dram_ctrl.cc revision 11284:b3926db25371
1/* 2 * Copyright (c) 2010-2015 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2013 Amin Farmahini-Farahani 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Andreas Hansson 41 * Ani Udipi 42 * Neha Agarwal 43 * Omar Naji 44 */ 45 46#include "base/bitfield.hh" 47#include "base/trace.hh" 48#include "debug/DRAM.hh" 49#include "debug/DRAMPower.hh" 50#include "debug/DRAMState.hh" 51#include "debug/Drain.hh" 52#include "mem/dram_ctrl.hh" 53#include "sim/system.hh" 54 55using namespace std; 56using namespace Data; 57 58DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) : 59 AbstractMemory(p), 60 port(name() + ".port", *this), isTimingMode(false), 61 retryRdReq(false), retryWrReq(false), 62 busState(READ), 63 nextReqEvent(this), respondEvent(this), 64 deviceSize(p->device_size), 65 deviceBusWidth(p->device_bus_width), burstLength(p->burst_length), 66 deviceRowBufferSize(p->device_rowbuffer_size), 67 devicesPerRank(p->devices_per_rank), 68 burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8), 69 rowBufferSize(devicesPerRank * deviceRowBufferSize), 70 columnsPerRowBuffer(rowBufferSize / burstSize), 71 columnsPerStripe(range.interleaved() ? range.granularity() / burstSize : 1), 72 ranksPerChannel(p->ranks_per_channel), 73 bankGroupsPerRank(p->bank_groups_per_rank), 74 bankGroupArch(p->bank_groups_per_rank > 0), 75 banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0), 76 readBufferSize(p->read_buffer_size), 77 writeBufferSize(p->write_buffer_size), 78 writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0), 79 writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0), 80 minWritesPerSwitch(p->min_writes_per_switch), 81 writesThisTime(0), readsThisTime(0), 82 tCK(p->tCK), tWTR(p->tWTR), tRTW(p->tRTW), tCS(p->tCS), tBURST(p->tBURST), 83 tCCD_L(p->tCCD_L), tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS), 84 tWR(p->tWR), tRTP(p->tRTP), tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD), 85 tRRD_L(p->tRRD_L), tXAW(p->tXAW), activationLimit(p->activation_limit), 86 memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping), 87 pageMgmt(p->page_policy), 88 maxAccessesPerRow(p->max_accesses_per_row), 89 frontendLatency(p->static_frontend_latency), 90 backendLatency(p->static_backend_latency), 91 busBusyUntil(0), prevArrival(0), 92 nextReqTime(0), activeRank(0), timeStampOffset(0) 93{ 94 // sanity check the ranks since we rely on bit slicing for the 95 // address decoding 96 fatal_if(!isPowerOf2(ranksPerChannel), "DRAM rank count of %d is not " 97 "allowed, must be a power of two\n", ranksPerChannel); 98 99 fatal_if(!isPowerOf2(burstSize), "DRAM burst size %d is not allowed, " 100 "must be a power of two\n", burstSize); 101 102 for (int i = 0; i < ranksPerChannel; i++) { 103 Rank* rank = new Rank(*this, p); 104 ranks.push_back(rank); 105 106 rank->actTicks.resize(activationLimit, 0); 107 rank->banks.resize(banksPerRank); 108 rank->rank = i; 109 110 for (int b = 0; b < banksPerRank; b++) { 111 rank->banks[b].bank = b; 112 // GDDR addressing of banks to BG is linear. 113 // Here we assume that all DRAM generations address bank groups as 114 // follows: 115 if (bankGroupArch) { 116 // Simply assign lower bits to bank group in order to 117 // rotate across bank groups as banks are incremented 118 // e.g. with 4 banks per bank group and 16 banks total: 119 // banks 0,4,8,12 are in bank group 0 120 // banks 1,5,9,13 are in bank group 1 121 // banks 2,6,10,14 are in bank group 2 122 // banks 3,7,11,15 are in bank group 3 123 rank->banks[b].bankgr = b % bankGroupsPerRank; 124 } else { 125 // No bank groups; simply assign to bank number 126 rank->banks[b].bankgr = b; 127 } 128 } 129 } 130 131 // perform a basic check of the write thresholds 132 if (p->write_low_thresh_perc >= p->write_high_thresh_perc) 133 fatal("Write buffer low threshold %d must be smaller than the " 134 "high threshold %d\n", p->write_low_thresh_perc, 135 p->write_high_thresh_perc); 136 137 // determine the rows per bank by looking at the total capacity 138 uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size()); 139 140 // determine the dram actual capacity from the DRAM config in Mbytes 141 uint64_t deviceCapacity = deviceSize / (1024 * 1024) * devicesPerRank * 142 ranksPerChannel; 143 144 // if actual DRAM size does not match memory capacity in system warn! 145 if (deviceCapacity != capacity / (1024 * 1024)) 146 warn("DRAM device capacity (%d Mbytes) does not match the " 147 "address range assigned (%d Mbytes)\n", deviceCapacity, 148 capacity / (1024 * 1024)); 149 150 DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity, 151 AbstractMemory::size()); 152 153 DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n", 154 rowBufferSize, columnsPerRowBuffer); 155 156 rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel); 157 158 // some basic sanity checks 159 if (tREFI <= tRP || tREFI <= tRFC) { 160 fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n", 161 tREFI, tRP, tRFC); 162 } 163 164 // basic bank group architecture checks -> 165 if (bankGroupArch) { 166 // must have at least one bank per bank group 167 if (bankGroupsPerRank > banksPerRank) { 168 fatal("banks per rank (%d) must be equal to or larger than " 169 "banks groups per rank (%d)\n", 170 banksPerRank, bankGroupsPerRank); 171 } 172 // must have same number of banks in each bank group 173 if ((banksPerRank % bankGroupsPerRank) != 0) { 174 fatal("Banks per rank (%d) must be evenly divisible by bank groups " 175 "per rank (%d) for equal banks per bank group\n", 176 banksPerRank, bankGroupsPerRank); 177 } 178 // tCCD_L should be greater than minimal, back-to-back burst delay 179 if (tCCD_L <= tBURST) { 180 fatal("tCCD_L (%d) should be larger than tBURST (%d) when " 181 "bank groups per rank (%d) is greater than 1\n", 182 tCCD_L, tBURST, bankGroupsPerRank); 183 } 184 // tRRD_L is greater than minimal, same bank group ACT-to-ACT delay 185 // some datasheets might specify it equal to tRRD 186 if (tRRD_L < tRRD) { 187 fatal("tRRD_L (%d) should be larger than tRRD (%d) when " 188 "bank groups per rank (%d) is greater than 1\n", 189 tRRD_L, tRRD, bankGroupsPerRank); 190 } 191 } 192 193} 194 195void 196DRAMCtrl::init() 197{ 198 AbstractMemory::init(); 199 200 if (!port.isConnected()) { 201 fatal("DRAMCtrl %s is unconnected!\n", name()); 202 } else { 203 port.sendRangeChange(); 204 } 205 206 // a bit of sanity checks on the interleaving, save it for here to 207 // ensure that the system pointer is initialised 208 if (range.interleaved()) { 209 if (channels != range.stripes()) 210 fatal("%s has %d interleaved address stripes but %d channel(s)\n", 211 name(), range.stripes(), channels); 212 213 if (addrMapping == Enums::RoRaBaChCo) { 214 if (rowBufferSize != range.granularity()) { 215 fatal("Channel interleaving of %s doesn't match RoRaBaChCo " 216 "address map\n", name()); 217 } 218 } else if (addrMapping == Enums::RoRaBaCoCh || 219 addrMapping == Enums::RoCoRaBaCh) { 220 // for the interleavings with channel bits in the bottom, 221 // if the system uses a channel striping granularity that 222 // is larger than the DRAM burst size, then map the 223 // sequential accesses within a stripe to a number of 224 // columns in the DRAM, effectively placing some of the 225 // lower-order column bits as the least-significant bits 226 // of the address (above the ones denoting the burst size) 227 assert(columnsPerStripe >= 1); 228 229 // channel striping has to be done at a granularity that 230 // is equal or larger to a cache line 231 if (system()->cacheLineSize() > range.granularity()) { 232 fatal("Channel interleaving of %s must be at least as large " 233 "as the cache line size\n", name()); 234 } 235 236 // ...and equal or smaller than the row-buffer size 237 if (rowBufferSize < range.granularity()) { 238 fatal("Channel interleaving of %s must be at most as large " 239 "as the row-buffer size\n", name()); 240 } 241 // this is essentially the check above, so just to be sure 242 assert(columnsPerStripe <= columnsPerRowBuffer); 243 } 244 } 245} 246 247void 248DRAMCtrl::startup() 249{ 250 // remember the memory system mode of operation 251 isTimingMode = system()->isTimingMode(); 252 253 if (isTimingMode) { 254 // timestamp offset should be in clock cycles for DRAMPower 255 timeStampOffset = divCeil(curTick(), tCK); 256 257 // update the start tick for the precharge accounting to the 258 // current tick 259 for (auto r : ranks) { 260 r->startup(curTick() + tREFI - tRP); 261 } 262 263 // shift the bus busy time sufficiently far ahead that we never 264 // have to worry about negative values when computing the time for 265 // the next request, this will add an insignificant bubble at the 266 // start of simulation 267 busBusyUntil = curTick() + tRP + tRCD + tCL; 268 } 269} 270 271Tick 272DRAMCtrl::recvAtomic(PacketPtr pkt) 273{ 274 DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr()); 275 276 // do the actual memory access and turn the packet into a response 277 access(pkt); 278 279 Tick latency = 0; 280 if (!pkt->cacheResponding() && pkt->hasData()) { 281 // this value is not supposed to be accurate, just enough to 282 // keep things going, mimic a closed page 283 latency = tRP + tRCD + tCL; 284 } 285 return