dram_ctrl.cc revision 11676:8a882e297eb2
1955SN/A/* 2955SN/A * Copyright (c) 2010-2016 ARM Limited 311408Sandreas.sandberg@arm.com * All rights reserved 49812Sandreas.hansson@arm.com * 59812Sandreas.hansson@arm.com * The license below extends only to copyright in the software and shall 69812Sandreas.hansson@arm.com * not be construed as granting a license to any other intellectual 79812Sandreas.hansson@arm.com * property including but not limited to intellectual property relating 89812Sandreas.hansson@arm.com * to a hardware implementation of the functionality of the software 99812Sandreas.hansson@arm.com * licensed hereunder. You may use the software subject to the license 109812Sandreas.hansson@arm.com * terms below provided that you ensure that this notice is replicated 119812Sandreas.hansson@arm.com * unmodified and in its entirety in all distributions of the software, 129812Sandreas.hansson@arm.com * modified or unmodified, in source code or in binary form. 139812Sandreas.hansson@arm.com * 149812Sandreas.hansson@arm.com * Copyright (c) 2013 Amin Farmahini-Farahani 157816Ssteve.reinhardt@amd.com * All rights reserved. 165871Snate@binkert.org * 171762SN/A * Redistribution and use in source and binary forms, with or without 18955SN/A * modification, are permitted provided that the following conditions are 19955SN/A * met: redistributions of source code must retain the above copyright 20955SN/A * notice, this list of conditions and the following disclaimer; 21955SN/A * redistributions in binary form must reproduce the above copyright 22955SN/A * notice, this list of conditions and the following disclaimer in the 23955SN/A * documentation and/or other materials provided with the distribution; 24955SN/A * neither the name of the copyright holders nor the names of its 25955SN/A * contributors may be used to endorse or promote products derived from 26955SN/A * this software without specific prior written permission. 27955SN/A * 28955SN/A * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29955SN/A * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30955SN/A * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31955SN/A * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32955SN/A * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33955SN/A * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34955SN/A * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35955SN/A * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36955SN/A * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37955SN/A * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38955SN/A * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39955SN/A * 40955SN/A * Authors: Andreas Hansson 41955SN/A * Ani Udipi 422665Ssaidi@eecs.umich.edu * Neha Agarwal 432665Ssaidi@eecs.umich.edu * Omar Naji 445863Snate@binkert.org */ 45955SN/A 46955SN/A#include "base/bitfield.hh" 47955SN/A#include "base/trace.hh" 48955SN/A#include "debug/DRAM.hh" 49955SN/A#include "debug/DRAMPower.hh" 508878Ssteve.reinhardt@amd.com#include "debug/DRAMState.hh" 512632Sstever@eecs.umich.edu#include "debug/Drain.hh" 528878Ssteve.reinhardt@amd.com#include "mem/dram_ctrl.hh" 532632Sstever@eecs.umich.edu#include "sim/system.hh" 54955SN/A 558878Ssteve.reinhardt@amd.comusing namespace std; 562632Sstever@eecs.umich.eduusing namespace Data; 572761Sstever@eecs.umich.edu 582632Sstever@eecs.umich.eduDRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) : 592632Sstever@eecs.umich.edu AbstractMemory(p), 602632Sstever@eecs.umich.edu port(name() + ".port", *this), isTimingMode(false), 612761Sstever@eecs.umich.edu retryRdReq(false), retryWrReq(false), 622761Sstever@eecs.umich.edu busState(READ), 632761Sstever@eecs.umich.edu nextReqEvent(this), respondEvent(this), 648878Ssteve.reinhardt@amd.com deviceSize(p->device_size), 658878Ssteve.reinhardt@amd.com deviceBusWidth(p->device_bus_width), burstLength(p->burst_length), 662761Sstever@eecs.umich.edu deviceRowBufferSize(p->device_rowbuffer_size), 672761Sstever@eecs.umich.edu devicesPerRank(p->devices_per_rank), 682761Sstever@eecs.umich.edu burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8), 692761Sstever@eecs.umich.edu rowBufferSize(devicesPerRank * deviceRowBufferSize), 702761Sstever@eecs.umich.edu columnsPerRowBuffer(rowBufferSize / burstSize), 718878Ssteve.reinhardt@amd.com columnsPerStripe(range.interleaved() ? range.granularity() / burstSize : 1), 728878Ssteve.reinhardt@amd.com ranksPerChannel(p->ranks_per_channel), 732632Sstever@eecs.umich.edu bankGroupsPerRank(p->bank_groups_per_rank), 742632Sstever@eecs.umich.edu bankGroupArch(p->bank_groups_per_rank > 0), 758878Ssteve.reinhardt@amd.com banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0), 768878Ssteve.reinhardt@amd.com readBufferSize(p->read_buffer_size), 772632Sstever@eecs.umich.edu writeBufferSize(p->write_buffer_size), 78955SN/A writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0), 79955SN/A writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0), 80955SN/A minWritesPerSwitch(p->min_writes_per_switch), 815863Snate@binkert.org writesThisTime(0), readsThisTime(0), 825863Snate@binkert.org tCK(p->tCK), tWTR(p->tWTR), tRTW(p->tRTW), tCS(p->tCS), tBURST(p->tBURST), 835863Snate@binkert.org tCCD_L(p->tCCD_L), tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS), 845863Snate@binkert.org tWR(p->tWR), tRTP(p->tRTP), tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD), 855863Snate@binkert.org tRRD_L(p->tRRD_L), tXAW(p->tXAW), tXP(p->tXP), tXS(p->tXS), 865863Snate@binkert.org activationLimit(p->activation_limit), 875863Snate@binkert.org memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping), 885863Snate@binkert.org pageMgmt(p->page_policy), 895863Snate@binkert.org maxAccessesPerRow(p->max_accesses_per_row), 905863Snate@binkert.org frontendLatency(p->static_frontend_latency), 915863Snate@binkert.org backendLatency(p->static_backend_latency), 928878Ssteve.reinhardt@amd.com busBusyUntil(0), prevArrival(0), 935863Snate@binkert.org nextReqTime(0), activeRank(0), timeStampOffset(0) 945863Snate@binkert.org{ 955863Snate@binkert.org // sanity check the ranks since we rely on bit slicing for the 969812Sandreas.hansson@arm.com // address decoding 979812Sandreas.hansson@arm.com fatal_if(!isPowerOf2(ranksPerChannel), "DRAM rank count of %d is not " 985863Snate@binkert.org "allowed, must be a power of two\n", ranksPerChannel); 999812Sandreas.hansson@arm.com 1005863Snate@binkert.org fatal_if(!isPowerOf2(burstSize), "DRAM burst size %d is not allowed, " 1015863Snate@binkert.org "must be a power of two\n", burstSize); 1025863Snate@binkert.org 1039812Sandreas.hansson@arm.com for (int i = 0; i < ranksPerChannel; i++) { 1049812Sandreas.hansson@arm.com Rank* rank = new Rank(*this, p); 1055863Snate@binkert.org ranks.push_back(rank); 1065863Snate@binkert.org 1078878Ssteve.reinhardt@amd.com rank->actTicks.resize(activationLimit, 0); 1085863Snate@binkert.org rank->banks.resize(banksPerRank); 1095863Snate@binkert.org rank->rank = i; 1105863Snate@binkert.org 1116654Snate@binkert.org for (int b = 0; b < banksPerRank; b++) { 11210196SCurtis.Dunham@arm.com rank->banks[b].bank = b; 113955SN/A // GDDR addressing of banks to BG is linear. 1145396Ssaidi@eecs.umich.edu // Here we assume that all DRAM generations address bank groups as 11511401Sandreas.sandberg@arm.com // follows: 1165863Snate@binkert.org if (bankGroupArch) { 1175863Snate@binkert.org // Simply assign lower bits to bank group in order to 1184202Sbinkertn@umich.edu // rotate across bank groups as banks are incremented 1195863Snate@binkert.org // e.g. with 4 banks per bank group and 16 banks total: 1205863Snate@binkert.org // banks 0,4,8,12 are in bank group 0 1215863Snate@binkert.org // banks 1,5,9,13 are in bank group 1 1225863Snate@binkert.org // banks 2,6,10,14 are in bank group 2 123955SN/A // banks 3,7,11,15 are in bank group 3 1246654Snate@binkert.org rank->banks[b].bankgr = b % bankGroupsPerRank; 1255273Sstever@gmail.com } else { 1265871Snate@binkert.org // No bank groups; simply assign to bank number 1275273Sstever@gmail.com rank->banks[b].bankgr = b; 1286655Snate@binkert.org } 1298878Ssteve.reinhardt@amd.com } 1306655Snate@binkert.org } 1316655Snate@binkert.org 1329219Spower.jg@gmail.com // perform a basic check of the write thresholds 1336655Snate@binkert.org if (p->write_low_thresh_perc >= p->write_high_thresh_perc) 1345871Snate@binkert.org fatal("Write buffer low threshold %d must be smaller than the " 1356654Snate@binkert.org "high threshold %d\n", p->write_low_thresh_perc, 1368947Sandreas.hansson@arm.com p->write_high_thresh_perc); 1375396Ssaidi@eecs.umich.edu 1388120Sgblack@eecs.umich.edu // determine the rows per bank by looking at the total capacity 1398120Sgblack@eecs.umich.edu uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size()); 1408120Sgblack@eecs.umich.edu 1418120Sgblack@eecs.umich.edu // determine the dram actual capacity from the DRAM config in Mbytes 1428120Sgblack@eecs.umich.edu uint64_t deviceCapacity = deviceSize / (1024 * 1024) * devicesPerRank * 1438120Sgblack@eecs.umich.edu ranksPerChannel; 1448120Sgblack@eecs.umich.edu 1458120Sgblack@eecs.umich.edu // if actual DRAM size does not match memory capacity in system warn! 1468879Ssteve.reinhardt@amd.com if (deviceCapacity != capacity / (1024 * 1024)) 1478879Ssteve.reinhardt@amd.com warn("DRAM device capacity (%d Mbytes) does not match the " 1488879Ssteve.reinhardt@amd.com "address range assigned (%d Mbytes)\n", deviceCapacity, 1498879Ssteve.reinhardt@amd.com capacity / (1024 * 1024)); 1508879Ssteve.reinhardt@amd.com 1518879Ssteve.reinhardt@amd.com DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity, 1528879Ssteve.reinhardt@amd.com AbstractMemory::size()); 1538879Ssteve.reinhardt@amd.com 1548879Ssteve.reinhardt@amd.com DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n", 1558879Ssteve.reinhardt@amd.com rowBufferSize, columnsPerRowBuffer); 1568879Ssteve.reinhardt@amd.com 1578879Ssteve.reinhardt@amd.com rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel); 1588879Ssteve.reinhardt@amd.com 1598120Sgblack@eecs.umich.edu // some basic sanity checks 1608120Sgblack@eecs.umich.edu if (tREFI <= tRP || tREFI <= tRFC) { 1618120Sgblack@eecs.umich.edu fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n", 1628120Sgblack@eecs.umich.edu tREFI, tRP, tRFC); 1638120Sgblack@eecs.umich.edu } 1648120Sgblack@eecs.umich.edu 1658120Sgblack@eecs.umich.edu // basic bank group architecture checks -> 1668120Sgblack@eecs.umich.edu if (bankGroupArch) { 1678120Sgblack@eecs.umich.edu // must have at least one bank per bank group 1688120Sgblack@eecs.umich.edu if (bankGroupsPerRank > banksPerRank) { 1698120Sgblack@eecs.umich.edu fatal("banks per rank (%d) must be equal to or larger than " 1708120Sgblack@eecs.umich.edu "banks groups per rank (%d)\n", 1718120Sgblack@eecs.umich.edu banksPerRank, bankGroupsPerRank); 1728120Sgblack@eecs.umich.edu } 1738879Ssteve.reinhardt@amd.com // must have same number of banks in each bank group 1748879Ssteve.reinhardt@amd.com if ((banksPerRank % bankGroupsPerRank) != 0) { 1758879Ssteve.reinhardt@amd.com fatal("Banks per rank (%d) must be evenly divisible by bank groups " 1768879Ssteve.reinhardt@amd.com "per rank (%d) for equal banks per bank group\n", 17710458Sandreas.hansson@arm.com banksPerRank, bankGroupsPerRank); 17810458Sandreas.hansson@arm.com } 17910458Sandreas.hansson@arm.com // tCCD_L should be greater than minimal, back-to-back burst delay 1808879Ssteve.reinhardt@amd.com if (tCCD_L <= tBURST) { 1818879Ssteve.reinhardt@amd.com fatal("tCCD_L (%d) should be larger than tBURST (%d) when " 1828879Ssteve.reinhardt@amd.com "bank groups per rank (%d) is greater than 1\n", 1838879Ssteve.reinhardt@amd.com tCCD_L, tBURST, bankGroupsPerRank); 1849227Sandreas.hansson@arm.com } 1859227Sandreas.hansson@arm.com // tRRD_L is greater than minimal, same bank group ACT-to-ACT delay 1868879Ssteve.reinhardt@amd.com // some datasheets might specify it equal to tRRD 1878879Ssteve.reinhardt@amd.com if (tRRD_L < tRRD) { 1888879Ssteve.reinhardt@amd.com fatal("tRRD_L (%d) should be larger than tRRD (%d) when " 1898879Ssteve.reinhardt@amd.com "bank groups per rank (%d) is greater than 1\n", 19010453SAndrew.Bardsley@arm.com tRRD_L, tRRD, bankGroupsPerRank); 19110453SAndrew.Bardsley@arm.com } 19210453SAndrew.Bardsley@arm.com } 19310456SCurtis.Dunham@arm.com 19410456SCurtis.Dunham@arm.com} 19510456SCurtis.Dunham@arm.com 19610457Sandreas.hansson@arm.comvoid 19710457Sandreas.hansson@arm.comDRAMCtrl::init() 19811342Sandreas.hansson@arm.com{ 19911342Sandreas.hansson@arm.com AbstractMemory::init(); 2008120Sgblack@eecs.umich.edu 2018947Sandreas.hansson@arm.com if (!port.isConnected()) { 2027816Ssteve.reinhardt@amd.com fatal("DRAMCtrl %s is unconnected!