR_IDLE), 1632 pwrStateTick(0), refreshDueAt(0), pwrState(PWR_IDLE), 1633 refreshState(REF_IDLE), inLowPowerState(false), rank(0), 1634 readEntries(0), writeEntries(0), outstandingEvents(0), 1635 wakeUpAllowedAt(0), power(_p, false), numBanksActive(0), 1636 writeDoneEvent(*this), activateEvent(*this), prechargeEvent(*this), 1637 refreshEvent(*this), powerEvent(*this), wakeUpEvent(*this) 1638{ } 1639 1640void 1641DRAMCtrl::Rank::startup(Tick ref_tick) 1642{ 1643 assert(ref_tick > curTick()); 1644 1645 pwrStateTick = curTick(); 1646 1647 // kick off the refresh, and give ourselves enough time to 1648 // precharge 1649 schedule(refreshEvent, ref_tick); 1650} 1651 1652void 1653DRAMCtrl::Rank::suspend() 1654{ 1655 deschedule(refreshEvent); 1656 1657 // Update the stats 1658 updatePowerStats(); 1659 1660 // don't automatically transition back to LP state after next REF 1661 pwrStatePostRefresh = PWR_IDLE; 1662} 1663 1664bool 1665DRAMCtrl::Rank::lowPowerEntryReady() const 1666{ 1667 bool no_queued_cmds = ((memory.busStateNext == READ) && (readEntries == 0)) 1668 || ((memory.busStateNext == WRITE) && 1669 (writeEntries == 0)); 1670 1671 if (refreshState == REF_RUN) { 1672 // have not decremented outstandingEvents for refresh command 1673 // still check if there are no commands queued to force PD 1674 // entry after refresh completes 1675 return no_queued_cmds; 1676 } else { 1677 // ensure no commands in Q and no commands scheduled 1678 return (no_queued_cmds && (outstandingEvents == 0)); 1679 } 1680} 1681 1682void 1683DRAMCtrl::Rank::checkDrainDone() 1684{ 1685 // if this rank was waiting to drain it is now able to proceed to 1686 // precharge 1687 if (refreshState == REF_DRAIN) { 1688 DPRINTF(DRAM, "Refresh drain done, now precharging\n"); 1689 1690 refreshState = REF_PD_EXIT; 1691 1692 // hand control back to the refresh event loop 1693 schedule(refreshEvent, curTick()); 1694 } 1695} 1696 1697void 1698DRAMCtrl::Rank::flushCmdList() 1699{ 1700 // at the moment sort the list of commands and update the counters 1701 // for DRAMPower libray when doing a refresh 1702 sort(cmdList.begin(), cmdList.end(), DRAMCtrl::sortTime); 1703 1704 auto next_iter = cmdList.begin(); 1705 // push to commands to DRAMPower 1706 for ( ; next_iter != cmdList.end() ; ++next_iter) { 1707 Command cmd = *next_iter; 1708 if (cmd.timeStamp <= curTick()) { 1709 // Move all commands at or before curTick to DRAMPower 1710 power.powerlib.doCommand(cmd.type, cmd.bank, 1711 divCeil(cmd.timeStamp, memory.tCK) - 1712 memory.timeStampOffset); 1713 } else { 1714 // done - found all commands at or before curTick() 1715 // next_iter references the 1st command after curTick 1716 break; 1717 } 1718 } 1719 // reset cmdList to only contain commands after curTick 1720 // if there are no commands after curTick, updated cmdList will be empty 1721 // in this case, next_iter is cmdList.end() 1722 cmdList.assign(next_iter, cmdList.end()); 1723} 1724 1725void 1726DRAMCtrl::Rank::processActivateEvent() 1727{ 1728 // we should transition to the active state as soon as any bank is active 1729 if (pwrState != PWR_ACT) 1730 // note that at this point numBanksActive could be back at 1731 // zero again due to a precharge scheduled in the future 1732 schedulePowerEvent(PWR_ACT, curTick()); 1733} 1734 1735void 1736DRAMCtrl::Rank::processPrechargeEvent() 1737{ 1738 // counter should at least indicate one outstanding request 1739 // for this precharge 1740 assert(outstandingEvents > 0); 1741 // precharge complete, decrement count 1742 --outstandingEvents; 1743 1744 // if we reached zero, then special conditions apply as we track 1745 // if all banks are precharged for the power models 1746 if (numBanksActive == 0) { 1747 // no reads to this rank in the Q and no pending 1748 // RD/WR or refresh commands 1749 if (lowPowerEntryReady()) { 1750 // should still be in ACT state since bank still open 1751 assert(pwrState == PWR_ACT); 1752 1753 // All banks closed - switch to precharge power down state. 