dram_ctrl.cc revision 11194:c3ba89c653a9
1/*
2 * Copyright (c) 2010-2015 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2013 Amin Farmahini-Farahani
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Andreas Hansson
41 *          Ani Udipi
42 *          Neha Agarwal
43 *          Omar Naji
44 */
45
46#include "base/bitfield.hh"
47#include "base/trace.hh"
48#include "debug/DRAM.hh"
49#include "debug/DRAMPower.hh"
50#include "debug/DRAMState.hh"
51#include "debug/Drain.hh"
52#include "mem/dram_ctrl.hh"
53#include "sim/system.hh"
54
55using namespace std;
56using namespace Data;
57
58DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
59    AbstractMemory(p),
60    port(name() + ".port", *this), isTimingMode(false),
61    retryRdReq(false), retryWrReq(false),
62    busState(READ),
63    nextReqEvent(this), respondEvent(this),
64    deviceSize(p->device_size),
65    deviceBusWidth(p->device_bus_width), burstLength(p->burst_length),
66    deviceRowBufferSize(p->device_rowbuffer_size),
67    devicesPerRank(p->devices_per_rank),
68    burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8),
69    rowBufferSize(devicesPerRank * deviceRowBufferSize),
70    columnsPerRowBuffer(rowBufferSize / burstSize),
71    columnsPerStripe(range.interleaved() ? range.granularity() / burstSize : 1),
72    ranksPerChannel(p->ranks_per_channel),
73    bankGroupsPerRank(p->bank_groups_per_rank),
74    bankGroupArch(p->bank_groups_per_rank > 0),
75    banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0),
76    readBufferSize(p->read_buffer_size),
77    writeBufferSize(p->write_buffer_size),
78    writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0),
79    writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0),
80    minWritesPerSwitch(p->min_writes_per_switch),
81    writesThisTime(0), readsThisTime(0),
82    tCK(p->tCK), tWTR(p->tWTR), tRTW(p->tRTW), tCS(p->tCS), tBURST(p->tBURST),
83    tCCD_L(p->tCCD_L), tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS),
84    tWR(p->tWR), tRTP(p->tRTP), tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD),
85    tRRD_L(p->tRRD_L), tXAW(p->tXAW), activationLimit(p->activation_limit),
86    memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
87    pageMgmt(p->page_policy),
88    maxAccessesPerRow(p->max_accesses_per_row),
89    frontendLatency(p->static_frontend_latency),
90    backendLatency(p->static_backend_latency),
91    busBusyUntil(0), prevArrival(0),
92    nextReqTime(0), activeRank(0), timeStampOffset(0)
93{
94    // sanity check the ranks since we rely on bit slicing for the
95    // address decoding
96    fatal_if(!isPowerOf2(ranksPerChannel), "DRAM rank count of %d is not "
97             "allowed, must be a power of two\n", ranksPerChannel);
98
99    fatal_if(!isPowerOf2(burstSize), "DRAM burst size %d is not allowed, "
100             "must be a power of two\n", burstSize);
101
102    for (int i = 0; i < ranksPerChannel; i++) {
103        Rank* rank = new Rank(*this, p);
104        ranks.push_back(rank);
105
106        rank->actTicks.resize(activationLimit, 0);
107        rank->banks.resize(banksPerRank);
108        rank->rank = i;
109
110        for (int b = 0; b < banksPerRank; b++) {
111            rank->banks[b].bank = b;
112            // GDDR addressing of banks to BG is linear.
113            // Here we assume that all DRAM generations address bank groups as
114            // follows:
115            if (bankGroupArch) {
116                // Simply assign lower bits to bank group in order to
117                // rotate across bank groups as banks are incremented
118                // e.g. with 4 banks per bank group and 16 banks total:
119                //    banks 0,4,8,12  are in bank group 0
120                //    banks 1,5,9,13  are in bank group 1
121                //    banks 2,6,10,14 are in bank group 2
122                //    banks 3,7,11,15 are in bank group 3
123                rank->banks[b].bankgr = b % bankGroupsPerRank;
124            } else {
125                // No bank groups; simply assign to bank number
126                rank->banks[b].bankgr = b;
127            }
128        }
129    }
130
131    // perform a basic check of the write thresholds
132    if (p->write_low_thresh_perc >= p->write_high_thresh_perc)
133        fatal("Write buffer low threshold %d must be smaller than the "
134              "high threshold %d\n", p->write_low_thresh_perc,
135              p->write_high_thresh_perc);
136
137    // determine the rows per bank by looking at the total capacity
138    uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size());
139
140    // determine the dram actual capacity from the DRAM config in Mbytes
141    uint64_t deviceCapacity = deviceSize / (1024 * 1024) * devicesPerRank *
142        ranksPerChannel;
143
144    // if actual DRAM size does not match memory capacity in system warn!
145    if (deviceCapacity != capacity / (1024 * 1024))
146        warn("DRAM device capacity (%d Mbytes) does not match the "
147             "address range assigned (%d Mbytes)\n", deviceCapacity,
148             capacity / (1024 * 1024));
149
150    DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
151            AbstractMemory::size());
152
153    DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n",
154            rowBufferSize, columnsPerRowBuffer);
155
156    rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel);
157
158    // some basic sanity checks
159    if (tREFI <= tRP || tREFI <= tRFC) {
160        fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n",
161              tREFI, tRP, tRFC);
162    }
163
164    // basic bank group architecture checks ->
165    if (bankGroupArch) {
166        // must have at least one bank per bank group
167        if (bankGroupsPerRank > banksPerRank) {
168            fatal("banks per rank (%d) must be equal to or larger than "
169                  "banks groups per rank (%d)\n",
170                  banksPerRank, bankGroupsPerRank);
171        }
172        // must have same number of banks in each bank group
173        if ((banksPerRank % bankGroupsPerRank) != 0) {
174            fatal("Banks per rank (%d) must be evenly divisible by bank groups "
175                  "per rank (%d) for equal banks per bank group\n",
176                  banksPerRank, bankGroupsPerRank);
177        }
178        // tCCD_L should be greater than minimal, back-to-back burst delay
179        if (tCCD_L <= tBURST) {
180            fatal("tCCD_L (%d) should be larger than tBURST (%d) when "
181                  "bank groups per rank (%d) is greater than 1\n",
182                  tCCD_L, tBURST, bankGroupsPerRank);
183        }
184        // tRRD_L is greater than minimal, same bank group ACT-to-ACT delay
185        // some datasheets might specify it equal to tRRD
186        if (tRRD_L < tRRD) {
187            fatal("tRRD_L (%d) should be larger than tRRD (%d) when "
188                  "bank groups per rank (%d) is greater than 1\n",
189                  tRRD_L, tRRD, bankGroupsPerRank);
190        }
191    }
192
193}
194
195void
196DRAMCtrl::init()
197{
198    AbstractMemory::init();
199
200   if (!port.isConnected()) {
201        fatal("DRAMCtrl %s is unconnected!\n", name());
202    } else {
203        port.sendRangeChange();
204    }
205
206    // a bit of sanity checks on the interleaving, save it for here to
207    // ensure that the system pointer is initialised
208    if (range.interleaved()) {
209        if (channels != range.stripes())
210            fatal("%s has %d interleaved address stripes but %d channel(s)\n",
211                  name(), range.stripes(), channels);
212
213        if (addrMapping == Enums::RoRaBaChCo) {
214            if (rowBufferSize != range.granularity()) {
215                fatal("Channel interleaving of %s doesn't match RoRaBaChCo "
216                      "address map\n", name());
217            }
218        } else if (addrMapping == Enums::RoRaBaCoCh ||
219                   addrMapping == Enums::RoCoRaBaCh) {
220            // for the interleavings with channel bits in the bottom,
221            // if the system uses a channel striping granularity that
222            // is larger than the DRAM burst size, then map the
223            // sequential accesses within a stripe to a number of
224            // columns in the DRAM, effectively placing some of the
225            // lower-order column bits as the least-significant bits
226            // of the address (above the ones denoting the burst size)
227            assert(columnsPerStripe >= 1);
228
229            // channel striping has to be done at a granularity that
230            // is equal or larger to a cache line
231            if (system()->cacheLineSize() > range.granularity()) {
232                fatal("Channel interleaving of %s must be at least as large "
233                      "as the cache line size\n", name());
234            }
235
236            // ...and equal or smaller than the row-buffer size
237            if (rowBufferSize < range.granularity()) {
238                fatal("Channel interleaving of %s must be at most as large "
239                      "as the row-buffer size\n", name());
240            }
241            // this is essentially the check above, so just to be sure
242            assert(columnsPerStripe <= columnsPerRowBuffer);
243        }
244    }
245}
246
247void
248DRAMCtrl::startup()
249{
250    // remember the memory system mode of operation
251    isTimingMode = system()->isTimingMode();
252
253    if (isTimingMode) {
254        // timestamp offset should be in clock cycles for DRAMPower
255        timeStampOffset = divCeil(curTick(), tCK);
256
257        // update the start tick for the precharge accounting to the
258        // current tick
259        for (auto r : ranks) {
260            r->startup(curTick() + tREFI - tRP);
261        }
262
263        // shift the bus busy time sufficiently far ahead that we never
264        // have to worry about negative values when computing the time for
265        // the next request, this will add an insignificant bubble at the
266        // start of simulation
267        busBusyUntil = curTick() + tRP + tRCD + tCL;
268    }
269}
270
271Tick
272DRAMCtrl::recvAtomic(PacketPtr pkt)
273{
274    DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
275
276    // do the actual memory access and turn the packet into a response
277    access(pkt);
278
279    Tick latency = 0;
280    if (!pkt->memInhibitAsserted() && pkt->hasData()) {
281        // this value is not supposed to be accurate, just enough to
282        // keep things going, mimic a closed page
283        latency = tRP + tRCD + tCL;
284    }
285    return latency;
286}
287
288bool
289DRAMCtrl::readQueueFull(unsigned int neededEntries) const
290{
291    DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n",
292            readBufferSize, readQueue.size() + respQueue.size(),
293            neededEntries);
294
295    return
296        (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize;
297}
298
299bool
300DRAMCtrl::writeQueueFull(unsigned int neededEntries) const
301{
302    DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n",