\n", name()); 2035871Snate@binkert.org } else { 2045871Snate@binkert.org port.sendRangeChange(); 2056121Snate@binkert.org } 2065871Snate@binkert.org 2075871Snate@binkert.org // a bit of sanity checks on the interleaving, save it for here to 2089926Sstan.czerniawski@arm.com // ensure that the system pointer is initialised 2099926Sstan.czerniawski@arm.com if (range.interleaved()) { 2109119Sandreas.hansson@arm.com if (channels != range.stripes()) 21110068Sandreas.hansson@arm.com fatal("%s has %d interleaved address stripes but %d channel(s)\n", 21210068Sandreas.hansson@arm.com name(), range.stripes(), channels); 213955SN/A 2149416SAndreas.Sandberg@ARM.com if (addrMapping == Enums::RoRaBaChCo) { 21511342Sandreas.hansson@arm.com if (rowBufferSize != range.granularity()) { 21611212Sjoseph.gross@amd.com fatal("Channel interleaving of %s doesn't match RoRaBaChCo " 21711212Sjoseph.gross@amd.com "address map\n", name()); 21811212Sjoseph.gross@amd.com } 21911212Sjoseph.gross@amd.com } else if (addrMapping == Enums::RoRaBaCoCh || 22011212Sjoseph.gross@amd.com addrMapping == Enums::RoCoRaBaCh) { 2219416SAndreas.Sandberg@ARM.com // for the interleavings with channel bits in the bottom, 2229416SAndreas.Sandberg@ARM.com // if the system uses a channel striping granularity that 2235871Snate@binkert.org // is larger than the DRAM burst size, then map the 22410584Sandreas.hansson@arm.com // sequential accesses within a stripe to a number of 2259416SAndreas.Sandberg@ARM.com // columns in the DRAM, effectively placing some of the 2269416SAndreas.Sandberg@ARM.com // lower-order column bits as the least-significant bits 2275871Snate@binkert.org // of the address (above the ones denoting the burst size) 228955SN/A assert(columnsPerStripe >= 1); 22910671Sandreas.hansson@arm.com 23010671Sandreas.hansson@arm.com // channel striping has to be done at a granularity that 23110671Sandreas.hansson@arm.com // is equal or larger to a cache line 23210671Sandreas.hansson@arm.com if (system()->cacheLineSize() > range.granularity()) { 2338881Smarc.orr@gmail.com fatal("Channel interleaving of %s must be at least as large " 2346121Snate@binkert.org "as the cache line size\n", name()); 2356121Snate@binkert.org } 2361533SN/A 2379239Sandreas.hansson@arm.com // ...and equal or smaller than the row-buffer size 2389239Sandreas.hansson@arm.com if (rowBufferSize < range.granularity()) { 2399239Sandreas.hansson@arm.com fatal("Channel interleaving of %s must be at most as large " 2409239Sandreas.hansson@arm.com "as the row-buffer size\n", name()); 2419239Sandreas.hansson@arm.com } 2429239Sandreas.hansson@arm.com // this is essentially the check above, so just to be sure 2439239Sandreas.hansson@arm.com assert(columnsPerStripe <= columnsPerRowBuffer); 2449239Sandreas.hansson@arm.com } 2459239Sandreas.hansson@arm.com } 2469239Sandreas.hansson@arm.com} 2479239Sandreas.hansson@arm.com 2489239Sandreas.hansson@arm.comvoid 2496655Snate@binkert.orgDRAMCtrl::startup() 2506655Snate@binkert.org{ 2516655Snate@binkert.org // remember the memory system mode of operation 2526655Snate@binkert.org isTimingMode = system()->isTimingMode(); 2535871Snate@binkert.org 2545871Snate@binkert.org if (isTimingMode) { 2555863Snate@binkert.org // timestamp offset should be in clock cycles for DRAMPower 2565871Snate@binkert.org timeStampOffset = divCeil(curTick(), tCK); 2578878Ssteve.reinhardt@amd.com 2585871Snate@binkert.org // update the start tick for the precharge accounting to the 2595871Snate@binkert.org // current tick 2605871Snate@binkert.org for (auto r : ranks) { 2615863Snate@binkert.org r->startup(curTick() + tREFI - tRP); 2626121Snate@binkert.org } 26311408Sandreas.sandberg@arm.com 2645863Snate@binkert.org // shift the bus busy time sufficiently far ahead that we never 26511408Sandreas.sandberg@arm.com // have to worry about negative values when computing the time for 26611408Sandreas.sandberg@arm.com // the next request, this will add an insignificant bubble at the 2678336Ssteve.reinhardt@amd.com // start of simulation 2688336Ssteve.reinhardt@amd.com busBusyUntil = curTick() + tRP + tRCD + tCL; 26911408Sandreas.sandberg@arm.com } 2708336Ssteve.reinhardt@amd.com} 2714678Snate@binkert.org 27211408Sandreas.sandberg@arm.comTick 27311408Sandreas.sandberg@arm.comDRAMCtrl::recvAtomic(PacketPtr pkt) 27411408Sandreas.sandberg@arm.com{ 27511401Sandreas.sandberg@arm.com DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr()); 27611401Sandreas.sandberg@arm.com 27711401Sandreas.sandberg@arm.com panic_if(pkt->cacheResponding(), "Should not see packets where cache " 27811401Sandreas.sandberg@arm.com "is responding"); 27911401Sandreas.sandberg@arm.com 28011401Sandreas.sandberg@arm.com // do the actual memory access and turn the packet into a response 2818336Ssteve.reinhardt@amd.com access(pkt); 2828336Ssteve.reinhardt@amd.com 2838336Ssteve.reinhardt@amd.com Tick latency = 0; 2844678Snate@binkert.org if (pkt->hasData()) { 28511401Sandreas.sandberg@arm.com // this value is not supposed to be accurate, just enough to 2864678Snate@binkert.org // keep things going, mimic a closed page 2874678Snate@binkert.org latency = tRP + tRCD + tCL; 28811401Sandreas.sandberg@arm.com } 28911401Sandreas.sandberg@arm.com return latency; 2908336Ssteve.reinhardt@amd.com} 2914678Snate@binkert.org 2928336Ssteve.reinhardt@amd.combool 2938336Ssteve.reinhardt@amd.comDRAMCtrl::readQueueFull(unsigned int neededEntries) const 2948336Ssteve.reinhardt@amd.com{ 2958336Ssteve.reinhardt@amd.com DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n", 2968336Ssteve.reinhardt@amd.com readBufferSize, readQueue.size() + respQueue.size(), 2978336Ssteve.reinhardt@amd.com neededEntries); 2985871Snate@binkert.org 2995871Snate@binkert.org return 3008336Ssteve.reinhardt@amd.com (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize; 30111408Sandreas.sandberg@arm.com} 30211408Sandreas.sandberg@arm.com 30311408Sandreas.sandberg@arm.combool 30411408Sandreas.sandberg@arm.comDRAMCtrl::writeQueueFull(unsigned int neededEntries) const 30511408Sandreas.sandberg@arm.com{ 30611408Sandreas.sandberg@arm.com DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n", 30711408Sandreas.sandberg@arm.com writeBufferSize, writeQueue.size(), neededEntries); 3088336Ssteve.reinhardt@amd.com return (writeQueue.size() + neededEntries) > writeBufferSize; 30911401Sandreas.sandberg@arm.com} 31011401Sandreas.sandberg@arm.com 31111401Sandreas.sandberg@arm.comDRAMCtrl::DRAMPacket* 3125871Snate@binkert.orgDRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size, 3138336Ssteve.reinhardt@amd.com bool isRead) 3148336Ssteve.reinhardt@amd.com{ 31511401Sandreas.sandberg@arm.com // decode the address based on the address mapping scheme, with 31611401Sandreas.sandberg@arm.com // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and 31711401Sandreas.sandberg@arm.com // channel, respectively 31811401Sandreas.sandberg@arm.com uint8_t rank; 31911401Sandreas.sandberg@arm.com uint8_t bank; 3204678Snate@binkert.org // use a 64-bit unsigned during the computations as the row is 3215871Snate@binkert.org // always the top bits, and check before creating the DRAMPacket 3224678Snate@binkert.org uint64_t row; 32311401Sandreas.sandberg@arm.com 32411401Sandreas.sandberg@arm.com // truncate the address to a DRAM burst, which makes it unique to 32511401Sandreas.sandberg@arm.com // a specific column, row, bank, rank and channel 32611401Sandreas.sandberg@arm.com Addr addr = dramPktAddr / burstSize; 32711401Sandreas.sandberg@arm.com 32811401Sandreas.sandberg@arm.com // we have removed the lowest order address bits that denote the 32911401Sandreas.sandberg@arm.com // position within the column 33011401Sandreas.sandberg@arm.com if (addrMapping == Enums::RoRaBaChCo) { 33111401Sandreas.sandberg@arm.com // the lowest order bits denote the column to ensure that 33211401Sandreas.sandberg@arm.com // sequential cache lines occupy the same row 33311401Sandreas.sandberg@arm.com addr = addr / columnsPerRowBuffer; 33411401Sandreas.sandberg@arm.com 33511450Sandreas.sandberg@arm.com // take out the channel part of the address 33611450Sandreas.sandberg@arm.com addr = addr / channels; 33711450Sandreas.sandberg@arm.com 33811450Sandreas.sandberg@arm.com // after the channel bits, get the bank bits to interleave 33911450Sandreas.sandberg@arm.com // over the banks 34011450Sandreas.sandberg@arm.com bank = addr % banksPerRank; 34111450Sandreas.sandberg@arm.com addr = addr / banksPerRank; 34211450Sandreas.sandberg@arm.com 34311450Sandreas.sandberg@arm.com // after the bank, we get the rank bits which thus interleaves 34411450Sandreas.sandberg@arm.com // over the ranks 34511450Sandreas.sandberg@arm.com rank = addr % ranksPerChannel; 34611401Sandreas.sandberg@arm.com addr = addr / ranksPerChannel; 34711450Sandreas.sandberg@arm.com 34811450Sandreas.sandberg@arm.com // lastly, get the row bits, no need to remove them from addr 34911450Sandreas.sandberg@arm.com row = addr % rowsPerBank; 35011401Sandreas.sandberg@arm.com } else if (addrMapping == Enums::RoRaBaCoCh) { 35111450Sandreas.sandberg@arm.com // take out the lower-order column bits 35211401Sandreas.sandberg@arm.com addr = addr / columnsPerStripe; 3538336Ssteve.reinhardt@amd.com 3548336Ssteve.reinhardt@amd.com // take out the channel part of the address 3558336Ssteve.reinhardt@amd.com addr = addr / channels; 3568336Ssteve.reinhardt@amd.com 3578336Ssteve.reinhardt@amd.com // next, the higher-order column bites 3588336Ssteve.reinhardt@amd.com addr = addr / (columnsPerRowBuffer / columnsPerStripe); 3598336Ssteve.reinhardt@amd.com 3608336Ssteve.reinhardt@amd.com // after the column bits, we get the bank bits to interleave 3618336Ssteve.reinhardt@amd.com // over the banks 3628336Ssteve.reinhardt@amd.com bank = addr % banksPerRank; 36311401Sandreas.sandberg@arm.com addr = addr / banksPerRank; 36411401Sandreas.sandberg@arm.com 3658336Ssteve.reinhardt@amd.com // after the bank, we get the rank bits which thus interleaves 3668336Ssteve.reinhardt@amd.com // over the ranks 3678336Ssteve.reinhardt@amd.com rank = addr % ranksPerChannel; 3685871Snate@binkert.org addr = addr / ranksPerChannel; 36911408Sandreas.sandberg@arm.com 37011408Sandreas.sandberg@arm.com // lastly, get the row bits, no need to remove them from addr 37111408Sandreas.sandberg@arm.com row = addr % rowsPerBank; 37211408Sandreas.sandberg@arm.com } else if (addrMapping == Enums::RoCoRaBaCh) { 37311408Sandreas.sandberg@arm.com // optimise for closed page mode and utilise maximum 37411408Sandreas.sandberg@arm.com // parallelism of the DRAM (at the cost of power) 37511408Sandreas.sandberg@arm.com 37611408Sandreas.sandberg@arm.com // take out the lower-order column bits 37711408Sandreas.sandberg@arm.com addr = addr / columnsPerStripe; 37811408Sandreas.sandberg@arm.com 37911408Sandreas.sandberg@arm.com // take out the channel part of the address, not that this has 38011408Sandreas.sandberg@arm.com // to match with how accesses are interleaved between the 38111408Sandreas.sandberg@arm.com // controllers in the address mapping 38211408Sandreas.sandberg@arm.com addr = addr / channels; 38311408Sandreas.sandberg@arm.com 38411408Sandreas.sandberg@arm.com // start with the bank bits, as this provides the maximum 38511408Sandreas.sandberg@arm.com // opportunity for parallelism between requests 38611408Sandreas.sandberg@arm.com bank = addr % banksPerRank; 38711408Sandreas.sandberg@arm.com addr = addr / banksPerRank; 38811408Sandreas.sandberg@arm.com 38911408Sandreas.sandberg@arm.com // next get the rank bits 3906121Snate@binkert.org rank = addr % ranksPerChannel; 391955SN/A addr = addr / ranksPerChannel; 392955SN/A 3932632Sstever@eecs.umich.edu // next, the higher-order column bites 3942632Sstever@eecs.umich.edu addr = addr / (columnsPerRowBuffer / columnsPerStripe); 395955SN/A 396955SN/A // lastly, get the row bits, no need to remove them from addr 397955SN/A row = addr % rowsPerBank; 398955SN/A } else 3998878Ssteve.reinhardt@amd.com panic("Unknown address mapping policy chosen!"); 400955SN/A 4012632Sstever@eecs.umich.edu assert(rank < ranksPerChannel); 4022632Sstever@eecs.umich.edu assert(bank < banksPerRank); 4032632Sstever@eecs.umich.edu assert(row < rowsPerBank); 4042632Sstever@eecs.umich.edu assert(row < Bank::NO_ROW); 4052632Sstever@eecs.umich.edu 4062632Sstever@eecs.umich.edu DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n", 4072632Sstever@eecs.umich.edu dramPktAddr, rank, bank, row); 4088268Ssteve.reinhardt@amd.com 4098268Ssteve.reinhardt@amd.com // create the corresponding DRAM packet with the entry time and 4108268Ssteve.reinhardt@amd.com // ready time set to the current tick, the latter will be updated 4118268Ssteve.reinhardt@amd.com // later 4128268Ssteve.reinhardt@amd.com uint16_t bank_id = banksPerRank * rank + bank; 4138268Ssteve.reinhardt@amd.com return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr, 4148268Ssteve.reinhardt@amd.com size, ranks[rank]->banks[bank], *ranks[rank]); 4152632Sstever@eecs.umich.edu} 4162632Sstever@eecs.umich.edu 4172632Sstever@eecs.umich.eduvoid 4182632Sstever@eecs.umich.eduDRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount) 4198268Ssteve.reinhardt@amd.com{ 4202632Sstever@eecs.umich.edu // only add to the read queue here. whenever the request is 4218268Ssteve.reinhardt@amd.com // eventually done, set the readyTime, and call schedule() 4228268Ssteve.reinhardt@amd.com assert(!pkt->isWrite()); 4238268Ssteve.reinhardt@amd.com 4248268Ssteve.reinhardt@amd.com assert(pktCount != 0); 4253718Sstever@eecs.umich.edu 4262634Sstever@eecs.umich.edu // if the request size is larger than burst size, the pkt is split into 4272634Sstever@eecs.umich.edu // multiple DRAM packets 4285863Snate@binkert.org // Note if the pkt starting address is not aligened to burst size, the 4292638Sstever@eecs.umich.edu // address of first DRAM packet is kept unaliged. Subsequent DRAM packets 4308268Ssteve.reinhardt@amd.com // are aligned to burst size boundaries. This is to ensure we accurately 4312632Sstever@eecs.umich.edu // check read packets against packets in write queue. 