1754 DPRINTF(DRAMState, "Rank %d sleep at tick %d\n", 1755 rank, curTick()); 1756 powerDownSleep(PWR_PRE_PDN, curTick()); 1757 } else { 1758 // we should transition to the idle state when the last bank 1759 // is precharged 1760 schedulePowerEvent(PWR_IDLE, curTick()); 1761 } 1762 } 1763} 1764 1765void 1766DRAMCtrl::Rank::processWriteDoneEvent() 1767{ 1768 // counter should at least indicate one outstanding request 1769 // for this write 1770 assert(outstandingEvents > 0); 1771 // Write transfer on bus has completed 1772 // decrement per rank counter 1773 --outstandingEvents; 1774} 1775 1776void 1777DRAMCtrl::Rank::processRefreshEvent() 1778{ 1779 // when first preparing the refresh, remember when it was due 1780 if ((refreshState == REF_IDLE) || (refreshState == REF_SREF_EXIT)) { 1781 // remember when the refresh is due 1782 refreshDueAt = curTick(); 1783 1784 // proceed to drain 1785 refreshState = REF_DRAIN; 1786 1787 // make nonzero while refresh is pending to ensure 1788 // power down and self-refresh are not entered 1789 ++outstandingEvents; 1790 1791 DPRINTF(DRAM, "Refresh due\n"); 1792 } 1793 1794 // let any scheduled read or write to the same rank go ahead, 1795 // after which it will 1796 // hand control back to this event loop 1797 if (refreshState == REF_DRAIN) { 1798 // if a request is at the moment being handled and this request is 1799 // accessing the current rank then wait for it to finish 1800 if ((rank == memory.activeRank) 1801 && (memory.nextReqEvent.scheduled())) { 1802 // hand control over to the request loop until it is 1803 // evaluated next 1804 DPRINTF(DRAM, "Refresh awaiting draining\n"); 1805 1806 return; 1807 } else { 1808 refreshState = REF_PD_EXIT; 1809 } 1810 } 1811 1812 // at this point, ensure that rank is not in a power-down state 1813 if (refreshState == REF_PD_EXIT) { 1814 // if rank was sleeping and we have't started exit process, 1815 // wake-up for refresh 1816 if (inLowPowerState) { 1817 DPRINTF(DRAM, "Wake Up for refresh\n"); 1818 // save state and return after refresh completes 1819 scheduleWakeUpEvent(memory.tXP); 1820 return; 1821 } else { 1822 refreshState = REF_PRE; 1823 } 1824 } 1825 1826 // at this point, ensure that all banks are precharged 1827 if (refreshState == REF_PRE) { 1828 // precharge any active bank 1829 if (numBanksActive != 0) { 1830 // at the moment, we use a precharge all even if there is 1831 // only a single bank open 1832 DPRINTF(DRAM, "Precharging all\n"); 1833 1834 // first determine when we can precharge 1835 Tick pre_at = curTick(); 1836 1837 for (auto &b : banks) { 1838 // respect both causality and any existing bank 1839 // constraints, some banks could already have a 1840 // (auto) precharge scheduled 1841 pre_at = std::max(b.preAllowedAt, pre_at); 1842 } 1843 1844 // make sure all banks per rank are precharged, and for those that 1845 // already are, update their availability 1846 Tick act_allowed_at = pre_at + memory.tRP; 1847 1848 for (auto &b : banks) { 1849 if (b.openRow != Bank::NO_ROW) { 1850 memory.prechargeBank(*this, b, pre_at, false); 1851 } else { 1852 b.actAllowedAt = std::max(b.actAllowedAt, act_allowed_at); 1853 b.preAllowedAt = std::max(b.preAllowedAt, pre_at); 1854 } 1855 } 1856 1857 // precharge all banks in rank 1858 cmdList.push_back(Command(MemCommand::PREA, 0, pre_at)); 1859 1860 DPRINTF(DRAMPower, "%llu,PREA,0,%d\n", 1861 divCeil(pre_at, memory.tCK) - 1862 memory.timeStampOffset, rank); 1863 } else if ((pwrState == PWR_IDLE) && (outstandingEvents == 1)) { 1864 // Banks are closed, have transitioned to IDLE state, and 1865 // no outstanding ACT,RD/WR,Auto-PRE sequence scheduled 1866 DPRINTF(DRAM, "All banks already precharged, starting refresh\n"); 1867 1868 // go ahead and kick the power state machine into gear since 1869 // we are already idle 1870 schedulePowerEvent(PWR_REF, curTick()); 1871 } else { 1872 // banks state is closed but haven't transitioned pwrState to IDLE 1873 // or have outstanding ACT,RD/WR,Auto-PRE sequence scheduled 1874 // should have outstanding precharge event in this case 1875 assert(prechargeEvent.scheduled()); 1876 // will start refresh when pwrState transitions to IDLE 1877 } 1878 1879 assert(numBanksActive == 0); 1880 1881 // wait for all banks to be precharged, at which point the 1882 // power state machine will transition to the idle state, and 1883 // automatically move to a refresh, at that point it will also 1884 // call this method to get the refresh event loop going again 1885 return; 1886 } 1887 1888 // last but not least we perform the actual refresh 1889 if (refreshState == REF_START) { 1890 // should never get here with any banks active 1891 assert(numBanksActive == 0); 1892 assert(pwrState == PWR_REF); 1893 1894 Tick ref_done_at = curTick() + memory.tRFC; 1895 1896 for (auto &b : banks) { 1897 b.actAllowedAt = ref_done_at; 1898 } 1899 1900 // at the moment this affects all ranks 1901 cmdList.push_back(Command(MemCommand::REF, 0, curTick())); 1902 1903 // Update the stats 1904 updatePowerStats(); 1905 1906 