dram_ctrl.cc revision 11676:8a882e297eb2
1955SN/A/*
2955SN/A * Copyright (c) 2010-2016 ARM Limited
311408Sandreas.sandberg@arm.com * All rights reserved
49812Sandreas.hansson@arm.com *
59812Sandreas.hansson@arm.com * The license below extends only to copyright in the software and shall
69812Sandreas.hansson@arm.com * not be construed as granting a license to any other intellectual
79812Sandreas.hansson@arm.com * property including but not limited to intellectual property relating
89812Sandreas.hansson@arm.com * to a hardware implementation of the functionality of the software
99812Sandreas.hansson@arm.com * licensed hereunder.  You may use the software subject to the license
109812Sandreas.hansson@arm.com * terms below provided that you ensure that this notice is replicated
119812Sandreas.hansson@arm.com * unmodified and in its entirety in all distributions of the software,
129812Sandreas.hansson@arm.com * modified or unmodified, in source code or in binary form.
139812Sandreas.hansson@arm.com *
149812Sandreas.hansson@arm.com * Copyright (c) 2013 Amin Farmahini-Farahani
157816Ssteve.reinhardt@amd.com * All rights reserved.
165871Snate@binkert.org *
171762SN/A * Redistribution and use in source and binary forms, with or without
18955SN/A * modification, are permitted provided that the following conditions are
19955SN/A * met: redistributions of source code must retain the above copyright
20955SN/A * notice, this list of conditions and the following disclaimer;
21955SN/A * redistributions in binary form must reproduce the above copyright
22955SN/A * notice, this list of conditions and the following disclaimer in the
23955SN/A * documentation and/or other materials provided with the distribution;
24955SN/A * neither the name of the copyright holders nor the names of its
25955SN/A * contributors may be used to endorse or promote products derived from
26955SN/A * this software without specific prior written permission.
27955SN/A *
28955SN/A * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29955SN/A * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30955SN/A * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31955SN/A * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32955SN/A * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33955SN/A * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34955SN/A * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35955SN/A * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36955SN/A * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37955SN/A * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38955SN/A * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39955SN/A *
40955SN/A * Authors: Andreas Hansson
41955SN/A *          Ani Udipi
422665Ssaidi@eecs.umich.edu *          Neha Agarwal
432665Ssaidi@eecs.umich.edu *          Omar Naji
445863Snate@binkert.org */
45955SN/A
46955SN/A#include "base/bitfield.hh"
47955SN/A#include "base/trace.hh"
48955SN/A#include "debug/DRAM.hh"
49955SN/A#include "debug/DRAMPower.hh"
508878Ssteve.reinhardt@amd.com#include "debug/DRAMState.hh"
512632Sstever@eecs.umich.edu#include "debug/Drain.hh"
528878Ssteve.reinhardt@amd.com#include "mem/dram_ctrl.hh"
532632Sstever@eecs.umich.edu#include "sim/system.hh"
54955SN/A
558878Ssteve.reinhardt@amd.comusing namespace std;
562632Sstever@eecs.umich.eduusing namespace Data;
572761Sstever@eecs.umich.edu
582632Sstever@eecs.umich.eduDRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
592632Sstever@eecs.umich.edu    AbstractMemory(p),
602632Sstever@eecs.umich.edu    port(name() + ".port", *this), isTimingMode(false),
612761Sstever@eecs.umich.edu    retryRdReq(false), retryWrReq(false),
622761Sstever@eecs.umich.edu    busState(READ),
632761Sstever@eecs.umich.edu    nextReqEvent(this), respondEvent(this),
648878Ssteve.reinhardt@amd.com    deviceSize(p->device_size),
658878Ssteve.reinhardt@amd.com    deviceBusWidth(p->device_bus_width), burstLength(p->burst_length),
662761Sstever@eecs.umich.edu    deviceRowBufferSize(p->device_rowbuffer_size),
672761Sstever@eecs.umich.edu    devicesPerRank(p->devices_per_rank),
682761Sstever@eecs.umich.edu    burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8),
692761Sstever@eecs.umich.edu    rowBufferSize(devicesPerRank * deviceRowBufferSize),
702761Sstever@eecs.umich.edu    columnsPerRowBuffer(rowBufferSize / burstSize),
718878Ssteve.reinhardt@amd.com    columnsPerStripe(range.interleaved() ? range.granularity() / burstSize : 1),
728878Ssteve.reinhardt@amd.com    ranksPerChannel(p->ranks_per_channel),
732632Sstever@eecs.umich.edu    bankGroupsPerRank(p->bank_groups_per_rank),
742632Sstever@eecs.umich.edu    bankGroupArch(p->bank_groups_per_rank > 0),
758878Ssteve.reinhardt@amd.com    banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0),
768878Ssteve.reinhardt@amd.com    readBufferSize(p->read_buffer_size),
772632Sstever@eecs.umich.edu    writeBufferSize(p->write_buffer_size),
78955SN/A    writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0),
79955SN/A    writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0),
80955SN/A    minWritesPerSwitch(p->min_writes_per_switch),
815863Snate@binkert.org    writesThisTime(0), readsThisTime(0),
825863Snate@binkert.org    tCK(p->tCK), tWTR(p->tWTR), tRTW(p->tRTW), tCS(p->tCS), tBURST(p->tBURST),
835863Snate@binkert.org    tCCD_L(p->tCCD_L), tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS),
845863Snate@binkert.org    tWR(p->tWR), tRTP(p->tRTP), tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD),
855863Snate@binkert.org    tRRD_L(p->tRRD_L), tXAW(p->tXAW), tXP(p->tXP), tXS(p->tXS),
865863Snate@binkert.org    activationLimit(p->activation_limit),
875863Snate@binkert.org    memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
885863Snate@binkert.org    pageMgmt(p->page_policy),
895863Snate@binkert.org    maxAccessesPerRow(p->max_accesses_per_row),
905863Snate@binkert.org    frontendLatency(p->static_frontend_latency),
915863Snate@binkert.org    backendLatency(p->static_backend_latency),
928878Ssteve.reinhardt@amd.com    busBusyUntil(0), prevArrival(0),
935863Snate@binkert.org    nextReqTime(0), activeRank(0), timeStampOffset(0)
945863Snate@binkert.org{
955863Snate@binkert.org    // sanity check the ranks since we rely on bit slicing for the
969812Sandreas.hansson@arm.com    // address decoding
979812Sandreas.hansson@arm.com    fatal_if(!isPowerOf2(ranksPerChannel), "DRAM rank count of %d is not "
985863Snate@binkert.org             "allowed, must be a power of two\n", ranksPerChannel);
999812Sandreas.hansson@arm.com
1005863Snate@binkert.org    fatal_if(!isPowerOf2(burstSize), "DRAM burst size %d is not allowed, "
1015863Snate@binkert.org             "must be a power of two\n", burstSize);
1025863Snate@binkert.org
1039812Sandreas.hansson@arm.com    for (int i = 0; i < ranksPerChannel; i++) {
1049812Sandreas.hansson@arm.com        Rank* rank = new Rank(*this, p);
1055863Snate@binkert.org        ranks.push_back(rank);
1065863Snate@binkert.org
1078878Ssteve.reinhardt@amd.com        rank->actTicks.resize(activationLimit, 0);
1085863Snate@binkert.org        rank->banks.resize(banksPerRank);
1095863Snate@binkert.org        rank->rank = i;
1105863Snate@binkert.org
1116654Snate@binkert.org        for (int b = 0; b < banksPerRank; b++) {
11210196SCurtis.Dunham@arm.com            rank->banks[b].bank = b;
113955SN/A            // GDDR addressing of banks to BG is linear.
1145396Ssaidi@eecs.umich.edu            // Here we assume that all DRAM generations address bank groups as
11511401Sandreas.sandberg@arm.com            // follows:
1165863Snate@binkert.org            if (bankGroupArch) {
1175863Snate@binkert.org                // Simply assign lower bits to bank group in order to
1184202Sbinkertn@umich.edu                // rotate across bank groups as banks are incremented
1195863Snate@binkert.org                // e.g. with 4 banks per bank group and 16 banks total:
1205863Snate@binkert.org                //    banks 0,4,8,12  are in bank group 0
1215863Snate@binkert.org                //    banks 1,5,9,13  are in bank group 1
1225863Snate@binkert.org                //    banks 2,6,10,14 are in bank group 2
123955SN/A                //    banks 3,7,11,15 are in bank group 3
1246654Snate@binkert.org                rank->banks[b].bankgr = b % bankGroupsPerRank;
1255273Sstever@gmail.com            } else {
1265871Snate@binkert.org                // No bank groups; simply assign to bank number
1275273Sstever@gmail.com                rank->banks[b].bankgr = b;
1286655Snate@binkert.org            }
1298878Ssteve.reinhardt@amd.com        }
1306655Snate@binkert.org    }
1316655Snate@binkert.org
1329219Spower.jg@gmail.com    // perform a basic check of the write thresholds
1336655Snate@binkert.org    if (p->write_low_thresh_perc >= p->write_high_thresh_perc)
1345871Snate@binkert.org        fatal("Write buffer low threshold %d must be smaller than the "
1356654Snate@binkert.org              "high threshold %d\n", p->write_low_thresh_perc,
1368947Sandreas.hansson@arm.com              p->write_high_thresh_perc);
1375396Ssaidi@eecs.umich.edu
1388120Sgblack@eecs.umich.edu    // determine the rows per bank by looking at the total capacity
1398120Sgblack@eecs.umich.edu    uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size());
1408120Sgblack@eecs.umich.edu
1418120Sgblack@eecs.umich.edu    // determine the dram actual capacity from the DRAM config in Mbytes
1428120Sgblack@eecs.umich.edu    uint64_t deviceCapacity = deviceSize / (1024 * 1024) * devicesPerRank *
1438120Sgblack@eecs.umich.edu        ranksPerChannel;
1448120Sgblack@eecs.umich.edu
1458120Sgblack@eecs.umich.edu    // if actual DRAM size does not match memory capacity in system warn!
1468879Ssteve.reinhardt@amd.com    if (deviceCapacity != capacity / (1024 * 1024))
1478879Ssteve.reinhardt@amd.com        warn("DRAM device capacity (%d Mbytes) does not match the "
1488879Ssteve.reinhardt@amd.com             "address range assigned (%d Mbytes)\n", deviceCapacity,
1498879Ssteve.reinhardt@amd.com             capacity / (1024 * 1024));
1508879Ssteve.reinhardt@amd.com
1518879Ssteve.reinhardt@amd.com    DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
1528879Ssteve.reinhardt@amd.com            AbstractMemory::size());
1538879Ssteve.reinhardt@amd.com
1548879Ssteve.reinhardt@amd.com    DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n",
1558879Ssteve.reinhardt@amd.com            rowBufferSize, columnsPerRowBuffer);
1568879Ssteve.reinhardt@amd.com
1578879Ssteve.reinhardt@amd.com    rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel);
1588879Ssteve.reinhardt@amd.com
1598120Sgblack@eecs.umich.edu    // some basic sanity checks
1608120Sgblack@eecs.umich.edu    if (tREFI <= tRP || tREFI <= tRFC) {
1618120Sgblack@eecs.umich.edu        fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n",
1628120Sgblack@eecs.umich.edu              tREFI, tRP, tRFC);
1638120Sgblack@eecs.umich.edu    }
1648120Sgblack@eecs.umich.edu
1658120Sgblack@eecs.umich.edu    // basic bank group architecture checks ->
1668120Sgblack@eecs.umich.edu    if (bankGroupArch) {
1678120Sgblack@eecs.umich.edu        // must have at least one bank per bank group
1688120Sgblack@eecs.umich.edu        if (bankGroupsPerRank > banksPerRank) {
1698120Sgblack@eecs.umich.edu            fatal("banks per rank (%d) must be equal to or larger than "
1708120Sgblack@eecs.umich.edu                  "banks groups per rank (%d)\n",
1718120Sgblack@eecs.umich.edu                  banksPerRank, bankGroupsPerRank);
1728120Sgblack@eecs.umich.edu        }
1738879Ssteve.reinhardt@amd.com        // must have same number of banks in each bank group
1748879Ssteve.reinhardt@amd.com        if ((banksPerRank % bankGroupsPerRank) != 0) {
1758879Ssteve.reinhardt@amd.com            fatal("Banks per rank (%d) must be evenly divisible by bank groups "
1768879Ssteve.reinhardt@amd.com                  "per rank (%d) for equal banks per bank group\n",
17710458Sandreas.hansson@arm.com                  banksPerRank, bankGroupsPerRank);
17810458Sandreas.hansson@arm.com        }
17910458Sandreas.hansson@arm.com        // tCCD_L should be greater than minimal, back-to-back burst delay
1808879Ssteve.reinhardt@amd.com        if (tCCD_L <= tBURST) {
1818879Ssteve.reinhardt@amd.com            fatal("tCCD_L (%d) should be larger than tBURST (%d) when "
1828879Ssteve.reinhardt@amd.com                  "bank groups per rank (%d) is greater than 1\n",
1838879Ssteve.reinhardt@amd.com                  tCCD_L, tBURST, bankGroupsPerRank);
1849227Sandreas.hansson@arm.com        }
1859227Sandreas.hansson@arm.com        // tRRD_L is greater than minimal, same bank group ACT-to-ACT delay
1868879Ssteve.reinhardt@amd.com        // some datasheets might specify it equal to tRRD
1878879Ssteve.reinhardt@amd.com        if (tRRD_L < tRRD) {
1888879Ssteve.reinhardt@amd.com            fatal("tRRD_L (%d) should be larger than tRRD (%d) when "
1898879Ssteve.reinhardt@amd.com                  "bank groups per rank (%d) is greater than 1\n",
19010453SAndrew.Bardsley@arm.com                  tRRD_L, tRRD, bankGroupsPerRank);
19110453SAndrew.Bardsley@arm.com        }
19210453SAndrew.Bardsley@arm.com    }
19310456SCurtis.Dunham@arm.com
19410456SCurtis.Dunham@arm.com}
19510456SCurtis.Dunham@arm.com
19610457Sandreas.hansson@arm.comvoid
19710457Sandreas.hansson@arm.comDRAMCtrl::init()
19811342Sandreas.hansson@arm.com{
19911342Sandreas.hansson@arm.com    AbstractMemory::init();
2008120Sgblack@eecs.umich.edu
2018947Sandreas.hansson@arm.com   if (!port.isConnected()) {
2027816Ssteve.reinhardt@amd.com        fatal("DRAMCtrl %s is unconnected!\n", name());
2035871Snate@binkert.org    } else {
2045871Snate@binkert.org        port.sendRangeChange();
2056121Snate@binkert.org    }
2065871Snate@binkert.org
2075871Snate@binkert.org    // a bit of sanity checks on the interleaving, save it for here to
2089926Sstan.czerniawski@arm.com    // ensure that the system pointer is initialised
2099926Sstan.czerniawski@arm.com    if (range.interleaved()) {
2109119Sandreas.hansson@arm.com        if (channels != range.stripes())
21110068Sandreas.hansson@arm.com            fatal("%s has %d interleaved address stripes but %d channel(s)\n",
21210068Sandreas.hansson@arm.com                  name(), range.stripes(), channels);
213955SN/A
2149416SAndreas.Sandberg@ARM.com        if (addrMapping == Enums::RoRaBaChCo) {
