dram_ctrl.cc revision 11673:9f3ccf96bb5a
1/* 2 * Copyright (c) 2010-2015 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2013 Amin Farmahini-Farahani 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Andreas Hansson 41 * Ani Udipi 42 * Neha Agarwal 43 * Omar Naji 44 */ 45 46#include "base/bitfield.hh" 47#include "base/trace.hh" 48#include "debug/DRAM.hh" 49#include "debug/DRAMPower.hh" 50#include "debug/DRAMState.hh" 51#include "debug/Drain.hh" 52#include "mem/dram_ctrl.hh" 53#include "sim/system.hh" 54 55using namespace std; 56using namespace Data; 57 58DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) : 59 AbstractMemory(p), 60 port(name() + ".port", *this), isTimingMode(false), 61 retryRdReq(false), retryWrReq(false), 62 busState(READ), 63 nextReqEvent(this), respondEvent(this), 64 deviceSize(p->device_size), 65 deviceBusWidth(p->device_bus_width), burstLength(p->burst_length), 66 deviceRowBufferSize(p->device_rowbuffer_size), 67 devicesPerRank(p->devices_per_rank), 68 burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8), 69 rowBufferSize(devicesPerRank * deviceRowBufferSize), 70 columnsPerRowBuffer(rowBufferSize / burstSize), 71 columnsPerStripe(range.interleaved() ? range.granularity() / burstSize : 1), 72 ranksPerChannel(p->ranks_per_channel), 73 bankGroupsPerRank(p->bank_groups_per_rank), 74 bankGroupArch(p->bank_groups_per_rank > 0), 75 banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0), 76 readBufferSize(p->read_buffer_size), 77 writeBufferSize(p->write_buffer_size), 78 writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0), 79 writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0), 80 minWritesPerSwitch(p->min_writes_per_switch), 81 writesThisTime(0), readsThisTime(0), 82 tCK(p->tCK), tWTR(p->tWTR), tRTW(p->tRTW), tCS(p->tCS), tBURST(p->tBURST), 83 tCCD_L(p->tCCD_L), tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS), 84 tWR(p->tWR), tRTP(p->tRTP), tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD), 85 tRRD_L(p->tRRD_L), tXAW(p->tXAW), tXP(p->tXP), tXS(p->tXS), 86 activationLimit(p->activation_limit), 87 memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping), 88 pageMgmt(p->page_policy), 89 maxAccessesPerRow(p->max_accesses_per_row), 90 frontendLatency(p->static_frontend_latency), 91 backendLatency(p->static_backend_latency), 92 busBusyUntil(0), prevArrival(0), 93 nextReqTime(0), activeRank(0), timeStampOffset(0) 94{ 95 // sanity check the ranks since we rely on bit slicing for the 96 // address decoding 97 fatal_if(!isPowerOf2(ranksPerChannel), "DRAM rank count of %d is not " 98 "allowed, must be a power of two\n", ranksPerChannel); 99 100 fatal_if(!isPowerOf2(burstSize), "DRAM burst size %d is not allowed, " 101 "must be a power of two\n", burstSize); 102 103 for (int i = 0; i < ranksPerChannel; i++) { 104 Rank* rank = new Rank(*this, p); 105 ranks.push_back(rank); 106 107 rank->actTicks.resize(activationLimit, 0); 108 rank->banks.resize(banksPerRank); 109 rank->rank = i; 110 111 for (int b = 0; b < banksPerRank; b++) { 112 rank->banks[b].bank = b; 113 // GDDR addressing of banks to BG is linear. 114 // Here we assume that all DRAM generations address bank groups as 115 // follows: 116 if (bankGroupArch) { 117 // Simply assign lower bits to bank group in order to 118 // rotate across bank groups as banks are incremented 119 // e.g. with 4 banks per bank group and 16 banks total: 120 // banks 0,4,8,12 are in bank group 0 121 // banks 1,5,9,13 are in bank group 1 122 // banks 2,6,10,14 are in bank group 2 123 // banks 3,7,11,15 are in bank group 3 124 rank->banks[b].bankgr = b % bankGroupsPerRank; 125 } else { 126 // No bank groups; simply assign to bank number 127 rank->banks[b].bankgr = b; 128 } 129 } 130 } 131 132 // perform a basic check of the write thresholds 133 if (p->write_low_thresh_perc >= p->write_high_thresh_perc) 134 fatal("Write buffer low threshold %d must be smaller than the " 135 "high threshold %d\n", p->write_low_thresh_perc, 136 p->write_high_thresh_perc); 137 138 // determine the rows per bank by looking at the total capacity 139 uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size()); 140 141 // determine the dram actual capacity from the DRAM config in Mbytes 142 uint64_t deviceCapacity = deviceSize / (1024 * 1024) * devicesPerRank * 143 ranksPerChannel; 144 145 // if actual DRAM size does not match memory capacity in system warn! 146 if (deviceCapacity != capacity / (1024 * 1024)) 147 warn("DRAM device capacity (%d Mbytes) does not match the " 148 "address range assigned (%d Mbytes)\n", deviceCapacity, 149 capacity / (1024 * 1024)); 150 151 DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity, 152 AbstractMemory::size()); 153 154 DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n", 155 rowBufferSize, columnsPerRowBuffer); 156 157 rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel); 158 159 // some basic sanity checks 160 if (tREFI <= tRP || tREFI <= tRFC) { 161 fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n", 162 tREFI, tRP, tRFC); 163 } 164 165 // basic bank group architecture checks -> 166 if (bankGroupArch) { 167 // must have at least one bank per bank group 168 if (bankGroupsPerRank > banksPerRank) { 169 fatal("banks per rank (%d) must be equal to or larger than " 170 "banks groups per rank (%d)\n", 171 banksPerRank, bankGroupsPerRank); 172 } 173 // must have same number of banks in each bank group 174 if ((banksPerRank % bankGroupsPerRank) != 0) { 175 fatal("Banks per rank (%d) must be evenly divisible by bank groups " 176 "per rank (%d) for equal banks per bank group\n", 177 banksPerRank, bankGroupsPerRank); 178 } 179 // tCCD_L should be greater than minimal, back-to-back burst delay 180 if (tCCD_L <= tBURST) { 181 fatal("tCCD_L (%d) should be larger than tBURST (%d) when " 182 "bank groups per rank (%d) is greater than 1\n", 183 tCCD_L, tBURST, bankGroupsPerRank); 184 } 185 // tRRD_L is greater than minimal, same bank group ACT-to-ACT delay 186 // some datasheets might specify it equal to tRRD 187 if (tRRD_L < tRRD) { 188 fatal("tRRD_L (%d) should be larger than tRRD (%d) when " 189 "bank groups per rank (%d) is greater than 1\n", 190 tRRD_L, tRRD, bankGroupsPerRank); 191 } 192 } 193 194} 195 196void 197DRAMCtrl::init() 198{ 199 AbstractMemory::init(); 200 201 if (!port.isConnected()) { 202 fatal("DRAMCtrl %s is unconnected!\n", name()); 203 } else { 204 port.sendRangeChange(); 205 } 206 207 // a bit of sanity checks on the interleaving, save it for here to 208 // ensure that the system pointer is initialised 209 if (range.interleaved()) { 210 if (channels != range.stripes()) 211 fatal("%s has %d interleaved address stripes but %d channel(s)\n", 212 name(), range.stripes(), channels); 213 214 if (addrMapping == Enums::RoRaBaChCo) { 215 if (rowBufferSize != range.granularity()) { 216 fatal("Channel interleaving of %s doesn't match RoRaBaChCo " 217 "address map\n", name()); 218 } 219 } else if (addrMapping == Enums::RoRaBaCoCh || 220 addrMapping == Enums::RoCoRaBaCh) { 221 // for the interleavings with channel bits in the bottom, 222 // if the system uses a channel striping granularity that 223 // is larger than the DRAM burst size, then map the 224 // sequential accesses within a stripe to a number of 225 // columns in the DRAM, effectively placing some of the 226 // lower-order column bits as the least-significant bits 227 // of the address (above the ones denoting the burst size) 228 assert(columnsPerStripe >= 1); 229 230 // channel striping has to be done at a granularity that 231 // is equal or larger to a cache line 232 if (system()->cacheLineSize() > range.granularity()) { 233 fatal("Channel interleaving of %s must be at least as large " 234 "as the cache line size\n", name()); 235 } 236 237 // ...and equal or smaller than the row-buffer size 238 if (rowBufferSize < range.granularity()) { 239 fatal("Channel interleaving of %s must be at most as large " 240 "as the row-buffer size\n", name()); 241 } 242 // this is essentially the check above, so just to be sure 243 assert(columnsPerStripe <= columnsPerRowBuffer); 244 } 245 } 246} 247 248void 249DRAMCtrl::startup() 250{ 251 // remember the memory system mode of operation 252 isTimingMode = system()->isTimingMode(); 253 254 if (isTimingMode) { 255 // timestamp offset should be in clock cycles for DRAMPower 256 timeStampOffset = divCeil(curTick(), tCK); 257 258 // update the start tick for the precharge accounting to the 259 // current tick 260 for (auto r : ranks) { 261 r->startup(curTick() + tREFI - tRP); 262 } 263 264 // shift the bus busy time sufficiently far ahead that we never 265 // have to worry about negative values when computing the time for 266 // the next request, this will add an insignificant bubble at the 267 // start of simulation 268 busBusyUntil = curTick() + tRP + tRCD + tCL; 269 } 270} 271 272Tick 273DRAMCtrl::recvAtomic(PacketPtr pkt) 274{ 275 DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr()); 276 277 panic_if(pkt->cacheResponding(), "Should not see packets where cache " 278 "is responding"); 279 280 // do the actual memory access and turn the packet into a response 281 access(pkt); 282 283 Tick latency = 0; 284 if (pkt->hasData()) { 285 // this value is not supposed to be accurate, just enough