DPRINTF(DRAMPower, "%llu,REF,0,%d\n", divCeil(curTick(), memory.tCK) - 1907 memory.timeStampOffset, rank); 1908 1909 // Update for next refresh 1910 refreshDueAt += memory.tREFI; 1911 1912 // make sure we did not wait so long that we cannot make up 1913 // for it 1914 if (refreshDueAt < ref_done_at) { 1915 fatal("Refresh was delayed so long we cannot catch up\n"); 1916 } 1917 1918 // Run the refresh and schedule event to transition power states 1919 // when refresh completes 1920 refreshState = REF_RUN; 1921 schedule(refreshEvent, ref_done_at); 1922 return; 1923 } 1924 1925 if (refreshState == REF_RUN) { 1926 // should never get here with any banks active 1927 assert(numBanksActive == 0); 1928 assert(pwrState == PWR_REF); 1929 1930 assert(!powerEvent.scheduled()); 1931 1932 if ((memory.drainState() == DrainState::Draining) || 1933 (memory.drainState() == DrainState::Drained)) { 1934 // if draining, do not re-enter low-power mode. 1935 // simply go to IDLE and wait 1936 schedulePowerEvent(PWR_IDLE, curTick()); 1937 } else { 1938 // At the moment, we sleep when the refresh ends and wait to be 1939 // woken up again if previously in a low-power state. 1940 if (pwrStatePostRefresh != PWR_IDLE) { 1941 // power State should be power Refresh 1942 assert(pwrState == PWR_REF); 1943 DPRINTF(DRAMState, "Rank %d sleeping after refresh and was in " 1944 "power state %d before refreshing\n", rank, 1945 pwrStatePostRefresh); 1946 powerDownSleep(pwrState, curTick()); 1947 1948 // Force PRE power-down if there are no outstanding commands 1949 // in Q after refresh. 1950 } else if (lowPowerEntryReady()) { 1951 DPRINTF(DRAMState, "Rank %d sleeping after refresh but was NOT" 1952 " in a low power state before refreshing\n", rank); 1953 powerDownSleep(PWR_PRE_PDN, curTick()); 1954 1955 } else { 1956 // move to the idle power state once the refresh is done, this 1957 // will also move the refresh state machine to the refresh 1958 // idle state 1959 schedulePowerEvent(PWR_IDLE, curTick()); 1960 } 1961 } 1962 1963 // if transitioning to self refresh do not schedule a new refresh; 1964 // when waking from self refresh, a refresh is scheduled again. 1965 if (pwrStateTrans != PWR_SREF) { 1966 // compensate for the delay in actually performing the refresh 1967 // when scheduling the next one 1968 schedule(refreshEvent, refreshDueAt - memory.tRP); 1969 1970 DPRINTF(DRAMState, "Refresh done at %llu and next refresh" 1971 " at %llu\n", curTick(), refreshDueAt); 1972 } 1973 } 1974} 1975 1976void 1977DRAMCtrl::Rank::schedulePowerEvent(PowerState pwr_state, Tick tick) 1978{ 1979 // respect causality 1980 assert(tick >= curTick()); 1981 1982 if (!powerEvent.scheduled()) { 1983 DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n", 1984 tick, pwr_state); 1985 1986 // insert the new transition 1987 pwrStateTrans = pwr_state; 1988 1989 schedule(powerEvent, tick); 1990 } else { 1991 panic("Scheduled power event at %llu to state %d, " 1992 "with scheduled event at %llu to %d\n", tick, pwr_state, 1993 powerEvent.when(), pwrStateTrans); 1994 } 1995} 1996 1997void 1998DRAMCtrl::Rank::powerDownSleep(PowerState pwr_state, Tick tick) 1999{ 2000 // if low power state is active low, schedule to active low power state. 2001 // in reality tCKE is needed to enter active low power. This is neglected 2002 // here and could be added in the future. 2003 if (pwr_state == PWR_ACT_PDN) { 2004 schedulePowerEvent(pwr_state, tick); 2005 // push command to DRAMPower 2006 cmdList.push_back(Command(MemCommand::PDN_F_ACT, 0, tick)); 2007 DPRINTF(DRAMPower, "%llu,PDN_F_ACT,0,%d\n", divCeil(tick, 2008 memory.tCK) - memory.timeStampOffset, rank); 2009 } else if (pwr_state == PWR_PRE_PDN) { 2010 // if low power state is precharge low, schedule to precharge low 2011 // power state. In reality tCKE is needed to enter active low power. 2012 // This is neglected here. 2013 schedulePowerEvent(pwr_state, tick); 2014 //push Command to DRAMPower 2015 cmdList.push_back(Command(MemCommand::PDN_F_PRE, 0, tick)); 2016 DPRINTF(DRAMPower, "%llu,PDN_F_PRE,0,%d\n", divCeil(tick, 2017 memory.tCK) - memory.timeStampOffset, rank); 2018 } else if (pwr_state == PWR_REF) { 2019 // if a refresh just occured 2020 // transition to PRE_PDN now that all banks are closed 2021 // do not transition to SREF if commands are in Q; stay in PRE_PDN 2022 if (pwrStatePostRefresh == PWR_ACT_PDN || !lowPowerEntryReady()) { 2023 // prechage power down requires tCKE to enter. For simplicity 2024 // this is not considered. 