21511342Sandreas.hansson@arm.com            if (rowBufferSize != range.granularity()) {
21611212Sjoseph.gross@amd.com                fatal("Channel interleaving of %s doesn't match RoRaBaChCo "
21711212Sjoseph.gross@amd.com                      "address map\n", name());
21811212Sjoseph.gross@amd.com            }
21911212Sjoseph.gross@amd.com        } else if (addrMapping == Enums::RoRaBaCoCh ||
22011212Sjoseph.gross@amd.com                   addrMapping == Enums::RoCoRaBaCh) {
2219416SAndreas.Sandberg@ARM.com            // for the interleavings with channel bits in the bottom,
2229416SAndreas.Sandberg@ARM.com            // if the system uses a channel striping granularity that
2235871Snate@binkert.org            // is larger than the DRAM burst size, then map the
22410584Sandreas.hansson@arm.com            // sequential accesses within a stripe to a number of
2259416SAndreas.Sandberg@ARM.com            // columns in the DRAM, effectively placing some of the
2269416SAndreas.Sandberg@ARM.com            // lower-order column bits as the least-significant bits
2275871Snate@binkert.org            // of the address (above the ones denoting the burst size)
228955SN/A            assert(columnsPerStripe >= 1);
22910671Sandreas.hansson@arm.com
23010671Sandreas.hansson@arm.com            // channel striping has to be done at a granularity that
23110671Sandreas.hansson@arm.com            // is equal or larger to a cache line
23210671Sandreas.hansson@arm.com            if (system()->cacheLineSize() > range.granularity()) {
2338881Smarc.orr@gmail.com                fatal("Channel interleaving of %s must be at least as large "
2346121Snate@binkert.org                      "as the cache line size\n", name());
2356121Snate@binkert.org            }
2361533SN/A
2379239Sandreas.hansson@arm.com            // ...and equal or smaller than the row-buffer size
2389239Sandreas.hansson@arm.com            if (rowBufferSize < range.granularity()) {
2399239Sandreas.hansson@arm.com                fatal("Channel interleaving of %s must be at most as large "
2409239Sandreas.hansson@arm.com                      "as the row-buffer size\n", name());
2419239Sandreas.hansson@arm.com            }
2429239Sandreas.hansson@arm.com            // this is essentially the check above, so just to be sure
2439239Sandreas.hansson@arm.com            assert(columnsPerStripe <= columnsPerRowBuffer);
2449239Sandreas.hansson@arm.com        }
2459239Sandreas.hansson@arm.com    }
2469239Sandreas.hansson@arm.com}
2479239Sandreas.hansson@arm.com
2489239Sandreas.hansson@arm.comvoid
2496655Snate@binkert.orgDRAMCtrl::startup()
2506655Snate@binkert.org{
2516655Snate@binkert.org    // remember the memory system mode of operation
2526655Snate@binkert.org    isTimingMode = system()->isTimingMode();
2535871Snate@binkert.org
2545871Snate@binkert.org    if (isTimingMode) {
2555863Snate@binkert.org        // timestamp offset should be in clock cycles for DRAMPower
2565871Snate@binkert.org        timeStampOffset = divCeil(curTick(), tCK);
2578878Ssteve.reinhardt@amd.com
2585871Snate@binkert.org        // update the start tick for the precharge accounting to the
2595871Snate@binkert.org        // current tick
2605871Snate@binkert.org        for (auto r : ranks) {
2615863Snate@binkert.org            r->startup(curTick() + tREFI - tRP);
2626121Snate@binkert.org        }
26311408Sandreas.sandberg@arm.com
2645863Snate@binkert.org        // shift the bus busy time sufficiently far ahead that we never
26511408Sandreas.sandberg@arm.com        // have to worry about negative values when computing the time for
26611408Sandreas.sandberg@arm.com        // the next request, this will add an insignificant bubble at the
2678336Ssteve.reinhardt@amd.com        // start of simulation
2688336Ssteve.reinhardt@amd.com        busBusyUntil = curTick() + tRP + tRCD + tCL;
26911408Sandreas.sandberg@arm.com    }
2708336Ssteve.reinhardt@amd.com}
2714678Snate@binkert.org
27211408Sandreas.sandberg@arm.comTick
27311408Sandreas.sandberg@arm.comDRAMCtrl::recvAtomic(PacketPtr pkt)
27411408Sandreas.sandberg@arm.com{
27511401Sandreas.sandberg@arm.com    DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
27611401Sandreas.sandberg@arm.com
27711401Sandreas.sandberg@arm.com    panic_if(pkt->cacheResponding(), "Should not see packets where cache "
27811401Sandreas.sandberg@arm.com             "is responding");
27911401Sandreas.sandberg@arm.com
28011401Sandreas.sandberg@arm.com    // do the actual memory access and turn the packet into a response
2818336Ssteve.reinhardt@amd.com    access(pkt);
2828336Ssteve.reinhardt@amd.com
2838336Ssteve.reinhardt@amd.com    Tick latency = 0;
2844678Snate@binkert.org    if (pkt->hasData()) {
28511401Sandreas.sandberg@arm.com        // this value is not supposed to be accurate, just enough to
2864678Snate@binkert.org        // keep things going, mimic a closed page
2874678Snate@binkert.org        latency = tRP + tRCD + tCL;
28811401Sandreas.sandberg@arm.com    }
28911401Sandreas.sandberg@arm.com    return latency;
2908336Ssteve.reinhardt@amd.com}
2914678Snate@binkert.org
2928336Ssteve.reinhardt@amd.combool
2938336Ssteve.reinhardt@amd.comDRAMCtrl::readQueueFull(unsigned int neededEntries) const
2948336Ssteve.reinhardt@amd.com{
2958336Ssteve.reinhardt@amd.com    DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n",
2968336Ssteve.reinhardt@amd.com            readBufferSize, readQueue.size() + respQueue.size(),
2978336Ssteve.reinhardt@amd.com            neededEntries);
2985871Snate@binkert.org
2995871Snate@binkert.org    return
3008336Ssteve.reinhardt@amd.com        (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize;
30111408Sandreas.sandberg@arm.com}
30211408Sandreas.sandberg@arm.com
30311408Sandreas.sandberg@arm.combool
30411408Sandreas.sandberg@arm.comDRAMCtrl::writeQueueFull(unsigned int neededEntries) const
30511408Sandreas.sandberg@arm.com{
30611408Sandreas.sandberg@arm.com    DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n",
30711408Sandreas.sandberg@arm.com            writeBufferSize, writeQueue.size(), neededEntries);
3088336Ssteve.reinhardt@amd.com    return (writeQueue.size() + neededEntries) > writeBufferSize;
30911401Sandreas.sandberg@arm.com}
31011401Sandreas.sandberg@arm.com
31111401Sandreas.sandberg@arm.comDRAMCtrl::DRAMPacket*
3125871Snate@binkert.orgDRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size,
3138336Ssteve.reinhardt@amd.com                       bool isRead)
3148336Ssteve.reinhardt@amd.com{
31511401Sandreas.sandberg@arm.com    // decode the address based on the address mapping scheme, with
31611401Sandreas.sandberg@arm.com    // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and
31711401Sandreas.sandberg@arm.com    // channel, respectively
31811401Sandreas.sandberg@arm.com    uint8_t rank;
31911401Sandreas.sandberg@arm.com    uint8_t bank;
3204678Snate@binkert.org    // use a 64-bit unsigned during the computations as the row is
3215871Snate@binkert.org    // always the top bits, and check before creating the DRAMPacket
3224678Snate@binkert.org    uint64_t row;
32311401Sandreas.sandberg@arm.com
32411401Sandreas.sandberg@arm.com    // truncate the address to a DRAM burst, which makes it unique to
32511401Sandreas.sandberg@arm.com    // a specific column, row, bank, rank and channel
32611401Sandreas.sandberg@arm.com    Addr addr = dramPktAddr / burstSize;
32711401Sandreas.sandberg@arm.com
32811401Sandreas.sandberg@arm.com    // we have removed the lowest order address bits that denote the
32911401Sandreas.sandberg@arm.com    // position within the column
33011401Sandreas.sandberg@arm.com    if (addrMapping == Enums::RoRaBaChCo) {
33111401Sandreas.sandberg@arm.com        // the lowest order bits denote the column to ensure that
33211401Sandreas.sandberg@arm.com        // sequential cache lines occupy the same row
33311401Sandreas.sandberg@arm.com        addr = addr / columnsPerRowBuffer;
33411401Sandreas.sandberg@arm.com
33511450Sandreas.sandberg@arm.com        // take out the channel part of the address
33611450Sandreas.sandberg@arm.com        addr = addr / channels;
33711450Sandreas.sandberg@arm.com
33811450Sandreas.sandberg@arm.com        // after the channel bits, get the bank bits to interleave
33911450Sandreas.sandberg@arm.com        // over the banks
34011450Sandreas.sandberg@arm.com        bank = addr % banksPerRank;
34111450Sandreas.sandberg@arm.com        addr = addr / banksPerRank;
34211450Sandreas.sandberg@arm.com
34311450Sandreas.sandberg@arm.com        // after the bank, we get the rank bits which thus interleaves
34411450Sandreas.sandberg@arm.com        // over the ranks
34511450Sandreas.sandberg@arm.com        rank = addr % ranksPerChannel;
34611401Sandreas.sandberg@arm.com        addr = addr / ranksPerChannel;
34711450Sandreas.sandberg@arm.com
34811450Sandreas.sandberg@arm.com        // lastly, get the row bits, no need to remove them from addr
34911450Sandreas.sandberg@arm.com        row = addr % rowsPerBank;
35011401Sandreas.sandberg@arm.com    } else if (addrMapping == Enums::RoRaBaCoCh) {
35111450Sandreas.sandberg@arm.com        // take out the lower-order column bits
35211401Sandreas.sandberg@arm.com        addr = addr / columnsPerStripe;
3538336Ssteve.reinhardt@amd.com
3548336Ssteve.reinhardt@amd.com        // take out the channel part of the address
3558336Ssteve.reinhardt@amd.com        addr = addr / channels;
3568336Ssteve.reinhardt@amd.com
3578336Ssteve.reinhardt@amd.com        // next, the higher-order column bites
3588336Ssteve.reinhardt@amd.com        addr = addr / (columnsPerRowBuffer / columnsPerStripe);
3598336Ssteve.reinhardt@amd.com
3608336Ssteve.reinhardt@amd.com        // after the column bits, we get the bank bits to interleave
3618336Ssteve.reinhardt@amd.com        // over the banks
3628336Ssteve.reinhardt@amd.com        bank = addr % banksPerRank;
36311401Sandreas.sandberg@arm.com        addr = addr / banksPerRank;
36411401Sandreas.sandberg@arm.com
3658336Ssteve.reinhardt@amd.com        // after the bank, we get the rank bits which thus interleaves
3668336Ssteve.reinhardt@amd.com        // over the ranks
3678336Ssteve.reinhardt@amd.com        rank = addr % ranksPerChannel;
3685871Snate@binkert.org        addr = addr / ranksPerChannel;
36911408Sandreas.sandberg@arm.com
37011408Sandreas.sandberg@arm.com        // lastly, get the row bits, no need to remove them from addr
37111408Sandreas.sandberg@arm.com        row = addr % rowsPerBank;
37211408Sandreas.sandberg@arm.com    } else if (addrMapping == Enums::RoCoRaBaCh) {
37311408Sandreas.sandberg@arm.com        // optimise for closed page mode and utilise maximum
37411408Sandreas.sandberg@arm.com        // parallelism of the DRAM (at the cost of power)
37511408Sandreas.sandberg@arm.com
37611408Sandreas.sandberg@arm.com        // take out the lower-order column bits
37711408Sandreas.sandberg@arm.com        addr = addr / columnsPerStripe;
37811408Sandreas.sandberg@arm.com
37911408Sandreas.sandberg@arm.com        // take out the channel part of the address, not that this has
38011408Sandreas.sandberg@arm.com        // to match with how accesses are interleaved between the
38111408Sandreas.sandberg@arm.com        // controllers in the address mapping
38211408Sandreas.sandberg@arm.com        addr = addr / channels;
38311408Sandreas.sandberg@arm.com
38411408Sandreas.sandberg@arm.com        // start with the bank bits, as this provides the maximum
38511408Sandreas.sandberg@arm.com        // opportunity for parallelism between requests
38611408Sandreas.sandberg@arm.com        bank = addr % banksPerRank;
38711408Sandreas.sandberg@arm.com        addr = addr / banksPerRank;
38811408Sandreas.sandberg@arm.com
38911408Sandreas.sandberg@arm.com        // next get the rank bits
3906121Snate@binkert.org        rank = addr % ranksPerChannel;
391955SN/A        addr = addr / ranksPerChannel;
392955SN/A
3932632Sstever@eecs.umich.edu        // next, the higher-order column bites
3942632Sstever@eecs.umich.edu        addr = addr / (columnsPerRowBuffer / columnsPerStripe);
395955SN/A
396955SN/A        // lastly, get the row bits, no need to remove them from addr
397955SN/A        row = addr % rowsPerBank;
398955SN/A    } else
3998878Ssteve.reinhardt@amd.com        panic("Unknown address mapping policy chosen!");
400955SN/A
4012632Sstever@eecs.umich.edu    assert(rank < ranksPerChannel);
4022632Sstever@eecs.umich.edu    assert(bank < banksPerRank);
4032632Sstever@eecs.umich.edu    assert(row < rowsPerBank);
4042632Sstever@eecs.umich.edu    assert(row < Bank::NO_ROW);
4052632Sstever@eecs.umich.edu
4062632Sstever@eecs.umich.edu    DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
4072632Sstever@eecs.umich.edu            dramPktAddr, rank, bank, row);
4088268Ssteve.reinhardt@amd.com
4098268Ssteve.reinhardt@amd.com    // create the corresponding DRAM packet with the entry time and
4108268Ssteve.reinhardt@amd.com    // ready time set to the current tick, the latter will be updated
4118268Ssteve.reinhardt@amd.com    // later
4128268Ssteve.reinhardt@amd.com    uint16_t bank_id = banksPerRank * rank + bank;
4138268Ssteve.reinhardt@amd.com    return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr,
4148268Ssteve.reinhardt@amd.com                          size, ranks[rank]->banks[bank], *ranks[rank]);
4152632Sstever@eecs.umich.edu}
4162632Sstever@eecs.umich.edu
4172632Sstever@eecs.umich.eduvoid
4182632Sstever@eecs.umich.eduDRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount)
4198268Ssteve.reinhardt@amd.com{
4202632Sstever@eecs.umich.edu    // only add to the read queue here. whenever the request is
4218268Ssteve.reinhardt@amd.com    // eventually done, set the readyTime, and call schedule()
4228268Ssteve.reinhardt@amd.com    assert(!pkt->isWrite());
4238268Ssteve.reinhardt@amd.com
4248268Ssteve.reinhardt@amd.com    assert(pktCount != 0);
4253718Sstever@eecs.umich.edu
4262634Sstever@eecs.umich.edu    // if the request size is larger than burst size, the pkt is split into
4272634Sstever@eecs.umich.edu    // multiple DRAM packets
4285863Snate@binkert.org    // Note if the pkt starting address is not aligened to burst size, the
4292638Sstever@eecs.umich.edu    // address of first DRAM packet is kept unaliged. Subsequent DRAM packets
4308268Ssteve.reinhardt@amd.com    // are aligned to burst size boundaries. This is to ensure we accurately
4312632Sstever@eecs.umich.edu    // check read packets against packets in write queue.