to 286 // keep things going, mimic a closed page 287 latency = tRP + tRCD + tCL; 288 } 289 return latency; 290} 291 292bool 293DRAMCtrl::readQueueFull(unsigned int neededEntries) const 294{ 295 DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n", 296 readBufferSize, readQueue.size() + respQueue.size(), 297 neededEntries); 298 299 return 300 (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize; 301} 302 303bool 304DRAMCtrl::writeQueueFull(unsigned int neededEntries) const 305{ 306 DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n", 307 writeBufferSize, writeQueue.size(), neededEntries); 308 return (writeQueue.size() + neededEntries) > writeBufferSize; 309} 310 311DRAMCtrl::DRAMPacket* 312DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size, 313 bool isRead) 314{ 315 // decode the address based on the address mapping scheme, with 316 // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and 317 // channel, respectively 318 uint8_t rank; 319 uint8_t bank; 320 // use a 64-bit unsigned during the computations as the row is 321 // always the top bits, and check before creating the DRAMPacket 322 uint64_t row; 323 324 // truncate the address to a DRAM burst, which makes it unique to 325 // a specific column, row, bank, rank and channel 326 Addr addr = dramPktAddr / burstSize; 327 328 // we have removed the lowest order address bits that denote the 329 // position within the column 330 if (addrMapping == Enums::RoRaBaChCo) { 331 // the lowest order bits denote the column to ensure that 332 // sequential cache lines occupy the same row 333 addr = addr / columnsPerRowBuffer; 334 335 // take out the channel part of the address 336 addr = addr / channels; 337 338 // after the channel bits, get the bank bits to interleave 339 // over the banks 340 bank = addr % banksPerRank; 341 addr = addr / banksPerRank; 342 343 // after the bank, we get the rank bits which thus interleaves 344 // over the ranks 345 rank = addr % ranksPerChannel; 346 addr = addr / ranksPerChannel; 347 348 // lastly, get the row bits, no need to remove them from addr 349 row = addr % rowsPerBank; 350 } else if (addrMapping == Enums::RoRaBaCoCh) { 351 // take out the lower-order column bits 352 addr = addr / columnsPerStripe; 353 354 // take out the channel part of the address 355 addr = addr / channels; 356 357 // next, the higher-order column bites 358 addr = addr / (columnsPerRowBuffer / columnsPerStripe); 359 360 // after the column bits, we get the bank bits to interleave 361 // over the banks 362 bank = addr % banksPerRank; 363 addr = addr / banksPerRank; 364 365 // after the bank, we get the rank bits which thus interleaves 366 // over the ranks 367 rank = addr % ranksPerChannel; 368 addr = addr / ranksPerChannel; 369 370 // lastly, get the row bits, no need to remove them from addr 371 row = addr % rowsPerBank; 372 } else if (addrMapping == Enums::RoCoRaBaCh) { 373 // optimise for closed page mode and utilise maximum 374 // parallelism of the DRAM (at the cost of power) 375 376 // take out the lower-order column bits 377 addr = addr / columnsPerStripe; 378 379 // take out the channel part of the address, not that this has 380 // to match with how accesses are interleaved between the 381 // controllers in the address mapping 382 addr = addr / channels; 383 384 // start with the bank bits, as this provides the maximum 385 // opportunity for parallelism between requests 386 bank = addr % banksPerRank; 387 addr = addr / banksPerRank; 388 389 // next get the rank bits 390 rank = addr % ranksPerChannel; 391 addr = addr / ranksPerChannel; 392 393 // next, the higher-order column bites 394 addr = addr / (columnsPerRowBuffer / columnsPerStripe); 395 396 // lastly, get the row bits, no need to remove them from addr 397 row = addr % rowsPerBank; 398 } else 399 panic("Unknown address mapping policy chosen!"); 400 401 assert(rank < ranksPerChannel); 402 assert(bank < banksPerRank); 403 assert(row < rowsPerBank); 404 assert(row < Bank::NO_ROW); 405 406 DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n", 407 dramPktAddr, rank, bank, row); 408 409 // create the corresponding DRAM packet with the entry time and 410 // ready time set to the current tick, the latter will be updated 411 // later 412 uint16_t bank_id = banksPerRank * rank + bank; 413 return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr, 414 size, ranks[rank]->banks[bank], *ranks[rank]); 415} 416 417void 418DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount) 419{ 420 // only add to the read queue here. whenever the request is 421 // eventually done, set the readyTime, and call schedule() 422 assert(!pkt->isWrite()); 423 424 assert(pktCount != 0); 425 426 // if the request size is larger than burst size, the pkt is split into 427 // multiple DRAM packets 428 // Note if the pkt starting address is not aligened to burst size, the 429 // address of first DRAM packet is kept unaliged. Subsequent DRAM packets 430 // are aligned to burst size boundaries. This is to ensure we accurately 431 // check read packets against packets in write queue. 432 Addr addr = pkt->getAddr(); 433 unsigned pktsServicedByWrQ = 0; 434 BurstHelper* burst_helper = NULL; 435 for (int cnt = 0; cnt < pktCount; ++cnt) { 436 unsigned size = std::min((addr | (burstSize - 1)) + 1, 437 pkt->getAddr() + pkt->getSize()) - addr; 438 readPktSize[ceilLog2(size)]++; 439 readBursts++; 440 441 // First check write buffer to see if the data is already at 442 // the controller 443 bool foundInWrQ = false; 444 Addr burst_addr = burstAlign(addr); 445 // if the burst address is not present then there is no need 446 // looking any further 447 if (isInWriteQueue.find(burst_addr) != isInWriteQueue.end()) { 448 for (const auto& p : writeQueue) { 449 // check if the read is subsumed in the write queue 450 // packet we are looking at 451 if (p->addr <= addr && (addr + size) <= (p->addr + p->size)) { 452 foundInWrQ = true; 453 servicedByWrQ++; 454 pktsServicedByWrQ++; 455 DPRINTF(DRAM, "Read to addr %lld with size %d serviced by " 456 "write queue\n", addr, size); 457 bytesReadWrQ += burstSize; 458 break; 459 } 460 } 461 } 462 463 // If not found in the write q, make a DRAM packet and 464 // push it onto the read queue 465 if (!foundInWrQ) { 466 467 // Make the burst helper for split packets 468 if (pktCount > 1 && burst_helper == NULL) { 469 DPRINTF(DRAM, "Read to addr %lld translates to %d " 470 "dram requests\n", pkt->getAddr(), pktCount); 471 burst_helper = new BurstHelper(pktCount); 472 } 473 474 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true); 475 dram_pkt->burstHelper = burst_helper; 476 477 assert(!readQueueFull(1)); 478 rdQLenPdf[readQueue.size() + respQueue.size()]++; 479 480 DPRINTF(DRAM, "Adding to read queue\n"); 481 482 readQueue.push_back(dram_pkt); 483 484 // Update stats 485 avgRdQLen = readQueue.size() + respQueue.size(); 486 } 487 488 // Starting address of next dram pkt (aligend to burstSize boundary) 489 addr = (addr | (burstSize - 1)) + 1; 490 } 491 492 // If all packets are serviced by write queue, we send the repsonse back 493 if (pktsServicedByWrQ == pktCount) { 494 accessAndRespond(pkt, frontendLatency); 495 return; 496 } 497 498 // Update how many split packets are serviced by write queue 499 if (burst_helper != NULL) 500 burst_helper->burstsServiced = pktsServicedByWrQ; 501 502 // If we are not already scheduled to get a request out of the 503 // queue, do so now 504 if (!nextReqEvent.scheduled()) { 505 DPRINTF(DRAM, "Request scheduled immediately\n"); 506 schedule(nextReqEvent, curTick()); 507 } 508} 509 510void 511DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount) 512{ 513 // only add to the write queue here. whenever the request is 514 // eventually done, set the readyTime, and call schedule() 515 assert(pkt->isWrite()); 516 517 // if the request size is larger than burst size, the pkt is split into 518 // multiple DRAM packets 519 Addr addr = pkt->getAddr(); 520 for (int cnt = 0; cnt < pktCount; ++cnt) { 521 unsigned size = std::min((addr | (burstSize - 1)) + 1, 522 pkt->getAddr() + pkt->getSize()) - addr; 523 writePktSize[ceilLog2(size)]++; 524 writeBursts++; 525 526 // see if we can merge with an existing item in the write 527 // queue and keep track of whether we have merged or not 528 bool merged = isInWriteQueue.find(burstAlign(addr)) != 529 isInWriteQueue.end(); 530 531 // if the item was not merged we need to create a new write 532 // and enqueue it 533 if (!merged) { 534 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false); 535 536 assert(writeQueue.size() < writeBufferSize); 537 wrQLenPdf[writeQueue.size()]++; 538 539 DPRINTF(DRAM, "Adding to write queue\n"); 540 541 writeQueue.push_back(dram_pkt); 542 isInWriteQueue.insert(burstAlign(addr)); 543 assert(writeQueue.size() == isInWriteQueue.size()); 544 545 // Update stats 546 avgWrQLen = writeQueue.size(); 547 } else { 548 DPRINTF(DRAM, "Merging write burst with existing queue entry\n"); 549 550 // keep track of the fact that this burst effectively 551 // disappeared as it was merged with an existing one 552 mergedWrBursts++; 553 } 554 555 // Starting address of next dram pkt (aligend to burstSize boundary) 556 addr = (addr | (burstSize - 1)) + 1; 557 } 558 559 // we do not wait for the writes