latency; 286} 287 288bool 289DRAMCtrl::readQueueFull(unsigned int neededEntries) const 290{ 291 DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n", 292 readBufferSize, readQueue.size() + respQueue.size(), 293 neededEntries); 294 295 return 296 (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize; 297} 298 299bool 300DRAMCtrl::writeQueueFull(unsigned int neededEntries) const 301{ 302 DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n", 303 writeBufferSize, writeQueue.size(), neededEntries); 304 return (writeQueue.size() + neededEntries) > writeBufferSize; 305} 306 307DRAMCtrl::DRAMPacket* 308DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size, 309 bool isRead) 310{ 311 // decode the address based on the address mapping scheme, with 312 // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and 313 // channel, respectively 314 uint8_t rank; 315 uint8_t bank; 316 // use a 64-bit unsigned during the computations as the row is 317 // always the top bits, and check before creating the DRAMPacket 318 uint64_t row; 319 320 // truncate the address to a DRAM burst, which makes it unique to 321 // a specific column, row, bank, rank and channel 322 Addr addr = dramPktAddr / burstSize; 323 324 // we have removed the lowest order address bits that denote the 325 // position within the column 326 if (addrMapping == Enums::RoRaBaChCo) { 327 // the lowest order bits denote the column to ensure that 328 // sequential cache lines occupy the same row 329 addr = addr / columnsPerRowBuffer; 330 331 // take out the channel part of the address 332 addr = addr / channels; 333 334 // after the channel bits, get the bank bits to interleave 335 // over the banks 336 bank = addr % banksPerRank; 337 addr = addr / banksPerRank; 338 339 // after the bank, we get the rank bits which thus interleaves 340 // over the ranks 341 rank = addr % ranksPerChannel; 342 addr = addr / ranksPerChannel; 343 344 // lastly, get the row bits, no need to remove them from addr 345 row = addr % rowsPerBank; 346 } else if (addrMapping == Enums::RoRaBaCoCh) { 347 // take out the lower-order column bits 348 addr = addr / columnsPerStripe; 349 350 // take out the channel part of the address 351 addr = addr / channels; 352 353 // next, the higher-order column bites 354 addr = addr / (columnsPerRowBuffer / columnsPerStripe); 355 356 // after the column bits, we get the bank bits to interleave 357 // over the banks 358 bank = addr % banksPerRank; 359 addr = addr / banksPerRank; 360 361 // after the bank, we get the rank bits which thus interleaves 362 // over the ranks 363 rank = addr % ranksPerChannel; 364 addr = addr / ranksPerChannel; 365 366 // lastly, get the row bits, no need to remove them from addr 367 row = addr % rowsPerBank; 368 } else if (addrMapping == Enums::RoCoRaBaCh) { 369 // optimise for closed page mode and utilise maximum 370 // parallelism of the DRAM (at the cost of power) 371 372 // take out the lower-order column bits 373 addr = addr / columnsPerStripe; 374 375 // take out the channel part of the address, not that this has 376 // to match with how accesses are interleaved between the 377 // controllers in the address mapping 378 addr = addr / channels; 379 380 // start with the bank bits, as this provides the maximum 381 // opportunity for parallelism between requests 382 bank = addr % banksPerRank; 383 addr = addr / banksPerRank; 384 385 // next get the rank bits 386 rank = addr % ranksPerChannel; 387 addr = addr / ranksPerChannel; 388 389 // next, the higher-order column bites 390 addr = addr / (columnsPerRowBuffer / columnsPerStripe); 391 392 // lastly, get the row bits, no need to remove them from addr 393 row = addr % rowsPerBank; 394 } else 395 panic("Unknown address mapping policy chosen!"); 396 397 assert(rank < ranksPerChannel); 398 assert(bank < banksPerRank); 399 assert(row < rowsPerBank); 400 assert(row < Bank::NO_ROW); 401 402 DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n", 403 dramPktAddr, rank, bank, row); 404 405 // create the corresponding DRAM packet with the entry time and 406 // ready time set to the current tick, the latter will be updated 407 // later 408 uint16_t bank_id = banksPerRank * rank + bank; 409 return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr, 410 size, ranks[rank]->banks[bank], *ranks[rank]); 411} 412 413void 414DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount) 415{ 416 // only add to the read queue here. whenever the request is 417 // eventually done, set the readyTime, and call schedule() 418 assert(!pkt->isWrite()); 419 420 assert(pktCount != 0); 421 422 // if the request size is larger than burst size, the pkt is split into 423 // multiple DRAM packets 424 // Note if the pkt starting address is not aligened to burst size, the 425 // address of first DRAM packet is kept unaliged. Subsequent DRAM packets 426 // are aligned to burst size boundaries. This is to ensure we accurately 427 // check read packets against packets in write queue. 428 Addr addr = pkt->getAddr(); 429 unsigned pktsServicedByWrQ = 0; 430 BurstHelper* burst_helper = NULL; 431 for (int cnt = 0; cnt < pktCount; ++cnt) { 432 unsigned size = std::min((addr | (burstSize - 1)) + 1, 433 pkt->getAddr() + pkt->getSize()) - addr; 434 readPktSize[ceilLog2(size)]++; 435 readBursts++; 436 437 // First check write buffer to see if the data is already at 438 // the controller 439 bool foundInWrQ = false; 440 Addr burst_addr = burstAlign(addr); 441 // if the burst address is not present then there is no need 442 // looking any further 443 if (isInWriteQueue.find(burst_addr) != isInWriteQueue.end()) { 444 for (const auto& p : writeQueue) { 445 // check if the read is subsumed in the write queue 446 // packet we are looking at 447 if (p->addr <= addr && (addr + size) <= (p->addr + p->size)) { 448 foundInWrQ = true; 449 servicedByWrQ++; 450 pktsServicedByWrQ++; 451 DPRINTF(DRAM, "Read to addr %lld with size %d serviced by " 452 "write queue\n", addr, size); 453 bytesReadWrQ += burstSize; 454 break; 455 } 456 } 457 } 458 459 // If not found in the write q, make a DRAM packet and 460 // push it onto the read queue 461 if (!foundInWrQ) { 462 463 // Make the burst helper for split packets 464 if (pktCount > 1 && burst_helper == NULL) { 465 DPRINTF(DRAM, "Read to addr %lld translates to %d " 466 "dram requests\n", pkt->getAddr(), pktCount); 467 burst_helper = new BurstHelper(pktCount); 468 } 469 470 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true); 471 dram_pkt->burstHelper = burst_helper; 472 473 assert(!readQueueFull(1)); 474 rdQLenPdf[readQueue.size() + respQueue.size()]++; 475 476 DPRINTF(DRAM, "Adding to read queue\n"); 477 478 readQueue.push_back(dram_pkt); 479 480 // Update stats 481 avgRdQLen = readQueue.size() + respQueue.size(); 482 } 483 484 // Starting address of next dram pkt (aligend to burstSize boundary) 485 addr = (addr | (burstSize - 1)) + 1; 486 } 487 488 // If all packets are serviced by write queue, we send the repsonse back 489 if (pktsServicedByWrQ == pktCount) { 490 accessAndRespond(pkt, frontendLatency); 491 return; 492 } 493 494 // Update how many split packets are serviced by write queue 495 if (burst_helper != NULL) 496 burst_helper->burstsServiced = pktsServicedByWrQ; 497 498 // If we are not already scheduled to get a request out of the 499 // queue, do so now 500 if (!nextReqEvent.scheduled()) { 501 DPRINTF(DRAM, "Request scheduled immediately\n"); 502 schedule(nextReqEvent, curTick()); 503 } 504} 505 506void 507DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount) 508{ 509 // only add to the write queue here. whenever the request is 510 // eventually done, set the readyTime, and call schedule() 511 assert(pkt->isWrite()); 512 513 // if the request size is larger than burst size, the pkt is split into 514 // multiple DRAM packets 515 Addr addr = pkt->getAddr(); 516 for (int cnt = 0; cnt < pktCount; ++cnt) { 517 unsigned size = std::min((addr | (burstSize - 1)) + 1, 518 pkt->getAddr() + pkt->getSize()) - addr; 519 writePktSize[ceilLog2(size)]++; 520 writeBursts++; 521 522 // see if we can merge with an existing item in the write 523 // queue and keep track of whether we have merged or not 524 bool merged = isInWriteQueue.find(burstAlign(addr)) != 525 isInWriteQueue.end(); 526 527 // if the item was not merged we need to create a new write 528 // and enqueue it 529 if (!merged) { 530 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false); 531 532 assert(writeQueue.size() < writeBufferSize); 533 wrQLenPdf[writeQueue.size()]++; 534 535 DPRINTF(DRAM, "Adding to write queue\n"); 536 537 writeQueue.push_back(dram_pkt); 538 isInWriteQueue.insert(burstAlign(addr)); 539 assert(writeQueue.size() == isInWriteQueue.size()); 540 541 // Update stats 542 avgWrQLen = writeQueue.size(); 543 } else { 544 DPRINTF(DRAM, "Merging write burst with existing queue entry\n"); 545 546 // keep track of the fact that this burst effectively 547 // disappeared as it was merged with an existing one 548 mergedWrBursts++; 549 } 550 551 // Starting address of next dram pkt (aligend to burstSize boundary) 552 addr = (addr | (burstSize - 1)) + 1; 553 } 554 555 // we do not wait for the writes to be send to the actual memory, 556 // but instead take responsibility for the consistency