4322632Sstever@eecs.umich.edu    Addr addr = pkt->getAddr();
4332632Sstever@eecs.umich.edu    unsigned pktsServicedByWrQ = 0;
4342632Sstever@eecs.umich.edu    BurstHelper* burst_helper = NULL;
4352632Sstever@eecs.umich.edu    for (int cnt = 0; cnt < pktCount; ++cnt) {
4361858SN/A        unsigned size = std::min((addr | (burstSize - 1)) + 1,
4373716Sstever@eecs.umich.edu                        pkt->getAddr() + pkt->getSize()) - addr;
4382638Sstever@eecs.umich.edu        readPktSize[ceilLog2(size)]++;
4392638Sstever@eecs.umich.edu        readBursts++;
4402638Sstever@eecs.umich.edu
4412638Sstever@eecs.umich.edu        // First check write buffer to see if the data is already at
4422638Sstever@eecs.umich.edu        // the controller
4432638Sstever@eecs.umich.edu        bool foundInWrQ = false;
4442638Sstever@eecs.umich.edu        Addr burst_addr = burstAlign(addr);
4455863Snate@binkert.org        // if the burst address is not present then there is no need
4465863Snate@binkert.org        // looking any further
4475863Snate@binkert.org        if (isInWriteQueue.find(burst_addr) != isInWriteQueue.end()) {
448955SN/A            for (const auto& p : writeQueue) {
4495341Sstever@gmail.com                // check if the read is subsumed in the write queue
4505341Sstever@gmail.com                // packet we are looking at
4515863Snate@binkert.org                if (p->addr <= addr && (addr + size) <= (p->addr + p->size)) {
4527756SAli.Saidi@ARM.com                    foundInWrQ = true;
4535341Sstever@gmail.com                    servicedByWrQ++;
4546121Snate@binkert.org                    pktsServicedByWrQ++;
4554494Ssaidi@eecs.umich.edu                    DPRINTF(DRAM, "Read to addr %lld with size %d serviced by "
4566121Snate@binkert.org                            "write queue\n", addr, size);
4571105SN/A                    bytesReadWrQ += burstSize;
4582667Sstever@eecs.umich.edu                    break;
4592667Sstever@eecs.umich.edu                }
4602667Sstever@eecs.umich.edu            }
4612667Sstever@eecs.umich.edu        }
4626121Snate@binkert.org
4632667Sstever@eecs.umich.edu        // If not found in the write q, make a DRAM packet and
4645341Sstever@gmail.com        // push it onto the read queue
4655863Snate@binkert.org        if (!foundInWrQ) {
4665341Sstever@gmail.com
4675341Sstever@gmail.com            // Make the burst helper for split packets
4685341Sstever@gmail.com            if (pktCount > 1 && burst_helper == NULL) {
4698120Sgblack@eecs.umich.edu                DPRINTF(DRAM, "Read to addr %lld translates to %d "
4705341Sstever@gmail.com                        "dram requests\n", pkt->getAddr(), pktCount);
4718120Sgblack@eecs.umich.edu                burst_helper = new BurstHelper(pktCount);
4725341Sstever@gmail.com            }
4738120Sgblack@eecs.umich.edu
4746121Snate@binkert.org            DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true);
4756121Snate@binkert.org            dram_pkt->burstHelper = burst_helper;
4768980Ssteve.reinhardt@amd.com
4779396Sandreas.hansson@arm.com            assert(!readQueueFull(1));
4785397Ssaidi@eecs.umich.edu            rdQLenPdf[readQueue.size() + respQueue.size()]++;
4795397Ssaidi@eecs.umich.edu
4807727SAli.Saidi@ARM.com            DPRINTF(DRAM, "Adding to read queue\n");
4818268Ssteve.reinhardt@amd.com
4826168Snate@binkert.org            readQueue.push_back(dram_pkt);
4835341Sstever@gmail.com
4848120Sgblack@eecs.umich.edu            // Update stats
4858120Sgblack@eecs.umich.edu            avgRdQLen = readQueue.size() + respQueue.size();
4868120Sgblack@eecs.umich.edu        }
4876814Sgblack@eecs.umich.edu
4885863Snate@binkert.org        // Starting address of next dram pkt (aligend to burstSize boundary)
4898120Sgblack@eecs.umich.edu        addr = (addr | (burstSize - 1)) + 1;
4905341Sstever@gmail.com    }
4915863Snate@binkert.org
4928268Ssteve.reinhardt@amd.com    // If all packets are serviced by write queue, we send the repsonse back
4936121Snate@binkert.org    if (pktsServicedByWrQ == pktCount) {
4946121Snate@binkert.org        accessAndRespond(pkt, frontendLatency);
4958268Ssteve.reinhardt@amd.com        return;
4965742Snate@binkert.org    }
4975742Snate@binkert.org
4985341Sstever@gmail.com    // Update how many split packets are serviced by write queue
4995742Snate@binkert.org    if (burst_helper != NULL)
5005742Snate@binkert.org        burst_helper->burstsServiced = pktsServicedByWrQ;
5015341Sstever@gmail.com
5026017Snate@binkert.org    // If we are not already scheduled to get a request out of the
5036121Snate@binkert.org    // queue, do so now
5046017Snate@binkert.org    if (!nextReqEvent.scheduled()) {
5057816Ssteve.reinhardt@amd.com        DPRINTF(DRAM, "Request scheduled immediately\n");
5067756SAli.Saidi@ARM.com        schedule(nextReqEvent, curTick());
5077756SAli.Saidi@ARM.com    }
5087756SAli.Saidi@ARM.com}
5097756SAli.Saidi@ARM.com
5107756SAli.Saidi@ARM.comvoid
5117756SAli.Saidi@ARM.comDRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount)
5127756SAli.Saidi@ARM.com{
5137756SAli.Saidi@ARM.com    // only add to the write queue here. whenever the request is
5147816Ssteve.reinhardt@amd.com    // eventually done, set the readyTime, and call schedule()
5157816Ssteve.reinhardt@amd.com    assert(pkt->isWrite());
5167816Ssteve.reinhardt@amd.com
5177816Ssteve.reinhardt@amd.com    // if the request size is larger than burst size, the pkt is split into
5187816Ssteve.reinhardt@amd.com    // multiple DRAM packets
5197816Ssteve.reinhardt@amd.com    Addr addr = pkt->getAddr();
5207816Ssteve.reinhardt@amd.com    for (int cnt = 0; cnt < pktCount; ++cnt) {
5217816Ssteve.reinhardt@amd.com        unsigned size = std::min((addr | (burstSize - 1)) + 1,
5227816Ssteve.reinhardt@amd.com                        pkt->getAddr() + pkt->getSize()) - addr;
5237816Ssteve.reinhardt@amd.com        writePktSize[ceilLog2(size)]++;
5247756SAli.Saidi@ARM.com        writeBursts++;
5257816Ssteve.reinhardt@amd.com
5267816Ssteve.reinhardt@amd.com        // see if we can merge with an existing item in the write
5277816Ssteve.reinhardt@amd.com        // queue and keep track of whether we have merged or not
5287816Ssteve.reinhardt@amd.com        bool merged = isInWriteQueue.find(burstAlign(addr)) !=
5297816Ssteve.reinhardt@amd.com            isInWriteQueue.end();
5307816Ssteve.reinhardt@amd.com
5317816Ssteve.reinhardt@amd.com        // if the item was not merged we need to create a new write
5327816Ssteve.reinhardt@amd.com        // and enqueue it
5337816Ssteve.reinhardt@amd.com        if (!merged) {
5347816Ssteve.reinhardt@amd.com            DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false);
5357816Ssteve.reinhardt@amd.com
5367816Ssteve.reinhardt@amd.com            assert(writeQueue.size() < writeBufferSize);
5377816Ssteve.reinhardt@amd.com            wrQLenPdf[writeQueue.size()]++;
5387816Ssteve.reinhardt@amd.com
5397816Ssteve.reinhardt@amd.com            DPRINTF(DRAM, "Adding to write queue\n");
5407816Ssteve.reinhardt@amd.com
5417816Ssteve.reinhardt@amd.com            writeQueue.push_back(dram_pkt);
5427816Ssteve.reinhardt@amd.com            isInWriteQueue.insert(burstAlign(addr));
5437816Ssteve.reinhardt@amd.com            assert(writeQueue.size() == isInWriteQueue.size());
5447816Ssteve.reinhardt@amd.com
5457816Ssteve.reinhardt@amd.com            // Update stats
5467816Ssteve.reinhardt@amd.com            avgWrQLen = writeQueue.size();
5477816Ssteve.reinhardt@amd.com        } else {
5487816Ssteve.reinhardt@amd.com            DPRINTF(DRAM, "Merging write burst with existing queue entry\n");
5497816Ssteve.reinhardt@amd.com
5507816Ssteve.reinhardt@amd.com            // keep track of the fact that this burst effectively
5517816Ssteve.reinhardt@amd.com            // disappeared as it was merged with an existing one
5527816Ssteve.reinhardt@amd.com            mergedWrBursts++;
5537816Ssteve.reinhardt@amd.com        }
5547816Ssteve.reinhardt@amd.com
5557816Ssteve.reinhardt@amd.com        // Starting address of next dram pkt (aligend to burstSize boundary)
5567816Ssteve.reinhardt@amd.com        addr = (addr | (burstSize - 1)) + 1;
5577816Ssteve.reinhardt@amd.com    }
5587816Ssteve.reinhardt@amd.com
5597816Ssteve.reinhardt@amd.com    // we do not wait for the writes to be send to the actual memory,
5607816Ssteve.reinhardt@amd.com    // but instead take responsibility for the consistency here and
5617816Ssteve.reinhardt@amd.com    // snoop the write queue for any upcoming reads
5627816Ssteve.reinhardt@amd.com    // @todo, if a pkt size is larger than burst size, we might need a
5637816Ssteve.reinhardt@amd.com    // different front end latency
5647816Ssteve.reinhardt@amd.com    accessAndRespond(pkt, frontendLatency);
5657816Ssteve.reinhardt@amd.com
5667816Ssteve.reinhardt@amd.com    // If we are not already scheduled to get a request out of the
5677816Ssteve.reinhardt@amd.com    // queue, do so now
5687816Ssteve.reinhardt@amd.com    if (!nextReqEvent.scheduled()) {
5697816Ssteve.reinhardt@amd.com        DPRINTF(DRAM, "Request scheduled immediately\n");
5707816Ssteve.reinhardt@amd.com        schedule(nextReqEvent, curTick());
5717816Ssteve.reinhardt@amd.com    }
5727816Ssteve.reinhardt@amd.com}
5737816Ssteve.reinhardt@amd.com
5747816Ssteve.reinhardt@amd.comvoid
5757816Ssteve.reinhardt@amd.comDRAMCtrl::printQs() const {
5767816Ssteve.reinhardt@amd.com    DPRINTF(DRAM, "===READ QUEUE===\n\n");
5777816Ssteve.reinhardt@amd.com    for (auto i = readQueue.begin() ;  i != readQueue.end() ; ++i) {
5787816Ssteve.reinhardt@amd.com        DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
5797816Ssteve.reinhardt@amd.com    }
5807816Ssteve.reinhardt@amd.com    DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
5817816Ssteve.reinhardt@amd.com    for (auto i = respQueue.begin() ;  i != respQueue.end() ; ++i) {
5827816Ssteve.reinhardt@amd.com        DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
5837816Ssteve.reinhardt@amd.com    }
5847816Ssteve.reinhardt@amd.com    DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
5857816Ssteve.reinhardt@amd.com    for (auto i = writeQueue.begin() ;  i != writeQueue.end() ; ++i) {
5868947Sandreas.hansson@arm.com        DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
5878947Sandreas.hansson@arm.com    }
5887756SAli.Saidi@ARM.com}
5898120Sgblack@eecs.umich.edu
5907756SAli.Saidi@ARM.combool
5917756SAli.Saidi@ARM.comDRAMCtrl::recvTimingReq(PacketPtr pkt)
5927756SAli.Saidi@ARM.com{
5937756SAli.Saidi@ARM.com    // This is where we enter from the outside world
5947816Ssteve.reinhardt@amd.com    DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n",
5957816Ssteve.reinhardt@amd.com            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
5967816Ssteve.reinhardt@amd.com
5977816Ssteve.reinhardt@amd.com    panic_if(pkt->cacheResponding(), "Should not see packets where cache "
5987816Ssteve.reinhardt@amd.com             "is responding");
5997816Ssteve.reinhardt@amd.com
6007816Ssteve.reinhardt@amd.com    panic_if(!(pkt->isRead() || pkt->isWrite()),
6017816Ssteve.reinhardt@amd.com             "Should only see read and writes at memory controller\n");
6027816Ssteve.reinhardt@amd.com
6037816Ssteve.reinhardt@amd.com    // Calc avg gap between requests
6047756SAli.Saidi@ARM.com    if (prevArrival != 0) {
6057756SAli.Saidi@ARM.com        totGap += curTick() - prevArrival;
6069227Sandreas.hansson@arm.com    }
6079227Sandreas.hansson@arm.com    prevArrival = curTick();
6089227Sandreas.hansson@arm.com
6099227Sandreas.hansson@arm.com
6109590Sandreas@sandberg.pp.se    // Find out how many dram packets a pkt translates to
6119590Sandreas@sandberg.pp.se    // If the burst size is equal or larger than the pkt size, then a pkt
6129590Sandreas@sandberg.pp.se    // translates to only one dram packet. Otherwise, a pkt translates to
6139590Sandreas@sandberg.pp.se    // multiple dram packets
6149590Sandreas@sandberg.pp.se    unsigned size = pkt->getSize();
6159590Sandreas@sandberg.pp.se    unsigned offset = pkt->getAddr() & (burstSize - 1);
6166654Snate@binkert.org    unsigned int dram_pkt_count = divCeil(offset + size, burstSize);
6176654Snate@binkert.org
6185871Snate@binkert.org    // check local buffers and do not accept if full
6196121Snate@binkert.org    if (pkt->isRead()) {
6208946Sandreas.hansson@arm.com        assert(size != 0);
6219419Sandreas.hansson@arm.com        if (readQueueFull(dram_pkt_count)) {
6223940Ssaidi@eecs.umich.edu            DPRINTF(DRAM, "Read queue full, not accepting\n");
6233918Ssaidi@eecs.umich.edu            // remember that we have to retry this port
6243918Ssaidi@eecs.umich.edu            retryRdReq = true;
6251858SN/A            numRdRetry++;
6269556Sandreas.hansson@arm.com            return false;
6279556Sandreas.hansson@arm.com        } else {
6289556Sandreas.hansson@arm.com            addToReadQueue(pkt, dram_pkt_count);
6299556Sandreas.hansson@arm.com            readReqs++;
63011294Sandreas.hansson@arm.com            bytesReadSys += size;
63111294Sandreas.hansson@arm.com        }
63211294Sandreas.hansson@arm.com    } else {
63311294Sandreas.hansson@arm.com        assert(pkt->isWrite());
63410878Sandreas.hansson@arm.com        assert(size != 0);
63510878Sandreas.hansson@arm.com        if (writeQueueFull(dram_pkt_count)) {
6369556Sandreas.hansson@arm.com            DPRINTF(DRAM, "Write queue full, not accepting\n");
6379556Sandreas.hansson@arm.com            // remember that we have to retry this port
6389556Sandreas.hansson@arm.com            retryWrReq = true;
6399556Sandreas.hansson@arm.com            numWrRetry++;
6409556Sandreas.hansson@arm.com            return false;
6419556Sandreas.hansson@arm.com        } else {
6429556Sandreas.hansson@arm.com            addToWriteQueue(pkt, dram_pkt_count);
6439556Sandreas.hansson@arm.com            writeReqs++;
6449556Sandreas.hansson@arm.com            bytesWrittenSys += size;
6459556Sandreas.hansson@arm.com        }
6469556Sandreas.hansson@arm.com    }
6479556Sandreas.hansson@arm.com
6489556Sandreas.hansson@arm.com    return true;
6499556Sandreas.hansson@arm.com}
6509556Sandreas.hansson@arm.com
6519556Sandreas.hansson@arm.comvoid
6529556Sandreas.hansson@arm.comDRAMCtrl::processRespondEvent()
6539556Sandreas.hansson@arm.com{
6549556Sandreas.hansson@arm.com    DPRINTF(DRAM,
6556121Snate@binkert.org            "processRespondEvent(): Some req has reached its readyTime\n");
65610878Sandreas.hansson@arm.com
65710238Sandreas.hansson@arm.com    DRAMPacket* dram_pkt = respQueue.front();
65810878Sandreas.hansson@arm.com
6599420Sandreas.hansson@arm.com    if (dram_pkt->burstHelper) {
66010878Sandreas.hansson@arm.com        // it is a split packet
66110878Sandreas.hansson@arm.com        dram_pkt->burstHelper->burstsServiced++;
6629420Sandreas.hansson@arm.com        if (dram_pkt->burstHelper->burstsServiced ==
6639420Sandreas.hansson@arm.com            dram_pkt->burstHelper->burstCount) {
6649420Sandreas.hansson@arm.com            // we have now serviced all children packets of a system packet
6659420Sandreas.hansson@arm.com            // so we can now respond to the requester
6669420Sandreas.hansson@arm.com            // @todo we probably want to have a different front end and back
66710264Sandreas.hansson@arm.com            // end latency for split packets
66810264Sandreas.hansson@arm.com            accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
66910264Sandreas.hansson@arm.com            delete dram_pkt->burstHelper;
67010264Sandreas.hansson@arm.com            dram_pkt->burstHelper = NULL;
67110264Sandreas.hansson@arm.com        }
67210866Sandreas.hansson@arm.com    } else {
67310866Sandreas.hansson@arm.com        // it is not a split packet
67410264Sandreas.hansson@arm.com        accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
67510866Sandreas.hansson@arm.com    }