to be send to the actual memory, 560 // but instead take responsibility for the consistency here and 561 // snoop the write queue for any upcoming reads 562 // @todo, if a pkt size is larger than burst size, we might need a 563 // different front end latency 564 accessAndRespond(pkt, frontendLatency); 565 566 // If we are not already scheduled to get a request out of the 567 // queue, do so now 568 if (!nextReqEvent.scheduled()) { 569 DPRINTF(DRAM, "Request scheduled immediately\n"); 570 schedule(nextReqEvent, curTick()); 571 } 572} 573 574void 575DRAMCtrl::printQs() const { 576 DPRINTF(DRAM, "===READ QUEUE===\n\n"); 577 for (auto i = readQueue.begin() ; i != readQueue.end() ; ++i) { 578 DPRINTF(DRAM, "Read %lu\n", (*i)->addr); 579 } 580 DPRINTF(DRAM, "\n===RESP QUEUE===\n\n"); 581 for (auto i = respQueue.begin() ; i != respQueue.end() ; ++i) { 582 DPRINTF(DRAM, "Response %lu\n", (*i)->addr); 583 } 584 DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n"); 585 for (auto i = writeQueue.begin() ; i != writeQueue.end() ; ++i) { 586 DPRINTF(DRAM, "Write %lu\n", (*i)->addr); 587 } 588} 589 590bool 591DRAMCtrl::recvTimingReq(PacketPtr pkt) 592{ 593 // This is where we enter from the outside world 594 DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n", 595 pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 596 597 panic_if(pkt->cacheResponding(), "Should not see packets where cache " 598 "is responding"); 599 600 panic_if(!(pkt->isRead() || pkt->isWrite()), 601 "Should only see read and writes at memory controller\n"); 602 603 // Calc avg gap between requests 604 if (prevArrival != 0) { 605 totGap += curTick() - prevArrival; 606 } 607 prevArrival = curTick(); 608 609 610 // Find out how many dram packets a pkt translates to 611 // If the burst size is equal or larger than the pkt size, then a pkt 612 // translates to only one dram packet. Otherwise, a pkt translates to 613 // multiple dram packets 614 unsigned size = pkt->getSize(); 615 unsigned offset = pkt->getAddr() & (burstSize - 1); 616 unsigned int dram_pkt_count = divCeil(offset + size, burstSize); 617 618 // check local buffers and do not accept if full 619 if (pkt->isRead()) { 620 assert(size != 0); 621 if (readQueueFull(dram_pkt_count)) { 622 DPRINTF(DRAM, "Read queue full, not accepting\n"); 623 // remember that we have to retry this port 624 retryRdReq = true; 625 numRdRetry++; 626 return false; 627 } else { 628 addToReadQueue(pkt, dram_pkt_count); 629 readReqs++; 630 bytesReadSys += size; 631 } 632 } else { 633 assert(pkt->isWrite()); 634 assert(size != 0); 635 if (writeQueueFull(dram_pkt_count)) { 636 DPRINTF(DRAM, "Write queue full, not accepting\n"); 637 // remember that we have to retry this port 638 retryWrReq = true; 639 numWrRetry++; 640 return false; 641 } else { 642 addToWriteQueue(pkt, dram_pkt_count); 643 writeReqs++; 644 bytesWrittenSys += size; 645 } 646 } 647 648 return true; 649} 650 651void 652DRAMCtrl::processRespondEvent() 653{ 654 DPRINTF(DRAM, 655 "processRespondEvent(): Some req has reached its readyTime\n"); 656 657 DRAMPacket* dram_pkt = respQueue.front(); 658 659 if (dram_pkt->burstHelper) { 660 // it is a split packet 661 dram_pkt->burstHelper->burstsServiced++; 662 if (dram_pkt->burstHelper->burstsServiced == 663 dram_pkt->burstHelper->burstCount) { 664 // we have now serviced all children packets of a system packet 665 // so we can now respond to the requester 666 // @todo we probably want to have a different front end and back 667 // end latency for split packets 668 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency); 669 delete dram_pkt->burstHelper; 670 dram_pkt->burstHelper = NULL; 671 } 672 } else { 673 // it is not a split packet 674 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency); 675 } 676 677 delete respQueue.front(); 678 respQueue.pop_front(); 679 680 if (!respQueue.empty()) { 681 assert(respQueue.front()->readyTime >= curTick()); 682 assert(!respondEvent.scheduled()); 683 schedule(respondEvent, respQueue.front()->readyTime); 684 } else { 685 // if there is nothing left in any queue, signal a drain 686 if (drainState() == DrainState::Draining && 687 writeQueue.empty() && readQueue.empty()) { 688 689 DPRINTF(Drain, "DRAM controller done draining\n"); 690 signalDrainDone(); 691 } 692 } 693 694 // We have made a location in the queue available at this point, 695 // so if there is a read that was forced to wait, retry now 696 if (retryRdReq) { 697 retryRdReq = false; 698 port.sendRetryReq(); 699 } 700} 701 702bool 703DRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue, Tick extra_col_delay) 704{ 705 // This method does the arbitration between requests. The chosen 706 // packet is simply moved to the head of the queue. The other 707 // methods know that this is the place to look. For example, with 708 // FCFS, this method does nothing 709 assert(!queue.empty()); 710 711 // bool to indicate if a packet to an available rank is found 712 bool found_packet = false; 713 if (queue.size() == 1) { 714 DRAMPacket* dram_pkt = queue.front(); 715 // available rank corresponds to state refresh idle 716 if (ranks[dram_pkt->rank]->isAvailable()) { 717 found_packet = true; 718 DPRINTF(DRAM, "Single request, going to a free rank\n"); 719 } else { 720 DPRINTF(DRAM, "Single request, going to a busy rank\n"); 721 } 722 return found_packet; 723 } 724 725 if (memSchedPolicy == Enums::fcfs) { 726 // check if there is a packet going to a free rank 727 for (auto i = queue.begin(); i != queue.end() ; ++i) { 728 DRAMPacket* dram_pkt = *i; 729 if (ranks[dram_pkt->rank]->isAvailable()) { 730 queue.erase(i); 731 queue.push_front(dram_pkt); 732 found_packet = true; 733 break; 734 } 735 } 736 } else if (memSchedPolicy == Enums::frfcfs) { 737 found_packet = reorderQueue(queue, extra_col_delay); 738 } else 739 panic("No scheduling policy chosen\n"); 740 return found_packet; 741} 742 743bool 744DRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue, Tick extra_col_delay) 745{ 746 // Only determine this if needed 747 uint64_t earliest_banks = 0; 748 bool hidden_bank_prep = false; 749 750 // search for seamless row hits first, if no seamless row hit is 751 // found then determine if there are other packets that can be issued 752 // without incurring additional bus delay due to bank timing 753 // Will select closed rows first to enable more open row possibilies 754 // in future selections 755 bool found_hidden_bank = false; 756 757 // remember if we found a row hit, not seamless, but bank prepped 758 // and ready 759 bool found_prepped_pkt = false; 760 761 // if we have no row hit, prepped or not, and no seamless packet, 762 // just go for the earliest possible 763 bool found_earliest_pkt = false; 764 765 auto selected_pkt_it = queue.end(); 766 767 // time we need to issue a column command to be seamless 768 const Tick min_col_at = std::max(busBusyUntil - tCL + extra_col_delay, 769 curTick()); 770 771 for (auto i = queue.begin(); i != queue.end() ; ++i) { 772 DRAMPacket* dram_pkt = *i; 773 const Bank& bank = dram_pkt->bankRef; 774 775 // check if rank is available, if not, jump to the next packet 776 if (dram_pkt->rankRef.isAvailable()) { 777 // check if it is a row hit 778 if (bank.openRow == dram_pkt->row) { 779 // no additional rank-to-rank or same bank-group 780 // delays, or we switched read/write and might as well 781 // go for the row hit 782 if (bank.colAllowedAt <= min_col_at) { 783 // FCFS within the hits, giving priority to 784 // commands that can issue seamlessly, without 785 // additional delay, such as same rank accesses 786 // and/or different bank-group accesses 787 DPRINTF(DRAM, "Seamless row buffer hit\n"); 788 selected_pkt_it = i; 789 // no need to look through the remaining queue entries 790 break; 791 } else if (!found_hidden_bank && !found_prepped_pkt) { 792 // if we did not find a packet to a closed row that can 793 // issue the bank commands without incurring delay, and 794 // did not yet find a packet to a prepped row, remember 795 // the current one 796 selected_pkt_it = i; 797 found_prepped_pkt = true; 798 DPRINTF(DRAM, "Prepped row buffer hit\n"); 799 } 800 } else if (!found_earliest_pkt) { 801 // if we have not initialised the bank status, do it 802 // now, and only once per scheduling decisions 803 if (earliest_banks == 0) { 804 // determine entries with earliest bank delay 805 pair<uint64_t, bool> bankStatus = 806 minBankPrep(queue, min_col_at); 807 earliest_banks = bankStatus.first; 808 hidden_bank_prep = bankStatus.second; 809 } 810 811 // bank is amongst first available banks 812 // minBankPrep will give priority to packets that can 813 // issue seamlessly 814 if (bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) { 815 found_earliest_pkt = true; 816 found_hidden_bank = hidden_bank_prep; 817 818 // give priority to packets that can issue 819 // bank commands 'behind the scenes' 820 // any additional delay if any will be due to 821 // col-to-col command requirements 822 if (hidden_bank_prep || !found_prepped_pkt) 823 selected_pkt_it = i; 824 } 825 } 826 } 827 } 828 829 if (selected_pkt_it != queue.end()) { 830 DRAMPacket* selected_pkt = *selected_pkt_it; 831 queue.erase(selected_pkt_it); 832 queue.push_front(selected_pkt); 833 return true; 834 } 835 836 return false; 837} 838 839void 840DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency) 841{ 842 DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr()); 843 844 bool needsResponse = pkt->needsResponse(); 845 // do the actual memory access which also turns the packet into a 846 // response 847 access(pkt); 848 849 // turn packet around to go back to requester if response expected 850 if (needsResponse) { 851 // access already turned the packet into a response 852 assert(pkt->isResponse()); 853 // response_time consumes the static latency and is charged also 854 // with headerDelay that takes into account the delay provided by 855 // the xbar and also the payloadDelay that takes into account the 856 // number of data beats. 