here and 557 // snoop the write queue for any upcoming reads 558 // @todo, if a pkt size is larger than burst size, we might need a 559 // different front end latency 560 accessAndRespond(pkt, frontendLatency); 561 562 // If we are not already scheduled to get a request out of the 563 // queue, do so now 564 if (!nextReqEvent.scheduled()) { 565 DPRINTF(DRAM, "Request scheduled immediately\n"); 566 schedule(nextReqEvent, curTick()); 567 } 568} 569 570void 571DRAMCtrl::printQs() const { 572 DPRINTF(DRAM, "===READ QUEUE===\n\n"); 573 for (auto i = readQueue.begin() ; i != readQueue.end() ; ++i) { 574 DPRINTF(DRAM, "Read %lu\n", (*i)->addr); 575 } 576 DPRINTF(DRAM, "\n===RESP QUEUE===\n\n"); 577 for (auto i = respQueue.begin() ; i != respQueue.end() ; ++i) { 578 DPRINTF(DRAM, "Response %lu\n", (*i)->addr); 579 } 580 DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n"); 581 for (auto i = writeQueue.begin() ; i != writeQueue.end() ; ++i) { 582 DPRINTF(DRAM, "Write %lu\n", (*i)->addr); 583 } 584} 585 586bool 587DRAMCtrl::recvTimingReq(PacketPtr pkt) 588{ 589 // This is where we enter from the outside world 590 DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n", 591 pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 592 593 // if a cache is responding, sink the packet without further action 594 if (pkt->cacheResponding()) { 595 pendingDelete.reset(pkt); 596 return true; 597 } 598 599 // Calc avg gap between requests 600 if (prevArrival != 0) { 601 totGap += curTick() - prevArrival; 602 } 603 prevArrival = curTick(); 604 605 606 // Find out how many dram packets a pkt translates to 607 // If the burst size is equal or larger than the pkt size, then a pkt 608 // translates to only one dram packet. Otherwise, a pkt translates to 609 // multiple dram packets 610 unsigned size = pkt->getSize(); 611 unsigned offset = pkt->getAddr() & (burstSize - 1); 612 unsigned int dram_pkt_count = divCeil(offset + size, burstSize); 613 614 // check local buffers and do not accept if full 615 if (pkt->isRead()) { 616 assert(size != 0); 617 if (readQueueFull(dram_pkt_count)) { 618 DPRINTF(DRAM, "Read queue full, not accepting\n"); 619 // remember that we have to retry this port 620 retryRdReq = true; 621 numRdRetry++; 622 return false; 623 } else { 624 addToReadQueue(pkt, dram_pkt_count); 625 readReqs++; 626 bytesReadSys += size; 627 } 628 } else if (pkt->isWrite()) { 629 assert(size != 0); 630 if (writeQueueFull(dram_pkt_count)) { 631 DPRINTF(DRAM, "Write queue full, not accepting\n"); 632 // remember that we have to retry this port 633 retryWrReq = true; 634 numWrRetry++; 635 return false; 636 } else { 637 addToWriteQueue(pkt, dram_pkt_count); 638 writeReqs++; 639 bytesWrittenSys += size; 640 } 641 } else { 642 DPRINTF(DRAM,"Neither read nor write, ignore timing\n"); 643 neitherReadNorWrite++; 644 accessAndRespond(pkt, 1); 645 } 646 647 return true; 648} 649 650void 651DRAMCtrl::processRespondEvent() 652{ 653 DPRINTF(DRAM, 654 "processRespondEvent(): Some req has reached its readyTime\n"); 655 656 DRAMPacket* dram_pkt = respQueue.front(); 657 658 if (dram_pkt->burstHelper) { 659 // it is a split packet 660 dram_pkt->burstHelper->burstsServiced++; 661 if (dram_pkt->burstHelper->burstsServiced == 662 dram_pkt->burstHelper->burstCount) { 663 // we have now serviced all children packets of a system packet 664 // so we can now respond to the requester 665 // @todo we probably want to have a different front end and back 666 // end latency for split packets 667 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency); 668 delete dram_pkt->burstHelper; 669 dram_pkt->burstHelper = NULL; 670 } 671 } else { 672 // it is not a split packet 673 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency); 674 } 675 676 delete respQueue.front(); 677 respQueue.pop_front(); 678 679 if (!respQueue.empty()) { 680 assert(respQueue.front()->readyTime >= curTick()); 681 assert(!respondEvent.scheduled()); 682 schedule(respondEvent, respQueue.front()->readyTime); 683 } else { 684 // if there is nothing left in any queue, signal a drain 685 if (drainState() == DrainState::Draining && 686 writeQueue.empty() && readQueue.empty()) { 687 688 DPRINTF(Drain, "DRAM controller done draining\n"); 689 signalDrainDone(); 690 } 691 } 692 693 // We have made a location in the queue available at this point, 694 // so if there is a read that was forced to wait, retry now 695 if (retryRdReq) { 696 retryRdReq = false; 697 port.sendRetryReq(); 698 } 699} 700 701bool 702DRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue, Tick extra_col_delay) 703{ 704 // This method does the arbitration between requests. The chosen 705 // packet is simply moved to the head of the queue. The other 706 // methods know that this is the place to look. For example, with 707 // FCFS, this method does nothing 708 assert(!queue.empty()); 709 710 // bool to indicate if a packet to an available rank is found 711 bool found_packet = false; 712 if (queue.size() == 1) { 713 DRAMPacket* dram_pkt = queue.front(); 714 // available rank corresponds to state refresh idle 715 if (ranks[dram_pkt->rank]->isAvailable()) { 716 found_packet = true; 717 DPRINTF(DRAM, "Single request, going to a free rank\n"); 718 } else { 719 DPRINTF(DRAM, "Single request, going to a busy rank\n"); 720 } 721 return found_packet; 722 } 723 724 if (memSchedPolicy == Enums::fcfs) { 725 // check if there is a packet going to a free rank 726 for(auto i = queue.begin(); i != queue.end() ; ++i) { 727 DRAMPacket* dram_pkt = *i; 728 if (ranks[dram_pkt->rank]->isAvailable()) { 729 queue.erase(i); 730 queue.push_front(dram_pkt); 731 found_packet = true; 732 break; 733 } 734 } 735 } else if (memSchedPolicy == Enums::frfcfs) { 736 found_packet = reorderQueue(queue, extra_col_delay); 737 } else 738 panic("No scheduling policy chosen\n"); 739 return found_packet; 740} 741 742bool 743DRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue, Tick extra_col_delay) 744{ 745 // Only determine this if needed 746 uint64_t earliest_banks = 0; 747 bool hidden_bank_prep = false; 748 749 // search for seamless row hits first, if no seamless row hit is 750 // found then determine if there are other packets that can be issued 751 // without incurring additional bus delay due to bank timing 752 // Will select closed rows first to enable more open row possibilies 753 // in future selections 754 bool found_hidden_bank = false; 755 756 // remember if we found a row hit, not seamless, but bank prepped 757 // and ready 758 bool found_prepped_pkt = false; 759 760 // if we have no row hit, prepped or not, and no seamless packet, 761 // just go for the earliest possible 762 bool found_earliest_pkt = false; 763 764 auto selected_pkt_it = queue.end(); 765 766 // time we need to issue a column command to be seamless 767 const Tick min_col_at = std::max(busBusyUntil - tCL + extra_col_delay, 768 curTick()); 769 770 for (auto i = queue.begin(); i != queue.end() ; ++i) { 771 DRAMPacket* dram_pkt = *i; 772 const Bank& bank = dram_pkt->bankRef; 773 774 // check if rank is available, if not, jump to the next packet 775 if (dram_pkt->rankRef.isAvailable()) { 776 // check if it is a row hit 777 if (bank.openRow == dram_pkt->row) { 778 // no additional rank-to-rank or same bank-group 779 // delays, or we switched read/write and might as well 780 // go for the row hit 781 if (bank.colAllowedAt <= min_col_at) { 782 // FCFS within the hits, giving priority to 783 // commands that can issue seamlessly, without 784 // additional delay, such as same rank accesses 785 // and/or different bank-group accesses 786 DPRINTF(DRAM, "Seamless row buffer hit\n"); 787 selected_pkt_it = i; 788 // no need to look through the remaining queue entries 789 break; 790 } else if (!found_hidden_bank && !found_prepped_pkt) { 791 // if we did not find a packet to a closed row that can 792 // issue the bank commands without incurring delay, and 793 // did not yet find a packet to a prepped row, remember 794 // the current one 795 selected_pkt_it = i; 796 found_prepped_pkt = true; 797 DPRINTF(DRAM, "Prepped row buffer hit\n"); 798 } 799 } else if (!found_earliest_pkt) { 800 // if we have not initialised the bank status, do it 801 // now, and only once per scheduling decisions 802 if (earliest_banks == 0) { 803 // determine entries with earliest bank delay 804 pair<uint64_t, bool> bankStatus = 805 minBankPrep(queue, min_col_at); 806 earliest_banks = bankStatus.first; 807 hidden_bank_prep = bankStatus.second; 808 } 809 810 // bank is amongst first available banks 811 // minBankPrep will give priority to packets that can 812 // issue seamlessly 813 if (bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) { 814 found_earliest_pkt = true; 815 found_hidden_bank = hidden_bank_prep; 816 817 // give priority to packets that can issue 818 // bank commands 'behind the scenes' 819 // any additional delay if any will be due to 820 // col-to-col command requirements 821 if (hidden_bank_prep || !found_prepped_pkt) 822 selected_pkt_it = i; 823 } 824 } 825 } 826 } 827 828 if (selected_pkt_it != queue.end()) { 829 DRAMPacket* selected_pkt = *selected_pkt_it; 830 queue.erase(selected_pkt_it); 831 queue.push_front(selected_pkt); 832 return true; 833 } 834 835 return false; 836} 837 838void 839DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency) 840{ 841 DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr()); 842 843 bool needsResponse = pkt->needsResponse(); 844 // do the actual memory access which also turns the packet into a 845 // response 846 access(pkt); 847 848 // turn packet around to go back to requester if response expected 849 if (needsResponse) { 850 // access already turned the packet into a response 851 assert(pkt->isResponse()); 852 // response_time consumes the static latency and is charged also 853 // with headerDelay that takes into account the delay provided by 854 // the xbar and also the payloadDelay that takes into account the 855 // number of data beats. 