4322632Sstever@eecs.umich.edu Addr addr = pkt->getAddr(); 4332632Sstever@eecs.umich.edu unsigned pktsServicedByWrQ = 0; 4342632Sstever@eecs.umich.edu BurstHelper* burst_helper = NULL; 4352632Sstever@eecs.umich.edu for (int cnt = 0; cnt < pktCount; ++cnt) { 4361858SN/A unsigned size = std::min((addr | (burstSize - 1)) + 1, 4373716Sstever@eecs.umich.edu pkt->getAddr() + pkt->getSize()) - addr; 4382638Sstever@eecs.umich.edu readPktSize[ceilLog2(size)]++; 4392638Sstever@eecs.umich.edu readBursts++; 4402638Sstever@eecs.umich.edu 4412638Sstever@eecs.umich.edu // First check write buffer to see if the data is already at 4422638Sstever@eecs.umich.edu // the controller 4432638Sstever@eecs.umich.edu bool foundInWrQ = false; 4442638Sstever@eecs.umich.edu Addr burst_addr = burstAlign(addr); 4455863Snate@binkert.org // if the burst address is not present then there is no need 4465863Snate@binkert.org // looking any further 4475863Snate@binkert.org if (isInWriteQueue.find(burst_addr) != isInWriteQueue.end()) { 448955SN/A for (const auto& p : writeQueue) { 4495341Sstever@gmail.com // check if the read is subsumed in the write queue 4505341Sstever@gmail.com // packet we are looking at 4515863Snate@binkert.org if (p->addr <= addr && (addr + size) <= (p->addr + p->size)) { 4527756SAli.Saidi@ARM.com foundInWrQ = true; 4535341Sstever@gmail.com servicedByWrQ++; 4546121Snate@binkert.org pktsServicedByWrQ++; 4554494Ssaidi@eecs.umich.edu DPRINTF(DRAM, "Read to addr %lld with size %d serviced by " 4566121Snate@binkert.org "write queue\n", addr, size); 4571105SN/A bytesReadWrQ += burstSize; 4582667Sstever@eecs.umich.edu break; 4592667Sstever@eecs.umich.edu } 4602667Sstever@eecs.umich.edu } 4612667Sstever@eecs.umich.edu } 4626121Snate@binkert.org 4632667Sstever@eecs.umich.edu // If not found in the write q, make a DRAM packet and 4645341Sstever@gmail.com // push it onto the read queue 4655863Snate@binkert.org if (!foundInWrQ) { 4665341Sstever@gmail.com 4675341Sstever@gmail.com // Make the burst helper for split packets 4685341Sstever@gmail.com if (pktCount > 1 && burst_helper == NULL) { 4698120Sgblack@eecs.umich.edu DPRINTF(DRAM, "Read to addr %lld translates to %d " 4705341Sstever@gmail.com "dram requests\n", pkt->getAddr(), pktCount); 4718120Sgblack@eecs.umich.edu burst_helper = new BurstHelper(pktCount); 4725341Sstever@gmail.com } 4738120Sgblack@eecs.umich.edu 4746121Snate@binkert.org DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true); 4756121Snate@binkert.org dram_pkt->burstHelper = burst_helper; 4768980Ssteve.reinhardt@amd.com 4779396Sandreas.hansson@arm.com assert(!readQueueFull(1)); 4785397Ssaidi@eecs.umich.edu rdQLenPdf[readQueue.size() + respQueue.size()]++; 4795397Ssaidi@eecs.umich.edu 4807727SAli.Saidi@ARM.com DPRINTF(DRAM, "Adding to read queue\n"); 4818268Ssteve.reinhardt@amd.com 4826168Snate@binkert.org readQueue.push_back(dram_pkt); 4835341Sstever@gmail.com 4848120Sgblack@eecs.umich.edu // Update stats 4858120Sgblack@eecs.umich.edu avgRdQLen = readQueue.size() + respQueue.size(); 4868120Sgblack@eecs.umich.edu } 4876814Sgblack@eecs.umich.edu 4885863Snate@binkert.org // Starting address of next dram pkt (aligend to burstSize boundary) 4898120Sgblack@eecs.umich.edu addr = (addr | (burstSize - 1)) + 1; 4905341Sstever@gmail.com } 4915863Snate@binkert.org 4928268Ssteve.reinhardt@amd.com // If all packets are serviced by write queue, we send the repsonse back 4936121Snate@binkert.org if (pktsServicedByWrQ == pktCount) { 4946121Snate@binkert.org accessAndRespond(pkt, frontendLatency); 4958268Ssteve.reinhardt@amd.com return; 4965742Snate@binkert.org } 4975742Snate@binkert.org 4985341Sstever@gmail.com // Update how many split packets are serviced by write queue 4995742Snate@binkert.org if (burst_helper != NULL) 5005742Snate@binkert.org burst_helper->burstsServiced = pktsServicedByWrQ; 5015341Sstever@gmail.com 5026017Snate@binkert.org // If we are not already scheduled to get a request out of the 5036121Snate@binkert.org // queue, do so now 5046017Snate@binkert.org if (!nextReqEvent.scheduled()) { 5057816Ssteve.reinhardt@amd.com DPRINTF(DRAM, "Request scheduled immediately\n"); 5067756SAli.Saidi@ARM.com schedule(nextReqEvent, curTick()); 5077756SAli.Saidi@ARM.com } 5087756SAli.Saidi@ARM.com} 5097756SAli.Saidi@ARM.com 5107756SAli.Saidi@ARM.comvoid 5117756SAli.Saidi@ARM.comDRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount) 5127756SAli.Saidi@ARM.com{ 5137756SAli.Saidi@ARM.com // only add to the write queue here. whenever the request is 5147816Ssteve.reinhardt@amd.com // eventually done, set the readyTime, and call schedule() 5157816Ssteve.reinhardt@amd.com assert(pkt->isWrite()); 5167816Ssteve.reinhardt@amd.com 5177816Ssteve.reinhardt@amd.com // if the request size is larger than burst size, the pkt is split into 5187816Ssteve.reinhardt@amd.com // multiple DRAM packets 5197816Ssteve.reinhardt@amd.com Addr addr = pkt->getAddr(); 5207816Ssteve.reinhardt@amd.com for (int cnt = 0; cnt < pktCount; ++cnt) { 5217816Ssteve.reinhardt@amd.com unsigned size = std::min((addr | (burstSize - 1)) + 1, 5227816Ssteve.reinhardt@amd.com pkt->getAddr() + pkt->getSize()) - addr; 5237816Ssteve.reinhardt@amd.com writePktSize[ceilLog2(size)]++; 5247756SAli.Saidi@ARM.com writeBursts++; 5257816Ssteve.reinhardt@amd.com 5267816Ssteve.reinhardt@amd.com // see if we can merge with an existing item in the write 5277816Ssteve.reinhardt@amd.com // queue and keep track of whether we have merged or not 5287816Ssteve.reinhardt@amd.com bool merged = isInWriteQueue.find(burstAlign(addr)) != 5297816Ssteve.reinhardt@amd.com isInWriteQueue.end(); 5307816Ssteve.reinhardt@amd.com 5317816Ssteve.reinhardt@amd.com // if the item was not merged we need to create a new write 5327816Ssteve.reinhardt@amd.com // and enqueue it 5337816Ssteve.reinhardt@amd.com if (!merged) { 5347816Ssteve.reinhardt@amd.com DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false); 5357816Ssteve.reinhardt@amd.com 5367816Ssteve.reinhardt@amd.com assert(writeQueue.size() < writeBufferSize); 5377816Ssteve.reinhardt@amd.com wrQLenPdf[writeQueue.size()]++; 5387816Ssteve.reinhardt@amd.com 5397816Ssteve.reinhardt@amd.com DPRINTF(DRAM, "Adding to write queue\n"); 5407816Ssteve.reinhardt@amd.com 5417816Ssteve.reinhardt@amd.com writeQueue.push_back(dram_pkt); 5427816Ssteve.reinhardt@amd.com isInWriteQueue.insert(burstAlign(addr)); 5437816Ssteve.reinhardt@amd.com assert(writeQueue.size() == isInWriteQueue.size()); 5447816Ssteve.reinhardt@amd.com 5457816Ssteve.reinhardt@amd.com // Update stats 5467816Ssteve.reinhardt@amd.com avgWrQLen = writeQueue.size(); 5477816Ssteve.reinhardt@amd.com } else { 5487816Ssteve.reinhardt@amd.com DPRINTF(DRAM, "Merging write burst with existing queue entry\n"); 5497816Ssteve.reinhardt@amd.com 5507816Ssteve.reinhardt@amd.com // keep track of the fact that this burst effectively 5517816Ssteve.reinhardt@amd.com // disappeared as it was merged with an existing one 5527816Ssteve.reinhardt@amd.com mergedWrBursts++; 5537816Ssteve.reinhardt@amd.com } 5547816Ssteve.reinhardt@amd.com 5557816Ssteve.reinhardt@amd.com // Starting address of next dram pkt (aligend to burstSize boundary) 5567816Ssteve.reinhardt@amd.com addr = (addr | (burstSize - 1)) + 1; 5577816Ssteve.reinhardt@amd.com } 5587816Ssteve.reinhardt@amd.com 5597816Ssteve.reinhardt@amd.com // we do not wait for the writes to be send to the actual memory, 5607816Ssteve.reinhardt@amd.com // but instead take responsibility for the consistency here and 5617816Ssteve.reinhardt@amd.com // snoop the write queue for any upcoming reads 5627816Ssteve.reinhardt@amd.com // @todo, if a pkt size is larger than burst size, we might need a 5637816Ssteve.reinhardt@amd.com // different front end latency 5647816Ssteve.reinhardt@amd.com accessAndRespond(pkt, frontendLatency); 5657816Ssteve.reinhardt@amd.com 5667816Ssteve.reinhardt@amd.com // If we are not already scheduled to get a request out of the 5677816Ssteve.reinhardt@amd.com // queue, do so now 5687816Ssteve.reinhardt@amd.com if (!nextReqEvent.scheduled()) { 5697816Ssteve.reinhardt@amd.com DPRINTF(DRAM, "Request scheduled immediately\n"); 5707816Ssteve.reinhardt@amd.com schedule(nextReqEvent, curTick()); 5717816Ssteve.reinhardt@amd.com } 5727816Ssteve.reinhardt@amd.com} 5737816Ssteve.reinhardt@amd.com 5747816Ssteve.reinhardt@amd.comvoid 5757816Ssteve.reinhardt@amd.comDRAMCtrl::printQs() const { 5767816Ssteve.reinhardt@amd.com DPRINTF(DRAM, "===READ QUEUE===\n\n"); 5777816Ssteve.reinhardt@amd.com for (auto i = readQueue.begin() ; i != readQueue.end() ; ++i) { 5787816Ssteve.reinhardt@amd.com DPRINTF(DRAM, "Read %lu\n", (*i)->addr); 5797816Ssteve.reinhardt@amd.com } 5807816Ssteve.reinhardt@amd.com DPRINTF(DRAM, "\n===RESP QUEUE===\n\n"); 5817816Ssteve.reinhardt@amd.com for (auto i = respQueue.begin() ; i != respQueue.end() ; ++i) { 5827816Ssteve.reinhardt@amd.com DPRINTF(DRAM, "Response %lu\n", (*i)->addr); 5837816Ssteve.reinhardt@amd.com } 5847816Ssteve.reinhardt@amd.com DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n"); 5857816Ssteve.reinhardt@amd.com for (auto i = writeQueue.begin() ; i != writeQueue.end() ; ++i) { 5868947Sandreas.hansson@arm.com DPRINTF(DRAM, "Write %lu\n", (*i)->addr); 5878947Sandreas.hansson@arm.com } 5887756SAli.Saidi@ARM.com} 5898120Sgblack@eecs.umich.edu 5907756SAli.Saidi@ARM.combool 5917756SAli.Saidi@ARM.comDRAMCtrl::recvTimingReq(PacketPtr pkt) 5927756SAli.Saidi@ARM.com{ 5937756SAli.Saidi@ARM.com // This is where we enter from the outside world 5947816Ssteve.reinhardt@amd.com DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n", 5957816Ssteve.reinhardt@amd.com pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 5967816Ssteve.reinhardt@amd.com 5977816Ssteve.reinhardt@amd.com panic_if(pkt->cacheResponding(), "Should not see packets where cache " 5987816Ssteve.reinhardt@amd.com "is responding"); 5997816Ssteve.reinhardt@amd.com 6007816Ssteve.reinhardt@amd.com panic_if(!(pkt->isRead() || pkt->isWrite()), 6017816Ssteve.reinhardt@amd.com "Should only see read and writes at memory controller\n"); 6027816Ssteve.reinhardt@amd.com 6037816Ssteve.reinhardt@amd.com // Calc avg gap between requests 6047756SAli.Saidi@ARM.com if (prevArrival != 0) { 6057756SAli.Saidi@ARM.com totGap += curTick() - prevArrival; 6069227Sandreas.hansson@arm.com } 6079227Sandreas.hansson@arm.com prevArrival = curTick(); 6089227Sandreas.hansson@arm.com 6099227Sandreas.hansson@arm.com 6109590Sandreas@sandberg.pp.se // Find out how many dram packets a pkt translates to 6119590Sandreas@sandberg.pp.se // If the burst size is equal or larger than the pkt size, then a pkt 6129590Sandreas@sandberg.pp.se // translates to only one dram packet. Otherwise, a pkt translates to 6139590Sandreas@sandberg.pp.se // multiple dram packets 6149590Sandreas@sandberg.pp.se unsigned size = pkt->getSize(); 6159590Sandreas@sandberg.pp.se unsigned offset = pkt->getAddr() & (burstSize - 1); 6166654Snate@binkert.org unsigned int dram_pkt_count = divCeil(offset + size, burstSize); 6176654Snate@binkert.org 6185871Snate@binkert.org // check local buffers and do not accept if full 6196121Snate@binkert.org if (pkt->isRead()) { 6208946Sandreas.hansson@arm.com assert(size != 0); 6219419Sandreas.hansson@arm.com if (readQueueFull(dram_pkt_count)) { 6223940Ssaidi@eecs.umich.edu DPRINTF(DRAM, "Read queue full, not accepting\n"); 6233918Ssaidi@eecs.umich.edu // remember that we have to retry this port 6243918Ssaidi@eecs.umich.edu retryRdReq = true; 6251858SN/A numRdRetry++; 6269556Sandreas.hansson@arm.com return false; 6279556Sandreas.hansson@arm.com } else { 6289556Sandreas.hansson@arm.com addToReadQueue(pkt, dram_pkt_count); 6299556Sandreas.hansson@arm.com readReqs++; 63011294Sandreas.hansson@arm.com bytesReadSys += size; 63111294Sandreas.hansson@arm.com } 63211294Sandreas.hansson@arm.com } else { 63311294Sandreas.hansson@arm.com assert(pkt->isWrite()); 63410878Sandreas.hansson@arm.com assert(size != 0); 63510878Sandreas.hansson@arm.com if (writeQueueFull(dram_pkt_count)) { 6369556Sandreas.hansson@arm.com DPRINTF(DRAM, "Write queue full, not accepting\n"); 6379556Sandreas.hansson@arm.com // remember that we have to retry this port 6389556Sandreas.hansson@arm.com retryWrReq = true; 6399556Sandreas.hansson@arm.com numWrRetry++; 6409556Sandreas.hansson@arm.com return false; 6419556Sandreas.hansson@arm.com } else { 6429556Sandreas.hansson@arm.com addToWriteQueue(pkt, dram_pkt_count); 6439556Sandreas.hansson@arm.com writeReqs++; 6449556Sandreas.hansson@arm.com bytesWrittenSys += size; 6459556Sandreas.hansson@arm.com } 6469556Sandreas.hansson@arm.com } 6479556Sandreas.hansson@arm.com 6489556Sandreas.hansson@arm.com return true; 6499556Sandreas.hansson@arm.com} 6509556Sandreas.hansson@arm.com 6519556Sandreas.hansson@arm.comvoid 6529556Sandreas.hansson@arm.comDRAMCtrl::processRespondEvent() 6539556Sandreas.hansson@arm.com{ 6549556Sandreas.hansson@arm.com DPRINTF(DRAM, 6556121Snate@binkert.org "processRespondEvent(): Some req has reached its readyTime\n"); 65610878Sandreas.hansson@arm.com 65710238Sandreas.hansson@arm.com DRAMPacket* dram_pkt = respQueue.front(); 65810878Sandreas.hansson@arm.com 6599420Sandreas.hansson@arm.com if (dram_pkt->burstHelper) { 66010878Sandreas.hansson@arm.com // it is a split packet 66110878Sandreas.hansson@arm.com dram_pkt->burstHelper->burstsServiced++; 6629420Sandreas.hansson@arm.com if (dram_pkt->burstHelper->burstsServiced == 6639420Sandreas.hansson@arm.com dram_pkt->burstHelper->burstCount) { 6649420Sandreas.hansson@arm.com // we have now serviced all children packets of a system packet 6659420Sandreas.hansson@arm.com // so we can now respond to the requester 6669420Sandreas.hansson@arm.com // @todo we probably want to have a different front end and back 66710264Sandreas.hansson@arm.com // end latency for split packets 66810264Sandreas.hansson@arm.com accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency); 66910264Sandreas.hansson@arm.com delete dram_pkt->burstHelper; 67010264Sandreas.hansson@arm.com dram_pkt->burstHelper = NULL; 67110264Sandreas.hansson@arm.com } 67210866Sandreas.hansson@arm.com } else { 67310866Sandreas.hansson@arm.com // it is not a split packet 67410264Sandreas.hansson@arm.com accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency); 67510866Sandreas.hansson@arm.com } 67610866Sandreas.hansson@arm.com 67710866Sandreas.hansson@arm.com delete respQueue.front(); 67810866Sandreas.hansson@arm.com respQueue.pop_front(); 67910866Sandreas.hansson@arm.com 68010866Sandreas.hansson@arm.com if (!respQueue.empty()) { 68110866Sandreas.hansson@arm.com assert(respQueue.front()->readyTime >= curTick()); 68210264Sandreas.hansson@arm.com assert(!respondEvent.scheduled()); 68310264Sandreas.hansson@arm.com schedule(respondEvent, respQueue.front()->readyTime); 68410264Sandreas.hansson@arm.com } else { 68510264Sandreas.hansson@arm.com // if there is nothing left in any queue, signal a drain 68610264Sandreas.hansson@arm.com if (drainState() == DrainState::Draining && 68710264Sandreas.hansson@arm.com writeQueue.empty() && readQueue.empty() && allRanksDrained()) { 68810264Sandreas.hansson@arm.com 68910457Sandreas.hansson@arm.com DPRINTF(Drain, "DRAM controller done draining\n"); 69010457Sandreas.hansson@arm.com signalDrainDone(); 69110457Sandreas.hansson@arm.com } 69210457Sandreas.hansson@arm.com } 69310457Sandreas.hansson@arm.com 69410457Sandreas.hansson@arm.com // We have made a location in the queue available at this point, 69510457Sandreas.hansson@arm.com // so if there is a read that was forced to wait, retry now 69610457Sandreas.hansson@arm.com if (retryRdReq) { 69710457Sandreas.hansson@arm.com retryRdReq = false; 69810238Sandreas.hansson@arm.com port.sendRetryReq(); 69910238Sandreas.hansson@arm.com } 70010238Sandreas.hansson@arm.com} 70110238Sandreas.hansson@arm.com 70210238Sandreas.hansson@arm.combool 70310238Sandreas.hansson@arm.comDRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue, Tick extra_col_delay) 70410416Sandreas.hansson@arm.com{ 70510238Sandreas.hansson@arm.com // This method does the arbitration between requests. The chosen 7069227Sandreas.hansson@arm.com // packet is simply moved to the head of the queue. The other 70710238Sandreas.hansson@arm.com // methods know that this is the place to look. For example, with 70810416Sandreas.hansson@arm.com // FCFS, this method does nothing 70910416Sandreas.hansson@arm.com assert(!queue.empty()); 7109227Sandreas.hansson@arm.com 7119590Sandreas@sandberg.pp.se // bool to indicate if a packet to an available rank is found 7129590Sandreas@sandberg.pp.se bool found_packet = false; 7139590Sandreas@sandberg.pp.se if (queue.size() == 1) { 7148737Skoansin.tan@gmail.com DRAMPacket* dram_pkt = queue.front(); 71510878Sandreas.hansson@arm.com // available rank corresponds to state refresh idle 71610878Sandreas.hansson@arm.com if (ranks[dram_pkt->rank]->isAvailable()) { 7179420Sandreas.hansson@arm.com found_packet = true; 7188737Skoansin.tan@gmail.com DPRINTF(DRAM, "Single request, going to a free rank\n"); 71910106SMitch.Hayenga@arm.com } else { 7208737Skoansin.tan@gmail.com DPRINTF(DRAM, "Single request, going to a busy rank\n"); 7218737Skoansin.tan@gmail.com } 72210878Sandreas.hansson@arm.com return found_packet; 72310878Sandreas.hansson@arm.com } 7248737Skoansin.tan@gmail.com 7258737Skoansin.tan@gmail.com if (memSchedPolicy == Enums::fcfs) { 7268737Skoansin.tan@gmail.com // check if there is a packet going to a free rank 7278737Skoansin.tan@gmail.com for (auto i = queue.begin(); i != queue.end() ; ++i) { 7288737Skoansin.tan@gmail.com DRAMPacket* dram_pkt = *i; 7298737Skoansin.tan@gmail.com if (ranks[dram_pkt->rank]->isAvailable()) { 73011294Sandreas.hansson@arm.com queue.erase(i); 7319556Sandreas.hansson@arm.com queue.push_front(dram_pkt); 7329556Sandreas.hansson@arm.com found_packet = true; 7339556Sandreas.hansson@arm.com break; 73411294Sandreas.hansson@arm.com } 73510278SAndreas.Sandberg@ARM.com } 73610278SAndreas.Sandberg@ARM.com } else if (memSchedPolicy == Enums::frfcfs) { 73710278SAndreas.Sandberg@ARM.com found_packet = reorderQueue(queue, extra_col_delay); 73810278SAndreas.Sandberg@ARM.com } else 73910278SAndreas.Sandberg@ARM.com panic("No scheduling policy chosen\n"); 74010278SAndreas.Sandberg@ARM.com return found_packet; 7419556Sandreas.hansson@arm.com} 7429590Sandreas@sandberg.pp.se 7439590Sandreas@sandberg.pp.sebool 7449420Sandreas.hansson@arm.comDRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue, Tick extra_col_delay) 7459846Sandreas.hansson@arm.com{ 7469846Sandreas.hansson@arm.com // Only determine this if needed 7479846Sandreas.hansson@arm.com uint64_t earliest_banks = 0; 7489846Sandreas.hansson@arm.com bool hidden_bank_prep = false; 7498946Sandreas.hansson@arm.com 7503918Ssaidi@eecs.umich.edu // search for seamless row hits first, if no seamless row hit is 7519068SAli.Saidi@ARM.com // found then determine if there are other packets that can be issued 7529068SAli.Saidi@ARM.com // without incurring additional bus delay due to bank timing 7539068SAli.Saidi@ARM.com // Will select closed rows first to enable more open row possibilies 7549068SAli.Saidi@ARM.com // in future selections 7559068SAli.Saidi@ARM.com bool found_hidden_bank = false; 7569068SAli.Saidi@ARM.com 7579068SAli.Saidi@ARM.com // remember if we found a row hit, not seamless, but bank prepped 7589068SAli.Saidi@ARM.com // and ready 7599068SAli.Saidi@ARM.com bool found_prepped_pkt = false; 7609419Sandreas.hansson@arm.com 7619068SAli.Saidi@ARM.com // if we have no row hit, prepped or not, and no seamless packet, 7629068SAli.Saidi@ARM.com // just go for the earliest possible 7639068SAli.Saidi@ARM.com bool found_earliest_pkt = false; 7649068SAli.Saidi@ARM.com 7659068SAli.Saidi@ARM.com auto selected_pkt_it = queue.end(); 7669068SAli.Saidi@ARM.com 7673918Ssaidi@eecs.umich.edu // time we need to issue a column command to be seamless 7683918Ssaidi@eecs.umich.edu const Tick min_col_at = std::max(busBusyUntil - tCL + extra_col_delay, 7696157Snate@binkert.org curTick()); 7706157Snate@binkert.org 7716157Snate@binkert.org for (auto i = queue.begin(); i != queue.end() ; ++i) { 7726157Snate@binkert.org DRAMPacket* dram_pkt = *i; 7735397Ssaidi@eecs.umich.edu const Bank& bank = dram_pkt->bankRef; 7745397Ssaidi@eecs.umich.edu 7756121Snate@binkert.org // check if rank is available, if not, jump to the next packet 7766121Snate@binkert.org if (dram_pkt->rankRef.isAvailable()) { 7776121Snate@binkert.org // check if it is a row hit 7786121Snate@binkert.org if (bank.openRow == dram_pkt->row) { 7796121Snate@binkert.org // no additional rank-to-rank or same bank-group 7806121Snate@binkert.org // delays, or we switched read/write and might as well 7815397Ssaidi@eecs.umich.edu // go for the row hit 7821851SN/A if (bank.colAllowedAt <= min_col_at) { 7831851SN/A // FCFS within the hits, giving priority to 7847739Sgblack@eecs.umich.edu // commands that can issue seamlessly, without 785955SN/A // additional delay, such as same rank accesses 7869396Sandreas.hansson@arm.com // and/or different bank-group accesses 7879396Sandreas.hansson@arm.com DPRINTF(DRAM, "Seamless row buffer hit\n"); 7889396Sandreas.hansson@arm.com selected_pkt_it = i; 7899396Sandreas.hansson@arm.com // no need to look through the remaining queue entries 7909396Sandreas.hansson@arm.com break; 7919396Sandreas.hansson@arm.com } else if (!found_hidden_bank && !found_prepped_pkt) { 7929396Sandreas.hansson@arm.com // if we did not find a packet to a closed row that can 7939396Sandreas.hansson@arm.com // issue the bank commands without incurring delay, and 7949396Sandreas.hansson@arm.com // did not yet find a packet to a prepped row, remember 7959396Sandreas.hansson@arm.com // the current one 7969396Sandreas.hansson@arm.com selected_pkt_it = i; 7979396Sandreas.hansson@arm.com found_prepped_pkt = true; 7989396Sandreas.hansson@arm.com DPRINTF(DRAM, "Prepped row buffer hit\n"); 7999396Sandreas.hansson@arm.com } 8009396Sandreas.hansson@arm.com } else if (!found_earliest_pkt) { 8019396Sandreas.hansson@arm.com // if we have not initialised the bank status, do it 8029477Sandreas.hansson@arm.com // now, and only once per scheduling decisions 8039477Sandreas.hansson@arm.com if (earliest_banks == 0) { 8049477Sandreas.hansson@arm.com // determine entries with earliest bank delay 8059477Sandreas.hansson@arm.com pair<uint64_t, bool> bankStatus = 8069477Sandreas.hansson@arm.com minBankPrep(queue, min_col_at); 8079477Sandreas.hansson@arm.com earliest_banks = bankStatus.first; 8089477Sandreas.hansson@arm.com hidden_bank_prep = bankStatus.second; 8099477Sandreas.hansson@arm.com } 8109477Sandreas.hansson@arm.com 8119477Sandreas.hansson@arm.com // bank is amongst first available banks 8129477Sandreas.hansson@arm.com // minBankPrep will give priority to packets that can 8139477Sandreas.hansson@arm.com // issue seamlessly 8149477Sandreas.hansson@arm.com if (bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) { 8159477Sandreas.hansson@arm.com found_earliest_pkt = true; 8169477Sandreas.hansson@arm.com found_hidden_bank = hidden_bank_prep; 8179477Sandreas.hansson@arm.com 8189477Sandreas.hansson@arm.com // give priority to packets that can issue 8199477Sandreas.hansson@arm.com // bank commands 'behind the scenes' 8209477Sandreas.hansson@arm.com // any additional delay if any will be due to 8219477Sandreas.hansson@arm.com // col-to-col command requirements 8229477Sandreas.hansson@arm.com if (hidden_bank_prep || !found_prepped_pkt) 8239477Sandreas.hansson@arm.com selected_pkt_it = i; 8249396Sandreas.hansson@arm.com } 8253053Sstever@eecs.umich.edu } 8266121Snate@binkert.org } 8273053Sstever@eecs.umich.edu } 8283053Sstever@eecs.umich.edu 8293053Sstever@eecs.umich.edu if (selected_pkt_it != queue.end()) { 8303053Sstever@eecs.umich.edu DRAMPacket* selected_pkt = *selected_pkt_it; 8313053Sstever@eecs.umich.edu queue.erase(selected_pkt_it); 8329072Sandreas.hansson@arm.com queue.push_front(selected_pkt); 8333053Sstever@eecs.umich.edu return true; 8344742Sstever@eecs.umich.edu } 8354742Sstever@eecs.umich.edu 8363053Sstever@eecs.umich.edu return false; 8373053Sstever@eecs.umich.edu} 8383053Sstever@eecs.umich.edu 83910181SCurtis.Dunham@arm.comvoid 8406654Snate@binkert.orgDRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency) 8413053Sstever@eecs.umich.edu{ 8423053Sstever@eecs.umich.edu DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr()); 8433053Sstever@eecs.umich.edu 8443053Sstever@eecs.umich.edu bool needsResponse = pkt->needsResponse(); 84510425Sandreas.hansson@arm.com // do the actual memory access which also turns the packet into a 84610425Sandreas.hansson@arm.com // response 84710425Sandreas.hansson@arm.com access(pkt); 84810425Sandreas.hansson@arm.com 84910425Sandreas.hansson@arm.com // turn packet around to go back to requester if response expected 85010425Sandreas.hansson@arm.com if (needsResponse) { 85110425Sandreas.hansson@arm.com // access already turned the packet into a response 85210425Sandreas.hansson@arm.com assert(pkt->isResponse()); 85310425Sandreas.hansson@arm.com // response_time consumes the static latency and is charged also 85410425Sandreas.hansson@arm.com // with headerDelay that takes into account the delay provided by 85510425Sandreas.hansson@arm.com // the xbar and also the payloadDelay that takes into account the 8562667Sstever@eecs.umich.edu // number of data beats. 8574554Sbinkertn@umich.edu Tick response_time = curTick() + static_latency + pkt->headerDelay + 8586121Snate@binkert.org pkt->payloadDelay; 8592667Sstever@eecs.umich.edu // Here we reset the timing of the packet before sending it out. 86010710Sandreas.hansson@arm.com pkt->headerDelay = pkt->payloadDelay = 0; 86110710Sandreas.hansson@arm.com 86210710Sandreas.hansson@arm.com // queue the packet in the response queue to be sent out after 86310710Sandreas.hansson@arm.com // the static latency has passed 86410710Sandreas.hansson@arm.com port.schedTimingResp(pkt, response_time, true); 86510710Sandreas.hansson@arm.com } else { 86610710Sandreas.hansson@arm.com // @todo the packet is going to be deleted, and the DRAMPacket 86710710Sandreas.hansson@arm.com // is still having a pointer to it 86810710Sandreas.hansson@arm.com pendingDelete.reset(pkt); 86910384SCurtis.Dunham@arm.com } 8704554Sbinkertn@umich.edu 8714554Sbinkertn@umich.edu DPRINTF(DRAM, "Done\n"); 8724554Sbinkertn@umich.edu 8736121Snate@binkert.org return; 8744554Sbinkertn@umich.edu} 8754554Sbinkertn@umich.edu 8764554Sbinkertn@umich.eduvoid 8774781Snate@binkert.orgDRAMCtrl::activateBank(Rank& rank_ref, Bank& bank_ref, 8784554Sbinkertn@umich.edu Tick act_tick, uint32_t row) 8794554Sbinkertn@umich.edu{ 8802667Sstever@eecs.umich.edu assert(rank_ref.actTicks.size() == activationLimit); 8814554Sbinkertn@umich.edu 8824554Sbinkertn@umich.edu DPRINTF(DRAM, "Activate at tick %d\n", act_tick); 8834554Sbinkertn@umich.edu 8844554Sbinkertn@umich.edu // update the open row 8852667Sstever@eecs.umich.edu assert(bank_ref.openRow == Bank::NO_ROW); 8864554Sbinkertn@umich.edu bank_ref.openRow = row; 8872667Sstever@eecs.umich.edu 8884554Sbinkertn@umich.edu // start counting anew, this covers both the case when we 8896121Snate@binkert.org // auto-precharged, and when this access is forced to 8902667Sstever@eecs.umich.edu // precharge 8919986Sandreas@sandberg.pp.se bank_ref.bytesAccessed = 0; 8929986Sandreas@sandberg.pp.se bank_ref.rowAccesses = 0; 8939986Sandreas@sandberg.pp.se 8949986Sandreas@sandberg.pp.se ++rank_ref.numBanksActive; 8959986Sandreas@sandberg.pp.se assert(rank_ref.numBanksActive <= banksPerRank); 8969986Sandreas@sandberg.pp.se 8979986Sandreas@sandberg.pp.se DPRINTF(DRAM, "Activate bank %d, rank %d at tick %lld, now got %d active\n", 8989986Sandreas@sandberg.pp.se bank_ref.bank, rank_ref.rank, act_tick, 8999986Sandreas@sandberg.pp.se ranks[rank_ref.rank]->numBanksActive); 9009986Sandreas@sandberg.pp.se 9019986Sandreas@sandberg.pp.se rank_ref.cmdList.push_back(Command(MemCommand::ACT, bank_ref.bank, 9029986Sandreas@sandberg.pp.se act_tick)); 9039986Sandreas@sandberg.pp.se 9049986Sandreas@sandberg.pp.se DPRINTF(DRAMPower, "%llu,ACT,%d,%d\n", divCeil(act_tick, tCK) - 9059986Sandreas@sandberg.pp.se timeStampOffset, bank_ref.bank, rank_ref.rank); 9069986Sandreas@sandberg.pp.se 9079986Sandreas@sandberg.pp.se // The next access has to respect tRAS for this bank 9089986Sandreas@sandberg.pp.se bank_ref.preAllowedAt = act_tick + tRAS; 9099986Sandreas@sandberg.pp.se 9109986Sandreas@sandberg.pp.se // Respect the row-to-column command delay 9112638Sstever@eecs.umich.edu bank_ref.colAllowedAt = std::max(act_tick + tRCD, bank_ref.colAllowedAt); 9122638Sstever@eecs.umich.edu 9136121Snate@binkert.org // start by enforcing tRRD 9143716Sstever@eecs.umich.edu for (int i = 0; i < banksPerRank; i++) { 9155522Snate@binkert.org // next activate to any bank in this rank must not happen 9169986Sandreas@sandberg.pp.se // before tRRD 9179986Sandreas@sandberg.pp.se if (bankGroupArch && (bank_ref.bankgr == rank_ref.banks[i].bankgr)) { 9189986Sandreas@sandberg.pp.se // bank group architecture requires longer delays between 9195522Snate@binkert.org // ACT commands within the same bank group. Use tRRD_L 9205227Ssaidi@eecs.umich.edu // in this case 9215227Ssaidi@eecs.umich.edu rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD_L, 9225227Ssaidi@eecs.umich.edu rank_ref.banks[i].actAllowedAt); 9235227Ssaidi@eecs.umich.edu } else { 9246654Snate@binkert.org // use shorter tRRD value when either 9256654Snate@binkert.org // 1) bank group architecture is not supportted 9267769SAli.Saidi@ARM.com // 2) bank is in a different bank group 9277769SAli.Saidi@ARM.com rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD, 9287769SAli.Saidi@ARM.com rank_ref.banks[i].actAllowedAt); 9297769SAli.Saidi@ARM.com } 9305227Ssaidi@eecs.umich.edu } 9315227Ssaidi@eecs.umich.edu 9325227Ssaidi@eecs.umich.edu // next, we deal with tXAW, if the activation limit is disabled 9335204Sstever@gmail.com // then we directly schedule an activate power event 9345204Sstever@gmail.com if (!rank_ref.actTicks.empty()) { 9355204Sstever@gmail.com // sanity check 9365204Sstever@gmail.com if (rank_ref.actTicks.back() && 9375204Sstever@gmail.com (act_tick - rank_ref.actTicks.back()) < tXAW) { 9385204Sstever@gmail.com panic("Got %d activates in window %d (%llu - %llu) which " 9395204Sstever@gmail.com "is smaller than %llu\n", activationLimit, act_tick - 9405204Sstever@gmail.com rank_ref.actTicks.back(), act_tick, 9415204Sstever@gmail.com rank_ref.actTicks.back(), tXAW); 9425204Sstever@gmail.com } 9435204Sstever@gmail.com 9445204Sstever@gmail.com // shift the times used for the book keeping, the last element 9455204Sstever@gmail.com // (highest index) is the oldest one and hence the lowest value 9465204Sstever@gmail.com rank_ref.actTicks.pop_back(); 9475204Sstever@gmail.com 9485204Sstever@gmail.com // record an new activation (in the future) 9495204Sstever@gmail.com