857 Tick response_time = curTick() + static_latency + pkt->headerDelay + 858 pkt->payloadDelay; 859 // Here we reset the timing of the packet before sending it out. 860 pkt->headerDelay = pkt->payloadDelay = 0; 861 862 // queue the packet in the response queue to be sent out after 863 // the static latency has passed 864 port.schedTimingResp(pkt, response_time, true); 865 } else { 866 // @todo the packet is going to be deleted, and the DRAMPacket 867 // is still having a pointer to it 868 pendingDelete.reset(pkt); 869 } 870 871 DPRINTF(DRAM, "Done\n"); 872 873 return; 874} 875 876void 877DRAMCtrl::activateBank(Rank& rank_ref, Bank& bank_ref, 878 Tick act_tick, uint32_t row) 879{ 880 assert(rank_ref.actTicks.size() == activationLimit); 881 882 DPRINTF(DRAM, "Activate at tick %d\n", act_tick); 883 884 // update the open row 885 assert(bank_ref.openRow == Bank::NO_ROW); 886 bank_ref.openRow = row; 887 888 // start counting anew, this covers both the case when we 889 // auto-precharged, and when this access is forced to 890 // precharge 891 bank_ref.bytesAccessed = 0; 892 bank_ref.rowAccesses = 0; 893 894 ++rank_ref.numBanksActive; 895 assert(rank_ref.numBanksActive <= banksPerRank); 896 897 DPRINTF(DRAM, "Activate bank %d, rank %d at tick %lld, now got %d active\n", 898 bank_ref.bank, rank_ref.rank, act_tick, 899 ranks[rank_ref.rank]->numBanksActive); 900 901 rank_ref.power.powerlib.doCommand(MemCommand::ACT, bank_ref.bank, 902 divCeil(act_tick, tCK) - 903 timeStampOffset); 904 905 DPRINTF(DRAMPower, "%llu,ACT,%d,%d\n", divCeil(act_tick, tCK) - 906 timeStampOffset, bank_ref.bank, rank_ref.rank); 907 908 // The next access has to respect tRAS for this bank 909 bank_ref.preAllowedAt = act_tick + tRAS; 910 911 // Respect the row-to-column command delay 912 bank_ref.colAllowedAt = std::max(act_tick + tRCD, bank_ref.colAllowedAt); 913 914 // start by enforcing tRRD 915 for (int i = 0; i < banksPerRank; i++) { 916 // next activate to any bank in this rank must not happen 917 // before tRRD 918 if (bankGroupArch && (bank_ref.bankgr == rank_ref.banks[i].bankgr)) { 919 // bank group architecture requires longer delays between 920 // ACT commands within the same bank group. Use tRRD_L 921 // in this case 922 rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD_L, 923 rank_ref.banks[i].actAllowedAt); 924 } else { 925 // use shorter tRRD value when either 926 // 1) bank group architecture is not supportted 927 // 2) bank is in a different bank group 928 rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD, 929 rank_ref.banks[i].actAllowedAt); 930 } 931 } 932 933 // next, we deal with tXAW, if the activation limit is disabled 934 // then we directly schedule an activate power event 935 if (!rank_ref.actTicks.empty()) { 936 // sanity check 937 if (rank_ref.actTicks.back() && 938 (act_tick - rank_ref.actTicks.back()) < tXAW) { 939 panic("Got %d activates in window %d (%llu - %llu) which " 940 "is smaller than %llu\n", activationLimit, act_tick - 941 rank_ref.actTicks.back(), act_tick, 942 rank_ref.actTicks.back(), tXAW); 943 } 944 945 // shift the times used for the book keeping, the last element 946 // (highest index) is the oldest one and hence the lowest value 947 rank_ref.actTicks.pop_back(); 948 949 // record an new activation (in the future) 950 rank_ref.actTicks.push_front(act_tick); 951 952 // cannot activate more than X times in time window tXAW, push the 953 // next one (the X + 1'st activate) to be tXAW away from the 954 // oldest in our window of X 955 if (rank_ref.actTicks.back() && 956 (act_tick - rank_ref.actTicks.back()) < tXAW) { 957 DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate " 958 "no earlier than %llu\n", activationLimit, 959 rank_ref.actTicks.back() + tXAW); 960 for (int j = 0; j < banksPerRank; j++) 961 // next activate must not happen before end of window 962 rank_ref.banks[j].actAllowedAt = 963 std::max(rank_ref.actTicks.back() + tXAW, 964 rank_ref.banks[j].actAllowedAt); 965 } 966 } 967 968 // at the point when this activate takes place, make sure we 969 // transition to the active power state 970 if (!rank_ref.activateEvent.scheduled()) 971 schedule(rank_ref.activateEvent, act_tick); 972 else if (rank_ref.activateEvent.when() > act_tick) 973 // move it sooner in time 974 reschedule(rank_ref.activateEvent, act_tick); 975} 976 977void 978DRAMCtrl::prechargeBank(Rank& rank_ref, Bank& bank, Tick pre_at, bool trace) 979{ 980 // make sure the bank has an open row 981 assert(bank.openRow != Bank::NO_ROW); 982 983 // sample the bytes per activate here since we are closing 984 // the page 985 bytesPerActivate.sample(bank.bytesAccessed); 986 987 bank.openRow = Bank::NO_ROW; 988 989 // no precharge allowed before this one 990 bank.preAllowedAt = pre_at; 991 992 Tick pre_done_at = pre_at + tRP; 993 994 bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at); 995 996 assert(rank_ref.numBanksActive != 0); 997 --rank_ref.numBanksActive; 998 999 DPRINTF(DRAM, "Precharging bank %d, rank %d at tick %lld, now got " 1000 "%d active\n", bank.bank, rank_ref.rank, pre_at, 1001 rank_ref.numBanksActive); 1002 1003 if (trace) { 1004 1005 rank_ref.power.powerlib.doCommand(MemCommand::PRE, bank.bank, 1006 divCeil(pre_at, tCK) - 1007 timeStampOffset); 1008 DPRINTF(DRAMPower, "%llu,PRE,%d,%d\n", divCeil(pre_at, tCK) - 1009 timeStampOffset, bank.bank, rank_ref.rank); 1010 } 1011 // if we look at the current number of active banks we might be 1012 // tempted to think the DRAM is now idle, however this can be 1013 // undone by an activate that is scheduled to happen before we 1014 // would have reached the idle state, so schedule an event and 1015 // rather check once we actually make it to the point in time when 1016 // the (last) precharge takes place 1017 if (!rank_ref.prechargeEvent.scheduled()) 1018 schedule(rank_ref.prechargeEvent, pre_done_at); 1019 else if (rank_ref.prechargeEvent.when() < pre_done_at) 1020 reschedule(rank_ref.prechargeEvent, pre_done_at); 1021} 1022 1023void 1024DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt) 1025{ 1026 DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n", 1027 dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row); 1028 1029 // get the rank 1030 Rank& rank = dram_pkt->rankRef; 1031 1032 // get the bank 1033 Bank& bank = dram_pkt->bankRef; 1034 1035 // for the state we need to track if it is a row hit or not 1036 bool row_hit = true; 1037 1038 // respect any constraints on the command (e.g. tRCD or tCCD) 1039 Tick cmd_at = std::max(bank.colAllowedAt, curTick()); 1040 1041 // Determine the access latency and update the bank state 1042 if (bank.openRow == dram_pkt->row) { 1043 // nothing to do 1044 } else { 1045 row_hit = false; 1046 1047 // If there is a page open, precharge it. 1048 if (bank.openRow != Bank::NO_ROW) { 1049 prechargeBank(rank, bank, std::max(bank.preAllowedAt, curTick())); 1050 } 1051 1052 // next we need to account for the delay in activating the 1053 // page 1054 Tick act_tick = std::max(bank.actAllowedAt, curTick()); 1055 1056 // Record the activation and deal with all the global timing 1057 // constraints caused be a new activation (tRRD and tXAW) 1058 activateBank(rank, bank, act_tick, dram_pkt->row); 1059 1060 // issue the command as early as possible 1061 cmd_at = bank.colAllowedAt; 1062 } 1063 1064 // we need to wait until the bus is available before we can issue 1065 // the command 1066 cmd_at = std::max(cmd_at, busBusyUntil - tCL); 1067 1068 // update the packet ready time 1069 dram_pkt->readyTime = cmd_at + tCL + tBURST; 1070 1071 // only one burst can use the bus at any one point in time 1072 assert(dram_pkt->readyTime - busBusyUntil >= tBURST); 1073 1074 // update the time for the next read/write burst for each 1075 // bank (add a max with tCCD/tCCD_L here) 1076 Tick cmd_dly; 1077 for (int j = 0; j < ranksPerChannel; j++) { 1078 for (int i = 0; i < banksPerRank; i++) { 1079 // next burst to same bank group in this rank must not happen 1080 // before tCCD_L. Different bank group timing requirement is 1081 // tBURST; Add tCS for different ranks 1082 if (dram_pkt->rank == j) { 1083 if (bankGroupArch && 1084 (bank.bankgr == ranks[j]->banks[i].bankgr)) { 1085 // bank group architecture requires longer delays between 1086 // RD/WR burst commands to the same bank group. 