856 Tick response_time = curTick() + static_latency + pkt->headerDelay + 857 pkt->payloadDelay; 858 // Here we reset the timing of the packet before sending it out. 859 pkt->headerDelay = pkt->payloadDelay = 0; 860 861 // queue the packet in the response queue to be sent out after 862 // the static latency has passed 863 port.schedTimingResp(pkt, response_time, true); 864 } else { 865 // @todo the packet is going to be deleted, and the DRAMPacket 866 // is still having a pointer to it 867 pendingDelete.reset(pkt); 868 } 869 870 DPRINTF(DRAM, "Done\n"); 871 872 return; 873} 874 875void 876DRAMCtrl::activateBank(Rank& rank_ref, Bank& bank_ref, 877 Tick act_tick, uint32_t row) 878{ 879 assert(rank_ref.actTicks.size() == activationLimit); 880 881 DPRINTF(DRAM, "Activate at tick %d\n", act_tick); 882 883 // update the open row 884 assert(bank_ref.openRow == Bank::NO_ROW); 885 bank_ref.openRow = row; 886 887 // start counting anew, this covers both the case when we 888 // auto-precharged, and when this access is forced to 889 // precharge 890 bank_ref.bytesAccessed = 0; 891 bank_ref.rowAccesses = 0; 892 893 ++rank_ref.numBanksActive; 894 assert(rank_ref.numBanksActive <= banksPerRank); 895 896 DPRINTF(DRAM, "Activate bank %d, rank %d at tick %lld, now got %d active\n", 897 bank_ref.bank, rank_ref.rank, act_tick, 898 ranks[rank_ref.rank]->numBanksActive); 899 900 rank_ref.power.powerlib.doCommand(MemCommand::ACT, bank_ref.bank, 901 divCeil(act_tick, tCK) - 902 timeStampOffset); 903 904 DPRINTF(DRAMPower, "%llu,ACT,%d,%d\n", divCeil(act_tick, tCK) - 905 timeStampOffset, bank_ref.bank, rank_ref.rank); 906 907 // The next access has to respect tRAS for this bank 908 bank_ref.preAllowedAt = act_tick + tRAS; 909 910 // Respect the row-to-column command delay 911 bank_ref.colAllowedAt = std::max(act_tick + tRCD, bank_ref.colAllowedAt); 912 913 // start by enforcing tRRD 914 for(int i = 0; i < banksPerRank; i++) { 915 // next activate to any bank in this rank must not happen 916 // before tRRD 917 if (bankGroupArch && (bank_ref.bankgr == rank_ref.banks[i].bankgr)) { 918 // bank group architecture requires longer delays between 919 // ACT commands within the same bank group. Use tRRD_L 920 // in this case 921 rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD_L, 922 rank_ref.banks[i].actAllowedAt); 923 } else { 924 // use shorter tRRD value when either 925 // 1) bank group architecture is not supportted 926 // 2) bank is in a different bank group 927 rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD, 928 rank_ref.banks[i].actAllowedAt); 929 } 930 } 931 932 // next, we deal with tXAW, if the activation limit is disabled 933 // then we directly schedule an activate power event 934 if (!rank_ref.actTicks.empty()) { 935 // sanity check 936 if (rank_ref.actTicks.back() && 937 (act_tick - rank_ref.actTicks.back()) < tXAW) { 938 panic("Got %d activates in window %d (%llu - %llu) which " 939 "is smaller than %llu\n", activationLimit, act_tick - 940 rank_ref.actTicks.back(), act_tick, 941 rank_ref.actTicks.back(), tXAW); 942 } 943 944 // shift the times used for the book keeping, the last element 945 // (highest index) is the oldest one and hence the lowest value 946 rank_ref.actTicks.pop_back(); 947 948 // record an new activation (in the future) 949 rank_ref.actTicks.push_front(act_tick); 950 951 // cannot activate more than X times in time window tXAW, push the 952 // next one (the X + 1'st activate) to be tXAW away from the 953 // oldest in our window of X 954 if (rank_ref.actTicks.back() && 955 (act_tick - rank_ref.actTicks.back()) < tXAW) { 956 DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate " 957 "no earlier than %llu\n", activationLimit, 958 rank_ref.actTicks.back() + tXAW); 959 for(int j = 0; j < banksPerRank; j++) 960 // next activate must not happen before end of window 961 rank_ref.banks[j].actAllowedAt = 962 std::max(rank_ref.actTicks.back() + tXAW, 963 rank_ref.banks[j].actAllowedAt); 964 } 965 } 966 967 // at the point when this activate takes place, make sure we 968 // transition to the active power state 969 if (!rank_ref.activateEvent.scheduled()) 970 schedule(rank_ref.activateEvent, act_tick); 971 else if (rank_ref.activateEvent.when() > act_tick) 972 // move it sooner in time 973 reschedule(rank_ref.activateEvent, act_tick); 974} 975 976void 977DRAMCtrl::prechargeBank(Rank& rank_ref, Bank& bank, Tick pre_at, bool trace) 978{ 979 // make sure the bank has an open row 980 assert(bank.openRow != Bank::NO_ROW); 981 982 // sample the bytes per activate here since we are closing 983 // the page 984 bytesPerActivate.sample(bank.bytesAccessed); 985 986 bank.openRow = Bank::NO_ROW; 987 988 // no precharge allowed before this one 989 bank.preAllowedAt = pre_at; 990 991 Tick pre_done_at = pre_at + tRP; 992 993 bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at); 994 995 assert(rank_ref.numBanksActive != 0); 996 --rank_ref.numBanksActive; 997 998 DPRINTF(DRAM, "Precharging bank %d, rank %d at tick %lld, now got " 999 "%d active\n", bank.bank, rank_ref.rank, pre_at, 1000 rank_ref.numBanksActive); 1001 1002 if (trace) { 1003 1004 rank_ref.power.powerlib.doCommand(MemCommand::PRE, bank.bank, 1005 divCeil(pre_at, tCK) - 1006 timeStampOffset); 1007 DPRINTF(DRAMPower, "%llu,PRE,%d,%d\n", divCeil(pre_at, tCK) - 1008 timeStampOffset, bank.bank, rank_ref.rank); 1009 } 1010 // if we look at the current number of active banks we might be 1011 // tempted to think the DRAM is now idle, however this can be 1012 // undone by an activate that is scheduled to happen before we 1013 // would have reached the idle state, so schedule an event and 1014 // rather check once we actually make it to the point in time when 1015 // the (last) precharge takes place 1016 if (!rank_ref.prechargeEvent.scheduled()) 1017 schedule(rank_ref.prechargeEvent, pre_done_at); 1018 else if (rank_ref.prechargeEvent.when() < pre_done_at) 1019 reschedule(rank_ref.prechargeEvent, pre_done_at); 1020} 1021 1022void 1023DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt) 1024{ 1025 DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n", 1026 dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row); 1027 1028 // get the rank 1029 Rank& rank = dram_pkt->rankRef; 1030 1031 // get the bank 1032 Bank& bank = dram_pkt->bankRef; 1033 1034 // for the state we need to track if it is a row hit or not 1035 bool row_hit = true; 1036 1037 // respect any constraints on the command (e.g. tRCD or tCCD) 1038 Tick cmd_at = std::max(bank.colAllowedAt, curTick()); 1039 1040 // Determine the access latency and update the bank state 1041 if (bank.openRow == dram_pkt->row) { 1042 // nothing to do 1043 } else { 1044 row_hit = false; 1045 1046 // If there is a page open, precharge it. 1047 if (bank.openRow != Bank::NO_ROW) { 1048 prechargeBank(rank, bank, std::max(bank.preAllowedAt, curTick())); 1049 } 1050 1051 // next we need to account for the delay in activating the 1052 // page 1053 Tick act_tick = std::max(bank.actAllowedAt, curTick()); 1054 1055 // Record the activation and deal with all the global timing 1056 // constraints caused be a new activation (tRRD and tXAW) 1057 activateBank(rank, bank, act_tick, dram_pkt->row); 1058 1059 // issue the command as early as possible 1060 cmd_at = bank.colAllowedAt; 1061 } 1062 1063 // we need to wait until the bus is available before we can issue 1064 // the command 1065 cmd_at = std::max(cmd_at, busBusyUntil - tCL); 1066 1067 // update the packet ready time 1068 dram_pkt->readyTime = cmd_at + tCL + tBURST; 1069 1070 // only one burst can use the bus at any one point in time 1071 assert(dram_pkt->readyTime - busBusyUntil >= tBURST); 1072 1073 // update the time for the next read/write burst for each 1074 // bank (add a max with tCCD/tCCD_L here) 1075 Tick cmd_dly; 1076 for(int j = 0; j < ranksPerChannel; j++) { 1077 for(int i = 0; i < banksPerRank; i++) { 1078 // next burst to same bank group in this rank must not happen 1079 // before tCCD_L. Different bank group timing requirement is 1080 // tBURST; Add tCS for different ranks 1081 if (dram_pkt->rank == j) { 1082 if (bankGroupArch && 1083 (bank.bankgr == ranks[j]->banks[i].bankgr)) { 1084 // bank group architecture requires longer delays between 1085 // RD/WR burst commands to the same bank group. 