303            writeBufferSize, writeQueue.size(), neededEntries);
304    return (writeQueue.size() + neededEntries) > writeBufferSize;
305}
306
307DRAMCtrl::DRAMPacket*
308DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size,
309                       bool isRead)
310{
311    // decode the address based on the address mapping scheme, with
312    // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and
313    // channel, respectively
314    uint8_t rank;
315    uint8_t bank;
316    // use a 64-bit unsigned during the computations as the row is
317    // always the top bits, and check before creating the DRAMPacket
318    uint64_t row;
319
320    // truncate the address to a DRAM burst, which makes it unique to
321    // a specific column, row, bank, rank and channel
322    Addr addr = dramPktAddr / burstSize;
323
324    // we have removed the lowest order address bits that denote the
325    // position within the column
326    if (addrMapping == Enums::RoRaBaChCo) {
327        // the lowest order bits denote the column to ensure that
328        // sequential cache lines occupy the same row
329        addr = addr / columnsPerRowBuffer;
330
331        // take out the channel part of the address
332        addr = addr / channels;
333
334        // after the channel bits, get the bank bits to interleave
335        // over the banks
336        bank = addr % banksPerRank;
337        addr = addr / banksPerRank;
338
339        // after the bank, we get the rank bits which thus interleaves
340        // over the ranks
341        rank = addr % ranksPerChannel;
342        addr = addr / ranksPerChannel;
343
344        // lastly, get the row bits, no need to remove them from addr
345        row = addr % rowsPerBank;
346    } else if (addrMapping == Enums::RoRaBaCoCh) {
347        // take out the lower-order column bits
348        addr = addr / columnsPerStripe;
349
350        // take out the channel part of the address
351        addr = addr / channels;
352
353        // next, the higher-order column bites
354        addr = addr / (columnsPerRowBuffer / columnsPerStripe);
355
356        // after the column bits, we get the bank bits to interleave
357        // over the banks
358        bank = addr % banksPerRank;
359        addr = addr / banksPerRank;
360
361        // after the bank, we get the rank bits which thus interleaves
362        // over the ranks
363        rank = addr % ranksPerChannel;
364        addr = addr / ranksPerChannel;
365
366        // lastly, get the row bits, no need to remove them from addr
367        row = addr % rowsPerBank;
368    } else if (addrMapping == Enums::RoCoRaBaCh) {
369        // optimise for closed page mode and utilise maximum
370        // parallelism of the DRAM (at the cost of power)
371
372        // take out the lower-order column bits
373        addr = addr / columnsPerStripe;
374
375        // take out the channel part of the address, not that this has
376        // to match with how accesses are interleaved between the
377        // controllers in the address mapping
378        addr = addr / channels;
379
380        // start with the bank bits, as this provides the maximum
381        // opportunity for parallelism between requests
382        bank = addr % banksPerRank;
383        addr = addr / banksPerRank;
384
385        // next get the rank bits
386        rank = addr % ranksPerChannel;
387        addr = addr / ranksPerChannel;
388
389        // next, the higher-order column bites
390        addr = addr / (columnsPerRowBuffer / columnsPerStripe);
391
392        // lastly, get the row bits, no need to remove them from addr
393        row = addr % rowsPerBank;
394    } else
395        panic("Unknown address mapping policy chosen!");
396
397    assert(rank < ranksPerChannel);
398    assert(bank < banksPerRank);
399    assert(row < rowsPerBank);
400    assert(row < Bank::NO_ROW);
401
402    DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
403            dramPktAddr, rank, bank, row);
404
405    // create the corresponding DRAM packet with the entry time and
406    // ready time set to the current tick, the latter will be updated
407    // later
408    uint16_t bank_id = banksPerRank * rank + bank;
409    return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr,
410                          size, ranks[rank]->banks[bank], *ranks[rank]);
411}
412
413void
414DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount)
415{
416    // only add to the read queue here. whenever the request is
417    // eventually done, set the readyTime, and call schedule()
418    assert(!pkt->isWrite());
419
420    assert(pktCount != 0);
421
422    // if the request size is larger than burst size, the pkt is split into
423    // multiple DRAM packets
424    // Note if the pkt starting address is not aligened to burst size, the
425    // address of first DRAM packet is kept unaliged. Subsequent DRAM packets
426    // are aligned to burst size boundaries. This is to ensure we accurately
427    // check read packets against packets in write queue.
428    Addr addr = pkt->getAddr();
429    unsigned pktsServicedByWrQ = 0;
430    BurstHelper* burst_helper = NULL;
431    for (int cnt = 0; cnt < pktCount; ++cnt) {
432        unsigned size = std::min((addr | (burstSize - 1)) + 1,
433                        pkt->getAddr() + pkt->getSize()) - addr;
434        readPktSize[ceilLog2(size)]++;
435        readBursts++;
436
437        // First check write buffer to see if the data is already at
438        // the controller
439        bool foundInWrQ = false;
440        Addr burst_addr = burstAlign(addr);
441        // if the burst address is not present then there is no need
442        // looking any further
443        if (isInWriteQueue.find(burst_addr) != isInWriteQueue.end()) {
444            for (const auto& p : writeQueue) {
445                // check if the read is subsumed in the write queue
446                // packet we are looking at
447                if (p->addr <= addr && (addr + size) <= (p->addr + p->size)) {
448                    foundInWrQ = true;
449                    servicedByWrQ++;
450                    pktsServicedByWrQ++;
451                    DPRINTF(DRAM, "Read to addr %lld with size %d serviced by "
452                            "write queue\n", addr, size);
453                    bytesReadWrQ += burstSize;
454                    break;
455                }
456            }
457        }
458
459        // If not found in the write q, make a DRAM packet and
460        // push it onto the read queue
461        if (!foundInWrQ) {
462
463            // Make the burst helper for split packets
464            if (pktCount > 1 && burst_helper == NULL) {
465                DPRINTF(DRAM, "Read to addr %lld translates to %d "
466                        "dram requests\n", pkt->getAddr(), pktCount);
467                burst_helper = new BurstHelper(pktCount);
468            }
469
470            DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true);
471            dram_pkt->burstHelper = burst_helper;
472
473            assert(!readQueueFull(1));
474            rdQLenPdf[readQueue.size() + respQueue.size()]++;
475
476            DPRINTF(DRAM, "Adding to read queue\n");
477
478            readQueue.push_back(dram_pkt);
479
480            // Update stats
481            avgRdQLen = readQueue.size() + respQueue.size();
482        }
483
484        // Starting address of next dram pkt (aligend to burstSize boundary)
485        addr = (addr | (burstSize - 1)) + 1;
486    }
487
488    // If all packets are serviced by write queue, we send the repsonse back
489    if (pktsServicedByWrQ == pktCount) {
490        accessAndRespond(pkt, frontendLatency);
491        return;
492    }
493
494    // Update how many split packets are serviced by write queue
495    if (burst_helper != NULL)
496        burst_helper->burstsServiced = pktsServicedByWrQ;
497
498    // If we are not already scheduled to get a request out of the
499    // queue, do so now
500    if (!nextReqEvent.scheduled()) {
501        DPRINTF(DRAM, "Request scheduled immediately\n");
502        schedule(nextReqEvent, curTick());
503    }
504}
505
506void
507DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount)
508{
509    // only add to the write queue here. whenever the request is
510    // eventually done, set the readyTime, and call schedule()
511    assert(pkt->isWrite());
512
513    // if the request size is larger than burst size, the pkt is split into
514    // multiple DRAM packets
515    Addr addr = pkt->getAddr();
516    for (int cnt = 0; cnt < pktCount; ++cnt) {
517        unsigned size = std::min((addr | (burstSize - 1)) + 1,
518                        pkt->getAddr() + pkt->getSize()) - addr;
519        writePktSize[ceilLog2(size)]++;
520        writeBursts++;
521
522        // see if we can merge with an existing item in the write
523        // queue and keep track of whether we have merged or not
524        bool merged = isInWriteQueue.find(burstAlign(addr)) !=
525            isInWriteQueue.end();
526
527        // if the item was not merged we need to create a new write
528        // and enqueue it
529        if (!merged) {
530            DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false);
531
532            assert(writeQueue.size() < writeBufferSize);
533            wrQLenPdf[writeQueue.size()]++;
534
535            DPRINTF(DRAM, "Adding to write queue\n");
536
537            writeQueue.push_back(dram_pkt);
538            isInWriteQueue.insert(burstAlign(addr));
539            assert(writeQueue.size() == isInWriteQueue.size());
540
541            // Update stats
542            avgWrQLen = writeQueue.size();
543        } else {
544            DPRINTF(DRAM, "Merging write burst with existing queue entry\n");
545
546            // keep track of the fact that this burst effectively
547            // disappeared as it was merged with an existing one
548            mergedWrBursts++;
549        }
550
551        // Starting address of next dram pkt (aligend to burstSize boundary)
552        addr = (addr | (burstSize - 1)) + 1;
553    }
554
555    // we do not wait for the writes to be send to the actual memory,
556    // but instead take responsibility for the consistency here and
557    // snoop the write queue for any upcoming reads
558    // @todo, if a pkt size is larger than burst size, we might need a
559    // different front end latency
560    accessAndRespond(pkt, frontendLatency);
561
562    // If we are not already scheduled to get a request out of the
563    // queue, do so now
564    if (!nextReqEvent.scheduled()) {
565        DPRINTF(DRAM, "Request scheduled immediately\n");
566        schedule(nextReqEvent, curTick());
567    }
568}
569
570void
571DRAMCtrl::printQs() const {
572    DPRINTF(DRAM, "===READ QUEUE===\n\n");
573    for (auto i = readQueue.begin() ;  i != readQueue.end() ; ++i) {
574        DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
575    }
576    DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
577    for (auto i = respQueue.begin() ;  i != respQueue.end() ; ++i) {
578        DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
579    }
580    DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