1087 // Use tCCD_L in this case 1088 cmd_dly = tCCD_L; 1089 } else { 1090 // use tBURST (equivalent to tCCD_S), the shorter 1091 // cas-to-cas delay value, when either: 1092 // 1) bank group architecture is not supportted 1093 // 2) bank is in a different bank group 1094 cmd_dly = tBURST; 1095 } 1096 } else { 1097 // different rank is by default in a different bank group 1098 // use tBURST (equivalent to tCCD_S), which is the shorter 1099 // cas-to-cas delay in this case 1100 // Add tCS to account for rank-to-rank bus delay requirements 1101 cmd_dly = tBURST + tCS; 1102 } 1103 ranks[j]->banks[i].colAllowedAt = std::max(cmd_at + cmd_dly, 1104 ranks[j]->banks[i].colAllowedAt); 1105 } 1106 } 1107 1108 // Save rank of current access 1109 activeRank = dram_pkt->rank; 1110 1111 // If this is a write, we also need to respect the write recovery 1112 // time before a precharge, in the case of a read, respect the 1113 // read to precharge constraint 1114 bank.preAllowedAt = std::max(bank.preAllowedAt, 1115 dram_pkt->isRead ? cmd_at + tRTP : 1116 dram_pkt->readyTime + tWR); 1117 1118 // increment the bytes accessed and the accesses per row 1119 bank.bytesAccessed += burstSize; 1120 ++bank.rowAccesses; 1121 1122 // if we reached the max, then issue with an auto-precharge 1123 bool auto_precharge = pageMgmt == Enums::close || 1124 bank.rowAccesses == maxAccessesPerRow; 1125 1126 // if we did not hit the limit, we might still want to 1127 // auto-precharge 1128 if (!auto_precharge && 1129 (pageMgmt == Enums::open_adaptive || 1130 pageMgmt == Enums::close_adaptive)) { 1131 // a twist on the open and close page policies: 1132 // 1) open_adaptive page policy does not blindly keep the 1133 // page open, but close it if there are no row hits, and there 1134 // are bank conflicts in the queue 1135 // 2) close_adaptive page policy does not blindly close the 1136 // page, but closes it only if there are no row hits in the queue. 1137 // In this case, only force an auto precharge when there 1138 // are no same page hits in the queue 1139 bool got_more_hits = false; 1140 bool got_bank_conflict = false; 1141 1142 // either look at the read queue or write queue 1143 const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue : 1144 writeQueue; 1145 auto p = queue.begin(); 1146 // make sure we are not considering the packet that we are 1147 // currently dealing with (which is the head of the queue) 1148 ++p; 1149 1150 // keep on looking until we find a hit or reach the end of the queue 1151 // 1) if a hit is found, then both open and close adaptive policies keep 1152 // the page open 1153 // 2) if no hit is found, got_bank_conflict is set to true if a bank 1154 // conflict request is waiting in the queue 1155 while (!got_more_hits && p != queue.end()) { 1156 bool same_rank_bank = (dram_pkt->rank == (*p)->rank) && 1157 (dram_pkt->bank == (*p)->bank); 1158 bool same_row = dram_pkt->row == (*p)->row; 1159 got_more_hits |= same_rank_bank && same_row; 1160 got_bank_conflict |= same_rank_bank && !same_row; 1161 ++p; 1162 } 1163 1164 // auto pre-charge when either 1165 // 1) open_adaptive policy, we have not got any more hits, and 1166 // have a bank conflict 1167 // 2) close_adaptive policy and we have not got any more hits 1168 auto_precharge = !got_more_hits && 1169 (got_bank_conflict || pageMgmt == Enums::close_adaptive); 1170 } 1171 1172 // DRAMPower trace command to be written 1173 std::string mem_cmd = dram_pkt->isRead ? "RD" : "WR"; 1174 1175 // MemCommand required for DRAMPower library 1176 MemCommand::cmds command = (mem_cmd == "RD") ? MemCommand::RD : 1177 MemCommand::WR; 1178 1179 // if this access should use auto-precharge, then we are 1180 // closing the row 1181 if (auto_precharge) { 1182 // if auto-precharge push a PRE command at the correct tick to the 1183 // list used by DRAMPower library to calculate power 1184 prechargeBank(rank, bank, std::max(curTick(), bank.preAllowedAt)); 1185 1186 DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId); 1187 } 1188 1189 // Update bus state 1190 busBusyUntil = dram_pkt->readyTime; 1191 1192 DPRINTF(DRAM, "Access to %lld, ready at %lld bus busy until %lld.\n", 1193 dram_pkt->addr, dram_pkt->readyTime, busBusyUntil); 1194 1195 dram_pkt->rankRef.power.powerlib.doCommand(command, dram_pkt->bank, 1196 divCeil(cmd_at, tCK) - 1197 timeStampOffset); 1198 1199 DPRINTF(DRAMPower, "%llu,%s,%d,%d\n", divCeil(cmd_at, tCK) - 1200 timeStampOffset, mem_cmd, dram_pkt->bank, dram_pkt->rank); 1201 1202 // Update the minimum timing between the requests, this is a 1203 // conservative estimate of when we have to schedule the next 1204 // request to not introduce any unecessary bubbles. In most cases 1205 // we will wake up sooner than we have to. 1206 nextReqTime = busBusyUntil - (tRP + tRCD + tCL); 1207 1208 // Update the stats and schedule the next request 1209 if (dram_pkt->isRead) { 1210 ++readsThisTime; 1211 if (row_hit) 1212 readRowHits++; 1213 bytesReadDRAM += burstSize; 1214 perBankRdBursts[dram_pkt->bankId]++; 1215 1216 // Update latency stats 1217 totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime; 1218 totBusLat += tBURST; 1219 totQLat += cmd_at - dram_pkt->entryTime; 1220 } else { 1221 ++writesThisTime; 1222 if (row_hit) 1223 writeRowHits++; 1224 bytesWritten += burstSize; 1225 perBankWrBursts[dram_pkt->bankId]++; 1226 } 1227} 1228 1229void 1230DRAMCtrl::processNextReqEvent() 1231{ 1232 int busyRanks = 0; 1233 for (auto r : ranks) { 1234 if (!r->isAvailable()) { 1235 // rank is busy refreshing 1236 busyRanks++; 1237 1238 // let the rank know that if it was waiting to drain, it 1239 // is now done and ready to proceed 1240 r->checkDrainDone(); 1241 } 1242 } 1243 1244 if (busyRanks == ranksPerChannel) { 1245 // if all ranks are refreshing wait for them to finish 1246 // and stall this state machine without taking any further 1247 // action, and do not schedule a new nextReqEvent 1248 return; 1249 } 1250 1251 // pre-emptively set to false. Overwrite if in READ_TO_WRITE 1252 // or WRITE_TO_READ state 1253 bool switched_cmd_type = false; 1254 if (busState == READ_TO_WRITE) { 1255 DPRINTF(DRAM, "Switching to writes after %d reads with %d reads " 1256 "waiting\n", readsThisTime, readQueue.size()); 1257 1258 // sample and reset the read-related stats as we are now 1259 // transitioning to writes, and all reads are done 1260 rdPerTurnAround.sample(readsThisTime); 1261 readsThisTime = 0; 1262 1263 // now proceed to do the actual writes 1264 busState = WRITE; 1265 switched_cmd_type = true; 1266 } else if (busState == WRITE_TO_READ) { 1267 DPRINTF(DRAM, "Switching to reads after %d writes with %d writes " 1268 "waiting\n", writesThisTime, writeQueue.size()); 1269 1270 wrPerTurnAround.sample(writesThisTime); 1271 writesThisTime = 0; 1272 1273 busState = READ; 1274 switched_cmd_type = true; 1275 } 1276 1277 // when we get here it is either a read or a write 1278 if (busState == READ) { 1279 1280 // track if we should switch or not 1281 bool switch_to_writes = false; 1282 1283 if (readQueue.empty()) { 1284 // In the case there is no read request to go next, 1285 // trigger writes if we have passed the low threshold (or 1286 // if we are draining) 1287 if (!writeQueue.empty() && 1288 (drainState() == DrainState::Draining || 1289 writeQueue.size() > writeLowThreshold)) { 1290 1291 switch_to_writes = true; 1292 } else { 1293 // check if we are drained 1294 if (drainState() == DrainState::Draining && 1295 respQueue.empty()) { 1296 1297 DPRINTF(Drain, "DRAM controller done draining\n"); 1298 signalDrainDone(); 1299 } 1300 1301 // nothing to do, not even any point in scheduling an 1302 // event for the next request 1303 return; 1304 } 1305 } else { 1306 // bool to check if there is a read to a free rank 1307 bool found_read = false; 1308 1309 // Figure out which read request goes next, and move it to the 1310 // front of the read queue 1311 // If we are changing command type, incorporate the minimum 1312 // bus turnaround delay which will be tCS (different rank) case 1313 found_read = chooseNext(readQueue, 1314 switched_cmd_type ? tCS : 0); 1315 1316 // if no read to an available rank is found then return 1317 // at this point. There could be writes to the available ranks 1318 // which are above the required threshold. However, to 1319 // avoid adding more complexity to the code, return and wait 1320 // for a refresh event to kick things into action again. 1321 if (!found_read) 1322 return; 1323 1324 DRAMPacket* dram_pkt = readQueue.front(); 1325 assert(dram_pkt->rankRef.isAvailable()); 1326 // here we get a bit creative and shift the bus busy time not 1327 // just the tWTR, but also a CAS latency to capture the fact 1328 // that we are allowed to prepare a new bank, but not issue a 1329 // read command until after tWTR, in essence we capture a 1330 // bubble on the data bus that is tWTR + tCL 1331 if (switched_cmd_type && dram_pkt->rank == activeRank) { 1332 busBusyUntil += tWTR + tCL; 1333 } 1334 1335 doDRAMAccess(dram_pkt); 1336 1337 // At this point we're done dealing with the request 1338 readQueue.pop_front(); 1339 1340 // sanity check 1341 assert(dram_pkt->size <= burstSize); 1342 assert(dram_pkt->readyTime >= curTick()); 1343 1344 // Insert into response queue. It will be sent back to the 1345 // requestor at its readyTime 1346 if (respQueue.empty()) { 1347 assert(!respondEvent.scheduled()); 1348 schedule(respondEvent, dram_pkt->readyTime); 1349 } else { 1350 assert(respQueue.back()->readyTime <= dram_pkt->readyTime); 1351 assert(respondEvent.scheduled()); 1352 } 1353 1354 respQueue.push_back(dram_pkt); 1355 1356 // we have so many writes that we have to transition 1357 if (writeQueue.size() > writeHighThreshold) { 1358 switch_to_writes = true; 1359 } 1360 } 1361 1362 // switching to writes, either because the read queue is empty 1363 // and the writes have passed the low threshold (or we are 1364 // draining), or because the writes hit the hight threshold 1365 if (switch_to_writes) { 1366 // transition to writing 1367 busState = READ_TO_WRITE; 1368 } 1369 } else { 1370 // bool to check if write to free rank is found 1371 bool found_write = false; 1372 1373 // If we are changing command type, incorporate the minimum 1374 // bus turnaround delay 1375 found_write = chooseNext(writeQueue, 1376 switched_cmd_type ? std::min(tRTW, tCS) : 0); 1377 1378 // if no writes to an available rank are found then return. 