rank_ref.actTicks.push_front(act_tick); 9506121Snate@binkert.org 9515204Sstever@gmail.com // cannot activate more than X times in time window tXAW, push the 9527727SAli.Saidi@ARM.com // next one (the X + 1'st activate) to be tXAW away from the 9537727SAli.Saidi@ARM.com // oldest in our window of X 9547727SAli.Saidi@ARM.com if (rank_ref.actTicks.back() && 9557727SAli.Saidi@ARM.com (act_tick - rank_ref.actTicks.back()) < tXAW) { 9567727SAli.Saidi@ARM.com DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate " 95710453SAndrew.Bardsley@arm.com "no earlier than %llu\n", activationLimit, 95810453SAndrew.Bardsley@arm.com rank_ref.actTicks.back() + tXAW); 95910453SAndrew.Bardsley@arm.com for (int j = 0; j < banksPerRank; j++) 96010453SAndrew.Bardsley@arm.com // next activate must not happen before end of window 96110453SAndrew.Bardsley@arm.com rank_ref.banks[j].actAllowedAt = 96210453SAndrew.Bardsley@arm.com std::max(rank_ref.actTicks.back() + tXAW, 96310453SAndrew.Bardsley@arm.com rank_ref.banks[j].actAllowedAt); 96410453SAndrew.Bardsley@arm.com } 96510453SAndrew.Bardsley@arm.com } 96610453SAndrew.Bardsley@arm.com 96710453SAndrew.Bardsley@arm.com // at the point when this activate takes place, make sure we 96810160Sandreas.hansson@arm.com // transition to the active power state 96910453SAndrew.Bardsley@arm.com if (!rank_ref.activateEvent.scheduled()) 97010453SAndrew.Bardsley@arm.com schedule(rank_ref.activateEvent, act_tick); 97110453SAndrew.Bardsley@arm.com else if (rank_ref.activateEvent.when() > act_tick) 97210453SAndrew.Bardsley@arm.com // move it sooner in time 97310453SAndrew.Bardsley@arm.com reschedule(rank_ref.activateEvent, act_tick); 97410453SAndrew.Bardsley@arm.com} 97510453SAndrew.Bardsley@arm.com 97610453SAndrew.Bardsley@arm.comvoid 9779812Sandreas.hansson@arm.comDRAMCtrl::prechargeBank(Rank& rank_ref, Bank& bank, Tick pre_at, bool trace) 97810453SAndrew.Bardsley@arm.com{ 97910453SAndrew.Bardsley@arm.com // make sure the bank has an open row 98010453SAndrew.Bardsley@arm.com assert(bank.openRow != Bank::NO_ROW); 98110453SAndrew.Bardsley@arm.com 98210453SAndrew.Bardsley@arm.com // sample the bytes per activate here since we are closing 98310453SAndrew.Bardsley@arm.com // the page 98410453SAndrew.Bardsley@arm.com bytesPerActivate.sample(bank.bytesAccessed); 98510453SAndrew.Bardsley@arm.com 98610453SAndrew.Bardsley@arm.com bank.openRow = Bank::NO_ROW; 98710453SAndrew.Bardsley@arm.com 98810453SAndrew.Bardsley@arm.com // no precharge allowed before this one 98910453SAndrew.Bardsley@arm.com bank.preAllowedAt = pre_at; 9907727SAli.Saidi@ARM.com 99110453SAndrew.Bardsley@arm.com Tick pre_done_at = pre_at + tRP; 99210453SAndrew.Bardsley@arm.com 99310453SAndrew.Bardsley@arm.com bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at); 99410453SAndrew.Bardsley@arm.com 99510453SAndrew.Bardsley@arm.com assert(rank_ref.numBanksActive != 0); 9963118Sstever@eecs.umich.edu --rank_ref.numBanksActive; 99710453SAndrew.Bardsley@arm.com 99810453SAndrew.Bardsley@arm.com DPRINTF(DRAM, "Precharging bank %d, rank %d at tick %lld, now got " 99910453SAndrew.Bardsley@arm.com "%d active\n", bank.bank, rank_ref.rank, pre_at, 100010453SAndrew.Bardsley@arm.com rank_ref.numBanksActive); 10013118Sstever@eecs.umich.edu 10023483Ssaidi@eecs.umich.edu if (trace) { 10033494Ssaidi@eecs.umich.edu 10043494Ssaidi@eecs.umich.edu rank_ref.cmdList.push_back(Command(MemCommand::PRE, bank.bank, 10053483Ssaidi@eecs.umich.edu pre_at)); 10063483Ssaidi@eecs.umich.edu DPRINTF(DRAMPower, "%llu,PRE,%d,%d\n", divCeil(pre_at, tCK) - 10073483Ssaidi@eecs.umich.edu timeStampOffset, bank.bank, rank_ref.rank); 10083053Sstever@eecs.umich.edu } 10093053Sstever@eecs.umich.edu // if we look at the current number of active banks we might be 10103918Ssaidi@eecs.umich.edu // tempted to think the DRAM is now idle, however this can be 10113053Sstever@eecs.umich.edu // undone by an activate that is scheduled to happen before we 10123053Sstever@eecs.umich.edu // would have reached the idle state, so schedule an event and 10133053Sstever@eecs.umich.edu // rather check once we actually make it to the point in time when 10143053Sstever@eecs.umich.edu // the (last) precharge takes place 10153053Sstever@eecs.umich.edu if (!rank_ref.prechargeEvent.scheduled()) 10169396Sandreas.hansson@arm.com schedule(rank_ref.prechargeEvent, pre_done_at); 10179396Sandreas.hansson@arm.com else if (rank_ref.prechargeEvent.when() < pre_done_at) 10189396Sandreas.hansson@arm.com reschedule(rank_ref.prechargeEvent, pre_done_at); 10199396Sandreas.hansson@arm.com} 10209396Sandreas.hansson@arm.com 10219396Sandreas.hansson@arm.comvoid 10229396Sandreas.hansson@arm.comDRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt) 10239396Sandreas.hansson@arm.com{ 10249396Sandreas.hansson@arm.com DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n", 10259477Sandreas.hansson@arm.com dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row); 10269396Sandreas.hansson@arm.com 10279477Sandreas.hansson@arm.com // get the rank 10289477Sandreas.hansson@arm.com Rank& rank = dram_pkt->rankRef; 10299477Sandreas.hansson@arm.com 10309477Sandreas.hansson@arm.com // get the bank 10319396Sandreas.hansson@arm.com Bank& bank = dram_pkt->bankRef; 10327840Snate@binkert.org 10337865Sgblack@eecs.umich.edu // for the state we need to track if it is a row hit or not 10347865Sgblack@eecs.umich.edu bool row_hit = true; 10357865Sgblack@eecs.umich.edu 10367865Sgblack@eecs.umich.edu // respect any constraints on the command (e.g. tRCD or tCCD) 10377865Sgblack@eecs.umich.edu Tick cmd_at = std::max(bank.colAllowedAt, curTick()); 10387840Snate@binkert.org 10399900Sandreas@sandberg.pp.se // Determine the access latency and update the bank state 10409900Sandreas@sandberg.pp.se if (bank.openRow == dram_pkt->row) { 10419900Sandreas@sandberg.pp.se // nothing to do 10429900Sandreas@sandberg.pp.se } else { 104310456SCurtis.Dunham@arm.com row_hit = false; 104410456SCurtis.Dunham@arm.com 104510456SCurtis.Dunham@arm.com // If there is a page open, precharge it. 104610456SCurtis.Dunham@arm.com if (bank.openRow != Bank::NO_ROW) { 104710456SCurtis.Dunham@arm.com prechargeBank(rank, bank, std::max(bank.preAllowedAt, curTick())); 104810456SCurtis.Dunham@arm.com } 104910456SCurtis.Dunham@arm.com 105010456SCurtis.Dunham@arm.com // next we need to account for the delay in activating the 105110456SCurtis.Dunham@arm.com // page 105210456SCurtis.Dunham@arm.com Tick act_tick = std::max(bank.actAllowedAt, curTick()); 10539045SAli.Saidi@ARM.com 105411235Sandreas.sandberg@arm.com // Record the activation and deal with all the global timing 105511235Sandreas.sandberg@arm.com // constraints caused be a new activation (tRRD and tXAW) 105611235Sandreas.sandberg@arm.com activateBank(rank, bank, act_tick, dram_pkt->row); 105711235Sandreas.sandberg@arm.com 105811235Sandreas.sandberg@arm.com // issue the command as early as possible 105911235Sandreas.sandberg@arm.com cmd_at = bank.colAllowedAt; 106011235Sandreas.sandberg@arm.com } 106111235Sandreas.sandberg@arm.com 106211235Sandreas.sandberg@arm.com // we need to wait until the bus is available before we can issue 106311235Sandreas.sandberg@arm.com // the command 106411235Sandreas.sandberg@arm.com cmd_at = std::max(cmd_at, busBusyUntil - tCL); 106511235Sandreas.sandberg@arm.com 106611235Sandreas.sandberg@arm.com // update the packet ready time 106711235Sandreas.sandberg@arm.com dram_pkt->readyTime = cmd_at + tCL + tBURST; 106811235Sandreas.sandberg@arm.com 10697840Snate@binkert.org // only one burst can use the bus at any one point in time 10707840Snate@binkert.org assert(dram_pkt->readyTime - busBusyUntil >= tBURST); 10717840Snate@binkert.org 10721858SN/A // update the time for the next read/write burst for each 10731858SN/A // bank (add a max with tCCD/tCCD_L here) 10741858SN/A Tick cmd_dly; 10751858SN/A for (int j = 0; j < ranksPerChannel; j++) { 10761858SN/A for (int i = 0; i < banksPerRank; i++) { 10771858SN/A // next burst to same bank group in this rank must not happen 10789903Sandreas.hansson@arm.com // before tCCD_L. Different bank group timing requirement is 10799903Sandreas.hansson@arm.com // tBURST; Add tCS for different ranks 10809903Sandreas.hansson@arm.com if (dram_pkt->rank == j) { 10819903Sandreas.hansson@arm.com if (bankGroupArch && 108210841Sandreas.sandberg@arm.com (bank.bankgr == ranks[j]->banks[i].bankgr)) { 10839651SAndreas.Sandberg@ARM.com // bank group architecture requires longer delays between 10849903Sandreas.hansson@arm.com // RD/WR burst commands to the same bank group. 10859651SAndreas.Sandberg@ARM.com // Use tCCD_L in this case 10869651SAndreas.Sandberg@ARM.com cmd_dly = tCCD_L; 108710841Sandreas.sandberg@arm.com } else { 108810841Sandreas.sandberg@arm.com // use tBURST (equivalent to tCCD_S), the shorter 108910841Sandreas.sandberg@arm.com // cas-to-cas delay value, when either: 109010841Sandreas.sandberg@arm.com // 1) bank group architecture is not supportted 109110841Sandreas.sandberg@arm.com // 2) bank is in a different bank group 109210841Sandreas.sandberg@arm.com cmd_dly = tBURST; 10939651SAndreas.Sandberg@ARM.com } 10949651SAndreas.Sandberg@ARM.com } else { 10959651SAndreas.Sandberg@ARM.com // different rank is by default in a different bank group 10969651SAndreas.Sandberg@ARM.com // use tBURST (equivalent to tCCD_S), which is the shorter 10979651SAndreas.Sandberg@ARM.com // cas-to-cas delay in this case 10989651SAndreas.Sandberg@ARM.com // Add tCS to account for rank-to-rank bus delay requirements 10999651SAndreas.Sandberg@ARM.com cmd_dly = tBURST + tCS; 11009651SAndreas.Sandberg@ARM.com } 11019651SAndreas.Sandberg@ARM.com ranks[j]->banks[i].colAllowedAt = std::max(cmd_at + cmd_dly, 110210841Sandreas.sandberg@arm.com ranks[j]->banks[i].colAllowedAt); 110310841Sandreas.sandberg@arm.com } 110410841Sandreas.sandberg@arm.com } 110510841Sandreas.sandberg@arm.com 110610841Sandreas.sandberg@arm.com // Save rank of current access 110710841Sandreas.sandberg@arm.com activeRank = dram_pkt->rank; 110810860Sandreas.sandberg@arm.com 110910841Sandreas.sandberg@arm.com // If this is a write, we also need to respect the write recovery 111010841Sandreas.sandberg@arm.com // time before a precharge, in the case of a read, respect the 111110841Sandreas.sandberg@arm.com // read to precharge constraint 111210841Sandreas.sandberg@arm.com bank.preAllowedAt = std::max(bank.preAllowedAt, 111310841Sandreas.sandberg@arm.com dram_pkt->isRead ? cmd_at + tRTP : 111410841Sandreas.sandberg@arm.com dram_pkt->readyTime + tWR); 111510841Sandreas.sandberg@arm.com 111610841Sandreas.sandberg@arm.com // increment the bytes accessed and the accesses per row 111710841Sandreas.sandberg@arm.com bank.bytesAccessed += burstSize; 111810841Sandreas.sandberg@arm.com ++bank.rowAccesses; 111910841Sandreas.sandberg@arm.com 11209651SAndreas.Sandberg@ARM.com // if we reached the max, then issue with an auto-precharge 11219651SAndreas.Sandberg@ARM.com bool auto_precharge = pageMgmt == Enums::close || 11229986Sandreas@sandberg.pp.se bank.rowAccesses == maxAccessesPerRow; 11239986Sandreas@sandberg.pp.se 11249986Sandreas@sandberg.pp.se // if we did not hit the limit, we might still want to 11259986Sandreas@sandberg.pp.se // auto-precharge 11269986Sandreas@sandberg.pp.se if (!auto_precharge && 11279986Sandreas@sandberg.pp.se (pageMgmt == Enums::open_adaptive || 11285863Snate@binkert.org pageMgmt == Enums::close_adaptive)) { 11295863Snate@binkert.org // a twist on the open and close page policies: 11305863Snate@binkert.org // 1) open_adaptive page policy does not blindly keep the 11315863Snate@binkert.org // page open, but close it if there are no row hits, and there 11326121Snate@binkert.org // are bank conflicts in the queue 11331858SN/A // 2) close_adaptive page policy does not blindly close the 11345863Snate@binkert.org // page, but closes it only if there are no row hits in the queue. 11355863Snate@binkert.org // In this case, only force an auto precharge when there 11365863Snate@binkert.org // are no same page hits in the queue 11375863Snate@binkert.org bool got_more_hits = false; 11385863Snate@binkert.org bool got_bank_conflict = false; 11392139SN/A 11404202Sbinkertn@umich.edu // either look at the read queue or write queue 114111308Santhony.gutierrez@amd.com const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue : 11424202Sbinkertn@umich.edu writeQueue; 114311308Santhony.gutierrez@amd.com auto p = queue.begin(); 11442139SN/A // make sure we are not considering the packet that we are 11456994Snate@binkert.org // currently dealing with (which is the head of the queue) 11466994Snate@binkert.org ++p; 11476994Snate@binkert.org 11486994Snate@binkert.org // keep on looking until we find a hit or reach the end of the queue 11496994Snate@binkert.org // 1) if a hit is found, then both open and close adaptive policies keep 11506994Snate@binkert.org // the page open 11516994Snate@binkert.org // 2) if no hit is found, got_bank_conflict is set to true if a bank 11526994Snate@binkert.org // conflict request is waiting in the queue 115310319SAndreas.Sandberg@ARM.com while (!got_more_hits && p != queue.end()) { 11546994Snate@binkert.org bool same_rank_bank = (dram_pkt->rank == (*p)->rank) && 11556994Snate@binkert.org (dram_pkt->bank == (*p)->bank); 11566994Snate@binkert.org bool same_row = dram_pkt->row == (*p)->row; 11576994Snate@binkert.org got_more_hits |= same_rank_bank && same_row; 11586994Snate@binkert.org got_bank_conflict |= same_rank_bank && !same_row; 11596994Snate@binkert.org ++p; 11606994Snate@binkert.org } 11616994Snate@binkert.org 11626994Snate@binkert.org // auto pre-charge when either 11636994Snate@binkert.org // 1) open_adaptive policy, we have not got any more hits, and 11646994Snate@binkert.org // have a bank conflict 11652155SN/A // 2) close_adaptive policy and we have not got any more hits 11665863Snate@binkert.org auto_precharge = !got_more_hits && 11671869SN/A (got_bank_conflict || pageMgmt == Enums::close_adaptive); 11681869SN/A } 11695863Snate@binkert.org 11705863Snate@binkert.org // DRAMPower trace command to be written 11714202Sbinkertn@umich.edu std::string mem_cmd = dram_pkt->isRead ? "RD" : "WR"; 11726108Snate@binkert.org 11736108Snate@binkert.org // MemCommand required for DRAMPower library 11746108Snate@binkert.org MemCommand::cmds command = (mem_cmd == "RD") ? MemCommand::RD : 11756108Snate@binkert.org MemCommand::WR; 11769219Spower.jg@gmail.com 11779219Spower.jg@gmail.com // Update bus state 11789219Spower.jg@gmail.com busBusyUntil = dram_pkt->readyTime; 11799219Spower.jg@gmail.com 11809219Spower.jg@gmail.com DPRINTF(DRAM, "Access to %lld, ready at %lld bus busy until %lld.