581    for (auto i = writeQueue.begin() ;  i != writeQueue.end() ; ++i) {
582        DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
583    }
584}
585
586bool
587DRAMCtrl::recvTimingReq(PacketPtr pkt)
588{
589    // This is where we enter from the outside world
590    DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n",
591            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
592
593    // sink inhibited packets without further action
594    if (pkt->memInhibitAsserted()) {
595        pendingDelete.reset(pkt);
596        return true;
597    }
598
599    // Calc avg gap between requests
600    if (prevArrival != 0) {
601        totGap += curTick() - prevArrival;
602    }
603    prevArrival = curTick();
604
605
606    // Find out how many dram packets a pkt translates to
607    // If the burst size is equal or larger than the pkt size, then a pkt
608    // translates to only one dram packet. Otherwise, a pkt translates to
609    // multiple dram packets
610    unsigned size = pkt->getSize();
611    unsigned offset = pkt->getAddr() & (burstSize - 1);
612    unsigned int dram_pkt_count = divCeil(offset + size, burstSize);
613
614    // check local buffers and do not accept if full
615    if (pkt->isRead()) {
616        assert(size != 0);
617        if (readQueueFull(dram_pkt_count)) {
618            DPRINTF(DRAM, "Read queue full, not accepting\n");
619            // remember that we have to retry this port
620            retryRdReq = true;
621            numRdRetry++;
622            return false;
623        } else {
624            addToReadQueue(pkt, dram_pkt_count);
625            readReqs++;
626            bytesReadSys += size;
627        }
628    } else if (pkt->isWrite()) {
629        assert(size != 0);
630        if (writeQueueFull(dram_pkt_count)) {
631            DPRINTF(DRAM, "Write queue full, not accepting\n");
632            // remember that we have to retry this port
633            retryWrReq = true;
634            numWrRetry++;
635            return false;
636        } else {
637            addToWriteQueue(pkt, dram_pkt_count);
638            writeReqs++;
639            bytesWrittenSys += size;
640        }
641    } else {
642        DPRINTF(DRAM,"Neither read nor write, ignore timing\n");
643        neitherReadNorWrite++;
644        accessAndRespond(pkt, 1);
645    }
646
647    return true;
648}
649
650void
651DRAMCtrl::processRespondEvent()
652{
653    DPRINTF(DRAM,
654            "processRespondEvent(): Some req has reached its readyTime\n");
655
656    DRAMPacket* dram_pkt = respQueue.front();
657
658    if (dram_pkt->burstHelper) {
659        // it is a split packet
660        dram_pkt->burstHelper->burstsServiced++;
661        if (dram_pkt->burstHelper->burstsServiced ==
662            dram_pkt->burstHelper->burstCount) {
663            // we have now serviced all children packets of a system packet
664            // so we can now respond to the requester
665            // @todo we probably want to have a different front end and back
666            // end latency for split packets
667            accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
668            delete dram_pkt->burstHelper;
669            dram_pkt->burstHelper = NULL;
670        }
671    } else {
672        // it is not a split packet
673        accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
674    }
675
676    delete respQueue.front();
677    respQueue.pop_front();
678
679    if (!respQueue.empty()) {
680        assert(respQueue.front()->readyTime >= curTick());
681        assert(!respondEvent.scheduled());
682        schedule(respondEvent, respQueue.front()->readyTime);
683    } else {
684        // if there is nothing left in any queue, signal a drain
685        if (drainState() == DrainState::Draining &&
686            writeQueue.empty() && readQueue.empty()) {
687
688            DPRINTF(Drain, "DRAM controller done draining\n");
689            signalDrainDone();
690        }
691    }
692
693    // We have made a location in the queue available at this point,
694    // so if there is a read that was forced to wait, retry now
695    if (retryRdReq) {
696        retryRdReq = false;
697        port.sendRetryReq();
698    }
699}
700
701bool
702DRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue, Tick extra_col_delay)
703{
704    // This method does the arbitration between requests. The chosen
705    // packet is simply moved to the head of the queue. The other
706    // methods know that this is the place to look. For example, with
707    // FCFS, this method does nothing
708    assert(!queue.empty());
709
710    // bool to indicate if a packet to an available rank is found
711    bool found_packet = false;
712    if (queue.size() == 1) {
713        DRAMPacket* dram_pkt = queue.front();
714        // available rank corresponds to state refresh idle
715        if (ranks[dram_pkt->rank]->isAvailable()) {
716            found_packet = true;
717            DPRINTF(DRAM, "Single request, going to a free rank\n");
718        } else {
719            DPRINTF(DRAM, "Single request, going to a busy rank\n");
720        }
721        return found_packet;
722    }
723
724    if (memSchedPolicy == Enums::fcfs) {
725        // check if there is a packet going to a free rank
726        for(auto i = queue.begin(); i != queue.end() ; ++i) {
727            DRAMPacket* dram_pkt = *i;
728            if (ranks[dram_pkt->rank]->isAvailable()) {
729                queue.erase(i);
730                queue.push_front(dram_pkt);
731                found_packet = true;
732                break;
733            }
734        }
735    } else if (memSchedPolicy == Enums::frfcfs) {
736        found_packet = reorderQueue(queue, extra_col_delay);
737    } else
738        panic("No scheduling policy chosen\n");
739    return found_packet;
740}
741
742bool
743DRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue, Tick extra_col_delay)
744{
745    // Only determine this if needed
746    uint64_t earliest_banks = 0;
747    bool hidden_bank_prep = false;
748
749    // search for seamless row hits first, if no seamless row hit is
750    // found then determine if there are other packets that can be issued
751    // without incurring additional bus delay due to bank timing
752    // Will select closed rows first to enable more open row possibilies
753    // in future selections
754    bool found_hidden_bank = false;
755
756    // remember if we found a row hit, not seamless, but bank prepped
757    // and ready
758    bool found_prepped_pkt = false;
759
760    // if we have no row hit, prepped or not, and no seamless packet,
761    // just go for the earliest possible
762    bool found_earliest_pkt = false;
763
764    auto selected_pkt_it = queue.end();
765
766    // time we need to issue a column command to be seamless
767    const Tick min_col_at = std::max(busBusyUntil - tCL + extra_col_delay,
768                                     curTick());
769
770    for (auto i = queue.begin(); i != queue.end() ; ++i) {
771        DRAMPacket* dram_pkt = *i;
772        const Bank& bank = dram_pkt->bankRef;
773
774        // check if rank is available, if not, jump to the next packet
775        if (dram_pkt->rankRef.isAvailable()) {
776            // check if it is a row hit
777            if (bank.openRow == dram_pkt->row) {
778                // no additional rank-to-rank or same bank-group
779                // delays, or we switched read/write and might as well
780                // go for the row hit
781                if (bank.colAllowedAt <= min_col_at) {
782                    // FCFS within the hits, giving priority to
783                    // commands that can issue seamlessly, without
784                    // additional delay, such as same rank accesses
785                    // and/or different bank-group accesses
786                    DPRINTF(DRAM, "Seamless row buffer hit\n");
787                    selected_pkt_it = i;
788                    // no need to look through the remaining queue entries
789                    break;
790                } else if (!found_hidden_bank && !found_prepped_pkt) {
791                    // if we did not find a packet to a closed row that can
792                    // issue the bank commands without incurring delay, and
793                    // did not yet find a packet to a prepped row, remember
794                    // the current one
795                    selected_pkt_it = i;
796                    found_prepped_pkt = true;
797                    DPRINTF(DRAM, "Prepped row buffer hit\n");
798                }
799            } else if (!found_earliest_pkt) {
800                // if we have not initialised the bank status, do it
801                // now, and only once per scheduling decisions
802                if (earliest_banks == 0) {
803                    // determine entries with earliest bank delay
804                    pair<uint64_t, bool> bankStatus =
805                        minBankPrep(queue, min_col_at);
806                    earliest_banks = bankStatus.first;
807                    hidden_bank_prep = bankStatus.second;
808                }
809
810                // bank is amongst first available banks
811                // minBankPrep will give priority to packets that can
812                // issue seamlessly
813                if (bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) {
814                    found_earliest_pkt = true;
815                    found_hidden_bank = hidden_bank_prep;
816
817                    // give priority to packets that can issue
818                    // bank commands 'behind the scenes'
819                    // any additional delay if any will be due to
820                    // col-to-col command requirements
821                    if (hidden_bank_prep || !found_prepped_pkt)
822                        selected_pkt_it = i;
823                }
824            }
825        }
826    }
827
828    if (selected_pkt_it != queue.end()) {
829        DRAMPacket* selected_pkt = *selected_pkt_it;
830        queue.erase(selected_pkt_it);
831        queue.push_front(selected_pkt);
832        return true;
833    }
834
835    return false;
836}
837
838void
839DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency)
840{
841    DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
842
843    bool needsResponse = pkt->needsResponse();
844    // do the actual memory access which also turns the packet into a
845    // response
846    access(pkt);
847
848    // turn packet around to go back to requester if response expected
849    if (needsResponse) {
850        // access already turned the packet into a response
851        assert(pkt->isResponse());
852        // response_time consumes the static latency and is charged also
853        // with headerDelay that takes into account the delay provided by
854        // the xbar and also the payloadDelay that takes into account the
855        // number of data beats.
856        Tick response_time = curTick() + static_latency + pkt->headerDelay +
857                             pkt->payloadDelay;
858        // Here we reset the timing of the packet before sending it out.