1379 // There could be reads to the available ranks. However, to avoid 1380 // adding more complexity to the code, return at this point and wait 1381 // for a refresh event to kick things into action again. 1382 if (!found_write) 1383 return; 1384 1385 DRAMPacket* dram_pkt = writeQueue.front(); 1386 assert(dram_pkt->rankRef.isAvailable()); 1387 // sanity check 1388 assert(dram_pkt->size <= burstSize); 1389 1390 // add a bubble to the data bus, as defined by the 1391 // tRTW when access is to the same rank as previous burst 1392 // Different rank timing is handled with tCS, which is 1393 // applied to colAllowedAt 1394 if (switched_cmd_type && dram_pkt->rank == activeRank) { 1395 busBusyUntil += tRTW; 1396 } 1397 1398 doDRAMAccess(dram_pkt); 1399 1400 writeQueue.pop_front(); 1401 isInWriteQueue.erase(burstAlign(dram_pkt->addr)); 1402 delete dram_pkt; 1403 1404 // If we emptied the write queue, or got sufficiently below the 1405 // threshold (using the minWritesPerSwitch as the hysteresis) and 1406 // are not draining, or we have reads waiting and have done enough 1407 // writes, then switch to reads. 1408 if (writeQueue.empty() || 1409 (writeQueue.size() + minWritesPerSwitch < writeLowThreshold && 1410 drainState() != DrainState::Draining) || 1411 (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) { 1412 // turn the bus back around for reads again 1413 busState = WRITE_TO_READ; 1414 1415 // note that the we switch back to reads also in the idle 1416 // case, which eventually will check for any draining and 1417 // also pause any further scheduling if there is really 1418 // nothing to do 1419 } 1420 } 1421 // It is possible that a refresh to another rank kicks things back into 1422 // action before reaching this point. 1423 if (!nextReqEvent.scheduled()) 1424 schedule(nextReqEvent, std::max(nextReqTime, curTick())); 1425 1426 // If there is space available and we have writes waiting then let 1427 // them retry. This is done here to ensure that the retry does not 1428 // cause a nextReqEvent to be scheduled before we do so as part of 1429 // the next request processing 1430 if (retryWrReq && writeQueue.size() < writeBufferSize) { 1431 retryWrReq = false; 1432 port.sendRetryReq(); 1433 } 1434} 1435 1436pair<uint64_t, bool> 1437DRAMCtrl::minBankPrep(const deque<DRAMPacket*>& queue, 1438 Tick min_col_at) const 1439{ 1440 uint64_t bank_mask = 0; 1441 Tick min_act_at = MaxTick; 1442 1443 // latest Tick for which ACT can occur without incurring additoinal 1444 // delay on the data bus 1445 const Tick hidden_act_max = std::max(min_col_at - tRCD, curTick()); 1446 1447 // Flag condition when burst can issue back-to-back with previous burst 1448 bool found_seamless_bank = false; 1449 1450 // Flag condition when bank can be opened without incurring additional 1451 // delay on the data bus 1452 bool hidden_bank_prep = false; 1453 1454 // determine if we have queued transactions targetting the 1455 // bank in question 1456 vector<bool> got_waiting(ranksPerChannel * banksPerRank, false); 1457 for (const auto& p : queue) { 1458 if (p->rankRef.isAvailable()) 1459 got_waiting[p->bankId] = true; 1460 } 1461 1462 // Find command with optimal bank timing 1463 // Will prioritize commands that can issue seamlessly. 1464 for (int i = 0; i < ranksPerChannel; i++) { 1465 for (int j = 0; j < banksPerRank; j++) { 1466 uint16_t bank_id = i * banksPerRank + j; 1467 1468 // if we have waiting requests for the bank, and it is 1469 // amongst the first available, update the mask 1470 if (got_waiting[bank_id]) { 1471 // make sure this rank is not currently refreshing. 1472 assert(ranks[i]->isAvailable()); 1473 // simplistic approximation of when the bank can issue 1474 // an activate, ignoring any rank-to-rank switching 1475 // cost in this calculation 1476 Tick act_at = ranks[i]->banks[j].openRow == Bank::NO_ROW ? 1477 std::max(ranks[i]->banks[j].actAllowedAt, curTick()) : 1478 std::max(ranks[i]->banks[j].preAllowedAt, curTick()) + tRP; 1479 1480 // When is the earliest the R/W burst can issue? 1481 Tick col_at = std::max(ranks[i]->banks[j].colAllowedAt, 1482 act_at + tRCD); 1483 1484 // bank can issue burst back-to-back (seamlessly) with 1485 // previous burst 1486 bool new_seamless_bank = col_at <= min_col_at; 1487 1488 // if we found a new seamless bank or we have no 1489 // seamless banks, and got a bank with an earlier 1490 // activate time, it should be added to the bit mask 1491 if (new_seamless_bank || 1492 (!found_seamless_bank && act_at <= min_act_at)) { 1493 // if we did not have a seamless bank before, and 1494 // we do now, reset the bank mask, also reset it 1495 // if we have not yet found a seamless bank and 1496 // the activate time is smaller than what we have 1497 // seen so far 1498 if (!found_seamless_bank && 1499 (new_seamless_bank || act_at < min_act_at)) { 1500 bank_mask = 0; 1501 } 1502 1503 found_seamless_bank |= new_seamless_bank; 1504 1505 // ACT can occur 'behind the scenes' 1506 hidden_bank_prep = act_at <= hidden_act_max; 1507 1508 // set the bit corresponding to the available bank 1509 replaceBits(bank_mask, bank_id, bank_id, 1); 1510 min_act_at = act_at; 1511 } 1512 } 1513 } 1514 } 1515 1516 return make_pair(bank_mask, hidden_bank_prep); 1517} 1518 1519DRAMCtrl::Rank::Rank(DRAMCtrl& _memory, const DRAMCtrlParams* _p) 1520 : EventManager(&_memory), memory(_memory), 1521 pwrStateTrans(PWR_IDLE), pwrState(PWR_IDLE), pwrStateTick(0), 1522 refreshState(REF_IDLE), refreshDueAt(0), 1523 power(_p, false), numBanksActive(0), 1524 activateEvent(*this), prechargeEvent(*this), 1525 refreshEvent(*this), powerEvent(*this) 1526{ } 1527 1528void 1529DRAMCtrl::Rank::startup(Tick ref_tick) 1530{ 1531 assert(ref_tick > curTick()); 1532 1533 pwrStateTick = curTick(); 1534 1535 // kick off the refresh, and give ourselves enough time to 1536 // precharge 1537 schedule(refreshEvent, ref_tick); 1538} 1539 1540void 1541DRAMCtrl::Rank::suspend() 1542{ 1543 deschedule(refreshEvent); 1544} 1545 1546void 1547DRAMCtrl::Rank::checkDrainDone() 1548{ 1549 // if this rank was waiting to drain it is now able to proceed to 1550 // precharge 1551 if (refreshState == REF_DRAIN) { 1552 DPRINTF(DRAM, "Refresh drain done, now precharging\n"); 1553 1554 refreshState = REF_PRE; 1555 1556 // hand control back to the refresh event loop 1557 schedule(refreshEvent, curTick()); 1558 } 1559} 1560 1561void 1562DRAMCtrl::Rank::processActivateEvent() 1563{ 1564 // we should transition to the active state as soon as any bank is active 1565 if (pwrState != PWR_ACT) 1566 // note that at this point numBanksActive could be back at 1567 // zero again due to a precharge scheduled in the future 1568 schedulePowerEvent(PWR_ACT, curTick()); 1569} 1570 1571void 1572DRAMCtrl::Rank::processPrechargeEvent() 1573{ 1574 // if we reached zero, then special conditions apply as we track 1575 // if all banks are precharged for the power models 1576 if (numBanksActive == 0) { 1577 // we should transition to the idle state when the last bank 1578 // is precharged 1579 schedulePowerEvent(PWR_IDLE, curTick()); 1580 } 1581} 1582 1583void 1584DRAMCtrl::Rank::processRefreshEvent() 1585{ 1586 // when first preparing the refresh, remember when it was due 1587 if (refreshState == REF_IDLE) { 1588 // remember when the refresh is due 1589 refreshDueAt = curTick(); 1590 1591 // proceed to drain 1592 refreshState = REF_DRAIN; 1593 1594 DPRINTF(DRAM, "Refresh due\n"); 1595 } 1596 1597 // let any scheduled read or write to the same rank go ahead, 1598 // after which it will 1599 // hand control back to this event loop 1600 if (refreshState == REF_DRAIN) { 1601 // if a request is at the moment being handled and this request is 1602 // accessing the current rank then wait for it to finish 1603 if ((rank == memory.activeRank) 1604 && (memory.nextReqEvent.scheduled())) { 1605 // hand control over to the request loop until it is 1606 // evaluated next 1607 DPRINTF(DRAM, "Refresh awaiting draining\n"); 1608 1609 return; 1610 } else { 1611 refreshState = REF_PRE; 1612 } 1613 } 1614 1615 // at this point, ensure that all banks are precharged 1616 if (refreshState == REF_PRE) { 1617 // precharge any active bank if we are not already in the idle 1618 // state 1619 if (pwrState != PWR_IDLE) { 1620 // at the moment, we use a precharge all even if there is 1621 // only a single bank open 1622 DPRINTF(DRAM, "Precharging all\n"); 