67610866Sandreas.hansson@arm.com
67710866Sandreas.hansson@arm.com    delete respQueue.front();
67810866Sandreas.hansson@arm.com    respQueue.pop_front();
67910866Sandreas.hansson@arm.com
68010866Sandreas.hansson@arm.com    if (!respQueue.empty()) {
68110866Sandreas.hansson@arm.com        assert(respQueue.front()->readyTime >= curTick());
68210264Sandreas.hansson@arm.com        assert(!respondEvent.scheduled());
68310264Sandreas.hansson@arm.com        schedule(respondEvent, respQueue.front()->readyTime);
68410264Sandreas.hansson@arm.com    } else {
68510264Sandreas.hansson@arm.com        // if there is nothing left in any queue, signal a drain
68610264Sandreas.hansson@arm.com        if (drainState() == DrainState::Draining &&
68710264Sandreas.hansson@arm.com            writeQueue.empty() && readQueue.empty() && allRanksDrained()) {
68810264Sandreas.hansson@arm.com
68910457Sandreas.hansson@arm.com            DPRINTF(Drain, "DRAM controller done draining\n");
69010457Sandreas.hansson@arm.com            signalDrainDone();
69110457Sandreas.hansson@arm.com        }
69210457Sandreas.hansson@arm.com    }
69310457Sandreas.hansson@arm.com
69410457Sandreas.hansson@arm.com    // We have made a location in the queue available at this point,
69510457Sandreas.hansson@arm.com    // so if there is a read that was forced to wait, retry now
69610457Sandreas.hansson@arm.com    if (retryRdReq) {
69710457Sandreas.hansson@arm.com        retryRdReq = false;
69810238Sandreas.hansson@arm.com        port.sendRetryReq();
69910238Sandreas.hansson@arm.com    }
70010238Sandreas.hansson@arm.com}
70110238Sandreas.hansson@arm.com
70210238Sandreas.hansson@arm.combool
70310238Sandreas.hansson@arm.comDRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue, Tick extra_col_delay)
70410416Sandreas.hansson@arm.com{
70510238Sandreas.hansson@arm.com    // This method does the arbitration between requests. The chosen
7069227Sandreas.hansson@arm.com    // packet is simply moved to the head of the queue. The other
70710238Sandreas.hansson@arm.com    // methods know that this is the place to look. For example, with
70810416Sandreas.hansson@arm.com    // FCFS, this method does nothing
70910416Sandreas.hansson@arm.com    assert(!queue.empty());
7109227Sandreas.hansson@arm.com
7119590Sandreas@sandberg.pp.se    // bool to indicate if a packet to an available rank is found
7129590Sandreas@sandberg.pp.se    bool found_packet = false;
7139590Sandreas@sandberg.pp.se    if (queue.size() == 1) {
7148737Skoansin.tan@gmail.com        DRAMPacket* dram_pkt = queue.front();
71510878Sandreas.hansson@arm.com        // available rank corresponds to state refresh idle
71610878Sandreas.hansson@arm.com        if (ranks[dram_pkt->rank]->isAvailable()) {
7179420Sandreas.hansson@arm.com            found_packet = true;
7188737Skoansin.tan@gmail.com            DPRINTF(DRAM, "Single request, going to a free rank\n");
71910106SMitch.Hayenga@arm.com        } else {
7208737Skoansin.tan@gmail.com            DPRINTF(DRAM, "Single request, going to a busy rank\n");
7218737Skoansin.tan@gmail.com        }
72210878Sandreas.hansson@arm.com        return found_packet;
72310878Sandreas.hansson@arm.com    }
7248737Skoansin.tan@gmail.com
7258737Skoansin.tan@gmail.com    if (memSchedPolicy == Enums::fcfs) {
7268737Skoansin.tan@gmail.com        // check if there is a packet going to a free rank
7278737Skoansin.tan@gmail.com        for (auto i = queue.begin(); i != queue.end() ; ++i) {
7288737Skoansin.tan@gmail.com            DRAMPacket* dram_pkt = *i;
7298737Skoansin.tan@gmail.com            if (ranks[dram_pkt->rank]->isAvailable()) {
73011294Sandreas.hansson@arm.com                queue.erase(i);
7319556Sandreas.hansson@arm.com                queue.push_front(dram_pkt);
7329556Sandreas.hansson@arm.com                found_packet = true;
7339556Sandreas.hansson@arm.com                break;
73411294Sandreas.hansson@arm.com            }
73510278SAndreas.Sandberg@ARM.com        }
73610278SAndreas.Sandberg@ARM.com    } else if (memSchedPolicy == Enums::frfcfs) {
73710278SAndreas.Sandberg@ARM.com        found_packet = reorderQueue(queue, extra_col_delay);
73810278SAndreas.Sandberg@ARM.com    } else
73910278SAndreas.Sandberg@ARM.com        panic("No scheduling policy chosen\n");
74010278SAndreas.Sandberg@ARM.com    return found_packet;
7419556Sandreas.hansson@arm.com}
7429590Sandreas@sandberg.pp.se
7439590Sandreas@sandberg.pp.sebool
7449420Sandreas.hansson@arm.comDRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue, Tick extra_col_delay)
7459846Sandreas.hansson@arm.com{
7469846Sandreas.hansson@arm.com    // Only determine this if needed
7479846Sandreas.hansson@arm.com    uint64_t earliest_banks = 0;
7489846Sandreas.hansson@arm.com    bool hidden_bank_prep = false;
7498946Sandreas.hansson@arm.com
7503918Ssaidi@eecs.umich.edu    // search for seamless row hits first, if no seamless row hit is
7519068SAli.Saidi@ARM.com    // found then determine if there are other packets that can be issued
7529068SAli.Saidi@ARM.com    // without incurring additional bus delay due to bank timing
7539068SAli.Saidi@ARM.com    // Will select closed rows first to enable more open row possibilies
7549068SAli.Saidi@ARM.com    // in future selections
7559068SAli.Saidi@ARM.com    bool found_hidden_bank = false;
7569068SAli.Saidi@ARM.com
7579068SAli.Saidi@ARM.com    // remember if we found a row hit, not seamless, but bank prepped
7589068SAli.Saidi@ARM.com    // and ready
7599068SAli.Saidi@ARM.com    bool found_prepped_pkt = false;
7609419Sandreas.hansson@arm.com
7619068SAli.Saidi@ARM.com    // if we have no row hit, prepped or not, and no seamless packet,
7629068SAli.Saidi@ARM.com    // just go for the earliest possible
7639068SAli.Saidi@ARM.com    bool found_earliest_pkt = false;
7649068SAli.Saidi@ARM.com
7659068SAli.Saidi@ARM.com    auto selected_pkt_it = queue.end();
7669068SAli.Saidi@ARM.com
7673918Ssaidi@eecs.umich.edu    // time we need to issue a column command to be seamless
7683918Ssaidi@eecs.umich.edu    const Tick min_col_at = std::max(busBusyUntil - tCL + extra_col_delay,
7696157Snate@binkert.org                                     curTick());
7706157Snate@binkert.org
7716157Snate@binkert.org    for (auto i = queue.begin(); i != queue.end() ; ++i) {
7726157Snate@binkert.org        DRAMPacket* dram_pkt = *i;
7735397Ssaidi@eecs.umich.edu        const Bank& bank = dram_pkt->bankRef;
7745397Ssaidi@eecs.umich.edu
7756121Snate@binkert.org        // check if rank is available, if not, jump to the next packet
7766121Snate@binkert.org        if (dram_pkt->rankRef.isAvailable()) {
7776121Snate@binkert.org            // check if it is a row hit
7786121Snate@binkert.org            if (bank.openRow == dram_pkt->row) {
7796121Snate@binkert.org                // no additional rank-to-rank or same bank-group
7806121Snate@binkert.org                // delays, or we switched read/write and might as well
7815397Ssaidi@eecs.umich.edu                // go for the row hit
7821851SN/A                if (bank.colAllowedAt <= min_col_at) {
7831851SN/A                    // FCFS within the hits, giving priority to
7847739Sgblack@eecs.umich.edu                    // commands that can issue seamlessly, without
785955SN/A                    // additional delay, such as same rank accesses
7869396Sandreas.hansson@arm.com                    // and/or different bank-group accesses
7879396Sandreas.hansson@arm.com                    DPRINTF(DRAM, "Seamless row buffer hit\n");
7889396Sandreas.hansson@arm.com                    selected_pkt_it = i;
7899396Sandreas.hansson@arm.com                    // no need to look through the remaining queue entries
7909396Sandreas.hansson@arm.com                    break;
7919396Sandreas.hansson@arm.com                } else if (!found_hidden_bank && !found_prepped_pkt) {
7929396Sandreas.hansson@arm.com                    // if we did not find a packet to a closed row that can
7939396Sandreas.hansson@arm.com                    // issue the bank commands without incurring delay, and
7949396Sandreas.hansson@arm.com                    // did not yet find a packet to a prepped row, remember
7959396Sandreas.hansson@arm.com                    // the current one
7969396Sandreas.hansson@arm.com                    selected_pkt_it = i;
7979396Sandreas.hansson@arm.com                    found_prepped_pkt = true;
7989396Sandreas.hansson@arm.com                    DPRINTF(DRAM, "Prepped row buffer hit\n");
7999396Sandreas.hansson@arm.com                }
8009396Sandreas.hansson@arm.com            } else if (!found_earliest_pkt) {
8019396Sandreas.hansson@arm.com                // if we have not initialised the bank status, do it
8029477Sandreas.hansson@arm.com                // now, and only once per scheduling decisions
8039477Sandreas.hansson@arm.com                if (earliest_banks == 0) {
8049477Sandreas.hansson@arm.com                    // determine entries with earliest bank delay
8059477Sandreas.hansson@arm.com                    pair<uint64_t, bool> bankStatus =
8069477Sandreas.hansson@arm.com                        minBankPrep(queue, min_col_at);
8079477Sandreas.hansson@arm.com                    earliest_banks = bankStatus.first;
8089477Sandreas.hansson@arm.com                    hidden_bank_prep = bankStatus.second;
8099477Sandreas.hansson@arm.com                }
8109477Sandreas.hansson@arm.com
8119477Sandreas.hansson@arm.com                // bank is amongst first available banks
8129477Sandreas.hansson@arm.com                // minBankPrep will give priority to packets that can
8139477Sandreas.hansson@arm.com                // issue seamlessly
8149477Sandreas.hansson@arm.com                if (bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) {
8159477Sandreas.hansson@arm.com                    found_earliest_pkt = true;
8169477Sandreas.hansson@arm.com                    found_hidden_bank = hidden_bank_prep;
8179477Sandreas.hansson@arm.com
8189477Sandreas.hansson@arm.com                    // give priority to packets that can issue
8199477Sandreas.hansson@arm.com                    // bank commands 'behind the scenes'
8209477Sandreas.hansson@arm.com                    // any additional delay if any will be due to
8219477Sandreas.hansson@arm.com                    // col-to-col command requirements
8229477Sandreas.hansson@arm.com                    if (hidden_bank_prep || !found_prepped_pkt)
8239477Sandreas.hansson@arm.com                        selected_pkt_it = i;
8249396Sandreas.hansson@arm.com                }
8253053Sstever@eecs.umich.edu            }
8266121Snate@binkert.org        }
8273053Sstever@eecs.umich.edu    }
8283053Sstever@eecs.umich.edu
8293053Sstever@eecs.umich.edu    if (selected_pkt_it != queue.end()) {
8303053Sstever@eecs.umich.edu        DRAMPacket* selected_pkt = *selected_pkt_it;
8313053Sstever@eecs.umich.edu        queue.erase(selected_pkt_it);
8329072Sandreas.hansson@arm.com        queue.push_front(selected_pkt);
8333053Sstever@eecs.umich.edu        return true;
8344742Sstever@eecs.umich.edu    }
8354742Sstever@eecs.umich.edu
8363053Sstever@eecs.umich.edu    return false;
8373053Sstever@eecs.umich.edu}
8383053Sstever@eecs.umich.edu
83910181SCurtis.Dunham@arm.comvoid
8406654Snate@binkert.orgDRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency)
8413053Sstever@eecs.umich.edu{
8423053Sstever@eecs.umich.edu    DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
8433053Sstever@eecs.umich.edu
8443053Sstever@eecs.umich.edu    bool needsResponse = pkt->needsResponse();
84510425Sandreas.hansson@arm.com    // do the actual memory access which also turns the packet into a
84610425Sandreas.hansson@arm.com    // response
84710425Sandreas.hansson@arm.com    access(pkt);
84810425Sandreas.hansson@arm.com
84910425Sandreas.hansson@arm.com    // turn packet around to go back to requester if response expected
85010425Sandreas.hansson@arm.com    if (needsResponse) {
85110425Sandreas.hansson@arm.com        // access already turned the packet into a response
85210425Sandreas.hansson@arm.com        assert(pkt->isResponse());
85310425Sandreas.hansson@arm.com        // response_time consumes the static latency and is charged also
85410425Sandreas.hansson@arm.com        // with headerDelay that takes into account the delay provided by
85510425Sandreas.hansson@arm.com        // the xbar and also the payloadDelay that takes into account the
8562667Sstever@eecs.umich.edu        // number of data beats.
8574554Sbinkertn@umich.edu        Tick response_time = curTick() + static_latency + pkt->headerDelay +
8586121Snate@binkert.org                             pkt->payloadDelay;
8592667Sstever@eecs.umich.edu        // Here we reset the timing of the packet before sending it out.
86010710Sandreas.hansson@arm.com        pkt->headerDelay = pkt->payloadDelay = 0;
86110710Sandreas.hansson@arm.com
86210710Sandreas.hansson@arm.com        // queue the packet in the response queue to be sent out after
86310710Sandreas.hansson@arm.com        // the static latency has passed
86410710Sandreas.hansson@arm.com        port.schedTimingResp(pkt, response_time, true);
86510710Sandreas.hansson@arm.com    } else {
86610710Sandreas.hansson@arm.com        // @todo the packet is going to be deleted, and the DRAMPacket
86710710Sandreas.hansson@arm.com        // is still having a pointer to it
86810710Sandreas.hansson@arm.com        pendingDelete.reset(pkt);
86910384SCurtis.Dunham@arm.com    }
8704554Sbinkertn@umich.edu
8714554Sbinkertn@umich.edu    DPRINTF(DRAM, "Done\n");
8724554Sbinkertn@umich.edu
8736121Snate@binkert.org    return;
8744554Sbinkertn@umich.edu}
8754554Sbinkertn@umich.edu
8764554Sbinkertn@umich.eduvoid
8774781Snate@binkert.orgDRAMCtrl::activateBank(Rank& rank_ref, Bank& bank_ref,
8784554Sbinkertn@umich.edu                       Tick act_tick, uint32_t row)
8794554Sbinkertn@umich.edu{
8802667Sstever@eecs.umich.edu    assert(rank_ref.actTicks.size() == activationLimit);
8814554Sbinkertn@umich.edu
8824554Sbinkertn@umich.edu    DPRINTF(DRAM, "Activate at tick %d\n", act_tick);
8834554Sbinkertn@umich.edu
8844554Sbinkertn@umich.edu    // update the open row
8852667Sstever@eecs.umich.edu    assert(bank_ref.openRow == Bank::NO_ROW);
8864554Sbinkertn@umich.edu    bank_ref.openRow = row;
8872667Sstever@eecs.umich.edu
8884554Sbinkertn@umich.edu    // start counting anew, this covers both the case when we
8896121Snate@binkert.org    // auto-precharged, and when this access is forced to
8902667Sstever@eecs.umich.edu    // precharge
8919986Sandreas@sandberg.pp.se    bank_ref.bytesAccessed = 0;
8929986Sandreas@sandberg.pp.se    bank_ref.rowAccesses = 0;
8939986Sandreas@sandberg.pp.se
8949986Sandreas@sandberg.pp.se    ++rank_ref.numBanksActive;
8959986Sandreas@sandberg.pp.se    assert(rank_ref.numBanksActive <= banksPerRank);
8969986Sandreas@sandberg.pp.se
8979986Sandreas@sandberg.pp.se    DPRINTF(DRAM, "Activate bank %d, rank %d at tick %lld, now got %d active\n",
8989986Sandreas@sandberg.pp.se            bank_ref.bank, rank_ref.rank, act_tick,
8999986Sandreas@sandberg.pp.se            ranks[rank_ref.rank]->numBanksActive);
9009986Sandreas@sandberg.pp.se
9019986Sandreas@sandberg.pp.se    rank_ref.cmdList.push_back(Command(MemCommand::ACT, bank_ref.bank,
9029986Sandreas@sandberg.pp.se                               act_tick));
9039986Sandreas@sandberg.pp.se
9049986Sandreas@sandberg.pp.se    DPRINTF(DRAMPower, "%llu,ACT,%d,%d\n", divCeil(act_tick, tCK) -
9059986Sandreas@sandberg.pp.se            timeStampOffset, bank_ref.bank, rank_ref.rank);
9069986Sandreas@sandberg.pp.se
9079986Sandreas@sandberg.pp.se    // The next access has to respect tRAS for this bank
9089986Sandreas@sandberg.pp.se    bank_ref.preAllowedAt = act_tick + tRAS;
9099986Sandreas@sandberg.pp.se
9109986Sandreas@sandberg.pp.se    // Respect the row-to-column command delay