\n", 11819219Spower.jg@gmail.com dram_pkt->addr, dram_pkt->readyTime, busBusyUntil); 11829219Spower.jg@gmail.com 11839219Spower.jg@gmail.com dram_pkt->rankRef.cmdList.push_back(Command(command, dram_pkt->bank, 11844202Sbinkertn@umich.edu cmd_at)); 11855863Snate@binkert.org 118610135SCurtis.Dunham@arm.com DPRINTF(DRAMPower, "%llu,%s,%d,%d\n", divCeil(cmd_at, tCK) - 11878474Sgblack@eecs.umich.edu timeStampOffset, mem_cmd, dram_pkt->bank, dram_pkt->rank); 11885742Snate@binkert.org 11898268Ssteve.reinhardt@amd.com // if this access should use auto-precharge, then we are 11908268Ssteve.reinhardt@amd.com // closing the row after the read/write burst 11918268Ssteve.reinhardt@amd.com if (auto_precharge) { 11925742Snate@binkert.org // if auto-precharge push a PRE command at the correct tick to the 11935341Sstever@gmail.com // list used by DRAMPower library to calculate power 11948474Sgblack@eecs.umich.edu prechargeBank(rank, bank, std::max(curTick(), bank.preAllowedAt)); 11958474Sgblack@eecs.umich.edu 11965342Sstever@gmail.com DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId); 11974202Sbinkertn@umich.edu } 11984202Sbinkertn@umich.edu 119911308Santhony.gutierrez@amd.com // Update the minimum timing between the requests, this is a 12004202Sbinkertn@umich.edu // conservative estimate of when we have to schedule the next 12015863Snate@binkert.org // request to not introduce any unecessary bubbles. In most cases 12025863Snate@binkert.org // we will wake up sooner than we have to. 120311308Santhony.gutierrez@amd.com nextReqTime = busBusyUntil - (tRP + tRCD + tCL); 12046994Snate@binkert.org 12056994Snate@binkert.org // Update the stats and schedule the next request 120610319SAndreas.Sandberg@ARM.com if (dram_pkt->isRead) { 12075863Snate@binkert.org ++readsThisTime; 12085863Snate@binkert.org if (row_hit) 12095863Snate@binkert.org readRowHits++; 12105863Snate@binkert.org bytesReadDRAM += burstSize; 12115863Snate@binkert.org perBankRdBursts[dram_pkt->bankId]++; 12125863Snate@binkert.org 12135863Snate@binkert.org // Update latency stats 12145863Snate@binkert.org totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime; 12157840Snate@binkert.org totBusLat += tBURST; 12165863Snate@binkert.org totQLat += cmd_at - dram_pkt->entryTime; 12175952Ssaidi@eecs.umich.edu } else { 12189651SAndreas.Sandberg@ARM.com ++writesThisTime; 121911308Santhony.gutierrez@amd.com if (row_hit) 12209219Spower.jg@gmail.com writeRowHits++; 12219219Spower.jg@gmail.com bytesWritten += burstSize; 122211235Sandreas.sandberg@arm.com perBankWrBursts[dram_pkt->bankId]++; 122311235Sandreas.sandberg@arm.com } 12241869SN/A} 12251858SN/A 12265863Snate@binkert.orgvoid 122711308Santhony.gutierrez@amd.comDRAMCtrl::processNextReqEvent() 122811308Santhony.gutierrez@amd.com{ 122911308Santhony.gutierrez@amd.com int busyRanks = 0; 12301858SN/A for (auto r : ranks) { 1231955SN/A if (!r->isAvailable()) { 1232955SN/A // rank is busy refreshing 12331869SN/A busyRanks++; 12341869SN/A 12351869SN/A // let the rank know that if it was waiting to drain, it 12361869SN/A // is now done and ready to proceed 12371869SN/A r->checkDrainDone(); 12385863Snate@binkert.org } 12395863Snate@binkert.org } 12405863Snate@binkert.org 12411869SN/A if (busyRanks == ranksPerChannel) { 12425863Snate@binkert.org // if all ranks are refreshing wait for them to finish 12431869SN/A // and stall this state machine without taking any further 12445863Snate@binkert.org // action, and do not schedule a new nextReqEvent 12451869SN/A return; 12461869SN/A } 12471869SN/A 12481869SN/A // pre-emptively set to false. Overwrite if in READ_TO_WRITE 12498483Sgblack@eecs.umich.edu // or WRITE_TO_READ state 12501869SN/A bool switched_cmd_type = false; 12511869SN/A if (busState == READ_TO_WRITE) { 12521869SN/A DPRINTF(DRAM, "Switching to writes after %d reads with %d reads " 12531869SN/A "waiting\n", readsThisTime, readQueue.size()); 12545863Snate@binkert.org 12555863Snate@binkert.org // sample and reset the read-related stats as we are now 12561869SN/A // transitioning to writes, and all reads are done 12575863Snate@binkert.org rdPerTurnAround.sample(readsThisTime); 12585863Snate@binkert.org readsThisTime = 0; 12593356Sbinkertn@umich.edu 12603356Sbinkertn@umich.edu // now proceed to do the actual writes 12613356Sbinkertn@umich.edu busState = WRITE; 12623356Sbinkertn@umich.edu switched_cmd_type = true; 12633356Sbinkertn@umich.edu } else if (busState == WRITE_TO_READ) { 12644781Snate@binkert.org DPRINTF(DRAM, "Switching to reads after %d writes with %d writes " 12655863Snate@binkert.org "waiting\n", writesThisTime, writeQueue.size()); 12665863Snate@binkert.org 12671869SN/A wrPerTurnAround.sample(writesThisTime); 12681869SN/A writesThisTime = 0; 12691869SN/A 12706121Snate@binkert.org busState = READ; 12711869SN/A switched_cmd_type = true; 12722638Sstever@eecs.umich.edu } 12736121Snate@binkert.org 12746121Snate@binkert.org // when we get here it is either a read or a write 12752638Sstever@eecs.umich.edu if (busState == READ) { 127611293Sandreas.hansson@arm.com 127711293Sandreas.hansson@arm.com // track if we should switch or not 127811293Sandreas.hansson@arm.com bool switch_to_writes = false; 12795749Scws3k@cs.virginia.edu 12809537Satgutier@umich.edu if (readQueue.empty()) { 12819537Satgutier@umich.edu // In the case there is no read request to go next, 12829537Satgutier@umich.edu // trigger writes if we have passed the low threshold (or 12839537Satgutier@umich.edu // if we are draining) 12849888Sandreas@sandberg.pp.se if (!writeQueue.empty() && 12859888Sandreas@sandberg.pp.se (drainState() == DrainState::Draining || 12869888Sandreas@sandberg.pp.se writeQueue.size() > writeLowThreshold)) { 12879888Sandreas@sandberg.pp.se 128810066Sandreas.hansson@arm.com switch_to_writes = true; 128910066Sandreas.hansson@arm.com } else { 129010066Sandreas.hansson@arm.com // check if we are drained 129110066Sandreas.hansson@arm.com // not done draining until in PWR_IDLE state 129210428Sandreas.hansson@arm.com // ensuring all banks are closed and 129310428Sandreas.hansson@arm.com // have exited low power states 129410428Sandreas.hansson@arm.com if (drainState() == DrainState::Draining && 129510428Sandreas.hansson@arm.com respQueue.empty() && allRanksDrained()) { 129610915Sandreas.sandberg@arm.com 129710915Sandreas.sandberg@arm.com DPRINTF(Drain, "DRAM controller done draining\n"); 129810915Sandreas.sandberg@arm.com signalDrainDone(); 129910915Sandreas.sandberg@arm.com } 13001869SN/A 13011869SN/A // nothing to do, not even any point in scheduling an 13023546Sgblack@eecs.umich.edu // event for the next request 13033546Sgblack@eecs.umich.edu return; 13043546Sgblack@eecs.umich.edu } 13053546Sgblack@eecs.umich.edu } else { 13066121Snate@binkert.org // bool to check if there is a read to a free rank 130711308Santhony.gutierrez@amd.com bool found_read = false; 130810196SCurtis.Dunham@arm.com 13095863Snate@binkert.org // Figure out which read request goes next, and move it to the 13103546Sgblack@eecs.umich.edu // front of the read queue 13113546Sgblack@eecs.umich.edu // If we are changing command type, incorporate the minimum 13123546Sgblack@eecs.umich.edu // bus turnaround delay which will be tCS (different rank) case 13133546Sgblack@eecs.umich.edu found_read = chooseNext(readQueue, 13144781Snate@binkert.org switched_cmd_type ? tCS : 0); 13156658Snate@binkert.org 131610196SCurtis.Dunham@arm.com // if no read to an available rank is found then return 131710196SCurtis.Dunham@arm.com // at this point. There could be writes to the available ranks 131810196SCurtis.Dunham@arm.com // which are above the required threshold. However, to 131910196SCurtis.Dunham@arm.com // avoid adding more complexity to the code, return and wait 132010196SCurtis.Dunham@arm.com // for a refresh event to kick things into action again. 132110196SCurtis.Dunham@arm.com if (!found_read) 132210196SCurtis.Dunham@arm.com return; 13233546Sgblack@eecs.umich.edu 13243546Sgblack@eecs.umich.edu DRAMPacket* dram_pkt = readQueue.front(); 13253546Sgblack@eecs.umich.edu assert(dram_pkt->rankRef.isAvailable()); 13263546Sgblack@eecs.umich.edu // here we get a bit creative and shift the bus busy time not 13277756SAli.Saidi@ARM.com // just the tWTR, but also a CAS latency to capture the fact 13287816Ssteve.reinhardt@amd.com // that we are allowed to prepare a new bank, but not issue a 13293546Sgblack@eecs.umich.edu // read command until after tWTR, in essence we capture a 13303546Sgblack@eecs.umich.edu // bubble on the data bus that is tWTR + tCL 13313546Sgblack@eecs.umich.edu if (switched_cmd_type && dram_pkt->rank == activeRank) { 13323546Sgblack@eecs.umich.edu busBusyUntil += tWTR + tCL; 133310196SCurtis.Dunham@arm.com } 133410196SCurtis.Dunham@arm.com 133510196SCurtis.Dunham@arm.com doDRAMAccess(dram_pkt); 133610196SCurtis.Dunham@arm.com 133710196SCurtis.Dunham@arm.com // At this point we're done dealing with the request 13384202Sbinkertn@umich.edu readQueue.pop_front(); 13393546Sgblack@eecs.umich.edu 134011308Santhony.gutierrez@amd.com // sanity check 134111308Santhony.gutierrez@amd.com assert(dram_pkt->size <= burstSize); 134211308Santhony.gutierrez@amd.com assert(dram_pkt->readyTime >= curTick()); 134311308Santhony.gutierrez@amd.com 134411308Santhony.gutierrez@amd.com // Insert into response queue. It will be sent back to the 134511308Santhony.gutierrez@amd.com // requestor at its readyTime 134611308Santhony.gutierrez@amd.com if (respQueue.empty()) { 134711308Santhony.gutierrez@amd.com assert(!respondEvent.scheduled()); 134811308Santhony.gutierrez@amd.com schedule(respondEvent, dram_pkt->readyTime); 134911308Santhony.gutierrez@amd.com } else { 135011308Santhony.gutierrez@amd.com assert(respQueue.back()->readyTime <= dram_pkt->readyTime); 135111308Santhony.gutierrez@amd.com assert(respondEvent.scheduled()); 135211308Santhony.gutierrez@amd.com } 135311308Santhony.gutierrez@amd.com 135411308Santhony.gutierrez@amd.com respQueue.push_back(dram_pkt); 135511308Santhony.gutierrez@amd.com 135611308Santhony.gutierrez@amd.com // we have so many writes that we have to transition 135711308Santhony.gutierrez@amd.com if (writeQueue.size() > writeHighThreshold) { 135811308Santhony.gutierrez@amd.com switch_to_writes = true; 135911308Santhony.gutierrez@amd.com } 136011308Santhony.gutierrez@amd.com } 136111308Santhony.gutierrez@amd.com 136211308Santhony.gutierrez@amd.com // switching to writes, either because the read queue is empty 136311308Santhony.gutierrez@amd.com // and the writes have passed the low threshold (or we are 136411308Santhony.gutierrez@amd.com // draining), or because the writes hit the hight threshold 136511308Santhony.gutierrez@amd.com if (switch_to_writes) { 136611308Santhony.gutierrez@amd.com // transition to writing 136711308Santhony.gutierrez@amd.com busState = READ_TO_WRITE; 136811308Santhony.gutierrez@amd.com } 136910196SCurtis.Dunham@arm.com } else { 137010196SCurtis.Dunham@arm.com // bool to check if write to free rank is found 137110196SCurtis.Dunham@arm.com bool found_write = false; 137210196SCurtis.Dunham@arm.com 137310196SCurtis.Dunham@arm.com // If we are changing command type, incorporate the minimum 137410196SCurtis.Dunham@arm.com // bus turnaround delay 137510196SCurtis.Dunham@arm.com found_write = chooseNext(writeQueue, 137610196SCurtis.Dunham@arm.com switched_cmd_type ? std::min(tRTW, tCS) : 0); 137710196SCurtis.Dunham@arm.com 137810196SCurtis.Dunham@arm.com // if no writes to an available rank are found then return. 137910196SCurtis.Dunham@arm.com // There could be reads to the available ranks. However, to avoid 138010196SCurtis.Dunham@arm.com // adding more complexity to the code, return at this point and wait 138110196SCurtis.Dunham@arm.com // for a refresh event to kick things into action again. 138210196SCurtis.Dunham@arm.com if (!found_write) 138310196SCurtis.Dunham@arm.com return; 138410196SCurtis.Dunham@arm.com 138510196SCurtis.Dunham@arm.com DRAMPacket* dram_pkt = writeQueue.front(); 138610196SCurtis.Dunham@arm.com assert(dram_pkt->rankRef.isAvailable()); 138710196SCurtis.Dunham@arm.com // sanity check 138810196SCurtis.Dunham@arm.com assert(dram_pkt->size <= burstSize); 138910196SCurtis.Dunham@arm.com 139010196SCurtis.Dunham@arm.com // add a bubble to the data bus, as defined by the 139110196SCurtis.Dunham@arm.com // tRTW when access is to the same rank as previous burst 139210196SCurtis.Dunham@arm.com // Different rank timing is handled with tCS, which is 13933546Sgblack@eecs.umich.edu // applied to colAllowedAt 13943546Sgblack@eecs.umich.edu if (switched_cmd_type && dram_pkt->rank == activeRank) { 1395955SN/A busBusyUntil += tRTW; 1396955SN/A } 1397955SN/A 1398955SN/A doDRAMAccess(dram_pkt); 13995863Snate@binkert.org 140010135SCurtis.Dunham@arm.com writeQueue.pop_front(); 140110135SCurtis.Dunham@arm.com isInWriteQueue.erase(burstAlign(dram_pkt->addr)); 14025343Sstever@gmail.com delete dram_pkt; 14035343Sstever@gmail.com 14046121Snate@binkert.org // If we emptied the write queue, or got sufficiently below the 14055863Snate@binkert.org // threshold (using the minWritesPerSwitch as the hysteresis) and 14064773Snate@binkert.org // are not draining, or we have reads waiting and have done enough 14075863Snate@binkert.org // writes, then switch to reads. 14082632Sstever@eecs.umich.edu if (writeQueue.empty() || 14095863Snate@binkert.org (writeQueue.size() + minWritesPerSwitch < writeLowThreshold && 14102023SN/A drainState() != DrainState::Draining) || 14115863Snate@binkert.org (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) { 14125863Snate@binkert.org // turn the bus back around for reads again 14135863Snate@binkert.org busState = WRITE_TO_READ; 14145863Snate@binkert.org 14155863Snate@binkert.org // note that the we switch back to reads also in the idle 14165863Snate@binkert.org // case, which eventually will check for any draining and 14175863Snate@binkert.org // also pause any further scheduling if there is really 14185863Snate@binkert.org // nothing to do 141910135SCurtis.Dunham@arm.com } 142010135SCurtis.Dunham@arm.com } 14212632Sstever@eecs.umich.edu // It is possible that a refresh to another rank kicks things back into 14225863Snate@binkert.org // action before reaching this point. 