1086 // Use tCCD_L in this case 1087 cmd_dly = tCCD_L; 1088 } else { 1089 // use tBURST (equivalent to tCCD_S), the shorter 1090 // cas-to-cas delay value, when either: 1091 // 1) bank group architecture is not supportted 1092 // 2) bank is in a different bank group 1093 cmd_dly = tBURST; 1094 } 1095 } else { 1096 // different rank is by default in a different bank group 1097 // use tBURST (equivalent to tCCD_S), which is the shorter 1098 // cas-to-cas delay in this case 1099 // Add tCS to account for rank-to-rank bus delay requirements 1100 cmd_dly = tBURST + tCS; 1101 } 1102 ranks[j]->banks[i].colAllowedAt = std::max(cmd_at + cmd_dly, 1103 ranks[j]->banks[i].colAllowedAt); 1104 } 1105 } 1106 1107 // Save rank of current access 1108 activeRank = dram_pkt->rank; 1109 1110 // If this is a write, we also need to respect the write recovery 1111 // time before a precharge, in the case of a read, respect the 1112 // read to precharge constraint 1113 bank.preAllowedAt = std::max(bank.preAllowedAt, 1114 dram_pkt->isRead ? cmd_at + tRTP : 1115 dram_pkt->readyTime + tWR); 1116 1117 // increment the bytes accessed and the accesses per row 1118 bank.bytesAccessed += burstSize; 1119 ++bank.rowAccesses; 1120 1121 // if we reached the max, then issue with an auto-precharge 1122 bool auto_precharge = pageMgmt == Enums::close || 1123 bank.rowAccesses == maxAccessesPerRow; 1124 1125 // if we did not hit the limit, we might still want to 1126 // auto-precharge 1127 if (!auto_precharge && 1128 (pageMgmt == Enums::open_adaptive || 1129 pageMgmt == Enums::close_adaptive)) { 1130 // a twist on the open and close page policies: 1131 // 1) open_adaptive page policy does not blindly keep the 1132 // page open, but close it if there are no row hits, and there 1133 // are bank conflicts in the queue 1134 // 2) close_adaptive page policy does not blindly close the 1135 // page, but closes it only if there are no row hits in the queue. 1136 // In this case, only force an auto precharge when there 1137 // are no same page hits in the queue 1138 bool got_more_hits = false; 1139 bool got_bank_conflict = false; 1140 1141 // either look at the read queue or write queue 1142 const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue : 1143 writeQueue; 1144 auto p = queue.begin(); 1145 // make sure we are not considering the packet that we are 1146 // currently dealing with (which is the head of the queue) 1147 ++p; 1148 1149 // keep on looking until we find a hit or reach the end of the queue 1150 // 1) if a hit is found, then both open and close adaptive policies keep 1151 // the page open 1152 // 2) if no hit is found, got_bank_conflict is set to true if a bank 1153 // conflict request is waiting in the queue 1154 while (!got_more_hits && p != queue.end()) { 1155 bool same_rank_bank = (dram_pkt->rank == (*p)->rank) && 1156 (dram_pkt->bank == (*p)->bank); 1157 bool same_row = dram_pkt->row == (*p)->row; 1158 got_more_hits |= same_rank_bank && same_row; 1159 got_bank_conflict |= same_rank_bank && !same_row; 1160 ++p; 1161 } 1162 1163 // auto pre-charge when either 1164 // 1) open_adaptive policy, we have not got any more hits, and 1165 // have a bank conflict 1166 // 2) close_adaptive policy and we have not got any more hits 1167 auto_precharge = !got_more_hits && 1168 (got_bank_conflict || pageMgmt == Enums::close_adaptive); 1169 } 1170 1171 // DRAMPower trace command to be written 1172 std::string mem_cmd = dram_pkt->isRead ? "RD" : "WR"; 1173 1174 // MemCommand required for DRAMPower library 1175 MemCommand::cmds command = (mem_cmd == "RD") ? MemCommand::RD : 1176 MemCommand::WR; 1177 1178 // if this access should use auto-precharge, then we are 1179 // closing the row 1180 if (auto_precharge) { 1181 // if auto-precharge push a PRE command at the correct tick to the 1182 // list used by DRAMPower library to calculate power 1183 prechargeBank(rank, bank, std::max(curTick(), bank.preAllowedAt)); 1184 1185 DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId); 1186 } 1187 1188 // Update bus state 1189 busBusyUntil = dram_pkt->readyTime; 1190 1191 DPRINTF(DRAM, "Access to %lld, ready at %lld bus busy until %lld.\n", 1192 dram_pkt->addr, dram_pkt->readyTime, busBusyUntil); 1193 1194 dram_pkt->rankRef.power.powerlib.doCommand(command, dram_pkt->bank, 1195 divCeil(cmd_at, tCK) - 1196 timeStampOffset); 1197 1198 DPRINTF(DRAMPower, "%llu,%s,%d,%d\n", divCeil(cmd_at, tCK) - 1199 timeStampOffset, mem_cmd, dram_pkt->bank, dram_pkt->rank); 1200 1201 // Update the minimum timing between the requests, this is a 1202 // conservative estimate of when we have to schedule the next 1203 // request to not introduce any unecessary bubbles. In most cases 1204 // we will wake up sooner than we have to. 1205 nextReqTime = busBusyUntil - (tRP + tRCD + tCL); 1206 1207 // Update the stats and schedule the next request 1208 if (dram_pkt->isRead) { 1209 ++readsThisTime; 1210 if (row_hit) 1211 readRowHits++; 1212 bytesReadDRAM += burstSize; 1213 perBankRdBursts[dram_pkt->bankId]++; 1214 1215 // Update latency stats 1216 totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime; 1217 totBusLat += tBURST; 1218 totQLat += cmd_at - dram_pkt->entryTime; 1219 } else { 1220 ++writesThisTime; 1221 if (row_hit) 1222 writeRowHits++; 1223 bytesWritten += burstSize; 1224 perBankWrBursts[dram_pkt->bankId]++; 1225 } 1226} 1227 1228void 1229DRAMCtrl::processNextReqEvent() 1230{ 1231 int busyRanks = 0; 1232 for (auto r : ranks) { 1233 if (!r->isAvailable()) { 1234 // rank is busy refreshing 1235 busyRanks++; 1236 1237 // let the rank know that if it was waiting to drain, it 1238 // is now done and ready to proceed 1239 r->checkDrainDone(); 1240 } 1241 } 1242 1243 if (busyRanks == ranksPerChannel) { 1244 // if all ranks are refreshing wait for them to finish 1245 // and stall this state machine without taking any further 1246 // action, and do not schedule a new nextReqEvent 1247 return; 1248 } 1249 1250 // pre-emptively set to false. Overwrite if in READ_TO_WRITE 1251 // or WRITE_TO_READ state 1252 bool switched_cmd_type = false; 1253 if (busState == READ_TO_WRITE) { 1254 DPRINTF(DRAM, "Switching to writes after %d reads with %d reads " 1255 "waiting\n", readsThisTime, readQueue.size()); 1256 1257 // sample and reset the read-related stats as we are now 1258 // transitioning to writes, and all reads are done 1259 rdPerTurnAround.sample(readsThisTime); 1260 readsThisTime = 0; 1261 1262 // now proceed to do the actual writes 1263 busState = WRITE; 1264 switched_cmd_type = true; 1265 } else if (busState == WRITE_TO_READ) { 1266 DPRINTF(DRAM, "Switching to reads after %d writes with %d writes " 1267 "waiting\n", writesThisTime, writeQueue.size()); 1268 1269 wrPerTurnAround.sample(writesThisTime); 1270 writesThisTime = 0; 1271 1272 busState = READ; 1273 switched_cmd_type = true; 1274 } 1275 1276 // when we get here it is either a read or a write 1277 if (busState == READ) { 1278 1279 // track if we should switch or not 1280 bool switch_to_writes = false; 1281 1282 if (readQueue.empty()) { 1283 // In the case there is no read request to go next, 1284 // trigger writes if we have passed the low threshold (or 1285 // if we are draining) 1286 if (!writeQueue.empty() && 1287 (drainState() == DrainState::Draining || 1288 writeQueue.size() > writeLowThreshold)) { 1289 1290 switch_to_writes = true; 1291 } else { 1292 // check if we are drained 1293 if (drainState() == DrainState::Draining && 1294 respQueue.empty()) { 1295 1296 DPRINTF(Drain, "DRAM controller done draining\n"); 1297 signalDrainDone(); 1298 } 1299 1300 // nothing to do, not even any point in scheduling an 1301 // event for the next request 1302 return; 1303 } 1304 } else { 1305 // bool to check if there is a read to a free rank 1306 bool found_read = false; 1307 1308 // Figure out which read request goes next, and move it to the 1309 // front of the read queue 1310 // If we are changing command type, incorporate the minimum 1311 // bus turnaround delay which will be tCS (different rank) case 1312 found_read = chooseNext(readQueue, 1313 switched_cmd_type ? tCS : 0); 1314 1315 // if no read to an available rank is found then return 1316 // at this point. There could be writes to the available ranks 1317 // which are above the required threshold. However, to 1318 // avoid adding more complexity to the code, return and wait 1319 // for a refresh event to kick things into action again. 1320 if (!found_read) 1321 return; 1322 1323 DRAMPacket* dram_pkt = readQueue.front(); 1324 assert(dram_pkt->rankRef.isAvailable()); 1325 // here we get a bit creative and shift the bus busy time not 1326 // just the tWTR, but also a CAS latency to capture the fact 1327 // that we are allowed to prepare a new bank, but not issue a 1328 // read command until after tWTR, in essence we capture a 1329 // bubble on the data bus that is tWTR + tCL 1330 if (switched_cmd_type && dram_pkt->rank == activeRank) { 1331 busBusyUntil += tWTR + tCL; 1332 } 1333 1334 doDRAMAccess(dram_pkt); 1335 1336 // At this point we're done dealing with the request 1337 readQueue.pop_front(); 1338 1339 // sanity check 1340 assert(dram_pkt->size <= burstSize); 1341 assert(dram_pkt->readyTime >= curTick()); 1342 1343 // Insert into response queue. It will be sent back to the 1344 // requestor at its readyTime 1345 if (respQueue.empty()) { 1346 assert(!respondEvent.scheduled()); 1347 schedule(respondEvent, dram_pkt->readyTime); 1348 } else { 1349 assert(respQueue.back()->readyTime <= dram_pkt->readyTime); 1350 assert(respondEvent.scheduled()); 1351 } 1352 1353 respQueue.push_back(dram_pkt); 1354 1355 // we have so many writes that we have to transition 1356 if (writeQueue.size() > writeHighThreshold) { 1357 switch_to_writes = true; 1358 } 1359 } 1360 1361 // switching to writes, either because the read queue is empty 1362 // and the writes have passed the low threshold (or we are 1363 // draining), or because the writes hit the hight threshold 1364 if (switch_to_writes) { 1365 // transition to writing 1366 busState = READ_TO_WRITE; 1367 } 1368 } else { 1369 // bool to check if write to free rank is found 1370 bool found_write = false; 1371 1372 // If we are changing command type, incorporate the minimum 1373 // bus turnaround delay 1374 found_write = chooseNext(writeQueue, 1375 switched_cmd_type ? std::min(tRTW, tCS) : 0); 1376 1377 // if no writes to an available rank are found then return. 