9112638Sstever@eecs.umich.edu    bank_ref.colAllowedAt = std::max(act_tick + tRCD, bank_ref.colAllowedAt);
9122638Sstever@eecs.umich.edu
9136121Snate@binkert.org    // start by enforcing tRRD
9143716Sstever@eecs.umich.edu    for (int i = 0; i < banksPerRank; i++) {
9155522Snate@binkert.org        // next activate to any bank in this rank must not happen
9169986Sandreas@sandberg.pp.se        // before tRRD
9179986Sandreas@sandberg.pp.se        if (bankGroupArch && (bank_ref.bankgr == rank_ref.banks[i].bankgr)) {
9189986Sandreas@sandberg.pp.se            // bank group architecture requires longer delays between
9195522Snate@binkert.org            // ACT commands within the same bank group.  Use tRRD_L
9205227Ssaidi@eecs.umich.edu            // in this case
9215227Ssaidi@eecs.umich.edu            rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD_L,
9225227Ssaidi@eecs.umich.edu                                             rank_ref.banks[i].actAllowedAt);
9235227Ssaidi@eecs.umich.edu        } else {
9246654Snate@binkert.org            // use shorter tRRD value when either
9256654Snate@binkert.org            // 1) bank group architecture is not supportted
9267769SAli.Saidi@ARM.com            // 2) bank is in a different bank group
9277769SAli.Saidi@ARM.com            rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD,
9287769SAli.Saidi@ARM.com                                             rank_ref.banks[i].actAllowedAt);
9297769SAli.Saidi@ARM.com        }
9305227Ssaidi@eecs.umich.edu    }
9315227Ssaidi@eecs.umich.edu
9325227Ssaidi@eecs.umich.edu    // next, we deal with tXAW, if the activation limit is disabled
9335204Sstever@gmail.com    // then we directly schedule an activate power event
9345204Sstever@gmail.com    if (!rank_ref.actTicks.empty()) {
9355204Sstever@gmail.com        // sanity check
9365204Sstever@gmail.com        if (rank_ref.actTicks.back() &&
9375204Sstever@gmail.com           (act_tick - rank_ref.actTicks.back()) < tXAW) {
9385204Sstever@gmail.com            panic("Got %d activates in window %d (%llu - %llu) which "
9395204Sstever@gmail.com                  "is smaller than %llu\n", activationLimit, act_tick -
9405204Sstever@gmail.com                  rank_ref.actTicks.back(), act_tick,
9415204Sstever@gmail.com                  rank_ref.actTicks.back(), tXAW);
9425204Sstever@gmail.com        }
9435204Sstever@gmail.com
9445204Sstever@gmail.com        // shift the times used for the book keeping, the last element
9455204Sstever@gmail.com        // (highest index) is the oldest one and hence the lowest value
9465204Sstever@gmail.com        rank_ref.actTicks.pop_back();
9475204Sstever@gmail.com
9485204Sstever@gmail.com        // record an new activation (in the future)
9495204Sstever@gmail.com        rank_ref.actTicks.push_front(act_tick);
9506121Snate@binkert.org
9515204Sstever@gmail.com        // cannot activate more than X times in time window tXAW, push the
9527727SAli.Saidi@ARM.com        // next one (the X + 1'st activate) to be tXAW away from the
9537727SAli.Saidi@ARM.com        // oldest in our window of X
9547727SAli.Saidi@ARM.com        if (rank_ref.actTicks.back() &&
9557727SAli.Saidi@ARM.com           (act_tick - rank_ref.actTicks.back()) < tXAW) {
9567727SAli.Saidi@ARM.com            DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate "
95710453SAndrew.Bardsley@arm.com                    "no earlier than %llu\n", activationLimit,
95810453SAndrew.Bardsley@arm.com                    rank_ref.actTicks.back() + tXAW);
95910453SAndrew.Bardsley@arm.com            for (int j = 0; j < banksPerRank; j++)
96010453SAndrew.Bardsley@arm.com                // next activate must not happen before end of window
96110453SAndrew.Bardsley@arm.com                rank_ref.banks[j].actAllowedAt =
96210453SAndrew.Bardsley@arm.com                    std::max(rank_ref.actTicks.back() + tXAW,
96310453SAndrew.Bardsley@arm.com                             rank_ref.banks[j].actAllowedAt);
96410453SAndrew.Bardsley@arm.com        }
96510453SAndrew.Bardsley@arm.com    }
96610453SAndrew.Bardsley@arm.com
96710453SAndrew.Bardsley@arm.com    // at the point when this activate takes place, make sure we
96810160Sandreas.hansson@arm.com    // transition to the active power state
96910453SAndrew.Bardsley@arm.com    if (!rank_ref.activateEvent.scheduled())
97010453SAndrew.Bardsley@arm.com        schedule(rank_ref.activateEvent, act_tick);
97110453SAndrew.Bardsley@arm.com    else if (rank_ref.activateEvent.when() > act_tick)
97210453SAndrew.Bardsley@arm.com        // move it sooner in time
97310453SAndrew.Bardsley@arm.com        reschedule(rank_ref.activateEvent, act_tick);
97410453SAndrew.Bardsley@arm.com}
97510453SAndrew.Bardsley@arm.com
97610453SAndrew.Bardsley@arm.comvoid
9779812Sandreas.hansson@arm.comDRAMCtrl::prechargeBank(Rank& rank_ref, Bank& bank, Tick pre_at, bool trace)
97810453SAndrew.Bardsley@arm.com{
97910453SAndrew.Bardsley@arm.com    // make sure the bank has an open row
98010453SAndrew.Bardsley@arm.com    assert(bank.openRow != Bank::NO_ROW);
98110453SAndrew.Bardsley@arm.com
98210453SAndrew.Bardsley@arm.com    // sample the bytes per activate here since we are closing
98310453SAndrew.Bardsley@arm.com    // the page
98410453SAndrew.Bardsley@arm.com    bytesPerActivate.sample(bank.bytesAccessed);
98510453SAndrew.Bardsley@arm.com
98610453SAndrew.Bardsley@arm.com    bank.openRow = Bank::NO_ROW;
98710453SAndrew.Bardsley@arm.com
98810453SAndrew.Bardsley@arm.com    // no precharge allowed before this one
98910453SAndrew.Bardsley@arm.com    bank.preAllowedAt = pre_at;
9907727SAli.Saidi@ARM.com
99110453SAndrew.Bardsley@arm.com    Tick pre_done_at = pre_at + tRP;
99210453SAndrew.Bardsley@arm.com
99310453SAndrew.Bardsley@arm.com    bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at);
99410453SAndrew.Bardsley@arm.com
99510453SAndrew.Bardsley@arm.com    assert(rank_ref.numBanksActive != 0);
9963118Sstever@eecs.umich.edu    --rank_ref.numBanksActive;
99710453SAndrew.Bardsley@arm.com
99810453SAndrew.Bardsley@arm.com    DPRINTF(DRAM, "Precharging bank %d, rank %d at tick %lld, now got "
99910453SAndrew.Bardsley@arm.com            "%d active\n", bank.bank, rank_ref.rank, pre_at,
100010453SAndrew.Bardsley@arm.com            rank_ref.numBanksActive);
10013118Sstever@eecs.umich.edu
10023483Ssaidi@eecs.umich.edu    if (trace) {
10033494Ssaidi@eecs.umich.edu
10043494Ssaidi@eecs.umich.edu        rank_ref.cmdList.push_back(Command(MemCommand::PRE, bank.bank,
10053483Ssaidi@eecs.umich.edu                                   pre_at));
10063483Ssaidi@eecs.umich.edu        DPRINTF(DRAMPower, "%llu,PRE,%d,%d\n", divCeil(pre_at, tCK) -
10073483Ssaidi@eecs.umich.edu                timeStampOffset, bank.bank, rank_ref.rank);
10083053Sstever@eecs.umich.edu    }
10093053Sstever@eecs.umich.edu    // if we look at the current number of active banks we might be
10103918Ssaidi@eecs.umich.edu    // tempted to think the DRAM is now idle, however this can be
10113053Sstever@eecs.umich.edu    // undone by an activate that is scheduled to happen before we
10123053Sstever@eecs.umich.edu    // would have reached the idle state, so schedule an event and
10133053Sstever@eecs.umich.edu    // rather check once we actually make it to the point in time when
10143053Sstever@eecs.umich.edu    // the (last) precharge takes place
10153053Sstever@eecs.umich.edu    if (!rank_ref.prechargeEvent.scheduled())
10169396Sandreas.hansson@arm.com        schedule(rank_ref.prechargeEvent, pre_done_at);
10179396Sandreas.hansson@arm.com    else if (rank_ref.prechargeEvent.when() < pre_done_at)
10189396Sandreas.hansson@arm.com        reschedule(rank_ref.prechargeEvent, pre_done_at);
10199396Sandreas.hansson@arm.com}
10209396Sandreas.hansson@arm.com
10219396Sandreas.hansson@arm.comvoid
10229396Sandreas.hansson@arm.comDRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
10239396Sandreas.hansson@arm.com{
10249396Sandreas.hansson@arm.com    DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
10259477Sandreas.hansson@arm.com            dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
10269396Sandreas.hansson@arm.com
10279477Sandreas.hansson@arm.com    // get the rank
10289477Sandreas.hansson@arm.com    Rank& rank = dram_pkt->rankRef;
10299477Sandreas.hansson@arm.com
10309477Sandreas.hansson@arm.com    // get the bank
10319396Sandreas.hansson@arm.com    Bank& bank = dram_pkt->bankRef;
10327840Snate@binkert.org
10337865Sgblack@eecs.umich.edu    // for the state we need to track if it is a row hit or not
10347865Sgblack@eecs.umich.edu    bool row_hit = true;
10357865Sgblack@eecs.umich.edu
10367865Sgblack@eecs.umich.edu    // respect any constraints on the command (e.g. tRCD or tCCD)
10377865Sgblack@eecs.umich.edu    Tick cmd_at = std::max(bank.colAllowedAt, curTick());
10387840Snate@binkert.org
10399900Sandreas@sandberg.pp.se    // Determine the access latency and update the bank state
10409900Sandreas@sandberg.pp.se    if (bank.openRow == dram_pkt->row) {
10419900Sandreas@sandberg.pp.se        // nothing to do
10429900Sandreas@sandberg.pp.se    } else {
104310456SCurtis.Dunham@arm.com        row_hit = false;
104410456SCurtis.Dunham@arm.com
104510456SCurtis.Dunham@arm.com        // If there is a page open, precharge it.
104610456SCurtis.Dunham@arm.com        if (bank.openRow != Bank::NO_ROW) {
104710456SCurtis.Dunham@arm.com            prechargeBank(rank, bank, std::max(bank.preAllowedAt, curTick()));
104810456SCurtis.Dunham@arm.com        }
104910456SCurtis.Dunham@arm.com
105010456SCurtis.Dunham@arm.com        // next we need to account for the delay in activating the
105110456SCurtis.Dunham@arm.com        // page
105210456SCurtis.Dunham@arm.com        Tick act_tick = std::max(bank.actAllowedAt, curTick());
10539045SAli.Saidi@ARM.com
105411235Sandreas.sandberg@arm.com        // Record the activation and deal with all the global timing
105511235Sandreas.sandberg@arm.com        // constraints caused be a new activation (tRRD and tXAW)
105611235Sandreas.sandberg@arm.com        activateBank(rank, bank, act_tick, dram_pkt->row);
105711235Sandreas.sandberg@arm.com
105811235Sandreas.sandberg@arm.com        // issue the command as early as possible
105911235Sandreas.sandberg@arm.com        cmd_at = bank.colAllowedAt;
106011235Sandreas.sandberg@arm.com    }
106111235Sandreas.sandberg@arm.com
106211235Sandreas.sandberg@arm.com    // we need to wait until the bus is available before we can issue
106311235Sandreas.sandberg@arm.com    // the command
106411235Sandreas.sandberg@arm.com    cmd_at = std::max(cmd_at, busBusyUntil - tCL);
106511235Sandreas.sandberg@arm.com
106611235Sandreas.sandberg@arm.com    // update the packet ready time
106711235Sandreas.sandberg@arm.com    dram_pkt->readyTime = cmd_at + tCL + tBURST;
106811235Sandreas.sandberg@arm.com
10697840Snate@binkert.org    // only one burst can use the bus at any one point in time
10707840Snate@binkert.org    assert(dram_pkt->readyTime - busBusyUntil >= tBURST);
10717840Snate@binkert.org
10721858SN/A    // update the time for the next read/write burst for each
10731858SN/A    // bank (add a max with tCCD/tCCD_L here)
10741858SN/A    Tick cmd_dly;
10751858SN/A    for (int j = 0; j < ranksPerChannel; j++) {
10761858SN/A        for (int i = 0; i < banksPerRank; i++) {
10771858SN/A            // next burst to same bank group in this rank must not happen
10789903Sandreas.hansson@arm.com            // before tCCD_L.  Different bank group timing requirement is
10799903Sandreas.hansson@arm.com            // tBURST; Add tCS for different ranks
10809903Sandreas.hansson@arm.com            if (dram_pkt->rank == j) {
10819903Sandreas.hansson@arm.com                if (bankGroupArch &&
108210841Sandreas.sandberg@arm.com                   (bank.bankgr == ranks[j]->banks[i].bankgr)) {
10839651SAndreas.Sandberg@ARM.com                    // bank group architecture requires longer delays between
10849903Sandreas.hansson@arm.com                    // RD/WR burst commands to the same bank group.
10859651SAndreas.Sandberg@ARM.com                    // Use tCCD_L in this case
10869651SAndreas.Sandberg@ARM.com                    cmd_dly = tCCD_L;
108710841Sandreas.sandberg@arm.com                } else {
108810841Sandreas.sandberg@arm.com                    // use tBURST (equivalent to tCCD_S), the shorter
108910841Sandreas.sandberg@arm.com                    // cas-to-cas delay value, when either:
109010841Sandreas.sandberg@arm.com                    // 1) bank group architecture is not supportted
109110841Sandreas.sandberg@arm.com                    // 2) bank is in a different bank group
109210841Sandreas.sandberg@arm.com                    cmd_dly = tBURST;
10939651SAndreas.Sandberg@ARM.com                }
10949651SAndreas.Sandberg@ARM.com            } else {
10959651SAndreas.Sandberg@ARM.com                // different rank is by default in a different bank group
10969651SAndreas.Sandberg@ARM.com                // use tBURST (equivalent to tCCD_S), which is the shorter
10979651SAndreas.Sandberg@ARM.com                // cas-to-cas delay in this case
10989651SAndreas.Sandberg@ARM.com                // Add tCS to account for rank-to-rank bus delay requirements
10999651SAndreas.Sandberg@ARM.com                cmd_dly = tBURST + tCS;
11009651SAndreas.Sandberg@ARM.com            }
11019651SAndreas.Sandberg@ARM.com            ranks[j]->banks[i].colAllowedAt = std::max(cmd_at + cmd_dly,
110210841Sandreas.sandberg@arm.com                                             ranks[j]->banks[i].colAllowedAt);
110310841Sandreas.sandberg@arm.com        }
110410841Sandreas.sandberg@arm.com    }
110510841Sandreas.sandberg@arm.com
110610841Sandreas.sandberg@arm.com    // Save rank of current access
110710841Sandreas.sandberg@arm.com    activeRank = dram_pkt->rank;
110810860Sandreas.sandberg@arm.com
110910841Sandreas.sandberg@arm.com    // If this is a write, we also need to respect the write recovery
111010841Sandreas.sandberg@arm.com    // time before a precharge, in the case of a read, respect the
111110841Sandreas.sandberg@arm.com    // read to precharge constraint
111210841Sandreas.sandberg@arm.com    bank.preAllowedAt = std::max(bank.preAllowedAt,
111310841Sandreas.sandberg@arm.com                                 dram_pkt->isRead ? cmd_at + tRTP :
111410841Sandreas.sandberg@arm.com                                 dram_pkt->readyTime + tWR);
111510841Sandreas.sandberg@arm.com
111610841Sandreas.sandberg@arm.com    // increment the bytes accessed and the accesses per row
111710841Sandreas.sandberg@arm.com    bank.bytesAccessed += burstSize;
111810841Sandreas.sandberg@arm.com    ++bank.rowAccesses;
111910841Sandreas.sandberg@arm.com
11209651SAndreas.Sandberg@ARM.com    // if we reached the max, then issue with an auto-precharge
11219651SAndreas.Sandberg@ARM.com    bool auto_precharge = pageMgmt == Enums::close ||
11229986Sandreas@sandberg.pp.se        bank.rowAccesses == maxAccessesPerRow;
11239986Sandreas@sandberg.pp.se
11249986Sandreas@sandberg.pp.se    // if we did not hit the limit, we might still want to
11259986Sandreas@sandberg.pp.se    // auto-precharge
11269986Sandreas@sandberg.pp.se    if (!auto_precharge &&
11279986Sandreas@sandberg.pp.se        (pageMgmt == Enums::open_adaptive ||
11285863Snate@binkert.org         pageMgmt == Enums::close_adaptive)) {
11295863Snate@binkert.org        // a twist on the open and close page policies:
11305863Snate@binkert.org        // 1) open_adaptive page policy does not blindly keep the
11315863Snate@binkert.org        // page open, but close it if there are no row hits, and there
11326121Snate@binkert.org        // are bank conflicts in the queue
11331858SN/A        // 2) close_adaptive page policy does not blindly close the
11345863Snate@binkert.org        // page, but closes it only if there are no row hits in the queue.