859        pkt->headerDelay = pkt->payloadDelay = 0;
860
861        // queue the packet in the response queue to be sent out after
862        // the static latency has passed
863        port.schedTimingResp(pkt, response_time, true);
864    } else {
865        // @todo the packet is going to be deleted, and the DRAMPacket
866        // is still having a pointer to it
867        pendingDelete.reset(pkt);
868    }
869
870    DPRINTF(DRAM, "Done\n");
871
872    return;
873}
874
875void
876DRAMCtrl::activateBank(Rank& rank_ref, Bank& bank_ref,
877                       Tick act_tick, uint32_t row)
878{
879    assert(rank_ref.actTicks.size() == activationLimit);
880
881    DPRINTF(DRAM, "Activate at tick %d\n", act_tick);
882
883    // update the open row
884    assert(bank_ref.openRow == Bank::NO_ROW);
885    bank_ref.openRow = row;
886
887    // start counting anew, this covers both the case when we
888    // auto-precharged, and when this access is forced to
889    // precharge
890    bank_ref.bytesAccessed = 0;
891    bank_ref.rowAccesses = 0;
892
893    ++rank_ref.numBanksActive;
894    assert(rank_ref.numBanksActive <= banksPerRank);
895
896    DPRINTF(DRAM, "Activate bank %d, rank %d at tick %lld, now got %d active\n",
897            bank_ref.bank, rank_ref.rank, act_tick,
898            ranks[rank_ref.rank]->numBanksActive);
899
900    rank_ref.power.powerlib.doCommand(MemCommand::ACT, bank_ref.bank,
901                                      divCeil(act_tick, tCK) -
902                                      timeStampOffset);
903
904    DPRINTF(DRAMPower, "%llu,ACT,%d,%d\n", divCeil(act_tick, tCK) -
905            timeStampOffset, bank_ref.bank, rank_ref.rank);
906
907    // The next access has to respect tRAS for this bank
908    bank_ref.preAllowedAt = act_tick + tRAS;
909
910    // Respect the row-to-column command delay
911    bank_ref.colAllowedAt = std::max(act_tick + tRCD, bank_ref.colAllowedAt);
912
913    // start by enforcing tRRD
914    for(int i = 0; i < banksPerRank; i++) {
915        // next activate to any bank in this rank must not happen
916        // before tRRD
917        if (bankGroupArch && (bank_ref.bankgr == rank_ref.banks[i].bankgr)) {
918            // bank group architecture requires longer delays between
919            // ACT commands within the same bank group.  Use tRRD_L
920            // in this case
921            rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD_L,
922                                             rank_ref.banks[i].actAllowedAt);
923        } else {
924            // use shorter tRRD value when either
925            // 1) bank group architecture is not supportted
926            // 2) bank is in a different bank group
927            rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD,
928                                             rank_ref.banks[i].actAllowedAt);
929        }
930    }
931
932    // next, we deal with tXAW, if the activation limit is disabled
933    // then we directly schedule an activate power event
934    if (!rank_ref.actTicks.empty()) {
935        // sanity check
936        if (rank_ref.actTicks.back() &&
937           (act_tick - rank_ref.actTicks.back()) < tXAW) {
938            panic("Got %d activates in window %d (%llu - %llu) which "
939                  "is smaller than %llu\n", activationLimit, act_tick -
940                  rank_ref.actTicks.back(), act_tick,
941                  rank_ref.actTicks.back(), tXAW);
942        }
943
944        // shift the times used for the book keeping, the last element
945        // (highest index) is the oldest one and hence the lowest value
946        rank_ref.actTicks.pop_back();
947
948        // record an new activation (in the future)
949        rank_ref.actTicks.push_front(act_tick);
950
951        // cannot activate more than X times in time window tXAW, push the
952        // next one (the X + 1'st activate) to be tXAW away from the
953        // oldest in our window of X
954        if (rank_ref.actTicks.back() &&
955           (act_tick - rank_ref.actTicks.back()) < tXAW) {
956            DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate "
957                    "no earlier than %llu\n", activationLimit,
958                    rank_ref.actTicks.back() + tXAW);
959            for(int j = 0; j < banksPerRank; j++)
960                // next activate must not happen before end of window
961                rank_ref.banks[j].actAllowedAt =
962                    std::max(rank_ref.actTicks.back() + tXAW,
963                             rank_ref.banks[j].actAllowedAt);
964        }
965    }
966
967    // at the point when this activate takes place, make sure we
968    // transition to the active power state
969    if (!rank_ref.activateEvent.scheduled())
970        schedule(rank_ref.activateEvent, act_tick);
971    else if (rank_ref.activateEvent.when() > act_tick)
972        // move it sooner in time
973        reschedule(rank_ref.activateEvent, act_tick);
974}
975
976void
977DRAMCtrl::prechargeBank(Rank& rank_ref, Bank& bank, Tick pre_at, bool trace)
978{
979    // make sure the bank has an open row
980    assert(bank.openRow != Bank::NO_ROW);
981
982    // sample the bytes per activate here since we are closing
983    // the page
984    bytesPerActivate.sample(bank.bytesAccessed);
985
986    bank.openRow = Bank::NO_ROW;
987
988    // no precharge allowed before this one
989    bank.preAllowedAt = pre_at;
990
991    Tick pre_done_at = pre_at + tRP;
992
993    bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at);
994
995    assert(rank_ref.numBanksActive != 0);
996    --rank_ref.numBanksActive;
997
998    DPRINTF(DRAM, "Precharging bank %d, rank %d at tick %lld, now got "
999            "%d active\n", bank.bank, rank_ref.rank, pre_at,
1000            rank_ref.numBanksActive);
1001
1002    if (trace) {
1003
1004        rank_ref.power.powerlib.doCommand(MemCommand::PRE, bank.bank,
1005                                                divCeil(pre_at, tCK) -
1006                                                timeStampOffset);
1007        DPRINTF(DRAMPower, "%llu,PRE,%d,%d\n", divCeil(pre_at, tCK) -
1008                timeStampOffset, bank.bank, rank_ref.rank);
1009    }
1010    // if we look at the current number of active banks we might be
1011    // tempted to think the DRAM is now idle, however this can be
1012    // undone by an activate that is scheduled to happen before we
1013    // would have reached the idle state, so schedule an event and
1014    // rather check once we actually make it to the point in time when
1015    // the (last) precharge takes place
1016    if (!rank_ref.prechargeEvent.scheduled())
1017        schedule(rank_ref.prechargeEvent, pre_done_at);
1018    else if (rank_ref.prechargeEvent.when() < pre_done_at)
1019        reschedule(rank_ref.prechargeEvent, pre_done_at);
1020}
1021
1022void
1023DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
1024{
1025    DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
1026            dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
1027
1028    // get the rank
1029    Rank& rank = dram_pkt->rankRef;
1030
1031    // get the bank
1032    Bank& bank = dram_pkt->bankRef;
1033
1034    // for the state we need to track if it is a row hit or not
1035    bool row_hit = true;
1036
1037    // respect any constraints on the command (e.g. tRCD or tCCD)
1038    Tick cmd_at = std::max(bank.colAllowedAt, curTick());
1039
1040    // Determine the access latency and update the bank state
1041    if (bank.openRow == dram_pkt->row) {
1042        // nothing to do
1043    } else {
1044        row_hit = false;
1045
1046        // If there is a page open, precharge it.
1047        if (bank.openRow != Bank::NO_ROW) {
1048            prechargeBank(rank, bank, std::max(bank.preAllowedAt, curTick()));
1049        }
1050
1051        // next we need to account for the delay in activating the
1052        // page
1053        Tick act_tick = std::max(bank.actAllowedAt, curTick());
1054
1055        // Record the activation and deal with all the global timing
1056        // constraints caused be a new activation (tRRD and tXAW)
1057        activateBank(rank, bank, act_tick, dram_pkt->row);
1058
1059        // issue the command as early as possible
1060        cmd_at = bank.colAllowedAt;
1061    }
1062
1063    // we need to wait until the bus is available before we can issue
1064    // the command
1065    cmd_at = std::max(cmd_at, busBusyUntil - tCL);
1066
1067    // update the packet ready time
1068    dram_pkt->readyTime = cmd_at + tCL + tBURST;
1069
1070    // only one burst can use the bus at any one point in time
1071    assert(dram_pkt->readyTime - busBusyUntil >= tBURST);
1072
1073    // update the time for the next read/write burst for each
1074    // bank (add a max with tCCD/tCCD_L here)
1075    Tick cmd_dly;
1076    for(int j = 0; j < ranksPerChannel; j++) {
1077        for(int i = 0; i < banksPerRank; i++) {
1078            // next burst to same bank group in this rank must not happen
1079            // before tCCD_L.  Different bank group timing requirement is
1080            // tBURST; Add tCS for different ranks
1081            if (dram_pkt->rank == j) {
1082                if (bankGroupArch &&
1083                   (bank.bankgr == ranks[j]->banks[i].bankgr)) {
1084                    // bank group architecture requires longer delays between
1085                    // RD/WR burst commands to the same bank group.
1086                    // Use tCCD_L in this case
1087                    cmd_dly = tCCD_L;
1088                } else {
1089                    // use tBURST (equivalent to tCCD_S), the shorter
1090                    // cas-to-cas delay value, when either:
1091                    // 1) bank group architecture is not supportted
1092                    // 2) bank is in a different bank group
1093                    cmd_dly = tBURST;
1094                }
1095            } else {
1096                // different rank is by default in a different bank group
1097                // use tBURST (equivalent to tCCD_S), which is the shorter
1098                // cas-to-cas delay in this case
1099                // Add tCS to account for rank-to-rank bus delay requirements
1100                cmd_dly = tBURST + tCS;
1101            }
1102            ranks[j]->banks[i].colAllowedAt = std::max(cmd_at + cmd_dly,
1103                                             ranks[j]->banks[i].colAllowedAt);
1104        }
1105    }
1106
1107    // Save rank of current access
1108    activeRank = dram_pkt->rank;
1109
1110    // If this is a write, we also need to respect the write recovery
1111    // time before a precharge, in the case of a read, respect the
1112    // read to precharge constraint
1113    bank.preAllowedAt = std::max(bank.preAllowedAt,
1114                                 dram_pkt->isRead ? cmd_at + tRTP :
1115                                 dram_pkt->readyTime + tWR);
1116
1117    // increment the bytes accessed and the accesses per row
1118    bank.bytesAccessed += burstSize;
1119    ++bank.rowAccesses;
1120
1121    // if we reached the max, then issue with an auto-precharge
1122    bool auto_precharge = pageMgmt == Enums::close ||
1123        bank.rowAccesses == maxAccessesPerRow;
1124
1125    // if we did not hit the limit, we might still want to
1126    // auto-precharge
1127    if (!auto_precharge &&
1128        (pageMgmt == Enums::open_adaptive ||
1129         pageMgmt == Enums::close_adaptive)) {
1130        // a twist on the open and close page policies:
1131        // 1) open_adaptive page policy does not blindly keep the
1132        // page open, but close it if there are no row hits, and there
1133        // are bank conflicts in the queue
1134        // 2) close_adaptive page policy does not blindly close the
1135        // page, but closes it only if there are no row hits in the queue.