1378 // There could be reads to the available ranks. However, to avoid 1379 // adding more complexity to the code, return at this point and wait 1380 // for a refresh event to kick things into action again. 1381 if (!found_write) 1382 return; 1383 1384 DRAMPacket* dram_pkt = writeQueue.front(); 1385 assert(dram_pkt->rankRef.isAvailable()); 1386 // sanity check 1387 assert(dram_pkt->size <= burstSize); 1388 1389 // add a bubble to the data bus, as defined by the 1390 // tRTW when access is to the same rank as previous burst 1391 // Different rank timing is handled with tCS, which is 1392 // applied to colAllowedAt 1393 if (switched_cmd_type && dram_pkt->rank == activeRank) { 1394 busBusyUntil += tRTW; 1395 } 1396 1397 doDRAMAccess(dram_pkt); 1398 1399 writeQueue.pop_front(); 1400 isInWriteQueue.erase(burstAlign(dram_pkt->addr)); 1401 delete dram_pkt; 1402 1403 // If we emptied the write queue, or got sufficiently below the 1404 // threshold (using the minWritesPerSwitch as the hysteresis) and 1405 // are not draining, or we have reads waiting and have done enough 1406 // writes, then switch to reads. 1407 if (writeQueue.empty() || 1408 (writeQueue.size() + minWritesPerSwitch < writeLowThreshold && 1409 drainState() != DrainState::Draining) || 1410 (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) { 1411 // turn the bus back around for reads again 1412 busState = WRITE_TO_READ; 1413 1414 // note that the we switch back to reads also in the idle 1415 // case, which eventually will check for any draining and 1416 // also pause any further scheduling if there is really 1417 // nothing to do 1418 } 1419 } 1420 // It is possible that a refresh to another rank kicks things back into 1421 // action before reaching this point. 1422 if (!nextReqEvent.scheduled()) 1423 schedule(nextReqEvent, std::max(nextReqTime, curTick())); 1424 1425 // If there is space available and we have writes waiting then let 1426 // them retry. This is done here to ensure that the retry does not 1427 // cause a nextReqEvent to be scheduled before we do so as part of 1428 // the next request processing 1429 if (retryWrReq && writeQueue.size() < writeBufferSize) { 1430 retryWrReq = false; 1431 port.sendRetryReq(); 1432 } 1433} 1434 1435pair<uint64_t, bool> 1436DRAMCtrl::minBankPrep(const deque<DRAMPacket*>& queue, 1437 Tick min_col_at) const 1438{ 1439 uint64_t bank_mask = 0; 1440 Tick min_act_at = MaxTick; 1441 1442 // latest Tick for which ACT can occur without incurring additoinal 1443 // delay on the data bus 1444 const Tick hidden_act_max = std::max(min_col_at - tRCD, curTick()); 1445 1446 // Flag condition when burst can issue back-to-back with previous burst 1447 bool found_seamless_bank = false; 1448 1449 // Flag condition when bank can be opened without incurring additional 1450 // delay on the data bus 1451 bool hidden_bank_prep = false; 1452 1453 // determine if we have queued transactions targetting the 1454 // bank in question 1455 vector<bool> got_waiting(ranksPerChannel * banksPerRank, false); 1456 for (const auto& p : queue) { 1457 if(p->rankRef.isAvailable()) 1458 got_waiting[p->bankId] = true; 1459 } 1460 1461 // Find command with optimal bank timing 1462 // Will prioritize commands that can issue seamlessly. 1463 for (int i = 0; i < ranksPerChannel; i++) { 1464 for (int j = 0; j < banksPerRank; j++) { 1465 uint16_t bank_id = i * banksPerRank + j; 1466 1467 // if we have waiting requests for the bank, and it is 1468 // amongst the first available, update the mask 1469 if (got_waiting[bank_id]) { 1470 // make sure this rank is not currently refreshing. 1471 assert(ranks[i]->isAvailable()); 1472 // simplistic approximation of when the bank can issue 1473 // an activate, ignoring any rank-to-rank switching 1474 // cost in this calculation 1475 Tick act_at = ranks[i]->banks[j].openRow == Bank::NO_ROW ? 1476 std::max(ranks[i]->banks[j].actAllowedAt, curTick()) : 1477 std::max(ranks[i]->banks[j].preAllowedAt, curTick()) + tRP; 1478 1479 // When is the earliest the R/W burst can issue? 1480 Tick col_at = std::max(ranks[i]->banks[j].colAllowedAt, 1481 act_at + tRCD); 1482 1483 // bank can issue burst back-to-back (seamlessly) with 1484 // previous burst 1485 bool new_seamless_bank = col_at <= min_col_at; 1486 1487 // if we found a new seamless bank or we have no 1488 // seamless banks, and got a bank with an earlier 1489 // activate time, it should be added to the bit mask 1490 if (new_seamless_bank || 1491 (!found_seamless_bank && act_at <= min_act_at)) { 1492 // if we did not have a seamless bank before, and 1493 // we do now, reset the bank mask, also reset it 1494 // if we have not yet found a seamless bank and 1495 // the activate time is smaller than what we have 1496 // seen so far 1497 if (!found_seamless_bank && 1498 (new_seamless_bank || act_at < min_act_at)) { 1499 bank_mask = 0; 1500 } 1501 1502 found_seamless_bank |= new_seamless_bank; 1503 1504 // ACT can occur 'behind the scenes' 1505 hidden_bank_prep = act_at <= hidden_act_max; 1506 1507 // set the bit corresponding to the available bank 1508 replaceBits(bank_mask, bank_id, bank_id, 1); 1509 min_act_at = act_at; 1510 } 1511 } 1512 } 1513 } 1514 1515 return make_pair(bank_mask, hidden_bank_prep); 1516} 1517 1518DRAMCtrl::Rank::Rank(DRAMCtrl& _memory, const DRAMCtrlParams* _p) 1519 : EventManager(&_memory), memory(_memory), 1520 pwrStateTrans(PWR_IDLE), pwrState(PWR_IDLE), pwrStateTick(0), 1521 refreshState(REF_IDLE), refreshDueAt(0), 1522 power(_p, false), numBanksActive(0), 1523 activateEvent(*this), prechargeEvent(*this), 1524 refreshEvent(*this), powerEvent(*this) 1525{ } 1526 1527void 1528DRAMCtrl::Rank::startup(Tick ref_tick) 1529{ 1530 assert(ref_tick > curTick()); 1531 1532 pwrStateTick = curTick(); 1533 1534 // kick off the refresh, and give ourselves enough time to 1535 // precharge 1536 schedule(refreshEvent, ref_tick); 1537} 1538 1539void 1540DRAMCtrl::Rank::suspend() 1541{ 1542 deschedule(refreshEvent); 1543} 1544 1545void 1546DRAMCtrl::Rank::checkDrainDone() 1547{ 1548 // if this rank was waiting to drain it is now able to proceed to 1549 // precharge 1550 if (refreshState == REF_DRAIN) { 1551 DPRINTF(DRAM, "Refresh drain done, now precharging\n"); 1552 1553 refreshState = REF_PRE; 1554 1555 // hand control back to the refresh event loop 1556 schedule(refreshEvent, curTick()); 1557 } 1558} 1559 1560void 1561DRAMCtrl::Rank::processActivateEvent() 1562{ 1563 // we should transition to the active state as soon as any bank is active 1564 if (pwrState != PWR_ACT) 1565 // note that at this point numBanksActive could be back at 1566 // zero again due to a precharge scheduled in the future 1567 schedulePowerEvent(PWR_ACT, curTick()); 1568} 1569 1570void 1571DRAMCtrl::Rank::processPrechargeEvent() 1572{ 1573 // if we reached zero, then special conditions apply as we track 1574 // if all banks are precharged for the power models 1575 if (numBanksActive == 0) { 1576 // we should transition to the idle state when the last bank 1577 // is precharged 1578 schedulePowerEvent(PWR_IDLE, curTick()); 1579 } 1580} 1581 1582void 1583DRAMCtrl::Rank::processRefreshEvent() 1584{ 1585 // when first preparing the refresh, remember when it was due 1586 if (refreshState == REF_IDLE) { 1587 // remember when the refresh is due 1588 refreshDueAt = curTick(); 1589 1590 // proceed to drain 1591 refreshState = REF_DRAIN; 1592 1593 DPRINTF(DRAM, "Refresh due\n"); 1594 } 1595 1596 // let any scheduled read or write to the same rank go ahead, 1597 // after which it will 1598 // hand control back to this event loop 1599 if (refreshState == REF_DRAIN) { 1600 // if a request is at the moment being handled and this request is 1601 // accessing the current rank then wait for it to finish 1602 if ((rank == memory.activeRank) 1603 && (memory.nextReqEvent.scheduled())) { 1604 // hand control over to the request loop until it is 1605 // evaluated next 1606 DPRINTF(DRAM, "Refresh awaiting draining\n"); 1607 1608 return; 1609 } else { 1610 refreshState = REF_PRE; 1611 } 1612 } 1613 1614 // at this point, ensure that all banks are precharged 1615 if (refreshState == REF_PRE) { 1616 // precharge any active bank if we are not already in the idle 1617 // state 1618 if (pwrState != PWR_IDLE) { 1619 // at the moment, we use a precharge all even if there is 1620 // only a single bank open 1621 DPRINTF(DRAM, "Precharging all\n"); 1622 1623 // first determine when we can precharge 1624 Tick pre_at = curTick(); 1625 1626 for (auto &b : banks) { 1627 // respect both causality and any existing bank 1628 // constraints, some banks could already have a 1629 // (auto) precharge scheduled 1630 pre_at = std::max(b.preAllowedAt, pre_at); 1631 } 1632 1633 // make sure all banks per rank are precharged, and for those that 1634 // already are, update their availability 1635 Tick act_allowed_at = pre_at + memory.tRP; 1636 1637 for (auto &b : banks) { 1638 if (b.openRow != Bank::NO_ROW) { 1639 memory.prechargeBank(*this, b, pre_at, false); 1640 } else { 1641 b.actAllowedAt = std::max(b.actAllowedAt, act_allowed_at); 1642 b.preAllowedAt = std::max(b.preAllowedAt, pre_at); 1643 } 1644 } 1645 1646 // precharge all banks in rank 1647 power.powerlib.doCommand(MemCommand::PREA, 0, 1648 divCeil(pre_at, memory.tCK) - 1649 memory.timeStampOffset); 1650 1651 DPRINTF(DRAMPower, "%llu,PREA,0,%d\n", 1652 divCeil(pre_at, memory.tCK) - 1653 memory.timeStampOffset, rank); 1654 } else { 1655 DPRINTF(DRAM, "All banks already precharged, starting refresh\n"); 1656 1657 // go ahead and kick the power state machine into gear if 1658 // we are already idle 1659 schedulePowerEvent(PWR_REF, curTick()); 1660 } 1661 1662 refreshState = REF_RUN; 1663 assert(numBanksActive == 0); 1664 1665 // wait for all banks to be precharged, at which point the 1666 // power state machine will transition to the idle state, and 1667 // automatically move to a refresh, at that point it will also 1668 // call this method to get the refresh event loop going again 1669 return; 1670 } 1671 1672 // last but not least we perform the actual refresh 1673 if (refreshState == REF_RUN) { 1674 // should never get here with any banks active 1675 assert(numBanksActive == 0); 1676 assert(pwrState == PWR_REF); 1677 1678 Tick ref_done_at = curTick() + memory.tRFC; 1679 1680 for (auto &b : banks) { 1681 b.actAllowedAt = ref_done_at; 1682 } 1683 1684 // at the moment this affects all ranks 1685 power.powerlib.doCommand(MemCommand::REF, 0, 1686 divCeil(curTick(), memory.tCK) - 1687 memory.timeStampOffset); 1688 1689 // at the moment sort the list of commands and update the counters 1690 // for DRAMPower libray when doing a refresh 1691 sort(power.powerlib.cmdList.begin(), 1692 power.powerlib.cmdList.end(), DRAMCtrl::sortTime); 1693 1694 // update the counters for DRAMPower, passing false to 1695 // indicate that this is not the last command in the 1696 // list. DRAMPower requires this information for the 1697 // correct calculation of the background energy at the end 1698 // of the simulation. Ideally we would want to call this 1699 // function with true once at the end of the 1700 // simulation. However, the discarded energy is extremly 1701 // small and does not effect the final results. 1702 power.powerlib.updateCounters(false); 1703 1704 // call the energy function 1705 power.powerlib.calcEnergy(); 1706 1707 // Update the stats 1708 updatePowerStats(); 1709 1710 DPRINTF(DRAMPower, "%llu,REF,0,%d\n", divCeil(curTick(), memory.tCK) - 1711 memory.timeStampOffset, rank); 1712 1713 // make sure we did not wait so long that we cannot make up 1714 // for it 1715 if (refreshDueAt + memory.tREFI < ref_done_at) { 1716 fatal("Refresh was delayed so long we cannot catch up\n"); 1717 } 1718 1719 // compensate for the delay in actually performing the refresh 1720 // when scheduling the next one 1721 schedule(refreshEvent, refreshDueAt + memory.tREFI - memory.tRP); 1722 1723 assert(!powerEvent.scheduled()); 1724 1725 // move to the idle power state once the refresh is done, this 1726 // will also move the refresh state machine to the refresh 1727 // idle state 1728 schedulePowerEvent(PWR_IDLE, ref_done_at); 1729 1730 DPRINTF(DRAMState, "Refresh done at %llu and next refresh at %llu\n", 1731 ref_done_at, refreshDueAt + memory.tREFI); 1732 } 1733} 1734 1735void 1736DRAMCtrl::Rank::schedulePowerEvent(PowerState pwr_state, Tick tick) 1737{ 1738 // respect causality 1739 assert(tick >= curTick()); 1740 1741 if (!powerEvent.scheduled()) { 1742 DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n", 1743 tick, pwr_state); 1744 1745 // insert the new transition 1746 pwrStateTrans = pwr_state; 1747 1748 schedule(powerEvent, tick); 1749 } else { 1750 panic("Scheduled power event at %llu to state %d, " 1751 "with scheduled event at %llu to %d\n", tick, pwr_state, 1752 powerEvent.when(), pwrStateTrans); 1753 } 1754} 1755 1756void 1757DRAMCtrl::Rank::processPowerEvent() 1758{ 1759 // remember where we were, and for how long 1760 Tick duration = curTick() - pwrStateTick; 1761 PowerState prev_state = pwrState; 1762 1763 // update the accounting 1764 pwrStateTime[prev_state] += duration; 1765 1766 pwrState = pwrStateTrans; 1767 pwrStateTick = curTick(); 1768 1769 if (pwrState == PWR_IDLE) { 1770 DPRINTF(DRAMState, "All banks precharged\n"); 1771 1772 // if we were refreshing, make sure we start scheduling requests again 1773 if (prev_state == PWR_REF) { 1774 DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration); 1775 assert(pwrState == PWR_IDLE); 1776 1777 // kick things into action again 1778 refreshState = REF_IDLE; 1779 // a request event could be already scheduled by the state 1780 // machine of the other rank 1781 if (!memory.nextReqEvent.scheduled()) 1782 schedule(memory.nextReqEvent, curTick()); 1783 } else { 1784 assert(prev_state == PWR_ACT); 1785 1786 // if we have a pending refresh, and are now moving to 1787 // the idle state, direclty transition to a refresh 1788 if (refreshState == REF_RUN) { 1789 // there should be nothing waiting at this point 1790 assert(!powerEvent.scheduled()); 1791 1792 // update the state in zero time and proceed below 1793 pwrState = PWR_REF; 1794 } 1795 } 1796 } 1797 1798 // we transition to the refresh state, let the refresh state 1799 // machine know of this state update and let it deal with the 1800 // scheduling of the next power state transition as well as the 1801 // following refresh 1802 if (pwrState == PWR_REF) { 1803 DPRINTF(DRAMState, "Refreshing\n"); 1804 // kick the refresh event loop into action again, and that 1805 // in turn will schedule a transition to the idle power 1806 // state once the refresh is done 1807 assert(refreshState == REF_RUN); 1808 processRefreshEvent(); 1809 } 1810} 1811 1812void 1813DRAMCtrl::Rank::updatePowerStats() 1814{ 1815 // Get the energy and power from DRAMPower 1816 Data::MemoryPowerModel::Energy energy = 1817 power.powerlib.getEnergy(); 1818 Data::MemoryPowerModel::Power rank_power = 1819 power.powerlib.getPower(); 1820 1821 actEnergy = energy.act_energy * memory.devicesPerRank; 1822 preEnergy = energy.pre_energy * memory.devicesPerRank; 1823 readEnergy = energy.read_energy * memory.devicesPerRank; 1824 writeEnergy = energy.write_energy * memory.devicesPerRank; 1825 refreshEnergy = energy.ref_energy * memory.devicesPerRank; 1826 actBackEnergy = energy.act_stdby_energy * memory.devicesPerRank; 1827 preBackEnergy = energy.pre_stdby_energy * memory.devicesPerRank; 1828 totalEnergy = energy.total_energy * memory.devicesPerRank; 1829 averagePower = rank_power.average_power * memory.devicesPerRank; 1830} 1831 1832void 1833DRAMCtrl::Rank::regStats() 1834{ 1835 using namespace Stats; 1836 1837 pwrStateTime 1838 .init(5) 1839 .name(name() + ".memoryStateTime") 1840 .desc("Time in different power states"); 1841 pwrStateTime.subname(0, "IDLE"); 1842 pwrStateTime.subname(1, "REF"); 1843 pwrStateTime.subname(2, "PRE_PDN"); 1844 pwrStateTime.subname(3, "ACT"); 1845 pwrStateTime.subname(4, "ACT_PDN"); 1846 1847 actEnergy 1848 .name(name() + ".actEnergy") 1849 .desc("Energy for activate commands per rank (pJ)"); 1850 1851 preEnergy 1852 .name(name() + ".preEnergy") 1853 .desc("Energy for precharge commands per rank (pJ)"); 1854 1855 readEnergy 1856 .name(name() + ".readEnergy") 1857 .desc("Energy for read commands per rank (pJ)"); 1858 1859 writeEnergy 1860 .name(name() + ".writeEnergy") 1861 .desc("Energy for write commands per rank (pJ)"); 1862 1863 refreshEnergy 1864 .name(name() + ".refreshEnergy") 1865 .desc("Energy for refresh commands per rank (pJ)"); 1866 1867 actBackEnergy 1868 .name(name() + ".actBackEnergy") 1869 .desc("Energy for active background per rank (pJ)"); 1870 1871 preBackEnergy 1872 .name(name() + ".preBackEnergy") 1873 .desc("Energy for precharge background per rank (pJ)"); 1874 1875 totalEnergy 1876 .name(name() + ".totalEnergy") 1877 .desc("Total energy per rank (pJ)"); 1878 1879 averagePower 1880 .name(name() + ".averagePower") 1881 .desc("Core power per rank (mW)"); 1882} 1883void 1884DRAMCtrl::regStats() 1885{ 1886 using namespace Stats; 1887 1888 AbstractMemory::regStats(); 1889 1890 for (auto r : ranks) { 1891 r->regStats(); 1892 } 1893 1894 readReqs 1895 .name(name() + ".readReqs") 1896 .desc("Number of read requests accepted"); 1897 1898 writeReqs 1899 .name(name() + ".writeReqs") 1900 .desc("Number of write requests accepted"); 1901 1902 readBursts 1903 .name(name() + ".readBursts") 1904 .desc("Number of DRAM read bursts, " 1905 "including those serviced by the write queue"); 1906 1907 writeBursts 1908 .name(name() + ".writeBursts") 1909 .desc("Number of DRAM write bursts, " 1910 "including those merged in the write queue"); 