14232023SN/A if (!nextReqEvent.scheduled()) 14242632Sstever@eecs.umich.edu schedule(nextReqEvent, std::max(nextReqTime, curTick())); 14255863Snate@binkert.org 14265342Sstever@gmail.com // If there is space available and we have writes waiting then let 14275863Snate@binkert.org // them retry. This is done here to ensure that the retry does not 14282632Sstever@eecs.umich.edu // cause a nextReqEvent to be scheduled before we do so as part of 14295863Snate@binkert.org // the next request processing 14305863Snate@binkert.org if (retryWrReq && writeQueue.size() < writeBufferSize) { 14318267Ssteve.reinhardt@amd.com retryWrReq = false; 14328120Sgblack@eecs.umich.edu port.sendRetryReq(); 14338267Ssteve.reinhardt@amd.com } 14348267Ssteve.reinhardt@amd.com} 14358267Ssteve.reinhardt@amd.com 14368267Ssteve.reinhardt@amd.compair<uint64_t, bool> 14378267Ssteve.reinhardt@amd.comDRAMCtrl::minBankPrep(const deque<DRAMPacket*>& queue, 14388267Ssteve.reinhardt@amd.com Tick min_col_at) const 14398267Ssteve.reinhardt@amd.com{ 14408267Ssteve.reinhardt@amd.com uint64_t bank_mask = 0; 14418267Ssteve.reinhardt@amd.com Tick min_act_at = MaxTick; 14425863Snate@binkert.org 14435863Snate@binkert.org // latest Tick for which ACT can occur without incurring additoinal 14445863Snate@binkert.org // delay on the data bus 14452632Sstever@eecs.umich.edu const Tick hidden_act_max = std::max(min_col_at - tRCD, curTick()); 14468267Ssteve.reinhardt@amd.com 14478267Ssteve.reinhardt@amd.com // Flag condition when burst can issue back-to-back with previous burst 14488267Ssteve.reinhardt@amd.com bool found_seamless_bank = false; 14492632Sstever@eecs.umich.edu 14501888SN/A // Flag condition when bank can be opened without incurring additional 14515863Snate@binkert.org // delay on the data bus 14525863Snate@binkert.org bool hidden_bank_prep = false; 14531858SN/A 14548120Sgblack@eecs.umich.edu // determine if we have queued transactions targetting the 14558120Sgblack@eecs.umich.edu // bank in question 14567756SAli.Saidi@ARM.com vector<bool> got_waiting(ranksPerChannel * banksPerRank, false); 14572598SN/A for (const auto& p : queue) { 14585863Snate@binkert.org if (p->rankRef.isAvailable()) 14591858SN/A got_waiting[p->bankId] = true; 14601858SN/A } 14611858SN/A 14625863Snate@binkert.org // Find command with optimal bank timing 14631858SN/A // Will prioritize commands that can issue seamlessly. 14641858SN/A for (int i = 0; i < ranksPerChannel; i++) { 14651858SN/A for (int j = 0; j < banksPerRank; j++) { 14665863Snate@binkert.org uint16_t bank_id = i * banksPerRank + j; 14671871SN/A 14681858SN/A // if we have waiting requests for the bank, and it is 14691858SN/A // amongst the first available, update the mask 14701858SN/A if (got_waiting[bank_id]) { 14711858SN/A // make sure this rank is not currently refreshing. 14729651SAndreas.Sandberg@ARM.com assert(ranks[i]->isAvailable()); 14739651SAndreas.Sandberg@ARM.com // simplistic approximation of when the bank can issue 14749651SAndreas.Sandberg@ARM.com // an activate, ignoring any rank-to-rank switching 14759651SAndreas.Sandberg@ARM.com // cost in this calculation 14769651SAndreas.Sandberg@ARM.com Tick act_at = ranks[i]->banks[j].openRow == Bank::NO_ROW ? 14779651SAndreas.Sandberg@ARM.com std::max(ranks[i]->banks[j].actAllowedAt, curTick()) : 14789651SAndreas.Sandberg@ARM.com std::max(ranks[i]->banks[j].preAllowedAt, curTick()) + tRP; 14799651SAndreas.Sandberg@ARM.com 14809651SAndreas.Sandberg@ARM.com // When is the earliest the R/W burst can issue? 14819986Sandreas@sandberg.pp.se Tick col_at = std::max(ranks[i]->banks[j].colAllowedAt, 14829986Sandreas@sandberg.pp.se act_at + tRCD); 14839986Sandreas@sandberg.pp.se 14849986Sandreas@sandberg.pp.se // bank can issue burst back-to-back (seamlessly) with 14859986Sandreas@sandberg.pp.se // previous burst 14869986Sandreas@sandberg.pp.se bool new_seamless_bank = col_at <= min_col_at; 14879986Sandreas@sandberg.pp.se 14885863Snate@binkert.org // if we found a new seamless bank or we have no 14895863Snate@binkert.org // seamless banks, and got a bank with an earlier 14901869SN/A // activate time, it should be added to the bit mask 14911965SN/A if (new_seamless_bank || 14927739Sgblack@eecs.umich.edu (!found_seamless_bank && act_at <= min_act_at)) { 14931965SN/A // if we did not have a seamless bank before, and 14942761Sstever@eecs.umich.edu // we do now, reset the bank mask, also reset it 14955863Snate@binkert.org // if we have not yet found a seamless bank and 14961869SN/A // the activate time is smaller than what we have 149710196SCurtis.Dunham@arm.com // seen so far 14981869SN/A if (!found_seamless_bank && 149910196SCurtis.Dunham@arm.com (new_seamless_bank || act_at < min_act_at)) { 150010196SCurtis.Dunham@arm.com bank_mask = 0; 150110196SCurtis.Dunham@arm.com } 150210196SCurtis.Dunham@arm.com 150310196SCurtis.Dunham@arm.com found_seamless_bank |= new_seamless_bank; 150410196SCurtis.Dunham@arm.com 150510196SCurtis.Dunham@arm.com // ACT can occur 'behind the scenes' 150610196SCurtis.Dunham@arm.com hidden_bank_prep = act_at <= hidden_act_max; 150710196SCurtis.Dunham@arm.com 150810196SCurtis.Dunham@arm.com // set the bit corresponding to the available bank 150910196SCurtis.Dunham@arm.com replaceBits(bank_mask, bank_id, bank_id, 1); 151010196SCurtis.Dunham@arm.com min_act_at = act_at; 151110196SCurtis.Dunham@arm.com } 151210196SCurtis.Dunham@arm.com } 151310196SCurtis.Dunham@arm.com } 151410196SCurtis.Dunham@arm.com } 151510196SCurtis.Dunham@arm.com 1516955SN/A return make_pair(bank_mask, hidden_bank_prep); 15178120Sgblack@eecs.umich.edu} 15188120Sgblack@eecs.umich.edu 15198120Sgblack@eecs.umich.eduDRAMCtrl::Rank::Rank(DRAMCtrl& _memory, const DRAMCtrlParams* _p) 15208120Sgblack@eecs.umich.edu : EventManager(&_memory), memory(_memory), 15218120Sgblack@eecs.umich.edu pwrStateTrans(PWR_IDLE), pwrState(PWR_IDLE), pwrStateTick(0), 15228120Sgblack@eecs.umich.edu refreshState(REF_IDLE), refreshDueAt(0), 15238120Sgblack@eecs.umich.edu power(_p, false), numBanksActive(0), 15248120Sgblack@eecs.umich.edu activateEvent(*this), prechargeEvent(*this), 15258120Sgblack@eecs.umich.edu refreshEvent(*this), powerEvent(*this) 15268120Sgblack@eecs.umich.edu{ } 15278120Sgblack@eecs.umich.edu 15288120Sgblack@eecs.umich.eduvoid 1529DRAMCtrl::Rank::startup(Tick ref_tick) 1530{ 1531 assert(ref_tick > curTick()); 1532 1533 pwrStateTick = curTick(); 1534 1535 // kick off the refresh, and give ourselves enough time to 1536 // precharge 1537 schedule(refreshEvent, ref_tick); 1538} 1539 1540void 1541DRAMCtrl::Rank::suspend() 1542{ 1543 deschedule(refreshEvent); 1544 1545 // Update the stats 1546 updatePowerStats(); 1547} 1548 1549void 1550DRAMCtrl::Rank::checkDrainDone() 1551{ 1552 // if this rank was waiting to drain it is now able to proceed to 1553 // precharge 1554 if (refreshState == REF_DRAIN) { 1555 DPRINTF(DRAM, "Refresh drain done, now precharging\n"); 1556 1557 refreshState = REF_PRE; 1558 1559 // hand control back to the refresh event loop 1560 schedule(refreshEvent, curTick()); 1561 } 1562} 1563 1564void 1565DRAMCtrl::Rank::flushCmdList() 1566{ 1567 // at the moment sort the list of commands and update the counters 1568 // for DRAMPower libray when doing a refresh 1569 sort(cmdList.begin(), cmdList.end(), DRAMCtrl::sortTime); 1570 1571 auto next_iter = cmdList.begin(); 1572 // push to commands to DRAMPower 1573 for ( ; next_iter != cmdList.end() ; ++next_iter) { 1574 Command cmd = *next_iter; 1575 if (cmd.timeStamp <= curTick()) { 1576 // Move all commands at or before curTick to DRAMPower 1577 power.powerlib.doCommand(cmd.type, cmd.bank, 1578 divCeil(cmd.timeStamp, memory.tCK) - 1579 memory.timeStampOffset); 1580 } else { 1581 // done - found all commands at or before curTick() 1582 // next_iter references the 1st command after curTick 1583 break; 1584 } 1585 } 1586 // reset cmdList to only contain commands after curTick 1587 // if there are no commands after curTick, updated cmdList will be empty 1588 // in this case, next_iter is cmdList.end() 1589 cmdList.assign(next_iter, cmdList.end()); 1590} 1591 1592void 1593DRAMCtrl::Rank::processActivateEvent() 1594{ 1595 // we should transition to the active state as soon as any bank is active 1596 if (pwrState != PWR_ACT) 1597 // note that at this point numBanksActive could be back at 1598 // zero again due to a precharge scheduled in the future 1599 schedulePowerEvent(PWR_ACT, curTick()); 1600} 1601 1602void 1603DRAMCtrl::Rank::processPrechargeEvent() 1604{ 1605 // if we reached zero, then special conditions apply as we track 1606 // if all banks are precharged for the power models 1607 if (numBanksActive == 0) { 1608 // we should transition to the idle state when the last bank 1609 // is precharged 1610 schedulePowerEvent(PWR_IDLE, curTick()); 1611 } 1612} 1613 1614void 1615DRAMCtrl::Rank::processRefreshEvent() 1616{ 1617 // when first preparing the refresh, remember when it was due 1618 if (refreshState == REF_IDLE) { 1619 // remember when the refresh is due 1620 refreshDueAt = curTick(); 1621 1622 // proceed to drain 1623 refreshState = REF_DRAIN; 1624 1625 DPRINTF(DRAM, "Refresh due\n"); 1626 } 1627 1628 // let any scheduled read or write to the same rank go ahead, 1629 // after which it will 1630 // hand control back to this event loop 1631 if (refreshState == REF_DRAIN) { 1632 // if a request is at the moment being handled and this request is 1633 // accessing the current rank then wait for it to finish 1634 if ((rank == memory.activeRank) 1635 && (memory.nextReqEvent.scheduled())) { 1636 // hand control over to the request loop until it is 1637 // evaluated next 1638 DPRINTF(DRAM, "Refresh awaiting draining\n"); 1639 1640 return; 1641 } else { 1642 refreshState = REF_PRE; 1643 } 1644 } 1645 1646 // at this point, ensure that all banks are precharged 1647 if (refreshState == REF_PRE) { 1648 // precharge any active bank if we are not already in the idle 1649 // state 1650 if (pwrState != PWR_IDLE) { 1651 // at the moment, we use a precharge all even if there is 1652 // only a single bank open 1653 DPRINTF(DRAM, "Precharging all\n"); 1654 1655 // first determine when we can precharge 1656 Tick pre_at = curTick(); 1657 1658 for (auto &b : banks) { 1659 // respect both causality and any existing bank 1660 // constraints, some banks could already have a 1661 // (auto) precharge scheduled 1662 pre_at = std::max(b.preAllowedAt, pre_at); 1663 } 1664 1665 // make sure all banks per rank are precharged, and for those that 1666 // already are, update their availability 1667 Tick act_allowed_at = pre_at + memory.tRP; 1668 1669 for (auto &b : banks) { 1670 if (b.openRow != Bank::NO_ROW) { 1671 memory.prechargeBank(*this, b, pre_at, false); 1672 } else { 1673 b.actAllowedAt = std::max(b.actAllowedAt, act_allowed_at); 1674 b.preAllowedAt = std::max(b.preAllowedAt, pre_at); 1675 } 1676 } 1677 1678 // precharge all banks in rank 1679 cmdList.push_back(Command(MemCommand::PREA, 0, pre_at)); 1680 1681 DPRINTF(DRAMPower, "%llu,PREA,0,%d\n", 1682 divCeil(pre_at, memory.tCK) - 1683 memory.timeStampOffset, rank); 1684 } else { 1685 DPRINTF(DRAM, "All banks already precharged, starting refresh\n"); 1686 1687 // go ahead and kick the power state machine into gear if 1688 // we are already idle 1689 schedulePowerEvent(PWR_REF, curTick()); 1690 } 1691 1692 refreshState = REF_RUN; 1693 assert(numBanksActive == 0); 1694 1695 // wait for all banks to be precharged, at which point the 1696 // power state machine will transition to the idle state, and 1697 // automatically move to a refresh, at that point it will also 1698 // call this method to get the refresh event loop going again 1699 return; 1700 } 1701 1702 // last but not least we perform the actual refresh 1703 if (refreshState == REF_RUN) { 1704 // should never get here with any banks active 1705 assert(numBanksActive == 0); 1706 assert(pwrState == PWR_REF); 1707 1708 Tick ref_done_at = curTick() + memory.tRFC; 1709 1710 for (auto &b : banks) { 1711 b.actAllowedAt = ref_done_at; 1712 } 1713 1714 // at the moment this affects all ranks 1715 cmdList.push_back(Command(MemCommand::REF, 0, curTick())); 1716 1717 // Update the stats 1718 updatePowerStats(); 1719 1720 DPRINTF(DRAMPower, "%llu,REF,0,%d\n", divCeil(curTick(), memory.tCK) - 1721 memory.timeStampOffset, rank); 1722 1723 // make sure we did not wait so long that we cannot make up 1724 // for it 1725 if (refreshDueAt + memory.tREFI < ref_done_at) { 1726 fatal("Refresh was delayed so long we cannot catch up\n"); 1727 } 1728 1729 // compensate for the delay in actually performing the refresh 1730 // when scheduling the next one 1731 schedule(refreshEvent, refreshDueAt + memory.tREFI - memory.tRP); 1732 1733 assert(!powerEvent.scheduled()); 1734 1735 // move to the idle power state once the refresh is done, this 1736 // will also move the refresh state machine to the refresh 1737 // idle state 1738 schedulePowerEvent(PWR_IDLE, ref_done_at); 1739 1740 DPRINTF(DRAMState, "Refresh done at %llu and next refresh at %llu\n", 1741 ref_done_at, refreshDueAt + memory.tREFI); 1742 } 1743} 1744 1745void 1746DRAMCtrl::Rank::schedulePowerEvent(PowerState pwr_state, Tick tick) 1747{ 1748 // respect causality 1749 assert(tick >= curTick()); 1750 1751 if (!powerEvent.scheduled()) { 1752 DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n", 1753 tick, pwr_state); 1754 1755 // insert the new transition 1756 pwrStateTrans = pwr_state; 1757 1758 schedule(powerEvent, tick); 1759 } else { 1760 panic("Scheduled power event at %llu to state %d, " 1761 "with scheduled event at %llu to %d\n", tick, pwr_state, 1762 powerEvent.when(), pwrStateTrans); 1763 } 1764} 1765 1766void 1767DRAMCtrl::Rank::processPowerEvent() 1768{ 1769 // remember where we were, and for how long 1770 Tick duration = curTick() - pwrStateTick; 1771 PowerState prev_state = pwrState; 1772 1773 // update the accounting 1774 pwrStateTime[prev_state] += duration; 1775 1776 pwrState = pwrStateTrans; 1777 pwrStateTick = curTick(); 1778 1779 if (pwrState == PWR_IDLE) { 1780 DPRINTF(DRAMState, "All banks precharged\n"); 1781 1782 // if we were refreshing, make sure we start scheduling requests again 1783 if (prev_state == PWR_REF) { 1784 DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration); 1785 assert(pwrState == PWR_IDLE); 1786 1787 // kick things into action again 1788 refreshState = REF_IDLE; 1789 // a request event could be already scheduled by the state 1790 // machine of the other rank 1791 if (!memory.nextReqEvent.scheduled()) 1792 schedule(memory.nextReqEvent, curTick()); 1793 } else { 1794 assert(prev_state == PWR_ACT); 1795 1796 // if we have a pending refresh, and are now moving to 1797 // the idle state, direclty transition to a refresh 1798 if (refreshState == REF_RUN) { 1799 // there should be nothing waiting at this point 1800 assert(!powerEvent.scheduled()); 1801 1802 // update the state in zero time and proceed below 1803 pwrState = PWR_REF; 1804 } 1805 } 1806 } 1807 1808 // we transition to the refresh state, let the refresh state 1809 // machine know of this state update and let it deal with the 1810 // scheduling of the next power state transition as well as the 1811 // following refresh 1812 if (pwrState == PWR_REF) { 1813 DPRINTF(DRAMState, "Refreshing\n"); 1814 // kick the refresh event loop into action again, and that 1815 // in turn will schedule a transition to the idle power 1816 // state once the refresh is done 1817 assert(refreshState == REF_RUN); 1818 processRefreshEvent(); 1819 } 1820} 1821 1822void 1823DRAMCtrl::Rank::updatePowerStats() 1824{ 1825 // All commands up to refresh have completed 1826 // flush cmdList to DRAMPower 1827 flushCmdList(); 1828 1829 // update the counters for DRAMPower, passing false to 1830 // indicate that this is not the last command in the 1831 // list. DRAMPower requires this information for the 1832 // correct calculation of the background energy at the end 1833 // of the simulation. Ideally we would want to call this 1834 // function with true once at the end of the 1835 // simulation. However, the discarded energy is extremly 1836 // small and does not effect the final results. 