2025 schedulePowerEvent(PWR_PRE_PDN, tick); 2026 //push Command to DRAMPower 2027 cmdList.push_back(Command(MemCommand::PDN_F_PRE, 0, tick)); 2028 DPRINTF(DRAMPower, "%llu,PDN_F_PRE,0,%d\n", divCeil(tick, 2029 memory.tCK) - memory.timeStampOffset, rank); 2030 } else { 2031 // last low power State was power precharge 2032 assert(pwrStatePostRefresh == PWR_PRE_PDN); 2033 // self refresh requires time tCKESR to enter. For simplicity, 2034 // this is not considered. 2035 schedulePowerEvent(PWR_SREF, tick); 2036 // push Command to DRAMPower 2037 cmdList.push_back(Command(MemCommand::SREN, 0, tick)); 2038 DPRINTF(DRAMPower, "%llu,SREN,0,%d\n", divCeil(tick, 2039 memory.tCK) - memory.timeStampOffset, rank); 2040 } 2041 } 2042 // Ensure that we don't power-down and back up in same tick 2043 // Once we commit to PD entry, do it and wait for at least 1tCK 2044 // This could be replaced with tCKE if/when that is added to the model 2045 wakeUpAllowedAt = tick + memory.tCK; 2046 2047 // Transitioning to a low power state, set flag 2048 inLowPowerState = true; 2049} 2050 2051void 2052DRAMCtrl::Rank::scheduleWakeUpEvent(Tick exit_delay) 2053{ 2054 Tick wake_up_tick = std::max(curTick(), wakeUpAllowedAt); 2055 2056 DPRINTF(DRAMState, "Scheduling wake-up for rank %d at tick %d\n", 2057 rank, wake_up_tick); 2058 2059 // if waking for refresh, hold previous state 2060 // else reset state back to IDLE 2061 if (refreshState == REF_PD_EXIT) { 2062 pwrStatePostRefresh = pwrState; 2063 } else { 2064 // don't automatically transition back to LP state after next REF 2065 pwrStatePostRefresh = PWR_IDLE; 2066 } 2067 2068 // schedule wake-up with event to ensure entry has completed before 2069 // we try to wake-up 2070 schedule(wakeUpEvent, wake_up_tick); 2071 2072 for (auto &b : banks) { 2073 // respect both causality and any existing bank 2074 // constraints, some banks could already have a 2075 // (auto) precharge scheduled 2076 b.colAllowedAt = std::max(wake_up_tick + exit_delay, b.colAllowedAt); 2077 b.preAllowedAt = std::max(wake_up_tick + exit_delay, b.preAllowedAt); 2078 b.actAllowedAt = std::max(wake_up_tick + exit_delay, b.actAllowedAt); 2079 } 2080 // Transitioning out of low power state, clear flag 2081 inLowPowerState = false; 2082 2083 // push to DRAMPower 2084 // use pwrStateTrans for cases where we have a power event scheduled 2085 // to enter low power that has not yet been processed 2086 if (pwrStateTrans == PWR_ACT_PDN) { 2087 cmdList.push_back(Command(MemCommand::PUP_ACT, 0, wake_up_tick)); 2088 DPRINTF(DRAMPower, "%llu,PUP_ACT,0,%d\n", divCeil(wake_up_tick, 2089 memory.tCK) - memory.timeStampOffset, rank); 2090 2091 } else if (pwrStateTrans == PWR_PRE_PDN) { 2092 cmdList.push_back(Command(MemCommand::PUP_PRE, 0, wake_up_tick)); 2093 DPRINTF(DRAMPower, "%llu,PUP_PRE,0,%d\n", divCeil(wake_up_tick, 2094 memory.tCK) - memory.timeStampOffset, rank); 2095 } else if (pwrStateTrans == PWR_SREF) { 2096 cmdList.push_back(Command(MemCommand::SREX, 0, wake_up_tick)); 2097 DPRINTF(DRAMPower, "%llu,SREX,0,%d\n", divCeil(wake_up_tick, 2098 memory.tCK) - memory.timeStampOffset, rank); 2099 } 2100} 2101 2102void 2103DRAMCtrl::Rank::processWakeUpEvent() 2104{ 2105 // Should be in a power-down or self-refresh state 2106 assert((pwrState == PWR_ACT_PDN) || (pwrState == PWR_PRE_PDN) || 2107 (pwrState == PWR_SREF)); 2108 2109 // Check current state to determine transition state 2110 if (pwrState == PWR_ACT_PDN) { 2111 // banks still open, transition to PWR_ACT 2112 schedulePowerEvent(PWR_ACT, curTick()); 2113 } else { 2114 // transitioning from a precharge power-down or self-refresh state 2115 // banks are closed - transition to PWR_IDLE 2116 schedulePowerEvent(PWR_IDLE, curTick()); 2117 } 2118} 2119 2120void 2121DRAMCtrl::Rank::processPowerEvent() 2122{ 2123 assert(curTick() >= pwrStateTick); 2124 // remember where we were, and for how long 2125 Tick duration = curTick() - pwrStateTick; 2126 PowerState prev_state = pwrState; 2127 2128 // update the accounting 2129 pwrStateTime[prev_state] += duration; 2130 2131 // track to total idle time 2132 if ((prev_state == PWR_PRE_PDN) || (prev_state == PWR_ACT_PDN) || 2133 (prev_state == PWR_SREF)) { 2134 totalIdleTime += duration; 2135 } 2136 2137 pwrState = pwrStateTrans; 2138 pwrStateTick = curTick(); 2139 2140 // if rank was refreshing, make sure to start scheduling requests again 2141 if (prev_state == PWR_REF) { 2142 // bus IDLED prior to REF 2143 // counter should be one for refresh command only 2144 assert(outstandingEvents == 1); 2145 // REF complete, decrement count 2146 --outstandingEvents; 