1911 1912 servicedByWrQ 1913 .name(name() + ".servicedByWrQ") 1914 .desc("Number of DRAM read bursts serviced by the write queue"); 1915 1916 mergedWrBursts 1917 .name(name() + ".mergedWrBursts") 1918 .desc("Number of DRAM write bursts merged with an existing one"); 1919 1920 neitherReadNorWrite 1921 .name(name() + ".neitherReadNorWriteReqs") 1922 .desc("Number of requests that are neither read nor write"); 1923 1924 perBankRdBursts 1925 .init(banksPerRank * ranksPerChannel) 1926 .name(name() + ".perBankRdBursts") 1927 .desc("Per bank write bursts"); 1928 1929 perBankWrBursts 1930 .init(banksPerRank * ranksPerChannel) 1931 .name(name() + ".perBankWrBursts") 1932 .desc("Per bank write bursts"); 1933 1934 avgRdQLen 1935 .name(name() + ".avgRdQLen") 1936 .desc("Average read queue length when enqueuing") 1937 .precision(2); 1938 1939 avgWrQLen 1940 .name(name() + ".avgWrQLen") 1941 .desc("Average write queue length when enqueuing") 1942 .precision(2); 1943 1944 totQLat 1945 .name(name() + ".totQLat") 1946 .desc("Total ticks spent queuing"); 1947 1948 totBusLat 1949 .name(name() + ".totBusLat") 1950 .desc("Total ticks spent in databus transfers"); 1951 1952 totMemAccLat 1953 .name(name() + ".totMemAccLat") 1954 .desc("Total ticks spent from burst creation until serviced " 1955 "by the DRAM"); 1956 1957 avgQLat 1958 .name(name() + ".avgQLat") 1959 .desc("Average queueing delay per DRAM burst") 1960 .precision(2); 1961 1962 avgQLat = totQLat / (readBursts - servicedByWrQ); 1963 1964 avgBusLat 1965 .name(name() + ".avgBusLat") 1966 .desc("Average bus latency per DRAM burst") 1967 .precision(2); 1968 1969 avgBusLat = totBusLat / (readBursts - servicedByWrQ); 1970 1971 avgMemAccLat 1972 .name(name() + ".avgMemAccLat") 1973 .desc("Average memory access latency per DRAM burst") 1974 .precision(2); 1975 1976 avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ); 1977 1978 numRdRetry 1979 .name(name() + ".numRdRetry") 1980 .desc("Number of times read queue was full causing retry"); 1981 1982 numWrRetry 1983 .name(name() + ".numWrRetry") 1984 .desc("Number of times write queue was full causing retry"); 1985 1986 readRowHits 1987 .name(name() + ".readRowHits") 1988 .desc("Number of row buffer hits during reads"); 1989 1990 writeRowHits 1991 .name(name() + ".writeRowHits") 1992 .desc("Number of row buffer hits during writes"); 1993 1994 readRowHitRate 1995 .name(name() + ".readRowHitRate") 1996 .desc("Row buffer hit rate for reads") 1997 .precision(2); 1998 1999 readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100; 2000 2001 writeRowHitRate 2002 .name(name() + ".writeRowHitRate") 2003 .desc("Row buffer hit rate for writes") 2004 .precision(2); 2005 2006 writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100; 2007 2008 readPktSize 2009 .init(ceilLog2(burstSize) + 1) 2010 .name(name() + ".readPktSize") 2011 .desc("Read request sizes (log2)"); 2012 2013 writePktSize 2014 .init(ceilLog2(burstSize) + 1) 2015 .name(name() + ".writePktSize") 2016 .desc("Write request sizes (log2)"); 2017 2018 rdQLenPdf 2019 .init(readBufferSize) 2020 .name(name() + ".rdQLenPdf") 2021 .desc("What read queue length does an incoming req see"); 2022 2023 wrQLenPdf 2024 .init(writeBufferSize) 2025 .name(name() + ".wrQLenPdf") 2026 .desc("What write queue length does an incoming req see"); 2027 2028 bytesPerActivate 2029 .init(maxAccessesPerRow) 2030 .name(name() + ".bytesPerActivate") 2031 .desc("Bytes accessed per row activation") 2032 .flags(nozero); 2033 2034 rdPerTurnAround 2035 .init(readBufferSize) 2036 .name(name() + ".rdPerTurnAround") 2037 .desc("Reads before turning the bus around for writes") 2038 .flags(nozero); 2039 2040 wrPerTurnAround 2041 .init(writeBufferSize) 2042 .name(name() + ".wrPerTurnAround") 2043 .desc("Writes before turning the bus around for reads") 2044 .flags(nozero); 2045 2046 bytesReadDRAM 2047 .name(name() + ".bytesReadDRAM") 2048 .desc("Total number of bytes read from DRAM"); 2049 2050 bytesReadWrQ 2051 .name(name() + ".bytesReadWrQ") 2052 .desc("Total number of bytes read from write queue"); 2053 2054 bytesWritten 2055 .name(name() + ".bytesWritten") 2056 .desc("Total number of bytes written to DRAM"); 2057 2058 bytesReadSys 2059 .name(name() + ".bytesReadSys") 2060 .desc("Total read bytes from the system interface side"); 2061 2062 bytesWrittenSys 2063 .name(name() + ".bytesWrittenSys") 2064 .desc("Total written bytes from the system interface side"); 2065 2066 avgRdBW 2067 .name(name() + ".avgRdBW") 2068 .desc("Average DRAM read bandwidth in MiByte/s") 2069 .precision(2); 2070 2071 avgRdBW = (bytesReadDRAM / 1000000) / simSeconds; 2072 2073 avgWrBW 2074 .name(name() + ".avgWrBW") 2075 .desc("Average achieved write bandwidth in MiByte/s") 2076 .precision(2); 2077 2078 avgWrBW = (bytesWritten / 1000000) / simSeconds; 2079 2080 avgRdBWSys 2081 .name(name() + ".avgRdBWSys") 2082 .desc("Average system read bandwidth in MiByte/s") 2083 .precision(2); 2084 2085 avgRdBWSys = (bytesReadSys / 1000000) / simSeconds; 2086 2087 avgWrBWSys 2088 .name(name() + ".avgWrBWSys") 2089 .desc("Average system write bandwidth in MiByte/s") 2090 .precision(2); 2091 2092 avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds; 2093 2094 peakBW 2095 .name(name() + ".peakBW") 2096 .desc("Theoretical peak bandwidth in MiByte/s") 2097 .precision(2); 2098 2099 peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000; 2100 2101 busUtil 2102 .name(name() + ".busUtil") 2103 .desc("Data bus utilization in percentage") 2104 .precision(2); 2105 busUtil = (avgRdBW + avgWrBW) / peakBW * 100; 2106 2107 totGap 2108 .name(name() + ".totGap") 2109 .desc("Total gap between requests"); 2110 2111 avgGap 2112 .name(name() + ".avgGap") 2113 .desc("Average gap between requests") 2114 .precision(2); 2115 2116 avgGap = totGap / (readReqs + writeReqs); 2117 2118 // Stats for DRAM Power calculation based on Micron datasheet 2119 busUtilRead 2120 .name(name() + ".busUtilRead") 2121 .desc("Data bus utilization in percentage for reads") 2122 .precision(2); 2123 2124 busUtilRead = avgRdBW / peakBW * 100; 2125 2126 busUtilWrite 2127 .name(name() + ".busUtilWrite") 2128 .desc("Data bus utilization in percentage for writes") 2129 .precision(2); 2130 2131 busUtilWrite = avgWrBW / peakBW * 100; 2132 2133 pageHitRate 2134 .name(name() + ".pageHitRate") 2135 .desc("Row buffer hit rate, read and write combined") 2136 .precision(2); 2137 2138 pageHitRate = (writeRowHits + readRowHits) / 2139 (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100; 2140} 2141 2142void 2143DRAMCtrl::recvFunctional(PacketPtr pkt) 2144{ 2145 // rely on the abstract memory 2146 functionalAccess(pkt); 2147} 2148 2149BaseSlavePort& 2150DRAMCtrl::getSlavePort(const string &if_name, PortID idx) 2151{ 2152 if (if_name != "port") { 2153 return MemObject::getSlavePort(if_name, idx); 2154 } else { 2155 return port; 2156 } 2157} 2158 2159DrainState 2160DRAMCtrl::drain() 2161{ 2162 // if there is anything in any of our internal queues, keep track 2163 // of that as well 2164 if (!(writeQueue.empty() && readQueue.empty() && respQueue.empty())) { 2165 DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d," 2166 " resp: %d\n", writeQueue.size(), readQueue.size(), 2167 respQueue.size()); 2168 2169 // the only part that is not drained automatically over time 2170 // is the write queue, thus kick things into action if needed 2171 if (!writeQueue.empty() && !nextReqEvent.scheduled()) { 2172 schedule(nextReqEvent, curTick()); 2173 } 2174 return DrainState::Draining; 2175 } else { 2176 return DrainState::Drained; 2177 } 2178} 2179 2180void 2181DRAMCtrl::drainResume() 2182{ 2183 if (!isTimingMode && system()->isTimingMode()) { 2184 // if we switched to timing mode, kick things into action, 2185 // and behave as if we restored from a checkpoint 2186 startup(); 2187 } else if (isTimingMode && !system()->isTimingMode()) { 2188 // if we switch from timing mode, stop the refresh events to 2189 // not cause issues with KVM 2190 for (auto r : ranks) { 2191 r->suspend(); 2192 } 2193 } 2194 2195 // update the mode 2196 isTimingMode = system()->isTimingMode(); 2197} 2198 2199DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory) 2200 : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this), 2201 memory(_memory) 2202{ } 2203 2204AddrRangeList 2205DRAMCtrl::MemoryPort::getAddrRanges() const 2206{ 2207 AddrRangeList ranges; 2208 ranges.push_back(memory.getAddrRange()); 2209 return ranges; 2210} 2211 2212void 2213DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt) 2214{ 2215 pkt->pushLabel(memory.name()); 2216 2217 if (!queue.checkFunctional(pkt)) { 2218 // Default implementation of SimpleTimingPort::recvFunctional() 2219 // calls recvAtomic() and throws away the latency; we can save a 2220 // little here by just not calculating the latency. 2221 memory.recvFunctional(pkt); 2222 } 2223 2224 pkt->popLabel(); 2225} 2226 2227Tick 2228DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt) 2229{ 2230 return memory.recvAtomic(pkt); 2231} 2232 2233bool 2234DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt) 2235{ 2236 // pass it to the memory controller 2237 return memory.recvTimingReq(pkt); 2238} 2239 2240DRAMCtrl* 2241DRAMCtrlParams::create() 2242{ 2243 return new DRAMCtrl(this); 2244} 2245