1837 power.powerlib.updateCounters(false); 1838 1839 // call the energy function 1840 power.powerlib.calcEnergy(); 1841 1842 // Get the energy and power from DRAMPower 1843 Data::MemoryPowerModel::Energy energy = 1844 power.powerlib.getEnergy(); 1845 Data::MemoryPowerModel::Power rank_power = 1846 power.powerlib.getPower(); 1847 1848 actEnergy = energy.act_energy * memory.devicesPerRank; 1849 preEnergy = energy.pre_energy * memory.devicesPerRank; 1850 readEnergy = energy.read_energy * memory.devicesPerRank; 1851 writeEnergy = energy.write_energy * memory.devicesPerRank; 1852 refreshEnergy = energy.ref_energy * memory.devicesPerRank; 1853 actBackEnergy = energy.act_stdby_energy * memory.devicesPerRank; 1854 preBackEnergy = energy.pre_stdby_energy * memory.devicesPerRank; 1855 totalEnergy = energy.total_energy * memory.devicesPerRank; 1856 averagePower = rank_power.average_power * memory.devicesPerRank; 1857} 1858 1859void 1860DRAMCtrl::Rank::regStats() 1861{ 1862 using namespace Stats; 1863 1864 pwrStateTime 1865 .init(5) 1866 .name(name() + ".memoryStateTime") 1867 .desc("Time in different power states"); 1868 pwrStateTime.subname(0, "IDLE"); 1869 pwrStateTime.subname(1, "REF"); 1870 pwrStateTime.subname(2, "PRE_PDN"); 1871 pwrStateTime.subname(3, "ACT"); 1872 pwrStateTime.subname(4, "ACT_PDN"); 1873 1874 actEnergy 1875 .name(name() + ".actEnergy") 1876 .desc("Energy for activate commands per rank (pJ)"); 1877 1878 preEnergy 1879 .name(name() + ".preEnergy") 1880 .desc("Energy for precharge commands per rank (pJ)"); 1881 1882 readEnergy 1883 .name(name() + ".readEnergy") 1884 .desc("Energy for read commands per rank (pJ)"); 1885 1886 writeEnergy 1887 .name(name() + ".writeEnergy") 1888 .desc("Energy for write commands per rank (pJ)"); 1889 1890 refreshEnergy 1891 .name(name() + ".refreshEnergy") 1892 .desc("Energy for refresh commands per rank (pJ)"); 1893 1894 actBackEnergy 1895 .name(name() + ".actBackEnergy") 1896 .desc("Energy for active background per rank (pJ)"); 1897 1898 preBackEnergy 1899 .name(name() + ".preBackEnergy") 1900 .desc("Energy for precharge background per rank (pJ)"); 1901 1902 totalEnergy 1903 .name(name() + ".totalEnergy") 1904 .desc("Total energy per rank (pJ)"); 1905 1906 averagePower 1907 .name(name() + ".averagePower") 1908 .desc("Core power per rank (mW)"); 1909} 1910void 1911DRAMCtrl::regStats() 1912{ 1913 using namespace Stats; 1914 1915 AbstractMemory::regStats(); 1916 1917 for (auto r : ranks) { 1918 r->regStats(); 1919 } 1920 1921 readReqs 1922 .name(name() + ".readReqs") 1923 .desc("Number of read requests accepted"); 1924 1925 writeReqs 1926 .name(name() + ".writeReqs") 1927 .desc("Number of write requests accepted"); 1928 1929 readBursts 1930 .name(name() + ".readBursts") 1931 .desc("Number of DRAM read bursts, " 1932 "including those serviced by the write queue"); 1933 1934 writeBursts 1935 .name(name() + ".writeBursts") 1936 .desc("Number of DRAM write bursts, " 1937 "including those merged in the write queue"); 1938 1939 servicedByWrQ 1940 .name(name() + ".servicedByWrQ") 1941 .desc("Number of DRAM read bursts serviced by the write queue"); 1942 1943 mergedWrBursts 1944 .name(name() + ".mergedWrBursts") 1945 .desc("Number of DRAM write bursts merged with an existing one"); 1946 1947 neitherReadNorWrite 1948 .name(name() + ".neitherReadNorWriteReqs") 1949 .desc("Number of requests that are neither read nor write"); 1950 1951 perBankRdBursts 1952 .init(banksPerRank * ranksPerChannel) 1953 .name(name() + ".perBankRdBursts") 1954 .desc("Per bank write bursts"); 1955 1956 perBankWrBursts 1957 .init(banksPerRank * ranksPerChannel) 1958 .name(name() + ".perBankWrBursts") 1959 .desc("Per bank write bursts"); 1960 1961 avgRdQLen 1962 .name(name() + ".avgRdQLen") 1963 .desc("Average read queue length when enqueuing") 1964 .precision(2); 1965 1966 avgWrQLen 1967 .name(name() + ".avgWrQLen") 1968 .desc("Average write queue length when enqueuing") 1969 .precision(2); 1970 1971 totQLat 1972 .name(name() + ".totQLat") 1973 .desc("Total ticks spent queuing"); 1974 1975 totBusLat 1976 .name(name() + ".totBusLat") 1977 .desc("Total ticks spent in databus transfers"); 1978 1979 totMemAccLat 1980 .name(name() + ".totMemAccLat") 1981 .desc("Total ticks spent from burst creation until serviced " 1982 "by the DRAM"); 1983 1984 avgQLat 1985 .name(name() + ".avgQLat") 1986 .desc("Average queueing delay per DRAM burst") 1987 .precision(2); 1988 1989 avgQLat = totQLat / (readBursts - servicedByWrQ); 1990 1991 avgBusLat 1992 .name(name() + ".avgBusLat") 1993 .desc("Average bus latency per DRAM burst") 1994 .precision(2); 1995 1996 avgBusLat = totBusLat / (readBursts - servicedByWrQ); 1997 1998 avgMemAccLat 1999 .name(name() + ".avgMemAccLat") 2000 .desc("Average memory access latency per DRAM burst") 2001 .precision(2); 2002 2003 avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ); 2004 2005 numRdRetry 2006 .name(name() + ".numRdRetry") 2007 .desc("Number of times read queue was full causing retry"); 2008 2009 numWrRetry 2010 .name(name() + ".numWrRetry") 2011 .desc("Number of times write queue was full causing retry"); 2012 2013 readRowHits 2014 .name(name() + ".readRowHits") 2015 .desc("Number of row buffer hits during reads"); 2016 2017 writeRowHits 2018 .name(name() + ".writeRowHits") 2019 .desc("Number of row buffer hits during writes"); 2020 2021 readRowHitRate 2022 .name(name() + ".readRowHitRate") 2023 .desc("Row buffer hit rate for reads") 2024 .precision(2); 2025 2026 readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100; 2027 2028 writeRowHitRate 2029 .name(name() + ".writeRowHitRate") 2030 .desc("Row buffer hit rate for writes") 2031 .precision(2); 2032 2033 writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100; 2034 2035 readPktSize 2036 .init(ceilLog2(burstSize) + 1) 2037 .name(name() + ".readPktSize") 2038 .desc("Read request sizes (log2)"); 2039 2040 writePktSize 2041 .init(ceilLog2(burstSize) + 1) 2042 .name(name() + ".writePktSize") 2043 .desc("Write request sizes (log2)"); 2044 2045 rdQLenPdf 2046 .init(readBufferSize) 2047 .name(name() + ".rdQLenPdf") 2048 .desc("What read queue length does an incoming req see"); 2049 2050 wrQLenPdf 2051 .init(writeBufferSize) 2052 .name(name() + ".wrQLenPdf") 2053 .desc("What write queue length does an incoming req see"); 2054 2055 bytesPerActivate 2056 .init(maxAccessesPerRow) 2057 .name(name() + ".bytesPerActivate") 2058 .desc("Bytes accessed per row activation") 2059 .flags(nozero); 2060 2061 rdPerTurnAround 2062 .init(readBufferSize) 2063 .name(name() + ".rdPerTurnAround") 2064 .desc("Reads before turning the bus around for writes") 2065 .flags(nozero); 2066 2067 wrPerTurnAround 2068 .init(writeBufferSize) 2069 .name(name() + ".wrPerTurnAround") 2070 .desc("Writes before turning the bus around for reads") 2071 .flags(nozero); 2072 2073 bytesReadDRAM 2074 .name(name() + ".bytesReadDRAM") 2075 .desc("Total number of bytes read from DRAM"); 2076 2077 bytesReadWrQ 2078 .name(name() + ".bytesReadWrQ") 2079 .desc("Total number of bytes read from write queue"); 2080 2081 bytesWritten 2082 .name(name() + ".bytesWritten") 2083 .desc("Total number of bytes written to DRAM"); 2084 2085 bytesReadSys 2086 .name(name() + ".bytesReadSys") 2087 .desc("Total read bytes from the system interface side"); 2088 2089 bytesWrittenSys 2090 .name(name() + ".bytesWrittenSys") 2091 .desc("Total written bytes from the system interface side"); 2092 2093 avgRdBW 2094 .name(name() + ".avgRdBW") 2095 .desc("Average DRAM read bandwidth in MiByte/s") 2096 .precision(2); 2097 2098 avgRdBW = (bytesReadDRAM / 1000000) / simSeconds; 2099 2100 avgWrBW 2101 .name(name() + ".avgWrBW") 2102 .desc("Average achieved write bandwidth in MiByte/s") 2103 .precision(2); 2104 2105 avgWrBW = (bytesWritten / 1000000) / simSeconds; 2106 2107 avgRdBWSys 2108 .name(name() + ".avgRdBWSys") 2109 .desc("Average system read bandwidth in MiByte/s") 2110 .precision(2); 2111 2112 avgRdBWSys = (bytesReadSys / 1000000) / simSeconds; 2113 2114 avgWrBWSys 2115 .name(name() + ".avgWrBWSys") 2116 .desc("Average system write bandwidth in MiByte/s") 2117 .precision(2); 2118 2119 avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds; 2120 2121 peakBW 2122 .name(name() + ".peakBW") 2123 .desc("Theoretical peak bandwidth in MiByte/s") 2124 .precision(2); 2125 2126 peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000; 2127 2128 busUtil 2129 .name(name() + ".busUtil") 2130 .desc("Data bus utilization in percentage") 2131 .precision(2); 2132 busUtil = (avgRdBW + avgWrBW) / peakBW * 100; 2133 2134 totGap 2135 .name(name() + ".totGap") 2136 .desc("Total gap between requests"); 2137 2138 avgGap 2139 .name(name() + ".avgGap") 2140 .desc("Average gap between requests") 2141 .precision(2); 2142 2143 avgGap = totGap / (readReqs + writeReqs); 2144 2145 // Stats for DRAM Power calculation based on Micron datasheet 2146 busUtilRead 2147 .name(name() + ".busUtilRead") 2148 .desc("Data bus utilization in percentage for reads") 2149 .precision(2); 2150 2151 busUtilRead = avgRdBW / peakBW * 100; 2152 2153 busUtilWrite 2154 .name(name() + ".busUtilWrite") 2155 .desc("Data bus utilization in percentage for writes") 2156 .precision(2); 2157 2158 busUtilWrite = avgWrBW / peakBW * 100; 2159 2160 pageHitRate 2161 .name(name() + ".pageHitRate") 2162 .desc("Row buffer hit rate, read and write combined") 2163 .precision(2); 2164 2165 pageHitRate = (writeRowHits + readRowHits) / 2166 (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100; 2167} 2168 2169void 2170DRAMCtrl::recvFunctional(PacketPtr pkt) 2171{ 2172 // rely on the abstract memory 2173 functionalAccess(pkt); 2174} 2175 2176BaseSlavePort& 2177DRAMCtrl::getSlavePort(const string &if_name, PortID idx) 2178{ 2179 if (if_name != "port") { 2180 return MemObject::getSlavePort(if_name, idx); 2181 } else { 2182 return port; 2183 } 2184} 2185 2186DrainState 2187DRAMCtrl::drain() 2188{ 2189 // if there is anything in any of our internal queues, keep track 2190 // of that as well 2191 if (!(writeQueue.empty() && readQueue.empty() && respQueue.empty() && 2192 allRanksDrained())) { 2193 2194 DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d," 2195 " resp: %d\n", writeQueue.size(), readQueue.size(), 2196 respQueue.size()); 2197 2198 // the only part that is not drained automatically over time 2199 // is the write queue, thus kick things into action if needed 2200 if (!writeQueue.empty() && !nextReqEvent.scheduled()) { 2201 schedule(nextReqEvent, curTick()); 2202 } 2203 return DrainState::Draining; 2204 } else { 2205 return DrainState::Drained; 2206 } 2207} 2208 2209bool 2210DRAMCtrl::allRanksDrained() const 2211{ 2212 // true until proven false 2213 bool all_ranks_drained = true; 2214 for (auto r : ranks) { 2215 // then verify that the power state is IDLE 2216 // ensuring all banks are closed and rank is not in a low power state 2217 all_ranks_drained = r->inPwrIdleState() && all_ranks_drained; 2218 } 2219 return all_ranks_drained; 2220} 2221 2222void 2223DRAMCtrl::drainResume() 2224{ 2225 if (!isTimingMode && system()->isTimingMode()) { 2226 // if we switched to timing mode, kick things into action, 2227 // and behave as if we restored from a checkpoint 2228 startup(); 2229 } else if (isTimingMode && !system()->isTimingMode()) { 2230 // if we switch from timing mode, stop the refresh events to 2231 // not cause issues with KVM 2232 for (auto r : ranks) { 2233 r->suspend(); 2234 } 2235 } 2236 2237 // update the mode 2238 isTimingMode = system()->isTimingMode(); 2239} 2240 2241DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory) 2242 : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this), 2243 memory(_memory) 2244{ } 2245 2246AddrRangeList 2247DRAMCtrl::MemoryPort::getAddrRanges() const 2248{ 2249 AddrRangeList ranges; 2250 ranges.push_back(memory.getAddrRange()); 2251 return ranges; 2252} 2253 2254void 2255DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt) 2256{ 2257 pkt->pushLabel(memory.name()); 2258 2259 if (!queue.checkFunctional(pkt)) { 2260 // Default implementation of SimpleTimingPort::recvFunctional() 2261 // calls recvAtomic() and throws away the latency; we can save a 2262 // little here by just not calculating the latency. 2263 memory.recvFunctional(pkt); 2264 } 2265 2266 pkt->popLabel(); 2267} 2268 2269Tick 2270DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt) 2271{ 2272 return memory.recvAtomic(pkt); 2273} 2274 2275bool 2276DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt) 2277{ 2278 // pass it to the memory controller 2279 return memory.recvTimingReq(pkt); 2280} 2281 2282DRAMCtrl* 2283DRAMCtrlParams::create() 2284{ 2285 return new DRAMCtrl(this); 2286} 2287