11355863Snate@binkert.org        // In this case, only force an auto precharge when there
11365863Snate@binkert.org        // are no same page hits in the queue
11375863Snate@binkert.org        bool got_more_hits = false;
11385863Snate@binkert.org        bool got_bank_conflict = false;
11392139SN/A
11404202Sbinkertn@umich.edu        // either look at the read queue or write queue
114111308Santhony.gutierrez@amd.com        const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue :
11424202Sbinkertn@umich.edu            writeQueue;
114311308Santhony.gutierrez@amd.com        auto p = queue.begin();
11442139SN/A        // make sure we are not considering the packet that we are
11456994Snate@binkert.org        // currently dealing with (which is the head of the queue)
11466994Snate@binkert.org        ++p;
11476994Snate@binkert.org
11486994Snate@binkert.org        // keep on looking until we find a hit or reach the end of the queue
11496994Snate@binkert.org        // 1) if a hit is found, then both open and close adaptive policies keep
11506994Snate@binkert.org        // the page open
11516994Snate@binkert.org        // 2) if no hit is found, got_bank_conflict is set to true if a bank
11526994Snate@binkert.org        // conflict request is waiting in the queue
115310319SAndreas.Sandberg@ARM.com        while (!got_more_hits && p != queue.end()) {
11546994Snate@binkert.org            bool same_rank_bank = (dram_pkt->rank == (*p)->rank) &&
11556994Snate@binkert.org                (dram_pkt->bank == (*p)->bank);
11566994Snate@binkert.org            bool same_row = dram_pkt->row == (*p)->row;
11576994Snate@binkert.org            got_more_hits |= same_rank_bank && same_row;
11586994Snate@binkert.org            got_bank_conflict |= same_rank_bank && !same_row;
11596994Snate@binkert.org            ++p;
11606994Snate@binkert.org        }
11616994Snate@binkert.org
11626994Snate@binkert.org        // auto pre-charge when either
11636994Snate@binkert.org        // 1) open_adaptive policy, we have not got any more hits, and
11646994Snate@binkert.org        //    have a bank conflict
11652155SN/A        // 2) close_adaptive policy and we have not got any more hits
11665863Snate@binkert.org        auto_precharge = !got_more_hits &&
11671869SN/A            (got_bank_conflict || pageMgmt == Enums::close_adaptive);
11681869SN/A    }
11695863Snate@binkert.org
11705863Snate@binkert.org    // DRAMPower trace command to be written
11714202Sbinkertn@umich.edu    std::string mem_cmd = dram_pkt->isRead ? "RD" : "WR";
11726108Snate@binkert.org
11736108Snate@binkert.org    // MemCommand required for DRAMPower library
11746108Snate@binkert.org    MemCommand::cmds command = (mem_cmd == "RD") ? MemCommand::RD :
11756108Snate@binkert.org                                                   MemCommand::WR;
11769219Spower.jg@gmail.com
11779219Spower.jg@gmail.com    // Update bus state
11789219Spower.jg@gmail.com    busBusyUntil = dram_pkt->readyTime;
11799219Spower.jg@gmail.com
11809219Spower.jg@gmail.com    DPRINTF(DRAM, "Access to %lld, ready at %lld bus busy until %lld.\n",
11819219Spower.jg@gmail.com            dram_pkt->addr, dram_pkt->readyTime, busBusyUntil);
11829219Spower.jg@gmail.com
11839219Spower.jg@gmail.com    dram_pkt->rankRef.cmdList.push_back(Command(command, dram_pkt->bank,
11844202Sbinkertn@umich.edu                                        cmd_at));
11855863Snate@binkert.org
118610135SCurtis.Dunham@arm.com    DPRINTF(DRAMPower, "%llu,%s,%d,%d\n", divCeil(cmd_at, tCK) -
11878474Sgblack@eecs.umich.edu            timeStampOffset, mem_cmd, dram_pkt->bank, dram_pkt->rank);
11885742Snate@binkert.org
11898268Ssteve.reinhardt@amd.com    // if this access should use auto-precharge, then we are
11908268Ssteve.reinhardt@amd.com    // closing the row after the read/write burst
11918268Ssteve.reinhardt@amd.com    if (auto_precharge) {
11925742Snate@binkert.org        // if auto-precharge push a PRE command at the correct tick to the
11935341Sstever@gmail.com        // list used by DRAMPower library to calculate power
11948474Sgblack@eecs.umich.edu        prechargeBank(rank, bank, std::max(curTick(), bank.preAllowedAt));
11958474Sgblack@eecs.umich.edu
11965342Sstever@gmail.com        DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId);
11974202Sbinkertn@umich.edu    }
11984202Sbinkertn@umich.edu
119911308Santhony.gutierrez@amd.com    // Update the minimum timing between the requests, this is a
12004202Sbinkertn@umich.edu    // conservative estimate of when we have to schedule the next
12015863Snate@binkert.org    // request to not introduce any unecessary bubbles. In most cases
12025863Snate@binkert.org    // we will wake up sooner than we have to.
120311308Santhony.gutierrez@amd.com    nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
12046994Snate@binkert.org
12056994Snate@binkert.org    // Update the stats and schedule the next request
120610319SAndreas.Sandberg@ARM.com    if (dram_pkt->isRead) {
12075863Snate@binkert.org        ++readsThisTime;
12085863Snate@binkert.org        if (row_hit)
12095863Snate@binkert.org            readRowHits++;
12105863Snate@binkert.org        bytesReadDRAM += burstSize;
12115863Snate@binkert.org        perBankRdBursts[dram_pkt->bankId]++;
12125863Snate@binkert.org
12135863Snate@binkert.org        // Update latency stats
12145863Snate@binkert.org        totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
12157840Snate@binkert.org        totBusLat += tBURST;
12165863Snate@binkert.org        totQLat += cmd_at - dram_pkt->entryTime;
12175952Ssaidi@eecs.umich.edu    } else {
12189651SAndreas.Sandberg@ARM.com        ++writesThisTime;
121911308Santhony.gutierrez@amd.com        if (row_hit)
12209219Spower.jg@gmail.com            writeRowHits++;
12219219Spower.jg@gmail.com        bytesWritten += burstSize;
122211235Sandreas.sandberg@arm.com        perBankWrBursts[dram_pkt->bankId]++;
122311235Sandreas.sandberg@arm.com    }
12241869SN/A}
12251858SN/A
12265863Snate@binkert.orgvoid
122711308Santhony.gutierrez@amd.comDRAMCtrl::processNextReqEvent()
122811308Santhony.gutierrez@amd.com{
122911308Santhony.gutierrez@amd.com    int busyRanks = 0;
12301858SN/A    for (auto r : ranks) {
1231955SN/A        if (!r->isAvailable()) {
1232955SN/A            // rank is busy refreshing
12331869SN/A            busyRanks++;
12341869SN/A
12351869SN/A            // let the rank know that if it was waiting to drain, it
12361869SN/A            // is now done and ready to proceed
12371869SN/A            r->checkDrainDone();
12385863Snate@binkert.org        }
12395863Snate@binkert.org    }
12405863Snate@binkert.org
12411869SN/A    if (busyRanks == ranksPerChannel) {
12425863Snate@binkert.org        // if all ranks are refreshing wait for them to finish
12431869SN/A        // and stall this state machine without taking any further
12445863Snate@binkert.org        // action, and do not schedule a new nextReqEvent
12451869SN/A        return;
12461869SN/A    }
12471869SN/A
12481869SN/A    // pre-emptively set to false.  Overwrite if in READ_TO_WRITE
12498483Sgblack@eecs.umich.edu    // or WRITE_TO_READ state
12501869SN/A    bool switched_cmd_type = false;
12511869SN/A    if (busState == READ_TO_WRITE) {
12521869SN/A        DPRINTF(DRAM, "Switching to writes after %d reads with %d reads "
12531869SN/A                "waiting\n", readsThisTime, readQueue.size());
12545863Snate@binkert.org
12555863Snate@binkert.org        // sample and reset the read-related stats as we are now
12561869SN/A        // transitioning to writes, and all reads are done
12575863Snate@binkert.org        rdPerTurnAround.sample(readsThisTime);
12585863Snate@binkert.org        readsThisTime = 0;
12593356Sbinkertn@umich.edu
12603356Sbinkertn@umich.edu        // now proceed to do the actual writes
12613356Sbinkertn@umich.edu        busState = WRITE;
12623356Sbinkertn@umich.edu        switched_cmd_type = true;
12633356Sbinkertn@umich.edu    } else if (busState == WRITE_TO_READ) {
12644781Snate@binkert.org        DPRINTF(DRAM, "Switching to reads after %d writes with %d writes "
12655863Snate@binkert.org                "waiting\n", writesThisTime, writeQueue.size());
12665863Snate@binkert.org
12671869SN/A        wrPerTurnAround.sample(writesThisTime);
12681869SN/A        writesThisTime = 0;
12691869SN/A
12706121Snate@binkert.org        busState = READ;
12711869SN/A        switched_cmd_type = true;
12722638Sstever@eecs.umich.edu    }
12736121Snate@binkert.org
12746121Snate@binkert.org    // when we get here it is either a read or a write
12752638Sstever@eecs.umich.edu    if (busState == READ) {
127611293Sandreas.hansson@arm.com
127711293Sandreas.hansson@arm.com        // track if we should switch or not
127811293Sandreas.hansson@arm.com        bool switch_to_writes = false;
12795749Scws3k@cs.virginia.edu
12809537Satgutier@umich.edu        if (readQueue.empty()) {
12819537Satgutier@umich.edu            // In the case there is no read request to go next,
12829537Satgutier@umich.edu            // trigger writes if we have passed the low threshold (or
12839537Satgutier@umich.edu            // if we are draining)
12849888Sandreas@sandberg.pp.se            if (!writeQueue.empty() &&
12859888Sandreas@sandberg.pp.se                (drainState() == DrainState::Draining ||
12869888Sandreas@sandberg.pp.se                 writeQueue.size() > writeLowThreshold)) {
12879888Sandreas@sandberg.pp.se
128810066Sandreas.hansson@arm.com                switch_to_writes = true;
128910066Sandreas.hansson@arm.com            } else {
129010066Sandreas.hansson@arm.com                // check if we are drained
129110066Sandreas.hansson@arm.com                // not done draining until in PWR_IDLE state
129210428Sandreas.hansson@arm.com                // ensuring all banks are closed and
129310428Sandreas.hansson@arm.com                // have exited low power states
129410428Sandreas.hansson@arm.com                if (drainState() == DrainState::Draining &&
129510428Sandreas.hansson@arm.com                    respQueue.empty() && allRanksDrained()) {
129610915Sandreas.sandberg@arm.com
129710915Sandreas.sandberg@arm.com                    DPRINTF(Drain, "DRAM controller done draining\n");
129810915Sandreas.sandberg@arm.com                    signalDrainDone();
129910915Sandreas.sandberg@arm.com                }
13001869SN/A
13011869SN/A                // nothing to do, not even any point in scheduling an
13023546Sgblack@eecs.umich.edu                // event for the next request
13033546Sgblack@eecs.umich.edu                return;
13043546Sgblack@eecs.umich.edu            }
13053546Sgblack@eecs.umich.edu        } else {
13066121Snate@binkert.org            // bool to check if there is a read to a free rank
130711308Santhony.gutierrez@amd.com            bool found_read = false;
130810196SCurtis.Dunham@arm.com
13095863Snate@binkert.org            // Figure out which read request goes next, and move it to the
13103546Sgblack@eecs.umich.edu            // front of the read queue
13113546Sgblack@eecs.umich.edu            // If we are changing command type, incorporate the minimum
13123546Sgblack@eecs.umich.edu            // bus turnaround delay which will be tCS (different rank) case
13133546Sgblack@eecs.umich.edu            found_read = chooseNext(readQueue,
13144781Snate@binkert.org                             switched_cmd_type ? tCS : 0);
13156658Snate@binkert.org
131610196SCurtis.Dunham@arm.com            // if no read to an available rank is found then return
131710196SCurtis.Dunham@arm.com            // at this point. There could be writes to the available ranks
131810196SCurtis.Dunham@arm.com            // which are above the required threshold. However, to
131910196SCurtis.Dunham@arm.com            // avoid adding more complexity to the code, return and wait
132010196SCurtis.Dunham@arm.com            // for a refresh event to kick things into action again.
132110196SCurtis.Dunham@arm.com            if (!found_read)
132210196SCurtis.Dunham@arm.com                return;
13233546Sgblack@eecs.umich.edu
13243546Sgblack@eecs.umich.edu            DRAMPacket* dram_pkt = readQueue.front();
13253546Sgblack@eecs.umich.edu            assert(dram_pkt->rankRef.isAvailable());
13263546Sgblack@eecs.umich.edu            // here we get a bit creative and shift the bus busy time not
13277756SAli.Saidi@ARM.com            // just the tWTR, but also a CAS latency to capture the fact
13287816Ssteve.reinhardt@amd.com            // that we are allowed to prepare a new bank, but not issue a
13293546Sgblack@eecs.umich.edu            // read command until after tWTR, in essence we capture a
13303546Sgblack@eecs.umich.edu            // bubble on the data bus that is tWTR + tCL
13313546Sgblack@eecs.umich.edu            if (switched_cmd_type && dram_pkt->rank == activeRank) {
13323546Sgblack@eecs.umich.edu                busBusyUntil += tWTR + tCL;
133310196SCurtis.Dunham@arm.com            }
133410196SCurtis.Dunham@arm.com
133510196SCurtis.Dunham@arm.com            doDRAMAccess(dram_pkt);
133610196SCurtis.Dunham@arm.com
133710196SCurtis.Dunham@arm.com            // At this point we're done dealing with the request
13384202Sbinkertn@umich.edu            readQueue.pop_front();
13393546Sgblack@eecs.umich.edu
134011308Santhony.gutierrez@amd.com            // sanity check
134111308Santhony.gutierrez@amd.com            assert(dram_pkt->size <= burstSize);
134211308Santhony.gutierrez@amd.com            assert(dram_pkt->readyTime >= curTick());
134311308Santhony.gutierrez@amd.com
134411308Santhony.gutierrez@amd.com            // Insert into response queue. It will be sent back to the
134511308Santhony.gutierrez@amd.com            // requestor at its readyTime
134611308Santhony.gutierrez@amd.com            if (respQueue.empty()) {
134711308Santhony.gutierrez@amd.com                assert(!respondEvent.scheduled());
134811308Santhony.gutierrez@amd.com                schedule(respondEvent, dram_pkt->readyTime);
134911308Santhony.gutierrez@amd.com            } else {
135011308Santhony.gutierrez@amd.com                assert(respQueue.back()->readyTime <= dram_pkt->readyTime);
135111308Santhony.gutierrez@amd.com                assert(respondEvent.scheduled());
135211308Santhony.gutierrez@amd.com            }
135311308Santhony.gutierrez@amd.com
135411308Santhony.gutierrez@amd.com            respQueue.push_back(dram_pkt);
135511308Santhony.gutierrez@amd.com
135611308Santhony.gutierrez@amd.com            // we have so many writes that we have to transition
135711308Santhony.gutierrez@amd.com            if (writeQueue.size() > writeHighThreshold) {
135811308Santhony.gutierrez@amd.com                switch_to_writes = true;
135911308Santhony.gutierrez@amd.com            }
136011308Santhony.gutierrez@amd.com        }
136111308Santhony.gutierrez@amd.com
136211308Santhony.gutierrez@amd.com        // switching to writes, either because the read queue is empty
136311308Santhony.gutierrez@amd.com        // and the writes have passed the low threshold (or we are
136411308Santhony.gutierrez@amd.com        // draining), or because the writes hit the hight threshold
136511308Santhony.gutierrez@amd.com        if (switch_to_writes) {
136611308Santhony.gutierrez@amd.com            // transition to writing
136711308Santhony.gutierrez@amd.com            busState = READ_TO_WRITE;
136811308Santhony.gutierrez@amd.com        }
136910196SCurtis.Dunham@arm.com    } else {
137010196SCurtis.Dunham@arm.com        // bool to check if write to free rank is found
137110196SCurtis.Dunham@arm.com        bool found_write = false;
137210196SCurtis.Dunham@arm.com
137310196SCurtis.Dunham@arm.com        // If we are changing command type, incorporate the minimum
137410196SCurtis.Dunham@arm.com        // bus turnaround delay
137510196SCurtis.Dunham@arm.com        found_write = chooseNext(writeQueue,
137610196SCurtis.Dunham@arm.com                                 switched_cmd_type ? std::min(tRTW, tCS) : 0);
137710196SCurtis.Dunham@arm.com
137810196SCurtis.Dunham@arm.com        // if no writes to an available rank are found then return.
137910196SCurtis.Dunham@arm.com        // There could be reads to the available ranks. However, to avoid
138010196SCurtis.Dunham@arm.com        // adding more complexity to the code, return at this point and wait
138110196SCurtis.Dunham@arm.com        // for a refresh event to kick things into action again.
138210196SCurtis.Dunham@arm.com        if (!found_write)
138310196SCurtis.Dunham@arm.com            return;
138410196SCurtis.Dunham@arm.com
138510196SCurtis.Dunham@arm.com        DRAMPacket* dram_pkt = writeQueue.front();
138610196SCurtis.Dunham@arm.com        assert(dram_pkt->rankRef.isAvailable());
138710196SCurtis.Dunham@arm.com        // sanity check
138810196SCurtis.Dunham@arm.com        assert(dram_pkt->size <= burstSize);
138910196SCurtis.Dunham@arm.com
139010196SCurtis.Dunham@arm.com        // add a bubble to the data bus, as defined by the
139110196SCurtis.Dunham@arm.com        // tRTW when access is to the same rank as previous burst
139210196SCurtis.Dunham@arm.com        // Different rank timing is handled with tCS, which is
13933546Sgblack@eecs.umich.edu        // applied to colAllowedAt
13943546Sgblack@eecs.umich.edu        if (switched_cmd_type && dram_pkt->rank == activeRank) {
1395955SN/A            busBusyUntil += tRTW;
1396955SN/A        }
1397955SN/A
1398955SN/A        doDRAMAccess(dram_pkt);
13995863Snate@binkert.org
140010135SCurtis.Dunham@arm.com        writeQueue.pop_front();
140110135SCurtis.Dunham@arm.com        isInWriteQueue.erase(burstAlign(dram_pkt->addr));
14025343Sstever@gmail.com        delete dram_pkt;
14035343Sstever@gmail.com
14046121Snate@binkert.org        // If we emptied the write queue, or got sufficiently below the
14055863Snate@binkert.org        // threshold (using the minWritesPerSwitch as the hysteresis) and
14064773Snate@binkert.org        // are not draining, or we have reads waiting and have done enough
14075863Snate@binkert.org        // writes, then switch to reads.