1136        // In this case, only force an auto precharge when there
1137        // are no same page hits in the queue
1138        bool got_more_hits = false;
1139        bool got_bank_conflict = false;
1140
1141        // either look at the read queue or write queue
1142        const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue :
1143            writeQueue;
1144        auto p = queue.begin();
1145        // make sure we are not considering the packet that we are
1146        // currently dealing with (which is the head of the queue)
1147        ++p;
1148
1149        // keep on looking until we find a hit or reach the end of the queue
1150        // 1) if a hit is found, then both open and close adaptive policies keep
1151        // the page open
1152        // 2) if no hit is found, got_bank_conflict is set to true if a bank
1153        // conflict request is waiting in the queue
1154        while (!got_more_hits && p != queue.end()) {
1155            bool same_rank_bank = (dram_pkt->rank == (*p)->rank) &&
1156                (dram_pkt->bank == (*p)->bank);
1157            bool same_row = dram_pkt->row == (*p)->row;
1158            got_more_hits |= same_rank_bank && same_row;
1159            got_bank_conflict |= same_rank_bank && !same_row;
1160            ++p;
1161        }
1162
1163        // auto pre-charge when either
1164        // 1) open_adaptive policy, we have not got any more hits, and
1165        //    have a bank conflict
1166        // 2) close_adaptive policy and we have not got any more hits
1167        auto_precharge = !got_more_hits &&
1168            (got_bank_conflict || pageMgmt == Enums::close_adaptive);
1169    }
1170
1171    // DRAMPower trace command to be written
1172    std::string mem_cmd = dram_pkt->isRead ? "RD" : "WR";
1173
1174    // MemCommand required for DRAMPower library
1175    MemCommand::cmds command = (mem_cmd == "RD") ? MemCommand::RD :
1176                                                   MemCommand::WR;
1177
1178    // if this access should use auto-precharge, then we are
1179    // closing the row
1180    if (auto_precharge) {
1181        // if auto-precharge push a PRE command at the correct tick to the
1182        // list used by DRAMPower library to calculate power
1183        prechargeBank(rank, bank, std::max(curTick(), bank.preAllowedAt));
1184
1185        DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId);
1186    }
1187
1188    // Update bus state
1189    busBusyUntil = dram_pkt->readyTime;
1190
1191    DPRINTF(DRAM, "Access to %lld, ready at %lld bus busy until %lld.\n",
1192            dram_pkt->addr, dram_pkt->readyTime, busBusyUntil);
1193
1194    dram_pkt->rankRef.power.powerlib.doCommand(command, dram_pkt->bank,
1195                                                 divCeil(cmd_at, tCK) -
1196                                                 timeStampOffset);
1197
1198    DPRINTF(DRAMPower, "%llu,%s,%d,%d\n", divCeil(cmd_at, tCK) -
1199            timeStampOffset, mem_cmd, dram_pkt->bank, dram_pkt->rank);
1200
1201    // Update the minimum timing between the requests, this is a
1202    // conservative estimate of when we have to schedule the next
1203    // request to not introduce any unecessary bubbles. In most cases
1204    // we will wake up sooner than we have to.
1205    nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
1206
1207    // Update the stats and schedule the next request
1208    if (dram_pkt->isRead) {
1209        ++readsThisTime;
1210        if (row_hit)
1211            readRowHits++;
1212        bytesReadDRAM += burstSize;
1213        perBankRdBursts[dram_pkt->bankId]++;
1214
1215        // Update latency stats
1216        totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
1217        totBusLat += tBURST;
1218        totQLat += cmd_at - dram_pkt->entryTime;
1219    } else {
1220        ++writesThisTime;
1221        if (row_hit)
1222            writeRowHits++;
1223        bytesWritten += burstSize;
1224        perBankWrBursts[dram_pkt->bankId]++;
1225    }
1226}
1227
1228void
1229DRAMCtrl::processNextReqEvent()
1230{
1231    int busyRanks = 0;
1232    for (auto r : ranks) {
1233        if (!r->isAvailable()) {
1234            // rank is busy refreshing
1235            busyRanks++;
1236
1237            // let the rank know that if it was waiting to drain, it
1238            // is now done and ready to proceed
1239            r->checkDrainDone();
1240        }
1241    }
1242
1243    if (busyRanks == ranksPerChannel) {
1244        // if all ranks are refreshing wait for them to finish
1245        // and stall this state machine without taking any further
1246        // action, and do not schedule a new nextReqEvent
1247        return;
1248    }
1249
1250    // pre-emptively set to false.  Overwrite if in READ_TO_WRITE
1251    // or WRITE_TO_READ state
1252    bool switched_cmd_type = false;
1253    if (busState == READ_TO_WRITE) {
1254        DPRINTF(DRAM, "Switching to writes after %d reads with %d reads "
1255                "waiting\n", readsThisTime, readQueue.size());
1256
1257        // sample and reset the read-related stats as we are now
1258        // transitioning to writes, and all reads are done
1259        rdPerTurnAround.sample(readsThisTime);
1260        readsThisTime = 0;
1261
1262        // now proceed to do the actual writes
1263        busState = WRITE;
1264        switched_cmd_type = true;
1265    } else if (busState == WRITE_TO_READ) {
1266        DPRINTF(DRAM, "Switching to reads after %d writes with %d writes "
1267                "waiting\n", writesThisTime, writeQueue.size());
1268
1269        wrPerTurnAround.sample(writesThisTime);
1270        writesThisTime = 0;
1271
1272        busState = READ;
1273        switched_cmd_type = true;
1274    }
1275
1276    // when we get here it is either a read or a write
1277    if (busState == READ) {
1278
1279        // track if we should switch or not
1280        bool switch_to_writes = false;
1281
1282        if (readQueue.empty()) {
1283            // In the case there is no read request to go next,
1284            // trigger writes if we have passed the low threshold (or
1285            // if we are draining)
1286            if (!writeQueue.empty() &&
1287                (drainState() == DrainState::Draining ||
1288                 writeQueue.size() > writeLowThreshold)) {
1289
1290                switch_to_writes = true;
1291            } else {
1292                // check if we are drained
1293                if (drainState() == DrainState::Draining &&
1294                    respQueue.empty()) {
1295
1296                    DPRINTF(Drain, "DRAM controller done draining\n");
1297                    signalDrainDone();
1298                }
1299
1300                // nothing to do, not even any point in scheduling an
1301                // event for the next request
1302                return;
1303            }
1304        } else {
1305            // bool to check if there is a read to a free rank
1306            bool found_read = false;
1307
1308            // Figure out which read request goes next, and move it to the
1309            // front of the read queue
1310            // If we are changing command type, incorporate the minimum
1311            // bus turnaround delay which will be tCS (different rank) case
1312            found_read = chooseNext(readQueue,
1313                             switched_cmd_type ? tCS : 0);
1314
1315            // if no read to an available rank is found then return
1316            // at this point. There could be writes to the available ranks
1317            // which are above the required threshold. However, to
1318            // avoid adding more complexity to the code, return and wait
1319            // for a refresh event to kick things into action again.
1320            if (!found_read)
1321                return;
1322
1323            DRAMPacket* dram_pkt = readQueue.front();
1324            assert(dram_pkt->rankRef.isAvailable());
1325            // here we get a bit creative and shift the bus busy time not
1326            // just the tWTR, but also a CAS latency to capture the fact
1327            // that we are allowed to prepare a new bank, but not issue a
1328            // read command until after tWTR, in essence we capture a
1329            // bubble on the data bus that is tWTR + tCL
1330            if (switched_cmd_type && dram_pkt->rank == activeRank) {
1331                busBusyUntil += tWTR + tCL;
1332            }
1333
1334            doDRAMAccess(dram_pkt);
1335
1336            // At this point we're done dealing with the request
1337            readQueue.pop_front();
1338
1339            // sanity check
1340            assert(dram_pkt->size <= burstSize);
1341            assert(dram_pkt->readyTime >= curTick());
1342
1343            // Insert into response queue. It will be sent back to the
1344            // requestor at its readyTime
1345            if (respQueue.empty()) {
1346                assert(!respondEvent.scheduled());
1347                schedule(respondEvent, dram_pkt->readyTime);
1348            } else {
1349                assert(respQueue.back()->readyTime <= dram_pkt->readyTime);
1350                assert(respondEvent.scheduled());
1351            }
1352
1353            respQueue.push_back(dram_pkt);
1354
1355            // we have so many writes that we have to transition
1356            if (writeQueue.size() > writeHighThreshold) {
1357                switch_to_writes = true;
1358            }
1359        }
1360
1361        // switching to writes, either because the read queue is empty
1362        // and the writes have passed the low threshold (or we are
1363        // draining), or because the writes hit the hight threshold
1364        if (switch_to_writes) {
1365            // transition to writing
1366            busState = READ_TO_WRITE;
1367        }
1368    } else {
1369        // bool to check if write to free rank is found
1370        bool found_write = false;
1371
1372        // If we are changing command type, incorporate the minimum
1373        // bus turnaround delay
1374        found_write = chooseNext(writeQueue,
1375                                 switched_cmd_type ? std::min(tRTW, tCS) : 0);
1376
1377        // if no writes to an available rank are found then return.
1378        // There could be reads to the available ranks. However, to avoid
1379        // adding more complexity to the code, return at this point and wait
1380        // for a refresh event to kick things into action again.