2147 2148 DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration); 2149 // if sleeping after refresh 2150 if (pwrState != PWR_IDLE) { 2151 assert((pwrState == PWR_PRE_PDN) || (pwrState == PWR_SREF)); 2152 DPRINTF(DRAMState, "Switching to power down state after refreshing" 2153 " rank %d at %llu tick\n", rank, curTick()); 2154 } 2155 if (pwrState != PWR_SREF) { 2156 // rank is not available in SREF 2157 // don't transition to IDLE in this case 2158 refreshState = REF_IDLE; 2159 } 2160 // a request event could be already scheduled by the state 2161 // machine of the other rank 2162 if (!memory.nextReqEvent.scheduled()) { 2163 DPRINTF(DRAM, "Scheduling next request after refreshing rank %d\n", 2164 rank); 2165 schedule(memory.nextReqEvent, curTick()); 2166 } 2167 } else if (pwrState == PWR_ACT) { 2168 if (refreshState == REF_PD_EXIT) { 2169 // kick the refresh event loop into action again 2170 assert(prev_state == PWR_ACT_PDN); 2171 2172 // go back to REF event and close banks 2173 refreshState = REF_PRE; 2174 schedule(refreshEvent, curTick()); 2175 } 2176 } else if (pwrState == PWR_IDLE) { 2177 DPRINTF(DRAMState, "All banks precharged\n"); 2178 if (prev_state == PWR_SREF) { 2179 // set refresh state to REF_SREF_EXIT, ensuring isAvailable 2180 // continues to return false during tXS after SREF exit 2181 // Schedule a refresh which kicks things back into action 2182 // when it finishes 2183 refreshState = REF_SREF_EXIT; 2184 schedule(refreshEvent, curTick() + memory.tXS); 2185 } else { 2186 // if we have a pending refresh, and are now moving to 2187 // the idle state, directly transition to a refresh 2188 if ((refreshState == REF_PRE) || (refreshState == REF_PD_EXIT)) { 2189 // ensure refresh is restarted only after final PRE command. 2190 // do not restart refresh if controller is in an intermediate 2191 // state, after PRE_PDN exit, when banks are IDLE but an 2192 // ACT is scheduled. 2193 if (!activateEvent.scheduled()) { 2194 // there should be nothing waiting at this point 2195 assert(!powerEvent.scheduled()); 2196 // update the state in zero time and proceed below 2197 pwrState = PWR_REF; 2198 } else { 2199 // must have PRE scheduled to transition back to IDLE 2200 // and re-kick off refresh 2201 assert(prechargeEvent.scheduled()); 2202 } 2203 } 2204 } 2205 } 2206 2207 // we transition to the refresh state, let the refresh state 2208 // machine know of this state update and let it deal with the 2209 // scheduling of the next power state transition as well as the 2210 // following refresh 2211 if (pwrState == PWR_REF) { 2212 assert(refreshState == REF_PRE || refreshState == REF_PD_EXIT); 2213 DPRINTF(DRAMState, "Refreshing\n"); 2214 2215 // kick the refresh event loop into action again, and that 2216 // in turn will schedule a transition to the idle power 2217 // state once the refresh is done 2218 if (refreshState == REF_PD_EXIT) { 2219 // Wait for PD exit timing to complete before issuing REF 2220 schedule(refreshEvent, curTick() + memory.tXP); 2221 } else { 2222 schedule(refreshEvent, curTick()); 2223 } 2224 // Banks transitioned to IDLE, start REF 2225 refreshState = REF_START; 2226 } 2227} 2228 2229void 2230DRAMCtrl::Rank::updatePowerStats() 2231{ 2232 // All commands up to refresh have completed 2233 // flush cmdList to DRAMPower 2234 flushCmdList(); 2235 2236 // update the counters for DRAMPower, passing false to 2237 // indicate that this is not the last command in the 2238 // list. DRAMPower requires this information for the 2239 // correct calculation of the background energy at the end 2240 // of the simulation. Ideally we would want to call this 2241 // function with true once at the end of the 2242 // simulation. However, the discarded energy is extremly 2243 // small and does not effect the final results. 2244 power.powerlib.updateCounters(false); 2245 2246 // call the energy function 2247 power.powerlib.calcEnergy(); 2248 2249 // Get the energy and power from DRAMPower 2250 Data::MemoryPowerModel::Energy energy = 2251 power.powerlib.getEnergy(); 2252 Data::MemoryPowerModel::Power rank_power = 2253 power.powerlib.getPower(); 2254 2255 actEnergy = energy.act_energy * memory.devicesPerRank; 2256 preEnergy = energy.pre_energy * memory.devicesPerRank; 2257 readEnergy = energy.read_energy * memory.devicesPerRank; 2258 writeEnergy = energy.write_energy * memory.devicesPerRank; 2259 refreshEnergy = energy.ref_energy * memory.devicesPerRank; 2260 actBackEnergy = energy.act_stdby_energy * memory.devicesPerRank; 2261 preBackEnergy = energy.pre_stdby_energy * memory.devicesPerRank; 2262 actPowerDownEnergy = energy.f_act_pd_energy * memory.devicesPerRank; 2263 prePowerDownEnergy = energy.f_pre_pd_energy * memory.devicesPerRank; 2264 selfRefreshEnergy = energy.sref_energy * memory.devicesPerRank; 2265 totalEnergy = energy.total_energy * memory.devicesPerRank; 2266 averagePower = rank_power.average_power * memory.devicesPerRank; 2267} 2268 2269void 2270DRAMCtrl::Rank::computeStats() 2271{ 2272 DPRINTF(DRAM,"Computing final stats\n"); 2273 2274 // Force DRAM power to update counters based on time spent in 2275 // current state up to curTick() 2276 cmdList.push_back(Command(MemCommand::NOP, 0, curTick())); 2277 2278 // Update the stats 2279 updatePowerStats(); 2280 2281 // final update of power state times 2282 pwrStateTime[pwrState] += (curTick() - pwrStateTick); 2283 pwrStateTick = curTick(); 2284 2285} 2286 2287void 2288DRAMCtrl::Rank::regStats() 2289{ 2290 using namespace Stats; 2291 2292 pwrStateTime 2293 .init(6) 2294 .name(name() + ".memoryStateTime") 2295 .desc("Time in different power states"); 2296 pwrStateTime.subname(0, "IDLE"); 2297 pwrStateTime.subname(1, "REF"); 2298 pwrStateTime.subname(2, "SREF"); 2299 pwrStateTime.subname(3, "PRE_PDN"); 2300 pwrStateTime.subname(4, "ACT"); 2301 pwrStateTime.subname(5, "ACT_PDN"); 2302 2303 actEnergy 2304 .name(name() + ".actEnergy") 2305 .desc("Energy for activate commands per rank (pJ)"); 2306 2307 preEnergy 2308 .name(name() + ".preEnergy") 2309 .desc("Energy for precharge commands per rank (pJ)"); 2310 2311 readEnergy 2312 .name(name() + ".readEnergy") 2313 .desc("Energy for read commands per rank (pJ)"); 2314 2315 writeEnergy 2316 .name(name() + ".writeEnergy") 2317 .desc("Energy for write commands per rank (pJ)"); 2318 2319 refreshEnergy 2320 .name(name() + ".refreshEnergy") 2321 .desc("Energy for refresh commands per rank (pJ)"); 2322 2323 actBackEnergy 2324 .name(name() + ".actBackEnergy") 2325 .desc("Energy for active background per rank (pJ)"); 2326 2327 preBackEnergy 2328 .name(name() + ".preBackEnergy") 2329 .desc("Energy for precharge background per rank (pJ)"); 2330 2331 actPowerDownEnergy 2332 .name(name() + ".actPowerDownEnergy") 2333 .desc("Energy for active power-down per rank (pJ)"); 2334 2335 prePowerDownEnergy 2336 .name(name() + ".prePowerDownEnergy") 2337 .desc("Energy for precharge power-down per rank (pJ)"); 2338 2339 selfRefreshEnergy 2340 .name(name() + ".selfRefreshEnergy") 2341 .desc("Energy for self refresh per rank (pJ)"); 2342 2343 totalEnergy 2344 .name(name() + ".totalEnergy") 2345 .desc("Total energy per rank (pJ)"); 2346 2347 averagePower 2348 .name(name() + ".averagePower") 2349 .desc("Core power per rank (mW)"); 2350 2351 totalIdleTime 2352 .name(name() + ".totalIdleTime") 2353 .desc("Total Idle time Per DRAM Rank"); 2354 2355 registerDumpCallback(new RankDumpCallback(this)); 2356} 2357void 2358DRAMCtrl::regStats() 2359{ 2360 using namespace Stats; 2361 2362 AbstractMemory::regStats(); 2363 2364 for (auto r : ranks) { 2365 r->regStats(); 2366 } 2367 2368 readReqs 2369 .name(name() + ".readReqs") 2370 .desc("Number of read requests accepted"); 2371 2372 writeReqs 2373 .name(name() + ".writeReqs") 2374 .desc("Number of write requests accepted"); 2375 2376 readBursts 2377 .name(name() + ".readBursts") 2378 .desc("Number of DRAM read bursts, " 2379 "including those serviced by the write queue"); 2380 2381 writeBursts 2382 .name(name() + ".writeBursts") 2383 .desc("Number of DRAM write bursts, " 2384 "including those merged in the write queue"); 2385 2386 servicedByWrQ 2387 .name(name() + ".servicedByWrQ") 2388 .desc("Number of DRAM read bursts serviced by the write queue"); 2389 2390 mergedWrBursts 2391 .name(name() + ".mergedWrBursts") 2392 .desc("Number of DRAM write bursts merged with an existing one"); 2393 2394 neitherReadNorWrite 2395 .name(name() + ".neitherReadNorWriteReqs") 2396 .desc("Number of requests that are neither read nor write"); 2397 2398 perBankRdBursts 2399 .init(banksPerRank * ranksPerChannel) 2400 .name(name() + ".perBankRdBursts") 2401 .desc("Per bank write bursts"); 2402 2403 perBankWrBursts 2404 .init(banksPerRank * ranksPerChannel) 2405 .name(name() + ".perBankWrBursts") 2406 .desc("Per bank write bursts"); 2407 2408 avgRdQLen 2409 .name(name() + ".avgRdQLen") 2410 .desc("Average read queue length when enqueuing") 2411 .precision(2); 2412 2413 avgWrQLen 2414 .name(name() + ".avgWrQLen") 2415 .desc("Average write queue length when enqueuing") 2416 .precision(2); 2417 