14082632Sstever@eecs.umich.edu        if (writeQueue.empty() ||
14095863Snate@binkert.org            (writeQueue.size() + minWritesPerSwitch < writeLowThreshold &&
14102023SN/A             drainState() != DrainState::Draining) ||
14115863Snate@binkert.org            (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) {
14125863Snate@binkert.org            // turn the bus back around for reads again
14135863Snate@binkert.org            busState = WRITE_TO_READ;
14145863Snate@binkert.org
14155863Snate@binkert.org            // note that the we switch back to reads also in the idle
14165863Snate@binkert.org            // case, which eventually will check for any draining and
14175863Snate@binkert.org            // also pause any further scheduling if there is really
14185863Snate@binkert.org            // nothing to do
141910135SCurtis.Dunham@arm.com        }
142010135SCurtis.Dunham@arm.com    }
14212632Sstever@eecs.umich.edu    // It is possible that a refresh to another rank kicks things back into
14225863Snate@binkert.org    // action before reaching this point.
14232023SN/A    if (!nextReqEvent.scheduled())
14242632Sstever@eecs.umich.edu        schedule(nextReqEvent, std::max(nextReqTime, curTick()));
14255863Snate@binkert.org
14265342Sstever@gmail.com    // If there is space available and we have writes waiting then let
14275863Snate@binkert.org    // them retry. This is done here to ensure that the retry does not
14282632Sstever@eecs.umich.edu    // cause a nextReqEvent to be scheduled before we do so as part of
14295863Snate@binkert.org    // the next request processing
14305863Snate@binkert.org    if (retryWrReq && writeQueue.size() < writeBufferSize) {
14318267Ssteve.reinhardt@amd.com        retryWrReq = false;
14328120Sgblack@eecs.umich.edu        port.sendRetryReq();
14338267Ssteve.reinhardt@amd.com    }
14348267Ssteve.reinhardt@amd.com}
14358267Ssteve.reinhardt@amd.com
14368267Ssteve.reinhardt@amd.compair<uint64_t, bool>
14378267Ssteve.reinhardt@amd.comDRAMCtrl::minBankPrep(const deque<DRAMPacket*>& queue,
14388267Ssteve.reinhardt@amd.com                      Tick min_col_at) const
14398267Ssteve.reinhardt@amd.com{
14408267Ssteve.reinhardt@amd.com    uint64_t bank_mask = 0;
14418267Ssteve.reinhardt@amd.com    Tick min_act_at = MaxTick;
14425863Snate@binkert.org
14435863Snate@binkert.org    // latest Tick for which ACT can occur without incurring additoinal
14445863Snate@binkert.org    // delay on the data bus
14452632Sstever@eecs.umich.edu    const Tick hidden_act_max = std::max(min_col_at - tRCD, curTick());
14468267Ssteve.reinhardt@amd.com
14478267Ssteve.reinhardt@amd.com    // Flag condition when burst can issue back-to-back with previous burst
14488267Ssteve.reinhardt@amd.com    bool found_seamless_bank = false;
14492632Sstever@eecs.umich.edu
14501888SN/A    // Flag condition when bank can be opened without incurring additional
14515863Snate@binkert.org    // delay on the data bus
14525863Snate@binkert.org    bool hidden_bank_prep = false;
14531858SN/A
14548120Sgblack@eecs.umich.edu    // determine if we have queued transactions targetting the
14558120Sgblack@eecs.umich.edu    // bank in question
14567756SAli.Saidi@ARM.com    vector<bool> got_waiting(ranksPerChannel * banksPerRank, false);
14572598SN/A    for (const auto& p : queue) {
14585863Snate@binkert.org        if (p->rankRef.isAvailable())
14591858SN/A            got_waiting[p->bankId] = true;
14601858SN/A    }
14611858SN/A
14625863Snate@binkert.org    // Find command with optimal bank timing
14631858SN/A    // Will prioritize commands that can issue seamlessly.
14641858SN/A    for (int i = 0; i < ranksPerChannel; i++) {
14651858SN/A        for (int j = 0; j < banksPerRank; j++) {
14665863Snate@binkert.org            uint16_t bank_id = i * banksPerRank + j;
14671871SN/A
14681858SN/A            // if we have waiting requests for the bank, and it is
14691858SN/A            // amongst the first available, update the mask
14701858SN/A            if (got_waiting[bank_id]) {
14711858SN/A                // make sure this rank is not currently refreshing.
14729651SAndreas.Sandberg@ARM.com                assert(ranks[i]->isAvailable());
14739651SAndreas.Sandberg@ARM.com                // simplistic approximation of when the bank can issue
14749651SAndreas.Sandberg@ARM.com                // an activate, ignoring any rank-to-rank switching
14759651SAndreas.Sandberg@ARM.com                // cost in this calculation
14769651SAndreas.Sandberg@ARM.com                Tick act_at = ranks[i]->banks[j].openRow == Bank::NO_ROW ?
14779651SAndreas.Sandberg@ARM.com                    std::max(ranks[i]->banks[j].actAllowedAt, curTick()) :
14789651SAndreas.Sandberg@ARM.com                    std::max(ranks[i]->banks[j].preAllowedAt, curTick()) + tRP;
14799651SAndreas.Sandberg@ARM.com
14809651SAndreas.Sandberg@ARM.com                // When is the earliest the R/W burst can issue?
14819986Sandreas@sandberg.pp.se                Tick col_at = std::max(ranks[i]->banks[j].colAllowedAt,
14829986Sandreas@sandberg.pp.se                                       act_at + tRCD);
14839986Sandreas@sandberg.pp.se
14849986Sandreas@sandberg.pp.se                // bank can issue burst back-to-back (seamlessly) with
14859986Sandreas@sandberg.pp.se                // previous burst
14869986Sandreas@sandberg.pp.se                bool new_seamless_bank = col_at <= min_col_at;
14879986Sandreas@sandberg.pp.se
14885863Snate@binkert.org                // if we found a new seamless bank or we have no
14895863Snate@binkert.org                // seamless banks, and got a bank with an earlier
14901869SN/A                // activate time, it should be added to the bit mask
14911965SN/A                if (new_seamless_bank ||
14927739Sgblack@eecs.umich.edu                    (!found_seamless_bank && act_at <= min_act_at)) {
14931965SN/A                    // if we did not have a seamless bank before, and
14942761Sstever@eecs.umich.edu                    // we do now, reset the bank mask, also reset it
14955863Snate@binkert.org                    // if we have not yet found a seamless bank and
14961869SN/A                    // the activate time is smaller than what we have
149710196SCurtis.Dunham@arm.com                    // seen so far
14981869SN/A                    if (!found_seamless_bank &&
149910196SCurtis.Dunham@arm.com                        (new_seamless_bank || act_at < min_act_at)) {
150010196SCurtis.Dunham@arm.com                        bank_mask = 0;
150110196SCurtis.Dunham@arm.com                    }
150210196SCurtis.Dunham@arm.com
150310196SCurtis.Dunham@arm.com                    found_seamless_bank |= new_seamless_bank;
150410196SCurtis.Dunham@arm.com
150510196SCurtis.Dunham@arm.com                    // ACT can occur 'behind the scenes'
150610196SCurtis.Dunham@arm.com                    hidden_bank_prep = act_at <= hidden_act_max;
150710196SCurtis.Dunham@arm.com
150810196SCurtis.Dunham@arm.com                    // set the bit corresponding to the available bank
150910196SCurtis.Dunham@arm.com                    replaceBits(bank_mask, bank_id, bank_id, 1);
151010196SCurtis.Dunham@arm.com                    min_act_at = act_at;
151110196SCurtis.Dunham@arm.com                }
151210196SCurtis.Dunham@arm.com            }
151310196SCurtis.Dunham@arm.com        }
151410196SCurtis.Dunham@arm.com    }
151510196SCurtis.Dunham@arm.com
1516955SN/A    return make_pair(bank_mask, hidden_bank_prep);
15178120Sgblack@eecs.umich.edu}
15188120Sgblack@eecs.umich.edu
15198120Sgblack@eecs.umich.eduDRAMCtrl::Rank::Rank(DRAMCtrl& _memory, const DRAMCtrlParams* _p)
15208120Sgblack@eecs.umich.edu    : EventManager(&_memory), memory(_memory),
15218120Sgblack@eecs.umich.edu      pwrStateTrans(PWR_IDLE), pwrState(PWR_IDLE), pwrStateTick(0),
15228120Sgblack@eecs.umich.edu      refreshState(REF_IDLE), refreshDueAt(0),
15238120Sgblack@eecs.umich.edu      power(_p, false), numBanksActive(0),
15248120Sgblack@eecs.umich.edu      activateEvent(*this), prechargeEvent(*this),
15258120Sgblack@eecs.umich.edu      refreshEvent(*this), powerEvent(*this)
15268120Sgblack@eecs.umich.edu{ }
15278120Sgblack@eecs.umich.edu
15288120Sgblack@eecs.umich.eduvoid
1529DRAMCtrl::Rank::startup(Tick ref_tick)
1530{
1531    assert(ref_tick > curTick());
1532
1533    pwrStateTick = curTick();
1534
1535    // kick off the refresh, and give ourselves enough time to
1536    // precharge
1537    schedule(refreshEvent, ref_tick);
1538}
1539
1540void
1541DRAMCtrl::Rank::suspend()
1542{
1543    deschedule(refreshEvent);
1544
1545    // Update the stats
1546    updatePowerStats();
1547}
1548
1549void
1550DRAMCtrl::Rank::checkDrainDone()
1551{
1552    // if this rank was waiting to drain it is now able to proceed to
1553    // precharge
1554    if (refreshState == REF_DRAIN) {
1555        DPRINTF(DRAM, "Refresh drain done, now precharging\n");
1556
1557        refreshState = REF_PRE;
1558
1559        // hand control back to the refresh event loop
1560        schedule(refreshEvent, curTick());
1561    }
1562}
1563
1564void
1565DRAMCtrl::Rank::flushCmdList()
1566{
1567    // at the moment sort the list of commands and update the counters
1568    // for DRAMPower libray when doing a refresh
1569    sort(cmdList.begin(), cmdList.end(), DRAMCtrl::sortTime);
1570
1571    auto next_iter = cmdList.begin();
1572    // push to commands to DRAMPower
1573    for ( ; next_iter != cmdList.end() ; ++next_iter) {
1574         Command cmd = *next_iter;
1575         if (cmd.timeStamp <= curTick()) {
1576             // Move all commands at or before curTick to DRAMPower
1577             power.powerlib.doCommand(cmd.type, cmd.bank,
1578                                      divCeil(cmd.timeStamp, memory.tCK) -
1579                                      memory.timeStampOffset);
1580         } else {
1581             // done - found all commands at or before curTick()
1582             // next_iter references the 1st command after curTick
1583             break;
1584         }
1585    }
1586    // reset cmdList to only contain commands after curTick
1587    // if there are no commands after curTick, updated cmdList will be empty
1588    // in this case, next_iter is cmdList.end()
1589    cmdList.assign(next_iter, cmdList.end());
1590}
1591
1592void
1593DRAMCtrl::Rank::processActivateEvent()
1594{
1595    // we should transition to the active state as soon as any bank is active
1596    if (pwrState != PWR_ACT)
1597        // note that at this point numBanksActive could be back at
1598        // zero again due to a precharge scheduled in the future
1599        schedulePowerEvent(PWR_ACT, curTick());
1600}
1601
1602void
1603DRAMCtrl::Rank::processPrechargeEvent()
1604{
1605    // if we reached zero, then special conditions apply as we track
1606    // if all banks are precharged for the power models
1607    if (numBanksActive == 0) {
1608        // we should transition to the idle state when the last bank
1609        // is precharged
1610        schedulePowerEvent(PWR_IDLE, curTick());
1611    }
1612}
1613
1614void
1615DRAMCtrl::Rank::processRefreshEvent()
1616{
1617    // when first preparing the refresh, remember when it was due
1618    if (refreshState == REF_IDLE) {
1619        // remember when the refresh is due
1620        refreshDueAt = curTick();
1621
1622        // proceed to drain
1623        refreshState = REF_DRAIN;
1624
1625        DPRINTF(DRAM, "Refresh due\n");
1626    }
1627
1628    // let any scheduled read or write to the same rank go ahead,
1629    // after which it will
1630    // hand control back to this event loop
1631    if (refreshState == REF_DRAIN) {
1632        // if a request is at the moment being handled and this request is
1633        // accessing the current rank then wait for it to finish
1634        if ((rank == memory.activeRank)
1635            && (memory.nextReqEvent.scheduled())) {
1636            // hand control over to the request loop until it is
1637            // evaluated next
1638            DPRINTF(DRAM, "Refresh awaiting draining\n");
1639
1640            return;
1641        } else {
1642            refreshState = REF_PRE;
1643        }
1644    }
1645
1646    // at this point, ensure that all banks are precharged
1647    if (refreshState == REF_PRE) {
1648        // precharge any active bank if we are not already in the idle
1649        // state
1650        if (pwrState != PWR_IDLE) {
1651            // at the moment, we use a precharge all even if there is
1652            // only a single bank open
1653            DPRINTF(DRAM, "Precharging all\n");
1654
1655            // first determine when we can precharge
1656            Tick pre_at = curTick();
1657
1658            for (auto &b : banks) {
1659                // respect both causality and any existing bank
1660                // constraints, some banks could already have a
1661                // (auto) precharge scheduled
1662                pre_at = std::max(b.preAllowedAt, pre_at);
1663            }
1664
1665            // make sure all banks per rank are precharged, and for those that
1666            // already are, update their availability
1667            Tick act_allowed_at = pre_at + memory.tRP;
1668
1669            for (auto &b : banks) {
1670                if (b.openRow != Bank::NO_ROW) {
1671                    memory.prechargeBank(*this, b, pre_at, false);
1672                } else {
1673                    b.actAllowedAt = std::max(b.actAllowedAt, act_allowed_at);
1674                    b.preAllowedAt = std::max(b.preAllowedAt, pre_at);
1675                }
1676            }
1677
1678            // precharge all banks in rank
1679            cmdList.push_back(Command(MemCommand::PREA, 0, pre_at));
1680
1681            DPRINTF(DRAMPower, "%llu,PREA,0,%d\n",
1682                    divCeil(pre_at, memory.tCK) -
1683                            memory.timeStampOffset, rank);
1684        } else {
1685            DPRINTF(DRAM, "All banks already precharged, starting refresh\n");
1686
1687            // go ahead and kick the power state machine into gear if
1688            // we are already idle
1689            schedulePowerEvent(PWR_REF, curTick());
1690        }
1691
1692        refreshState = REF_RUN;
1693        assert(numBanksActive == 0);
1694
1695        // wait for all banks to be precharged, at which point the
1696        // power state machine will transition to the idle state, and
1697        // automatically move to a refresh, at that point it will also
1698        // call this method to get the refresh event loop going again
1699        return;
1700    }
1701
1702    // last but not least we perform the actual refresh
1703    if (refreshState == REF_RUN) {
1704        // should never get here with any banks active
1705        assert(numBanksActive == 0);
1706        assert(pwrState == PWR_REF);
1707
1708        Tick ref_done_at = curTick() + memory.tRFC;
1709
1710        for (auto &b : banks) {
1711            b.actAllowedAt = ref_done_at;
1712        }
1713
1714        // at the moment this affects all ranks
1715        cmdList.push_back(Command(MemCommand::REF, 0, curTick()));
1716
1717        // Update the stats
1718        updatePowerStats();
1719
1720        DPRINTF(DRAMPower, "%llu,REF,0,%d\n", divCeil(curTick(), memory.tCK) -
1721                memory.timeStampOffset, rank);
1722
1723        // make sure we did not wait so long that we cannot make up
1724        // for it
1725        if (refreshDueAt + memory.tREFI < ref_done_at) {
1726            fatal("Refresh was delayed so long we cannot catch up\n");
1727        }
1728
1729        // compensate for the delay in actually performing the refresh
1730        // when scheduling the next one
1731        schedule(refreshEvent, refreshDueAt + memory.tREFI - memory.tRP);
1732
1733        assert(!powerEvent.scheduled());
1734
1735        // move to the idle power state once the refresh is done, this
1736        // will also move the refresh state machine to the refresh
1737        // idle state
1738        schedulePowerEvent(PWR_IDLE, ref_done_at);
1739
1740        DPRINTF(DRAMState, "Refresh done at %llu and next refresh at %llu\n",
1741                ref_done_at, refreshDueAt + memory.tREFI);
1742    }
1743}
1744
1745void
1746DRAMCtrl::Rank::schedulePowerEvent(PowerState pwr_state, Tick tick)
1747{
1748    // respect causality
1749    assert(tick >= curTick());
1750
1751    if (!powerEvent.scheduled()) {
1752        DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n",
1753                tick, pwr_state);
1754
1755        // insert the new transition
1756        pwrStateTrans = pwr_state;
1757
1758        schedule(powerEvent, tick);
1759    } else {
1760        panic("Scheduled power event at %llu to state %d, "
1761              "with scheduled event at %llu to %d\n", tick, pwr_state,
1762              powerEvent.when(), pwrStateTrans);
1763    }
1764}
1765
1766void
1767DRAMCtrl::Rank::processPowerEvent()
1768{
1769    // remember where we were, and for how long
1770    Tick duration = curTick() - pwrStateTick;
1771    PowerState prev_state = pwrState;
1772
1773    // update the accounting
1774    pwrStateTime[prev_state] += duration;
1775
1776    pwrState = pwrStateTrans;
1777    pwrStateTick = curTick();
1778
1779    if (pwrState == PWR_IDLE) {
1780        DPRINTF(DRAMState, "All banks precharged\n");
1781
1782        // if we were refreshing, make sure we start scheduling requests again
1783        if (prev_state == PWR_REF) {
1784            DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration);
1785            assert(pwrState == PWR_IDLE);
1786
1787            // kick things into action again
1788            refreshState = REF_IDLE;
1789            // a request event could be already scheduled by the state
1790            // machine of the other rank
1791            if (!memory.nextReqEvent.scheduled())
1792                schedule(memory.nextReqEvent, curTick());
1793        } else {
1794            assert(prev_state == PWR_ACT);
1795
1796            // if we have a pending refresh, and are now moving to
1797            // the idle state, direclty transition to a refresh
1798            if (refreshState == REF_RUN) {
1799                // there should be nothing waiting at this point
1800                assert(!powerEvent.scheduled());
1801
1802                // update the state in zero time and proceed below
1803                pwrState = PWR_REF;
1804            }
1805        }
1806    }
1807
1808    // we transition to the refresh state, let the refresh state
1809    // machine know of this state update and let it deal with the
1810    // scheduling of the next power state transition as well as the
1811    // following refresh
1812    if (pwrState == PWR_REF) {
1813        DPRINTF(DRAMState, "Refreshing\n");
1814        // kick the refresh event loop into action again, and that
1815        // in turn will schedule a transition to the idle power
1816        // state once the refresh is done
1817        assert(refreshState == REF_RUN);
1818        processRefreshEvent();
1819    }
1820}
1821
1822void
1823DRAMCtrl::Rank::updatePowerStats()
1824{
1825    // All commands up to refresh have completed
1826    // flush cmdList to DRAMPower
1827    flushCmdList();
1828
1829    // update the counters for DRAMPower, passing false to
1830    // indicate that this is not the last command in the
1831    // list. DRAMPower requires this information for the
1832    // correct calculation of the background energy at the end
1833    // of the simulation. Ideally we would want to call this
1834    // function with true once at the end of the
1835    // simulation. However, the discarded energy is extremly
1836    // small and does not effect the final results.