1381        if (!found_write)
1382            return;
1383
1384        DRAMPacket* dram_pkt = writeQueue.front();
1385        assert(dram_pkt->rankRef.isAvailable());
1386        // sanity check
1387        assert(dram_pkt->size <= burstSize);
1388
1389        // add a bubble to the data bus, as defined by the
1390        // tRTW when access is to the same rank as previous burst
1391        // Different rank timing is handled with tCS, which is
1392        // applied to colAllowedAt
1393        if (switched_cmd_type && dram_pkt->rank == activeRank) {
1394            busBusyUntil += tRTW;
1395        }
1396
1397        doDRAMAccess(dram_pkt);
1398
1399        writeQueue.pop_front();
1400        isInWriteQueue.erase(burstAlign(dram_pkt->addr));
1401        delete dram_pkt;
1402
1403        // If we emptied the write queue, or got sufficiently below the
1404        // threshold (using the minWritesPerSwitch as the hysteresis) and
1405        // are not draining, or we have reads waiting and have done enough
1406        // writes, then switch to reads.
1407        if (writeQueue.empty() ||
1408            (writeQueue.size() + minWritesPerSwitch < writeLowThreshold &&
1409             drainState() != DrainState::Draining) ||
1410            (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) {
1411            // turn the bus back around for reads again
1412            busState = WRITE_TO_READ;
1413
1414            // note that the we switch back to reads also in the idle
1415            // case, which eventually will check for any draining and
1416            // also pause any further scheduling if there is really
1417            // nothing to do
1418        }
1419    }
1420    // It is possible that a refresh to another rank kicks things back into
1421    // action before reaching this point.
1422    if (!nextReqEvent.scheduled())
1423        schedule(nextReqEvent, std::max(nextReqTime, curTick()));
1424
1425    // If there is space available and we have writes waiting then let
1426    // them retry. This is done here to ensure that the retry does not
1427    // cause a nextReqEvent to be scheduled before we do so as part of
1428    // the next request processing
1429    if (retryWrReq && writeQueue.size() < writeBufferSize) {
1430        retryWrReq = false;
1431        port.sendRetryReq();
1432    }
1433}
1434
1435pair<uint64_t, bool>
1436DRAMCtrl::minBankPrep(const deque<DRAMPacket*>& queue,
1437                      Tick min_col_at) const
1438{
1439    uint64_t bank_mask = 0;
1440    Tick min_act_at = MaxTick;
1441
1442    // latest Tick for which ACT can occur without incurring additoinal
1443    // delay on the data bus
1444    const Tick hidden_act_max = std::max(min_col_at - tRCD, curTick());
1445
1446    // Flag condition when burst can issue back-to-back with previous burst
1447    bool found_seamless_bank = false;
1448
1449    // Flag condition when bank can be opened without incurring additional
1450    // delay on the data bus
1451    bool hidden_bank_prep = false;
1452
1453    // determine if we have queued transactions targetting the
1454    // bank in question
1455    vector<bool> got_waiting(ranksPerChannel * banksPerRank, false);
1456    for (const auto& p : queue) {
1457        if(p->rankRef.isAvailable())
1458            got_waiting[p->bankId] = true;
1459    }
1460
1461    // Find command with optimal bank timing
1462    // Will prioritize commands that can issue seamlessly.
1463    for (int i = 0; i < ranksPerChannel; i++) {
1464        for (int j = 0; j < banksPerRank; j++) {
1465            uint16_t bank_id = i * banksPerRank + j;
1466
1467            // if we have waiting requests for the bank, and it is
1468            // amongst the first available, update the mask
1469            if (got_waiting[bank_id]) {
1470                // make sure this rank is not currently refreshing.
1471                assert(ranks[i]->isAvailable());
1472                // simplistic approximation of when the bank can issue
1473                // an activate, ignoring any rank-to-rank switching
1474                // cost in this calculation
1475                Tick act_at = ranks[i]->banks[j].openRow == Bank::NO_ROW ?
1476                    std::max(ranks[i]->banks[j].actAllowedAt, curTick()) :
1477                    std::max(ranks[i]->banks[j].preAllowedAt, curTick()) + tRP;
1478
1479                // When is the earliest the R/W burst can issue?
1480                Tick col_at = std::max(ranks[i]->banks[j].colAllowedAt,
1481                                       act_at + tRCD);
1482
1483                // bank can issue burst back-to-back (seamlessly) with
1484                // previous burst
1485                bool new_seamless_bank = col_at <= min_col_at;
1486
1487                // if we found a new seamless bank or we have no
1488                // seamless banks, and got a bank with an earlier
1489                // activate time, it should be added to the bit mask
1490                if (new_seamless_bank ||
1491                    (!found_seamless_bank && act_at <= min_act_at)) {
1492                    // if we did not have a seamless bank before, and
1493                    // we do now, reset the bank mask, also reset it
1494                    // if we have not yet found a seamless bank and
1495                    // the activate time is smaller than what we have
1496                    // seen so far
1497                    if (!found_seamless_bank &&
1498                        (new_seamless_bank || act_at < min_act_at)) {
1499                        bank_mask = 0;
1500                    }
1501
1502                    found_seamless_bank |= new_seamless_bank;
1503
1504                    // ACT can occur 'behind the scenes'
1505                    hidden_bank_prep = act_at <= hidden_act_max;
1506
1507                    // set the bit corresponding to the available bank
1508                    replaceBits(bank_mask, bank_id, bank_id, 1);
1509                    min_act_at = act_at;
1510                }
1511            }
1512        }
1513    }
1514
1515    return make_pair(bank_mask, hidden_bank_prep);
1516}
1517
1518DRAMCtrl::Rank::Rank(DRAMCtrl& _memory, const DRAMCtrlParams* _p)
1519    : EventManager(&_memory), memory(_memory),
1520      pwrStateTrans(PWR_IDLE), pwrState(PWR_IDLE), pwrStateTick(0),
1521      refreshState(REF_IDLE), refreshDueAt(0),
1522      power(_p, false), numBanksActive(0),
1523      activateEvent(*this), prechargeEvent(*this),
1524      refreshEvent(*this), powerEvent(*this)
1525{ }
1526
1527void
1528DRAMCtrl::Rank::startup(Tick ref_tick)
1529{
1530    assert(ref_tick > curTick());
1531
1532    pwrStateTick = curTick();
1533
1534    // kick off the refresh, and give ourselves enough time to
1535    // precharge
1536    schedule(refreshEvent, ref_tick);
1537}
1538
1539void
1540DRAMCtrl::Rank::suspend()
1541{
1542    deschedule(refreshEvent);
1543}
1544
1545void
1546DRAMCtrl::Rank::checkDrainDone()
1547{
1548    // if this rank was waiting to drain it is now able to proceed to
1549    // precharge
1550    if (refreshState == REF_DRAIN) {
1551        DPRINTF(DRAM, "Refresh drain done, now precharging\n");
1552
1553        refreshState = REF_PRE;
1554
1555        // hand control back to the refresh event loop
1556        schedule(refreshEvent, curTick());
1557    }
1558}
1559
1560void
1561DRAMCtrl::Rank::processActivateEvent()
1562{
1563    // we should transition to the active state as soon as any bank is active
1564    if (pwrState != PWR_ACT)
1565        // note that at this point numBanksActive could be back at
1566        // zero again due to a precharge scheduled in the future
1567        schedulePowerEvent(PWR_ACT, curTick());
1568}
1569
1570void
1571DRAMCtrl::Rank::processPrechargeEvent()
1572{
1573    // if we reached zero, then special conditions apply as we track
1574    // if all banks are precharged for the power models
1575    if (numBanksActive == 0) {
1576        // we should transition to the idle state when the last bank
1577        // is precharged
1578        schedulePowerEvent(PWR_IDLE, curTick());
1579    }
1580}
1581
1582void
1583DRAMCtrl::Rank::processRefreshEvent()
1584{
1585    // when first preparing the refresh, remember when it was due
1586    if (refreshState == REF_IDLE) {
1587        // remember when the refresh is due
1588        refreshDueAt = curTick();
1589
1590        // proceed to drain
1591        refreshState = REF_DRAIN;
1592
1593        DPRINTF(DRAM, "Refresh due\n");
1594    }
1595
1596    // let any scheduled read or write to the same rank go ahead,
1597    // after which it will
1598    // hand control back to this event loop
1599    if (refreshState == REF_DRAIN) {
1600        // if a request is at the moment being handled and this request is
1601        // accessing the current rank then wait for it to finish
1602        if ((rank == memory.activeRank)
1603            && (memory.nextReqEvent.scheduled())) {
1604            // hand control over to the request loop until it is
1605            // evaluated next
1606            DPRINTF(DRAM, "Refresh awaiting draining\n");
1607
1608            return;
1609        } else {
1610            refreshState = REF_PRE;
1611        }
1612    }
1613
1614    // at this point, ensure that all banks are precharged
1615    if (refreshState == REF_PRE) {
1616        // precharge any active bank if we are not already in the idle
1617        // state
1618        if (pwrState != PWR_IDLE) {
1619            // at the moment, we use a precharge all even if there is
1620            // only a single bank open
1621            DPRINTF(DRAM, "Precharging all\n");
1622
1623            // first determine when we can precharge
1624            Tick pre_at = curTick();
1625
1626            for (auto &b : banks) {
1627                // respect both causality and any existing bank
1628                // constraints, some banks could already have a
1629                // (auto) precharge scheduled
1630                pre_at = std::max(b.preAllowedAt, pre_at);
1631            }
1632
1633            // make sure all banks per rank are precharged, and for those that
1634            // already are, update their availability
1635            Tick act_allowed_at = pre_at + memory.tRP;
1636
1637            for (auto &b : banks) {
1638                if (b.openRow != Bank::NO_ROW) {
1639                    memory.prechargeBank(*this, b, pre_at, false);
1640                } else {
1641                    b.actAllowedAt = std::max(b.actAllowedAt, act_allowed_at);
1642                    b.preAllowedAt = std::max(b.preAllowedAt, pre_at);
1643                }
1644            }
1645
1646            // precharge all banks in rank
1647            power.powerlib.doCommand(MemCommand::PREA, 0,
1648                                     divCeil(pre_at, memory.tCK) -
1649                                     memory.timeStampOffset);
1650
1651            DPRINTF(DRAMPower, "%llu,PREA,0,%d\n",
1652                    divCeil(pre_at, memory.tCK) -
1653                            memory.timeStampOffset, rank);
1654        } else {
1655            DPRINTF(DRAM, "All banks already precharged, starting refresh\n");
1656
1657            // go ahead and kick the power state machine into gear if
1658            // we are already idle
1659            schedulePowerEvent(PWR_REF, curTick());
1660        }
1661
1662        refreshState = REF_RUN;
1663        assert(numBanksActive == 0);
1664
1665        // wait for all banks to be precharged, at which point the
1666        // power state machine will transition to the idle state, and
1667        // automatically move to a refresh, at that point it will also
1668        // call this method to get the refresh event loop going again
1669        return;
1670    }
1671
1672    // last but not least we perform the actual refresh
1673    if (refreshState == REF_RUN) {
1674        // should never get here with any banks active
1675        assert(numBanksActive == 0);
1676        assert(pwrState == PWR_REF);
1677
1678        Tick ref_done_at = curTick() + memory.tRFC;
1679
1680        for (auto &b : banks) {
1681            b.actAllowedAt = ref_done_at;
1682        }
1683
1684        // at the moment this affects all ranks
1685        power.powerlib.doCommand(MemCommand::REF, 0,
1686                                 divCeil(curTick(), memory.tCK) -
1687                                 memory.timeStampOffset);
1688
1689        // at the moment sort the list of commands and update the counters
1690        // for DRAMPower libray when doing a refresh
1691        sort(power.powerlib.cmdList.begin(),
1692             power.powerlib.cmdList.end(), DRAMCtrl::sortTime);
1693
1694        // update the counters for DRAMPower, passing false to
1695        // indicate that this is not the last command in the
1696        // list. DRAMPower requires this information for the
1697        // correct calculation of the background energy at the end
1698        // of the simulation. Ideally we would want to call this
1699        // function with true once at the end of the
1700        // simulation. However, the discarded energy is extremly
1701        // small and does not effect the final results.