2418 totQLat 2419 .name(name() + ".totQLat") 2420 .desc("Total ticks spent queuing"); 2421 2422 totBusLat 2423 .name(name() + ".totBusLat") 2424 .desc("Total ticks spent in databus transfers"); 2425 2426 totMemAccLat 2427 .name(name() + ".totMemAccLat") 2428 .desc("Total ticks spent from burst creation until serviced " 2429 "by the DRAM"); 2430 2431 avgQLat 2432 .name(name() + ".avgQLat") 2433 .desc("Average queueing delay per DRAM burst") 2434 .precision(2); 2435 2436 avgQLat = totQLat / (readBursts - servicedByWrQ); 2437 2438 avgBusLat 2439 .name(name() + ".avgBusLat") 2440 .desc("Average bus latency per DRAM burst") 2441 .precision(2); 2442 2443 avgBusLat = totBusLat / (readBursts - servicedByWrQ); 2444 2445 avgMemAccLat 2446 .name(name() + ".avgMemAccLat") 2447 .desc("Average memory access latency per DRAM burst") 2448 .precision(2); 2449 2450 avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ); 2451 2452 numRdRetry 2453 .name(name() + ".numRdRetry") 2454 .desc("Number of times read queue was full causing retry"); 2455 2456 numWrRetry 2457 .name(name() + ".numWrRetry") 2458 .desc("Number of times write queue was full causing retry"); 2459 2460 readRowHits 2461 .name(name() + ".readRowHits") 2462 .desc("Number of row buffer hits during reads"); 2463 2464 writeRowHits 2465 .name(name() + ".writeRowHits") 2466 .desc("Number of row buffer hits during writes"); 2467 2468 readRowHitRate 2469 .name(name() + ".readRowHitRate") 2470 .desc("Row buffer hit rate for reads") 2471 .precision(2); 2472 2473 readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100; 2474 2475 writeRowHitRate 2476 .name(name() + ".writeRowHitRate") 2477 .desc("Row buffer hit rate for writes") 2478 .precision(2); 2479 2480 writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100; 2481 2482 readPktSize 2483 .init(ceilLog2(burstSize) + 1) 2484 .name(name() + ".readPktSize") 2485 .desc("Read request sizes (log2)"); 2486 2487 writePktSize 2488 .init(ceilLog2(burstSize) + 1) 2489 .name(name() + ".writePktSize") 2490 .desc("Write request sizes (log2)"); 2491 2492 rdQLenPdf 2493 .init(readBufferSize) 2494 .name(name() + ".rdQLenPdf") 2495 .desc("What read queue length does an incoming req see"); 2496 2497 wrQLenPdf 2498 .init(writeBufferSize) 2499 .name(name() + ".wrQLenPdf") 2500 .desc("What write queue length does an incoming req see"); 2501 2502 bytesPerActivate 2503 .init(maxAccessesPerRow) 2504 .name(name() + ".bytesPerActivate") 2505 .desc("Bytes accessed per row activation") 2506 .flags(nozero); 2507 2508 rdPerTurnAround 2509 .init(readBufferSize) 2510 .name(name() + ".rdPerTurnAround") 2511 .desc("Reads before turning the bus around for writes") 2512 .flags(nozero); 2513 2514 wrPerTurnAround 2515 .init(writeBufferSize) 2516 .name(name() + ".wrPerTurnAround") 2517 .desc("Writes before turning the bus around for reads") 2518 .flags(nozero); 2519 2520 bytesReadDRAM 2521 .name(name() + ".bytesReadDRAM") 2522 .desc("Total number of bytes read from DRAM"); 2523 2524 bytesReadWrQ 2525 .name(name() + ".bytesReadWrQ") 2526 .desc("Total number of bytes read from write queue"); 2527 2528 bytesWritten 2529 .name(name() + ".bytesWritten") 2530 .desc("Total number of bytes written to DRAM"); 2531 2532 bytesReadSys 2533 .name(name() + ".bytesReadSys") 2534 .desc("Total read bytes from the system interface side"); 2535 2536 bytesWrittenSys 2537 .name(name() + ".bytesWrittenSys") 2538 .desc("Total written bytes from the system interface side"); 2539 2540 avgRdBW 2541 .name(name() + ".avgRdBW") 2542 .desc("Average DRAM read bandwidth in MiByte/s") 2543 .precision(2); 2544 2545 avgRdBW = (bytesReadDRAM / 1000000) / simSeconds; 2546 2547 avgWrBW 2548 .name(name() + ".avgWrBW") 2549 .desc("Average achieved write bandwidth in MiByte/s") 2550 .precision(2); 2551 2552 avgWrBW = (bytesWritten / 1000000) / simSeconds; 2553 2554 avgRdBWSys 2555 .name(name() + ".avgRdBWSys") 2556 .desc("Average system read bandwidth in MiByte/s") 2557 .precision(2); 2558 2559 avgRdBWSys = (bytesReadSys / 1000000) / simSeconds; 2560 2561 avgWrBWSys 2562 .name(name() + ".avgWrBWSys") 2563 .desc("Average system write bandwidth in MiByte/s") 2564 .precision(2); 2565 2566 avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds; 2567 2568 peakBW 2569 .name(name() + ".peakBW") 2570 .desc("Theoretical peak bandwidth in MiByte/s") 2571 .precision(2); 2572 2573 peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000; 2574 2575 busUtil 2576 .name(name() + ".busUtil") 2577 .desc("Data bus utilization in percentage") 