1623 1624 // first determine when we can precharge 1625 Tick pre_at = curTick(); 1626 1627 for (auto &b : banks) { 1628 // respect both causality and any existing bank 1629 // constraints, some banks could already have a 1630 // (auto) precharge scheduled 1631 pre_at = std::max(b.preAllowedAt, pre_at); 1632 } 1633 1634 // make sure all banks per rank are precharged, and for those that 1635 // already are, update their availability 1636 Tick act_allowed_at = pre_at + memory.tRP; 1637 1638 for (auto &b : banks) { 1639 if (b.openRow != Bank::NO_ROW) { 1640 memory.prechargeBank(*this, b, pre_at, false); 1641 } else { 1642 b.actAllowedAt = std::max(b.actAllowedAt, act_allowed_at); 1643 b.preAllowedAt = std::max(b.preAllowedAt, pre_at); 1644 } 1645 } 1646 1647 // precharge all banks in rank 1648 power.powerlib.doCommand(MemCommand::PREA, 0, 1649 divCeil(pre_at, memory.tCK) - 1650 memory.timeStampOffset); 1651 1652 DPRINTF(DRAMPower, "%llu,PREA,0,%d\n", 1653 divCeil(pre_at, memory.tCK) - 1654 memory.timeStampOffset, rank); 1655 } else { 1656 DPRINTF(DRAM, "All banks already precharged, starting refresh\n"); 1657 1658 // go ahead and kick the power state machine into gear if 1659 // we are already idle 1660 schedulePowerEvent(PWR_REF, curTick()); 1661 } 1662 1663 refreshState = REF_RUN; 1664 assert(numBanksActive == 0); 1665 1666 // wait for all banks to be precharged, at which point the 1667 // power state machine will transition to the idle state, and 1668 // automatically move to a refresh, at that point it will also 1669 // call this method to get the refresh event loop going again 1670 return; 1671 } 1672 1673 // last but not least we perform the actual refresh 1674 if (refreshState == REF_RUN) { 1675 // should never get here with any banks active 1676 assert(numBanksActive == 0); 1677 assert(pwrState == PWR_REF); 1678 1679 Tick ref_done_at = curTick() + memory.tRFC; 1680 1681 for (auto &b : banks) { 1682 b.actAllowedAt = ref_done_at; 1683 } 1684 1685 // at the moment this affects all ranks 1686 power.powerlib.doCommand(MemCommand::REF, 0, 1687 divCeil(curTick(), memory.tCK) - 1688 memory.timeStampOffset); 1689 1690 // at the moment sort the list of commands and update the counters 1691 // for DRAMPower libray when doing a refresh 1692 sort(power.powerlib.cmdList.begin(), 1693 power.powerlib.cmdList.end(), DRAMCtrl::sortTime); 1694 1695 // update the counters for DRAMPower, passing false to 1696 // indicate that this is not the last command in the 1697 // list. DRAMPower requires this information for the 1698 // correct calculation of the background energy at the end 1699 // of the simulation. Ideally we would want to call this 1700 // function with true once at the end of the 1701 // simulation. However, the discarded energy is extremly 1702 // small and does not effect the final results. 1703 power.powerlib.updateCounters(false); 1704 1705 // call the energy function 1706 power.powerlib.calcEnergy(); 1707 1708 // Update the stats 1709 updatePowerStats(); 1710 1711 DPRINTF(DRAMPower, "%llu,REF,0,%d\n", divCeil(curTick(), memory.tCK) - 1712 memory.timeStampOffset, rank); 1713 1714 // make sure we did not wait so long that we cannot make up 1715 // for it 1716 if (refreshDueAt + memory.tREFI < ref_done_at) { 1717 fatal("Refresh was delayed so long we cannot catch up\n"); 1718 } 1719 1720 // compensate for the delay in actually performing the refresh 1721 // when scheduling the next one 1722 schedule(refreshEvent, refreshDueAt + memory.tREFI - memory.tRP); 1723 1724 assert(!powerEvent.scheduled()); 1725 1726 // move to the idle power state once the refresh is done, this 1727 // will also move the refresh state machine to the refresh 1728 // idle state 1729 schedulePowerEvent(PWR_IDLE, ref_done_at); 1730 1731 DPRINTF(DRAMState, "Refresh done at %llu and next refresh at %llu\n", 1732 ref_done_at, refreshDueAt + memory.tREFI); 1733 } 1734} 1735 1736void 1737DRAMCtrl::Rank::schedulePowerEvent(PowerState pwr_state, Tick tick) 1738{ 1739 // respect causality 1740 assert(tick >= curTick()); 1741 1742 if (!powerEvent.scheduled()) { 1743 DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n", 1744 tick, pwr_state); 1745 1746 // insert the new transition 1747 pwrStateTrans = pwr_state; 1748 1749 schedule(powerEvent, tick); 1750 } else { 1751 panic("Scheduled power event at %llu to state %d, " 1752 "with scheduled event at %llu to %d\n", tick, pwr_state, 1753 powerEvent.when(), pwrStateTrans); 1754 } 1755} 1756 1757void 1758DRAMCtrl::Rank::processPowerEvent() 1759{ 1760 // remember where we were, and for how long 1761 Tick duration = curTick() - pwrStateTick; 1762 PowerState prev_state = pwrState; 1763 1764 // update the accounting 1765 pwrStateTime[prev_state] += duration; 1766 1767 pwrState = pwrStateTrans; 1768 pwrStateTick = curTick(); 1769 1770 if (pwrState == PWR_IDLE) { 1771 DPRINTF(DRAMState, "All banks precharged\n"); 1772 1773 // if we were refreshing, make sure we start scheduling requests again 1774 if (prev_state == PWR_REF) { 1775 DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration); 1776 assert(pwrState == PWR_IDLE); 1777 1778 // kick things into action again 1779 refreshState = REF_IDLE; 1780 // a request event could be already scheduled by the state 1781 // machine of the other rank 1782 if (!memory.nextReqEvent.scheduled()) 1783 schedule(memory.nextReqEvent, curTick()); 1784 } else { 1785 assert(prev_state == PWR_ACT); 1786 1787 // if we have a pending refresh, and are now moving to 1788 // the idle state, direclty transition to a refresh 1789 if (refreshState == REF_RUN) { 1790 // there should be nothing waiting at this point 1791 assert(!powerEvent.scheduled()); 1792 1793 // update the state in zero time and proceed below 1794 pwrState = PWR_REF; 1795 } 1796 } 1797 } 1798 1799 // we transition to the refresh state, let the refresh state 1800 // machine know of this state update and let it deal with the 1801 // scheduling of the next power state transition as well as the 1802 // following refresh 1803 if (pwrState == PWR_REF) { 1804 DPRINTF(DRAMState, "Refreshing\n"); 1805 // kick the refresh event loop into action again, and that 1806 // in turn will schedule a transition to the idle power 1807 // state once the refresh is done 1808 assert(refreshState == REF_RUN); 1809 processRefreshEvent(); 1810 } 1811} 1812 1813void 1814DRAMCtrl::Rank::updatePowerStats() 1815{ 1816 // Get the energy and power from DRAMPower 1817 Data::MemoryPowerModel::Energy energy = 1818 power.powerlib.getEnergy(); 1819 Data::MemoryPowerModel::Power rank_power = 1820 power.powerlib.getPower(); 1821 1822 actEnergy = energy.act_energy * memory.devicesPerRank; 1823 preEnergy = energy.pre_energy * memory.devicesPerRank; 1824 readEnergy = energy.read_energy * memory.devicesPerRank; 1825 writeEnergy = energy.write_energy * memory.devicesPerRank; 1826 refreshEnergy = energy.ref_energy * memory.devicesPerRank; 1827 actBackEnergy = energy.act_stdby_energy * memory.devicesPerRank; 1828 preBackEnergy = energy.pre_stdby_energy * memory.devicesPerRank; 1829 totalEnergy = energy.total_energy * memory.devicesPerRank; 1830 averagePower = rank_power.average_power * memory.devicesPerRank; 1831} 1832 1833void 1834DRAMCtrl::Rank::regStats() 1835{ 1836 using namespace Stats; 1837 1838 pwrStateTime 1839 .init(5) 1840 .name(name() + ".memoryStateTime") 1841 .desc("Time in different power states"); 1842 pwrStateTime.subname(0, "IDLE"); 1843 pwrStateTime.subname(1, "REF"); 1844 pwrStateTime.subname(2, "PRE_PDN"); 1845 pwrStateTime.subname(3, "ACT"); 1846 pwrStateTime.subname(4, "ACT_PDN"); 1847 1848 actEnergy 1849 .name(name() + ".actEnergy") 1850 .desc("Energy for activate commands per rank (pJ)"); 1851 1852 preEnergy 1853 .name(name() + ".preEnergy") 1854 .desc("Energy for precharge commands per rank (pJ)"); 1855 1856 readEnergy 1857 .name(name() + ".readEnergy") 1858 .desc("Energy for read commands per rank (pJ)"); 1859 1860 writeEnergy 1861 .name(name() + ".writeEnergy") 1862 .desc("Energy for write commands per rank (pJ)"); 1863 1864 refreshEnergy 1865 .name(name() + ".refreshEnergy") 1866 .desc("Energy for refresh commands per rank (pJ)"); 1867 1868 actBackEnergy 1869 .name(name() + ".actBackEnergy") 1870 .desc("Energy for active background per rank (pJ)"); 1871 1872 preBackEnergy 1873 .name(name() + ".preBackEnergy") 1874 .desc("Energy for precharge background per rank (pJ)"); 1875 1876 totalEnergy 1877 .name(name() + ".totalEnergy") 1878 .desc("Total energy per rank (pJ)"); 1879 1880 averagePower 1881 .name(name() + ".averagePower") 1882 .desc("Core power per rank (mW)"); 1883} 1884void 1885DRAMCtrl::regStats() 1886{ 1887 using namespace Stats; 1888 1889 AbstractMemory::regStats(); 1890 1891 for (auto r : ranks) { 1892 r->regStats(); 1893 } 1894 1895 readReqs 1896 .name(name() + ".readReqs") 1897 .desc("Number of read requests accepted"); 1898 1899 writeReqs 1900 .name(name() + ".writeReqs") 1901 .desc("Number of write requests accepted"); 1902 1903 readBursts 1904 .name(name() + ".readBursts") 1905 .desc("Number of DRAM read bursts, " 1906 "including those serviced by the write queue"); 1907 1908 writeBursts 1909 .name(name() + ".writeBursts") 1910 .desc("Number of DRAM write bursts, " 1911 "including those merged in the write queue"); 