1702        power.powerlib.updateCounters(false);
1703
1704        // call the energy function
1705        power.powerlib.calcEnergy();
1706
1707        // Update the stats
1708        updatePowerStats();
1709
1710        DPRINTF(DRAMPower, "%llu,REF,0,%d\n", divCeil(curTick(), memory.tCK) -
1711                memory.timeStampOffset, rank);
1712
1713        // make sure we did not wait so long that we cannot make up
1714        // for it
1715        if (refreshDueAt + memory.tREFI < ref_done_at) {
1716            fatal("Refresh was delayed so long we cannot catch up\n");
1717        }
1718
1719        // compensate for the delay in actually performing the refresh
1720        // when scheduling the next one
1721        schedule(refreshEvent, refreshDueAt + memory.tREFI - memory.tRP);
1722
1723        assert(!powerEvent.scheduled());
1724
1725        // move to the idle power state once the refresh is done, this
1726        // will also move the refresh state machine to the refresh
1727        // idle state
1728        schedulePowerEvent(PWR_IDLE, ref_done_at);
1729
1730        DPRINTF(DRAMState, "Refresh done at %llu and next refresh at %llu\n",
1731                ref_done_at, refreshDueAt + memory.tREFI);
1732    }
1733}
1734
1735void
1736DRAMCtrl::Rank::schedulePowerEvent(PowerState pwr_state, Tick tick)
1737{
1738    // respect causality
1739    assert(tick >= curTick());
1740
1741    if (!powerEvent.scheduled()) {
1742        DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n",
1743                tick, pwr_state);
1744
1745        // insert the new transition
1746        pwrStateTrans = pwr_state;
1747
1748        schedule(powerEvent, tick);
1749    } else {
1750        panic("Scheduled power event at %llu to state %d, "
1751              "with scheduled event at %llu to %d\n", tick, pwr_state,
1752              powerEvent.when(), pwrStateTrans);
1753    }
1754}
1755
1756void
1757DRAMCtrl::Rank::processPowerEvent()
1758{
1759    // remember where we were, and for how long
1760    Tick duration = curTick() - pwrStateTick;
1761    PowerState prev_state = pwrState;
1762
1763    // update the accounting
1764    pwrStateTime[prev_state] += duration;
1765
1766    pwrState = pwrStateTrans;
1767    pwrStateTick = curTick();
1768
1769    if (pwrState == PWR_IDLE) {
1770        DPRINTF(DRAMState, "All banks precharged\n");
1771
1772        // if we were refreshing, make sure we start scheduling requests again
1773        if (prev_state == PWR_REF) {
1774            DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration);
1775            assert(pwrState == PWR_IDLE);
1776
1777            // kick things into action again
1778            refreshState = REF_IDLE;
1779            // a request event could be already scheduled by the state
1780            // machine of the other rank
1781            if (!memory.nextReqEvent.scheduled())
1782                schedule(memory.nextReqEvent, curTick());
1783        } else {
1784            assert(prev_state == PWR_ACT);
1785
1786            // if we have a pending refresh, and are now moving to
1787            // the idle state, direclty transition to a refresh
1788            if (refreshState == REF_RUN) {
1789                // there should be nothing waiting at this point
1790                assert(!powerEvent.scheduled());
1791
1792                // update the state in zero time and proceed below
1793                pwrState = PWR_REF;
1794            }
1795        }
1796    }
1797
1798    // we transition to the refresh state, let the refresh state
1799    // machine know of this state update and let it deal with the
1800    // scheduling of the next power state transition as well as the
1801    // following refresh
1802    if (pwrState == PWR_REF) {
1803        DPRINTF(DRAMState, "Refreshing\n");
1804        // kick the refresh event loop into action again, and that
1805        // in turn will schedule a transition to the idle power
1806        // state once the refresh is done
1807        assert(refreshState == REF_RUN);
1808        processRefreshEvent();
1809    }
1810}
1811
1812void
1813DRAMCtrl::Rank::updatePowerStats()
1814{
1815    // Get the energy and power from DRAMPower
1816    Data::MemoryPowerModel::Energy energy =
1817        power.powerlib.getEnergy();
1818    Data::MemoryPowerModel::Power rank_power =
1819        power.powerlib.getPower();
1820
1821    actEnergy = energy.act_energy * memory.devicesPerRank;
1822    preEnergy = energy.pre_energy * memory.devicesPerRank;
1823    readEnergy = energy.read_energy * memory.devicesPerRank;
1824    writeEnergy = energy.write_energy * memory.devicesPerRank;
1825    refreshEnergy = energy.ref_energy * memory.devicesPerRank;
1826    actBackEnergy = energy.act_stdby_energy * memory.devicesPerRank;
1827    preBackEnergy = energy.pre_stdby_energy * memory.devicesPerRank;
1828    totalEnergy = energy.total_energy * memory.devicesPerRank;
1829    averagePower = rank_power.average_power * memory.devicesPerRank;
1830}
1831
1832void
1833DRAMCtrl::Rank::regStats()
1834{
1835    using namespace Stats;
1836
1837    pwrStateTime
1838        .init(5)
1839        .name(name() + ".memoryStateTime")
1840        .desc("Time in different power states");
1841    pwrStateTime.subname(0, "IDLE");
1842    pwrStateTime.subname(1, "REF");
1843    pwrStateTime.subname(2, "PRE_PDN");
1844    pwrStateTime.subname(3, "ACT");
1845    pwrStateTime.subname(4, "ACT_PDN");
1846
1847    actEnergy
1848        .name(name() + ".actEnergy")
1849        .desc("Energy for activate commands per rank (pJ)");
1850
1851    preEnergy
1852        .name(name() + ".preEnergy")
1853        .desc("Energy for precharge commands per rank (pJ)");
1854
1855    readEnergy
1856        .name(name() + ".readEnergy")
1857        .desc("Energy for read commands per rank (pJ)");
1858
1859    writeEnergy
1860        .name(name() + ".writeEnergy")
1861        .desc("Energy for write commands per rank (pJ)");
1862
1863    refreshEnergy
1864        .name(name() + ".refreshEnergy")
1865        .desc("Energy for refresh commands per rank (pJ)");
1866
1867    actBackEnergy
1868        .name(name() + ".actBackEnergy")
1869        .desc("Energy for active background per rank (pJ)");
1870
1871    preBackEnergy
1872        .name(name() + ".preBackEnergy")
1873        .desc("Energy for precharge background per rank (pJ)");
1874
1875    totalEnergy
1876        .name(name() + ".totalEnergy")
1877        .desc("Total energy per rank (pJ)");
1878
1879    averagePower
1880        .name(name() + ".averagePower")
1881        .desc("Core power per rank (mW)");
1882}
1883void
1884DRAMCtrl::regStats()
1885{
1886    using namespace Stats;
1887
1888    AbstractMemory::regStats();
1889
1890    for (auto r : ranks) {
1891        r->regStats();
1892    }
1893
1894    readReqs
1895        .name(name() + ".readReqs")
1896        .desc("Number of read requests accepted");
1897
1898    writeReqs
1899        .name(name() + ".writeReqs")
1900        .desc("Number of write requests accepted");
1901
1902    readBursts
1903        .name(name() + ".readBursts")
1904        .desc("Number of DRAM read bursts, "
1905              "including those serviced by the write queue");
1906
1907    writeBursts
1908        .name(name() + ".writeBursts")
1909        .desc("Number of DRAM write bursts, "
1910              "including those merged in the write queue");
1911
1912    servicedByWrQ
1913        .name(name() + ".servicedByWrQ")
1914        .desc("Number of DRAM read bursts serviced by the write queue");
1915
1916    mergedWrBursts
1917        .name(name() + ".mergedWrBursts")
1918        .desc("Number of DRAM write bursts merged with an existing one");
1919
1920    neitherReadNorWrite
1921        .name(name() + ".neitherReadNorWriteReqs")
1922        .desc("Number of requests that are neither read nor write");
1923
1924    perBankRdBursts
1925        .init(banksPerRank * ranksPerChannel)
1926        .name(name() + ".perBankRdBursts")
1927        .desc("Per bank write bursts");
1928
1929    perBankWrBursts
1930        .init(banksPerRank * ranksPerChannel)
1931        .name(name() + ".perBankWrBursts")
1932        .desc("Per bank write bursts");
1933
1934    avgRdQLen
1935        .name(name() + ".avgRdQLen")
1936        .desc("Average read queue length when enqueuing")
1937        .precision(2);
1938
1939    avgWrQLen
1940        .name(name() + ".avgWrQLen")
1941        .desc("Average write queue length when enqueuing")
1942        .precision(2);
1943
1944    totQLat
1945        .name(name() + ".totQLat")
1946        .desc("Total ticks spent queuing");
1947
1948    totBusLat
1949        .name(name() + ".totBusLat")
1950        .desc("Total ticks spent in databus transfers");
1951
1952    totMemAccLat
1953        .name(name() + ".totMemAccLat")
1954        .desc("Total ticks spent from burst creation until serviced "
1955              "by the DRAM");
1956
1957    avgQLat
1958        .name(name() + ".avgQLat")