2578 .precision(2); 2579 busUtil = (avgRdBW + avgWrBW) / peakBW * 100; 2580 2581 totGap 2582 .name(name() + ".totGap") 2583 .desc("Total gap between requests"); 2584 2585 avgGap 2586 .name(name() + ".avgGap") 2587 .desc("Average gap between requests") 2588 .precision(2); 2589 2590 avgGap = totGap / (readReqs + writeReqs); 2591 2592 // Stats for DRAM Power calculation based on Micron datasheet 2593 busUtilRead 2594 .name(name() + ".busUtilRead") 2595 .desc("Data bus utilization in percentage for reads") 2596 .precision(2); 2597 2598 busUtilRead = avgRdBW / peakBW * 100; 2599 2600 busUtilWrite 2601 .name(name() + ".busUtilWrite") 2602 .desc("Data bus utilization in percentage for writes") 2603 .precision(2); 2604 2605 busUtilWrite = avgWrBW / peakBW * 100; 2606 2607 pageHitRate 2608 .name(name() + ".pageHitRate") 2609 .desc("Row buffer hit rate, read and write combined") 2610 .precision(2); 2611 2612 pageHitRate = (writeRowHits + readRowHits) / 2613 (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100; 2614} 2615 2616void 2617DRAMCtrl::recvFunctional(PacketPtr pkt) 2618{ 2619 // rely on the abstract memory 2620 functionalAccess(pkt); 2621} 2622 2623BaseSlavePort& 2624DRAMCtrl::getSlavePort(const string &if_name, PortID idx) 2625{ 2626 if (if_name != "port") { 2627 return MemObject::getSlavePort(if_name, idx); 2628 } else { 2629 return port; 2630 } 2631} 2632 2633DrainState 2634DRAMCtrl::drain() 2635{ 2636 // if there is anything in any of our internal queues, keep track 2637 // of that as well 2638 if (!(writeQueue.empty() && readQueue.empty() && respQueue.empty() && 2639 allRanksDrained())) { 2640 2641 DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d," 2642 " resp: %d\n", writeQueue.size(), readQueue.size(), 2643 respQueue.size()); 2644 2645 // the only queue that is not drained automatically over time 2646 // is the write queue, thus kick things into action if needed 2647 if (!writeQueue.empty() && !nextReqEvent.scheduled()) { 2648 schedule(nextReqEvent, curTick()); 2649 } 2650 2651 // also need to kick off events to exit self-refresh 2652 for (auto r : ranks) { 2653 // force self-refresh exit, which in turn will issue auto-refresh 2654 if (r->pwrState == PWR_SREF) { 2655 DPRINTF(DRAM,"Rank%d: Forcing self-refresh wakeup in drain\n", 2656 r->rank); 2657 r->scheduleWakeUpEvent(tXS); 2658 } 2659 } 2660 2661 return DrainState::Draining; 2662 } else { 2663 return DrainState::Drained; 2664 } 2665} 2666 2667bool 2668DRAMCtrl::allRanksDrained() const 2669{ 2670 // true until proven false 2671 bool all_ranks_drained = true; 2672 for (auto r : ranks) { 2673 // then verify that the power state is IDLE 2674 // ensuring all banks are closed and rank is not in a low power state 2675 all_ranks_drained = r->inPwrIdleState() && all_ranks_drained; 2676 } 2677 return all_ranks_drained; 2678} 2679 2680void 2681DRAMCtrl::drainResume() 2682{ 2683 if (!isTimingMode && system()->isTimingMode()) { 2684 // if we switched to timing mode, kick things into action, 2685 // and behave as if we restored from a checkpoint 2686 startup(); 2687 } else if (isTimingMode && !system()->isTimingMode()) { 2688 // if we switch from timing mode, stop the refresh events to 2689 // not cause issues with KVM 2690 for (auto r : ranks) { 2691 r->suspend(); 2692 } 2693 } 2694 2695 // update the mode 2696 isTimingMode = system()->isTimingMode(); 2697} 2698 2699DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory) 2700 : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this), 2701 memory(_memory) 2702{ } 2703 2704AddrRangeList 2705DRAMCtrl::MemoryPort::getAddrRanges() const 2706{ 2707 AddrRangeList ranges; 2708 ranges.push_back(memory.getAddrRange()); 2709 return ranges; 2710} 2711 2712void 2713DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt) 2714{ 2715 pkt->pushLabel(memory.name()); 2716 2717 if (!queue.checkFunctional(pkt)) { 2718 // Default implementation of SimpleTimingPort::recvFunctional() 2719 // calls recvAtomic() and throws away the latency; we can save a 2720 // little here by just not calculating the latency. 2721 memory.recvFunctional(pkt); 2722 } 2723 2724 pkt->popLabel(); 2725} 2726 2727Tick 2728DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt) 2729{ 2730 return memory.recvAtomic(pkt); 2731} 2732 2733bool 2734DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt) 2735{ 2736 // pass it to the memory controller 2737 return memory.recvTimingReq(pkt); 2738} 2739 2740DRAMCtrl* 2741DRAMCtrlParams::create() 2742{ 2743 return new DRAMCtrl(this); 2744} 2745