1912 1913 servicedByWrQ 1914 .name(name() + ".servicedByWrQ") 1915 .desc("Number of DRAM read bursts serviced by the write queue"); 1916 1917 mergedWrBursts 1918 .name(name() + ".mergedWrBursts") 1919 .desc("Number of DRAM write bursts merged with an existing one"); 1920 1921 neitherReadNorWrite 1922 .name(name() + ".neitherReadNorWriteReqs") 1923 .desc("Number of requests that are neither read nor write"); 1924 1925 perBankRdBursts 1926 .init(banksPerRank * ranksPerChannel) 1927 .name(name() + ".perBankRdBursts") 1928 .desc("Per bank write bursts"); 1929 1930 perBankWrBursts 1931 .init(banksPerRank * ranksPerChannel) 1932 .name(name() + ".perBankWrBursts") 1933 .desc("Per bank write bursts"); 1934 1935 avgRdQLen 1936 .name(name() + ".avgRdQLen") 1937 .desc("Average read queue length when enqueuing") 1938 .precision(2); 1939 1940 avgWrQLen 1941 .name(name() + ".avgWrQLen") 1942 .desc("Average write queue length when enqueuing") 1943 .precision(2); 1944 1945 totQLat 1946 .name(name() + ".totQLat") 1947 .desc("Total ticks spent queuing"); 1948 1949 totBusLat 1950 .name(name() + ".totBusLat") 1951 .desc("Total ticks spent in databus transfers"); 1952 1953 totMemAccLat 1954 .name(name() + ".totMemAccLat") 1955 .desc("Total ticks spent from burst creation until serviced " 1956 "by the DRAM"); 1957 1958 avgQLat 1959 .name(name() + ".avgQLat") 1960 .desc("Average queueing delay per DRAM burst") 1961 .precision(2); 1962 1963 avgQLat = totQLat / (readBursts - servicedByWrQ); 1964 1965 avgBusLat 1966 .name(name() + ".avgBusLat") 1967 .desc("Average bus latency per DRAM burst") 1968 .precision(2); 1969 1970 avgBusLat = totBusLat / (readBursts - servicedByWrQ); 1971 1972 avgMemAccLat 1973 .name(name() + ".avgMemAccLat") 1974 .desc("Average memory access latency per DRAM burst") 1975 .precision(2); 1976 1977 avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ); 1978 1979 numRdRetry 1980 .name(name() + ".numRdRetry") 1981 .desc("Number of times read queue was full causing retry"); 1982 1983 numWrRetry 1984 .name(name() + ".numWrRetry") 1985 .desc("Number of times write queue was full causing retry"); 1986 1987 readRowHits 1988 .name(name() + ".readRowHits") 1989 .desc("Number of row buffer hits during reads"); 1990 1991 writeRowHits 1992 .name(name() + ".writeRowHits") 1993 .desc("Number of row buffer hits during writes"); 1994 1995 readRowHitRate 1996 .name(name() + ".readRowHitRate") 1997 .desc("Row buffer hit rate for reads") 1998 .precision(2); 1999 2000 readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100; 2001 2002 writeRowHitRate 2003 .name(name() + ".writeRowHitRate") 2004 .desc("Row buffer hit rate for writes") 2005 .precision(2); 2006 2007 writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100; 2008 2009 readPktSize 2010 .init(ceilLog2(burstSize) + 1) 2011 .name(name() + ".readPktSize") 2012 .desc("Read request sizes (log2)"); 2013 2014 writePktSize 2015 .init(ceilLog2(burstSize) + 1) 2016 .name(name() + ".writePktSize") 2017 .desc("Write request sizes (log2)"); 2018 2019 rdQLenPdf 2020 .init(readBufferSize) 2021 .name(name() + ".rdQLenPdf") 2022 .desc("What read queue length does an incoming req see"); 2023 2024 wrQLenPdf 2025 .init(writeBufferSize) 2026 .name(name() + ".wrQLenPdf") 2027 .desc("What write queue length does an incoming req see"); 2028 2029 bytesPerActivate 2030 .init(maxAccessesPerRow) 2031 .name(name() + ".bytesPerActivate") 2032 .desc("Bytes accessed per row activation") 2033 .flags(nozero); 2034 2035 rdPerTurnAround 2036 .init(readBufferSize) 2037 .name(name() + ".rdPerTurnAround") 2038 .desc("Reads before turning the bus around for writes") 2039 .flags(nozero); 2040 2041 wrPerTurnAround 2042 .init(writeBufferSize) 2043 .name(name() + ".wrPerTurnAround") 2044 .desc("Writes before turning the bus around for reads") 2045 .flags(nozero); 2046 2047 bytesReadDRAM 2048 .name(name() + ".bytesReadDRAM") 2049 .desc("Total number of bytes read from DRAM"); 2050 2051 bytesReadWrQ 2052 .name(name() + ".bytesReadWrQ") 2053 .desc("Total number of bytes read from write queue"); 2054 2055 bytesWritten 2056 .name(name() + ".bytesWritten") 2057 .desc("Total number of bytes written to DRAM"); 2058 2059 bytesReadSys 2060 .name(name() + ".bytesReadSys") 2061 .desc("Total read bytes from the system interface side"); 2062 2063 bytesWrittenSys 2064 .name(name() + ".bytesWrittenSys") 2065 .desc("Total written bytes from the system interface side"); 2066 2067 avgRdBW 2068 .name(name() + ".avgRdBW") 2069 .desc("Average DRAM read bandwidth in MiByte/s") 2070 .precision(2); 2071 2072 avgRdBW = (bytesReadDRAM / 1000000) / simSeconds; 2073 2074 avgWrBW 2075 .name(name() + ".avgWrBW") 2076 .desc("Average achieved write bandwidth in MiByte/s") 2077 .precision(2); 2078 2079 avgWrBW = (bytesWritten / 1000000) / simSeconds; 2080 2081 avgRdBWSys 2082 .name(name() + ".avgRdBWSys") 2083 .desc("Average system read bandwidth in MiByte/s") 2084 .precision(2); 2085 2086 avgRdBWSys = (bytesReadSys / 1000000) / simSeconds; 2087 2088 avgWrBWSys 2089 .name(name() + ".avgWrBWSys") 2090 .desc("Average system write bandwidth in MiByte/s") 2091 .precision(2); 2092 2093 avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds; 2094 2095 peakBW 2096 .name(name() + ".peakBW") 2097 .desc("Theoretical peak bandwidth in MiByte/s") 2098 .precision(2); 2099 2100 peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000; 2101 2102 busUtil 2103 .name(name() + ".busUtil") 2104 .desc("Data bus utilization in percentage") 2105 .precision(2); 2106 busUtil = (avgRdBW + avgWrBW) / peakBW * 100; 2107 2108 totGap 2109 .name(name() + ".totGap") 2110 .desc("Total gap between requests"); 2111 2112 avgGap 2113 .name(name() + ".avgGap") 2114 .desc("Average gap between requests") 2115 .precision(2); 2116 2117 avgGap = totGap / (readReqs + writeReqs); 2118 2119 // Stats for DRAM Power calculation based on Micron datasheet 2120 busUtilRead 2121 .name(name() + ".busUtilRead") 2122 .desc("Data bus utilization in percentage for reads") 2123 .precision(2); 2124 2125 busUtilRead = avgRdBW / peakBW * 100; 2126 2127 busUtilWrite 2128 .name(name() + ".busUtilWrite") 2129 .desc("Data bus utilization in percentage for writes") 2130 .precision(2); 2131 2132 busUtilWrite = avgWrBW / peakBW * 100; 2133 2134 pageHitRate 2135 .name(name() + ".pageHitRate") 2136 .desc("Row buffer hit rate, read and write combined") 2137 .precision(2); 2138 2139 pageHitRate = (writeRowHits + readRowHits) / 2140 (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100; 2141} 2142 2143void 2144DRAMCtrl::recvFunctional(PacketPtr pkt) 2145{ 2146 // rely on the abstract memory 2147 functionalAccess(pkt); 2148} 2149 2150BaseSlavePort& 2151DRAMCtrl::getSlavePort(const string &if_name, PortID idx) 2152{ 2153 if (if_name != "port") { 2154 return MemObject::getSlavePort(if_name, idx); 2155 } else { 2156 return port; 2157 } 2158} 2159 2160DrainState 2161DRAMCtrl::drain() 2162{ 2163 // if there is anything in any of our internal queues, keep track 2164 // of that as well 2165 if (!(writeQueue.empty() && readQueue.empty() && respQueue.empty())) { 2166 DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d," 2167 " resp: %d\n", writeQueue.size(), readQueue.size(), 2168 respQueue.size()); 2169 2170 // the only part that is not drained automatically over time 2171 // is the write queue, thus kick things into action if needed 2172 if (!writeQueue.empty() && !nextReqEvent.scheduled()) { 2173 schedule(nextReqEvent, curTick()); 2174 } 2175 return DrainState::Draining; 2176 } else { 2177 return DrainState::Drained; 2178 } 2179} 2180 2181void 2182DRAMCtrl::drainResume() 2183{ 2184 if (!isTimingMode && system()->isTimingMode()) { 2185 // if we switched to timing mode, kick things into action, 2186 // and behave as if we restored from a checkpoint 2187 startup(); 2188 } else if (isTimingMode && !system()->isTimingMode()) { 2189 // if we switch from timing mode, stop the refresh events to 2190 // not cause issues with KVM 2191 for (auto r : ranks) { 2192 r->suspend(); 2193 } 2194 } 2195 2196 // update the mode 2197 isTimingMode = system()->isTimingMode(); 2198} 2199 2200DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory) 2201 : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this), 2202 memory(_memory) 2203{ } 2204 2205AddrRangeList 2206DRAMCtrl::MemoryPort::getAddrRanges() const 2207{ 2208 AddrRangeList ranges; 2209 ranges.push_back(memory.getAddrRange()); 2210 return ranges; 2211} 2212 2213void 2214DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt) 2215{ 2216 pkt->pushLabel(memory.name()); 2217 2218 if (!queue.checkFunctional(pkt)) { 2219 // Default implementation of SimpleTimingPort::recvFunctional() 2220 // calls recvAtomic() and throws away the latency; we can save a 2221 // little here by just not calculating the latency. 2222 memory.recvFunctional(pkt); 2223 } 2224 2225 pkt->popLabel(); 2226} 2227 2228Tick 2229DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt) 2230{ 2231 return memory.recvAtomic(pkt); 2232} 2233 2234bool 2235DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt) 2236{ 2237 // pass it to the memory controller 2238 return memory.recvTimingReq(pkt); 2239} 2240 2241DRAMCtrl* 2242DRAMCtrlParams::create() 2243{ 2244 return new DRAMCtrl(this); 2245} 2246