1959        .desc("Average queueing delay per DRAM burst")
1960        .precision(2);
1961
1962    avgQLat = totQLat / (readBursts - servicedByWrQ);
1963
1964    avgBusLat
1965        .name(name() + ".avgBusLat")
1966        .desc("Average bus latency per DRAM burst")
1967        .precision(2);
1968
1969    avgBusLat = totBusLat / (readBursts - servicedByWrQ);
1970
1971    avgMemAccLat
1972        .name(name() + ".avgMemAccLat")
1973        .desc("Average memory access latency per DRAM burst")
1974        .precision(2);
1975
1976    avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ);
1977
1978    numRdRetry
1979        .name(name() + ".numRdRetry")
1980        .desc("Number of times read queue was full causing retry");
1981
1982    numWrRetry
1983        .name(name() + ".numWrRetry")
1984        .desc("Number of times write queue was full causing retry");
1985
1986    readRowHits
1987        .name(name() + ".readRowHits")
1988        .desc("Number of row buffer hits during reads");
1989
1990    writeRowHits
1991        .name(name() + ".writeRowHits")
1992        .desc("Number of row buffer hits during writes");
1993
1994    readRowHitRate
1995        .name(name() + ".readRowHitRate")
1996        .desc("Row buffer hit rate for reads")
1997        .precision(2);
1998
1999    readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100;
2000
2001    writeRowHitRate
2002        .name(name() + ".writeRowHitRate")
2003        .desc("Row buffer hit rate for writes")
2004        .precision(2);
2005
2006    writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100;
2007
2008    readPktSize
2009        .init(ceilLog2(burstSize) + 1)
2010        .name(name() + ".readPktSize")
2011        .desc("Read request sizes (log2)");
2012
2013     writePktSize
2014        .init(ceilLog2(burstSize) + 1)
2015        .name(name() + ".writePktSize")
2016        .desc("Write request sizes (log2)");
2017
2018     rdQLenPdf
2019        .init(readBufferSize)
2020        .name(name() + ".rdQLenPdf")
2021        .desc("What read queue length does an incoming req see");
2022
2023     wrQLenPdf
2024        .init(writeBufferSize)
2025        .name(name() + ".wrQLenPdf")
2026        .desc("What write queue length does an incoming req see");
2027
2028     bytesPerActivate
2029         .init(maxAccessesPerRow)
2030         .name(name() + ".bytesPerActivate")
2031         .desc("Bytes accessed per row activation")
2032         .flags(nozero);
2033
2034     rdPerTurnAround
2035         .init(readBufferSize)
2036         .name(name() + ".rdPerTurnAround")
2037         .desc("Reads before turning the bus around for writes")
2038         .flags(nozero);
2039
2040     wrPerTurnAround
2041         .init(writeBufferSize)
2042         .name(name() + ".wrPerTurnAround")
2043         .desc("Writes before turning the bus around for reads")
2044         .flags(nozero);
2045
2046    bytesReadDRAM
2047        .name(name() + ".bytesReadDRAM")
2048        .desc("Total number of bytes read from DRAM");
2049
2050    bytesReadWrQ
2051        .name(name() + ".bytesReadWrQ")
2052        .desc("Total number of bytes read from write queue");
2053
2054    bytesWritten
2055        .name(name() + ".bytesWritten")
2056        .desc("Total number of bytes written to DRAM");
2057
2058    bytesReadSys
2059        .name(name() + ".bytesReadSys")
2060        .desc("Total read bytes from the system interface side");
2061
2062    bytesWrittenSys
2063        .name(name() + ".bytesWrittenSys")
2064        .desc("Total written bytes from the system interface side");
2065
2066    avgRdBW
2067        .name(name() + ".avgRdBW")
2068        .desc("Average DRAM read bandwidth in MiByte/s")
2069        .precision(2);
2070
2071    avgRdBW = (bytesReadDRAM / 1000000) / simSeconds;
2072
2073    avgWrBW
2074        .name(name() + ".avgWrBW")
2075        .desc("Average achieved write bandwidth in MiByte/s")
2076        .precision(2);
2077
2078    avgWrBW = (bytesWritten / 1000000) / simSeconds;
2079
2080    avgRdBWSys
2081        .name(name() + ".avgRdBWSys")
2082        .desc("Average system read bandwidth in MiByte/s")
2083        .precision(2);
2084
2085    avgRdBWSys = (bytesReadSys / 1000000) / simSeconds;
2086
2087    avgWrBWSys
2088        .name(name() + ".avgWrBWSys")
2089        .desc("Average system write bandwidth in MiByte/s")
2090        .precision(2);
2091
2092    avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds;
2093
2094    peakBW
2095        .name(name() + ".peakBW")
2096        .desc("Theoretical peak bandwidth in MiByte/s")
2097        .precision(2);
2098
2099    peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000;
2100
2101    busUtil
2102        .name(name() + ".busUtil")
2103        .desc("Data bus utilization in percentage")
2104        .precision(2);
2105    busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
2106
2107    totGap
2108        .name(name() + ".totGap")
2109        .desc("Total gap between requests");
2110
2111    avgGap
2112        .name(name() + ".avgGap")
2113        .desc("Average gap between requests")
2114        .precision(2);
2115
2116    avgGap = totGap / (readReqs + writeReqs);
2117
2118    // Stats for DRAM Power calculation based on Micron datasheet
2119    busUtilRead
2120        .name(name() + ".busUtilRead")
2121        .desc("Data bus utilization in percentage for reads")
2122        .precision(2);
2123
2124    busUtilRead = avgRdBW / peakBW * 100;
2125
2126    busUtilWrite
2127        .name(name() + ".busUtilWrite")
2128        .desc("Data bus utilization in percentage for writes")
2129        .precision(2);
2130
2131    busUtilWrite = avgWrBW / peakBW * 100;
2132
2133    pageHitRate
2134        .name(name() + ".pageHitRate")
2135        .desc("Row buffer hit rate, read and write combined")
2136        .precision(2);
2137
2138    pageHitRate = (writeRowHits + readRowHits) /
2139        (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100;
2140}
2141
2142void
2143DRAMCtrl::recvFunctional(PacketPtr pkt)
2144{
2145    // rely on the abstract memory
2146    functionalAccess(pkt);
2147}
2148
2149BaseSlavePort&
2150DRAMCtrl::getSlavePort(const string &if_name, PortID idx)
2151{
2152    if (if_name != "port") {
2153        return MemObject::getSlavePort(if_name, idx);
2154    } else {
2155        return port;
2156    }
2157}
2158
2159DrainState
2160DRAMCtrl::drain()
2161{
2162    // if there is anything in any of our internal queues, keep track
2163    // of that as well
2164    if (!(writeQueue.empty() && readQueue.empty() && respQueue.empty())) {
2165        DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
2166                " resp: %d\n", writeQueue.size(), readQueue.size(),
2167                respQueue.size());
2168
2169        // the only part that is not drained automatically over time
2170        // is the write queue, thus kick things into action if needed
2171        if (!writeQueue.empty() && !nextReqEvent.scheduled()) {
2172            schedule(nextReqEvent, curTick());
2173        }
2174        return DrainState::Draining;
2175    } else {
2176        return DrainState::Drained;
2177    }
2178}
2179
2180void
2181DRAMCtrl::drainResume()
2182{
2183    if (!isTimingMode && system()->isTimingMode()) {
2184        // if we switched to timing mode, kick things into action,
2185        // and behave as if we restored from a checkpoint
2186        startup();
2187    } else if (isTimingMode && !system()->isTimingMode()) {
2188        // if we switch from timing mode, stop the refresh events to
2189        // not cause issues with KVM
2190        for (auto r : ranks) {
2191            r->suspend();
2192        }
2193    }
2194
2195    // update the mode
2196    isTimingMode = system()->isTimingMode();
2197}
2198
2199DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory)
2200    : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
2201      memory(_memory)
2202{ }
2203
2204AddrRangeList
2205DRAMCtrl::MemoryPort::getAddrRanges() const
2206{
2207    AddrRangeList ranges;
2208    ranges.push_back(memory.getAddrRange());
2209    return ranges;
2210}
2211
2212void
2213DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt)
2214{
2215    pkt->pushLabel(memory.name());
2216
2217    if (!queue.checkFunctional(pkt)) {
2218        // Default implementation of SimpleTimingPort::recvFunctional()
2219        // calls recvAtomic() and throws away the latency; we can save a
2220        // little here by just not calculating the latency.
2221        memory.recvFunctional(pkt);
2222    }
2223
2224    pkt->popLabel();
2225}
2226
2227Tick
2228DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt)
2229{
2230    return memory.recvAtomic(pkt);
2231}
2232
2233bool
2234DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt)
2235{
2236    // pass it to the memory controller
2237    return memory.recvTimingReq(pkt);
2238}
2239
2240DRAMCtrl*
2241DRAMCtrlParams::create()
2242{
2243    return new DRAMCtrl(this);
2244}
2245