1837    power.powerlib.updateCounters(false);
1838
1839    // call the energy function
1840    power.powerlib.calcEnergy();
1841
1842    // Get the energy and power from DRAMPower
1843    Data::MemoryPowerModel::Energy energy =
1844        power.powerlib.getEnergy();
1845    Data::MemoryPowerModel::Power rank_power =
1846        power.powerlib.getPower();
1847
1848    actEnergy = energy.act_energy * memory.devicesPerRank;
1849    preEnergy = energy.pre_energy * memory.devicesPerRank;
1850    readEnergy = energy.read_energy * memory.devicesPerRank;
1851    writeEnergy = energy.write_energy * memory.devicesPerRank;
1852    refreshEnergy = energy.ref_energy * memory.devicesPerRank;
1853    actBackEnergy = energy.act_stdby_energy * memory.devicesPerRank;
1854    preBackEnergy = energy.pre_stdby_energy * memory.devicesPerRank;
1855    totalEnergy = energy.total_energy * memory.devicesPerRank;
1856    averagePower = rank_power.average_power * memory.devicesPerRank;
1857}
1858
1859void
1860DRAMCtrl::Rank::regStats()
1861{
1862    using namespace Stats;
1863
1864    pwrStateTime
1865        .init(5)
1866        .name(name() + ".memoryStateTime")
1867        .desc("Time in different power states");
1868    pwrStateTime.subname(0, "IDLE");
1869    pwrStateTime.subname(1, "REF");
1870    pwrStateTime.subname(2, "PRE_PDN");
1871    pwrStateTime.subname(3, "ACT");
1872    pwrStateTime.subname(4, "ACT_PDN");
1873
1874    actEnergy
1875        .name(name() + ".actEnergy")
1876        .desc("Energy for activate commands per rank (pJ)");
1877
1878    preEnergy
1879        .name(name() + ".preEnergy")
1880        .desc("Energy for precharge commands per rank (pJ)");
1881
1882    readEnergy
1883        .name(name() + ".readEnergy")
1884        .desc("Energy for read commands per rank (pJ)");
1885
1886    writeEnergy
1887        .name(name() + ".writeEnergy")
1888        .desc("Energy for write commands per rank (pJ)");
1889
1890    refreshEnergy
1891        .name(name() + ".refreshEnergy")
1892        .desc("Energy for refresh commands per rank (pJ)");
1893
1894    actBackEnergy
1895        .name(name() + ".actBackEnergy")
1896        .desc("Energy for active background per rank (pJ)");
1897
1898    preBackEnergy
1899        .name(name() + ".preBackEnergy")
1900        .desc("Energy for precharge background per rank (pJ)");
1901
1902    totalEnergy
1903        .name(name() + ".totalEnergy")
1904        .desc("Total energy per rank (pJ)");
1905
1906    averagePower
1907        .name(name() + ".averagePower")
1908        .desc("Core power per rank (mW)");
1909}
1910void
1911DRAMCtrl::regStats()
1912{
1913    using namespace Stats;
1914
1915    AbstractMemory::regStats();
1916
1917    for (auto r : ranks) {
1918        r->regStats();
1919    }
1920
1921    readReqs
1922        .name(name() + ".readReqs")
1923        .desc("Number of read requests accepted");
1924
1925    writeReqs
1926        .name(name() + ".writeReqs")
1927        .desc("Number of write requests accepted");
1928
1929    readBursts
1930        .name(name() + ".readBursts")
1931        .desc("Number of DRAM read bursts, "
1932              "including those serviced by the write queue");
1933
1934    writeBursts
1935        .name(name() + ".writeBursts")
1936        .desc("Number of DRAM write bursts, "
1937              "including those merged in the write queue");
1938
1939    servicedByWrQ
1940        .name(name() + ".servicedByWrQ")
1941        .desc("Number of DRAM read bursts serviced by the write queue");
1942
1943    mergedWrBursts
1944        .name(name() + ".mergedWrBursts")
1945        .desc("Number of DRAM write bursts merged with an existing one");
1946
1947    neitherReadNorWrite
1948        .name(name() + ".neitherReadNorWriteReqs")
1949        .desc("Number of requests that are neither read nor write");
1950
1951    perBankRdBursts
1952        .init(banksPerRank * ranksPerChannel)
1953        .name(name() + ".perBankRdBursts")
1954        .desc("Per bank write bursts");
1955
1956    perBankWrBursts
1957        .init(banksPerRank * ranksPerChannel)
1958        .name(name() + ".perBankWrBursts")
1959        .desc("Per bank write bursts");
1960
1961    avgRdQLen
1962        .name(name() + ".avgRdQLen")
1963        .desc("Average read queue length when enqueuing")
1964        .precision(2);
1965
1966    avgWrQLen
1967        .name(name() + ".avgWrQLen")
1968        .desc("Average write queue length when enqueuing")
1969        .precision(2);
1970
1971    totQLat
1972        .name(name() + ".totQLat")
1973        .desc("Total ticks spent queuing");
1974
1975    totBusLat
1976        .name(name() + ".totBusLat")
1977        .desc("Total ticks spent in databus transfers");
1978
1979    totMemAccLat
1980        .name(name() + ".totMemAccLat")
1981        .desc("Total ticks spent from burst creation until serviced "
1982              "by the DRAM");
1983
1984    avgQLat
1985        .name(name() + ".avgQLat")
1986        .desc("Average queueing delay per DRAM burst")
1987        .precision(2);
1988
1989    avgQLat = totQLat / (readBursts - servicedByWrQ);
1990
1991    avgBusLat
1992        .name(name() + ".avgBusLat")
1993        .desc("Average bus latency per DRAM burst")
1994        .precision(2);
1995
1996    avgBusLat = totBusLat / (readBursts - servicedByWrQ);
1997
1998    avgMemAccLat
1999        .name(name() + ".avgMemAccLat")
2000        .desc("Average memory access latency per DRAM burst")
2001        .precision(2);
2002
2003    avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ);
2004
2005    numRdRetry
2006        .name(name() + ".numRdRetry")
2007        .desc("Number of times read queue was full causing retry");
2008
2009    numWrRetry
2010        .name(name() + ".numWrRetry")
2011        .desc("Number of times write queue was full causing retry");
2012
2013    readRowHits
2014        .name(name() + ".readRowHits")
2015        .desc("Number of row buffer hits during reads");
2016
2017    writeRowHits
2018        .name(name() + ".writeRowHits")
2019        .desc("Number of row buffer hits during writes");
2020
2021    readRowHitRate
2022        .name(name() + ".readRowHitRate")
2023        .desc("Row buffer hit rate for reads")
2024        .precision(2);
2025
2026    readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100;
2027
2028    writeRowHitRate
2029        .name(name() + ".writeRowHitRate")
2030        .desc("Row buffer hit rate for writes")
2031        .precision(2);
2032
2033    writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100;
2034
2035    readPktSize
2036        .init(ceilLog2(burstSize) + 1)
2037        .name(name() + ".readPktSize")
2038        .desc("Read request sizes (log2)");
2039
2040     writePktSize
2041        .init(ceilLog2(burstSize) + 1)
2042        .name(name() + ".writePktSize")
2043        .desc("Write request sizes (log2)");
2044
2045     rdQLenPdf
2046        .init(readBufferSize)
2047        .name(name() + ".rdQLenPdf")
2048        .desc("What read queue length does an incoming req see");
2049
2050     wrQLenPdf
2051        .init(writeBufferSize)
2052        .name(name() + ".wrQLenPdf")
2053        .desc("What write queue length does an incoming req see");
2054
2055     bytesPerActivate
2056         .init(maxAccessesPerRow)
2057         .name(name() + ".bytesPerActivate")
2058         .desc("Bytes accessed per row activation")
2059         .flags(nozero);
2060
2061     rdPerTurnAround
2062         .init(readBufferSize)
2063         .name(name() + ".rdPerTurnAround")
2064         .desc("Reads before turning the bus around for writes")
2065         .flags(nozero);
2066
2067     wrPerTurnAround
2068         .init(writeBufferSize)
2069         .name(name() + ".wrPerTurnAround")
2070         .desc("Writes before turning the bus around for reads")
2071         .flags(nozero);
2072
2073    bytesReadDRAM
2074        .name(name() + ".bytesReadDRAM")
2075        .desc("Total number of bytes read from DRAM");
2076
2077    bytesReadWrQ
2078        .name(name() + ".bytesReadWrQ")
2079        .desc("Total number of bytes read from write queue");
2080
2081    bytesWritten
2082        .name(name() + ".bytesWritten")
2083        .desc("Total number of bytes written to DRAM");
2084
2085    bytesReadSys
2086        .name(name() + ".bytesReadSys")
2087        .desc("Total read bytes from the system interface side");
2088
2089    bytesWrittenSys
2090        .name(name() + ".bytesWrittenSys")
2091        .desc("Total written bytes from the system interface side");
2092
2093    avgRdBW
2094        .name(name() + ".avgRdBW")
2095        .desc("Average DRAM read bandwidth in MiByte/s")
2096        .precision(2);
2097
2098    avgRdBW = (bytesReadDRAM / 1000000) / simSeconds;
2099
2100    avgWrBW
2101        .name(name() + ".avgWrBW")
2102        .desc("Average achieved write bandwidth in MiByte/s")
2103        .precision(2);
2104
2105    avgWrBW = (bytesWritten / 1000000) / simSeconds;
2106
2107    avgRdBWSys
2108        .name(name() + ".avgRdBWSys")
2109        .desc("Average system read bandwidth in MiByte/s")
2110        .precision(2);
2111
2112    avgRdBWSys = (bytesReadSys / 1000000) / simSeconds;
2113
2114    avgWrBWSys
2115        .name(name() + ".avgWrBWSys")
2116        .desc("Average system write bandwidth in MiByte/s")
2117        .precision(2);
2118
2119    avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds;
2120
2121    peakBW
2122        .name(name() + ".peakBW")
2123        .desc("Theoretical peak bandwidth in MiByte/s")
2124        .precision(2);
2125
2126    peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000;
2127
2128    busUtil
2129        .name(name() + ".busUtil")
2130        .desc("Data bus utilization in percentage")
2131        .precision(2);
2132    busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
2133
2134    totGap
2135        .name(name() + ".totGap")
2136        .desc("Total gap between requests");
2137
2138    avgGap
2139        .name(name() + ".avgGap")
2140        .desc("Average gap between requests")
2141        .precision(2);
2142
2143    avgGap = totGap / (readReqs + writeReqs);
2144
2145    // Stats for DRAM Power calculation based on Micron datasheet
2146    busUtilRead
2147        .name(name() + ".busUtilRead")
2148        .desc("Data bus utilization in percentage for reads")
2149        .precision(2);
2150
2151    busUtilRead = avgRdBW / peakBW * 100;
2152
2153    busUtilWrite
2154        .name(name() + ".busUtilWrite")
2155        .desc("Data bus utilization in percentage for writes")
2156        .precision(2);
2157
2158    busUtilWrite = avgWrBW / peakBW * 100;
2159
2160    pageHitRate
2161        .name(name() + ".pageHitRate")
2162        .desc("Row buffer hit rate, read and write combined")
2163        .precision(2);
2164
2165    pageHitRate = (writeRowHits + readRowHits) /
2166        (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100;
2167}
2168
2169void
2170DRAMCtrl::recvFunctional(PacketPtr pkt)
2171{
2172    // rely on the abstract memory
2173    functionalAccess(pkt);
2174}
2175
2176BaseSlavePort&
2177DRAMCtrl::getSlavePort(const string &if_name, PortID idx)
2178{
2179    if (if_name != "port") {
2180        return MemObject::getSlavePort(if_name, idx);
2181    } else {
2182        return port;
2183    }
2184}
2185
2186DrainState
2187DRAMCtrl::drain()
2188{
2189    // if there is anything in any of our internal queues, keep track
2190    // of that as well
2191    if (!(writeQueue.empty() && readQueue.empty() && respQueue.empty() &&
2192          allRanksDrained())) {
2193
2194        DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
2195                " resp: %d\n", writeQueue.size(), readQueue.size(),
2196                respQueue.size());
2197
2198        // the only part that is not drained automatically over time
2199        // is the write queue, thus kick things into action if needed
2200        if (!writeQueue.empty() && !nextReqEvent.scheduled()) {
2201            schedule(nextReqEvent, curTick());
2202        }
2203        return DrainState::Draining;
2204    } else {
2205        return DrainState::Drained;
2206    }
2207}
2208
2209bool
2210DRAMCtrl::allRanksDrained() const
2211{
2212    // true until proven false
2213    bool all_ranks_drained = true;
2214    for (auto r : ranks) {
2215        // then verify that the power state is IDLE
2216        // ensuring all banks are closed and rank is not in a low power state
2217        all_ranks_drained = r->inPwrIdleState() && all_ranks_drained;
2218    }
2219    return all_ranks_drained;
2220}
2221
2222void
2223DRAMCtrl::drainResume()
2224{
2225    if (!isTimingMode && system()->isTimingMode()) {
2226        // if we switched to timing mode, kick things into action,
2227        // and behave as if we restored from a checkpoint
2228        startup();
2229    } else if (isTimingMode && !system()->isTimingMode()) {
2230        // if we switch from timing mode, stop the refresh events to
2231        // not cause issues with KVM
2232        for (auto r : ranks) {
2233            r->suspend();
2234        }
2235    }
2236
2237    // update the mode
2238    isTimingMode = system()->isTimingMode();
2239}
2240
2241DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory)
2242    : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
2243      memory(_memory)
2244{ }
2245
2246AddrRangeList
2247DRAMCtrl::MemoryPort::getAddrRanges() const
2248{
2249    AddrRangeList ranges;
2250    ranges.push_back(memory.getAddrRange());
2251    return ranges;
2252}
2253
2254void
2255DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt)
2256{
2257    pkt->pushLabel(memory.name());
2258
2259    if (!queue.checkFunctional(pkt)) {
2260        // Default implementation of SimpleTimingPort::recvFunctional()
2261        // calls recvAtomic() and throws away the latency; we can save a
2262        // little here by just not calculating the latency.
2263        memory.recvFunctional(pkt);
2264    }
2265
2266    pkt->popLabel();
2267}
2268
2269Tick
2270DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt)
2271{
2272    return memory.recvAtomic(pkt);
2273}
2274
2275bool
2276DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt)
2277{
2278    // pass it to the memory controller
2279    return memory.recvTimingReq(pkt);
2280}
2281
2282DRAMCtrl*
2283DRAMCtrlParams::create()
2284{
2285    return new DRAMCtrl(this);
2286}
2287