dram_ctrl.cc revision 11190
1/* 2 * Copyright (c) 2010-2015 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2013 Amin Farmahini-Farahani 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Andreas Hansson 41 * Ani Udipi 42 * Neha Agarwal 43 * Omar Naji 44 */ 45 46#include "base/bitfield.hh" 47#include "base/trace.hh" 48#include "debug/DRAM.hh" 49#include "debug/DRAMPower.hh" 50#include "debug/DRAMState.hh" 51#include "debug/Drain.hh" 52#include "mem/dram_ctrl.hh" 53#include "sim/system.hh" 54 55using namespace std; 56using namespace Data; 57 58DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) : 59 AbstractMemory(p), 60 port(name() + ".port", *this), isTimingMode(false), 61 retryRdReq(false), retryWrReq(false), 62 busState(READ), 63 nextReqEvent(this), respondEvent(this), 64 deviceSize(p->device_size), 65 deviceBusWidth(p->device_bus_width), burstLength(p->burst_length), 66 deviceRowBufferSize(p->device_rowbuffer_size), 67 devicesPerRank(p->devices_per_rank), 68 burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8), 69 rowBufferSize(devicesPerRank * deviceRowBufferSize), 70 columnsPerRowBuffer(rowBufferSize / burstSize), 71 columnsPerStripe(range.interleaved() ? range.granularity() / burstSize : 1), 72 ranksPerChannel(p->ranks_per_channel), 73 bankGroupsPerRank(p->bank_groups_per_rank), 74 bankGroupArch(p->bank_groups_per_rank > 0), 75 banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0), 76 readBufferSize(p->read_buffer_size), 77 writeBufferSize(p->write_buffer_size), 78 writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0), 79 writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0), 80 minWritesPerSwitch(p->min_writes_per_switch), 81 writesThisTime(0), readsThisTime(0), 82 tCK(p->tCK), tWTR(p->tWTR), tRTW(p->tRTW), tCS(p->tCS), tBURST(p->tBURST), 83 tCCD_L(p->tCCD_L), tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS), 84 tWR(p->tWR), tRTP(p->tRTP), tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD), 85 tRRD_L(p->tRRD_L), tXAW(p->tXAW), activationLimit(p->activation_limit), 86 memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping), 87 pageMgmt(p->page_policy), 88 maxAccessesPerRow(p->max_accesses_per_row), 89 frontendLatency(p->static_frontend_latency), 90 backendLatency(p->static_backend_latency), 91 busBusyUntil(0), prevArrival(0), 92 nextReqTime(0), activeRank(0), timeStampOffset(0) 93{ 94 // sanity check the ranks since we rely on bit slicing for the 95 // address decoding 96 fatal_if(!isPowerOf2(ranksPerChannel), "DRAM rank count of %d is not " 97 "allowed, must be a power of two\n", ranksPerChannel); 98 99 fatal_if(!isPowerOf2(burstSize), "DRAM burst size %d is not allowed, " 100 "must be a power of two\n", burstSize); 101 102 for (int i = 0; i < ranksPerChannel; i++) { 103 Rank* rank = new Rank(*this, p); 104 ranks.push_back(rank); 105 106 rank->actTicks.resize(activationLimit, 0); 107 rank->banks.resize(banksPerRank); 108 rank->rank = i; 109 110 for (int b = 0; b < banksPerRank; b++) { 111 rank->banks[b].bank = b; 112 // GDDR addressing of banks to BG is linear. 113 // Here we assume that all DRAM generations address bank groups as 114 // follows: 115 if (bankGroupArch) { 116 // Simply assign lower bits to bank group in order to 117 // rotate across bank groups as banks are incremented 118 // e.g. with 4 banks per bank group and 16 banks total: 119 // banks 0,4,8,12 are in bank group 0 120 // banks 1,5,9,13 are in bank group 1 121 // banks 2,6,10,14 are in bank group 2 122 // banks 3,7,11,15 are in bank group 3 123 rank->banks[b].bankgr = b % bankGroupsPerRank; 124 } else { 125 // No bank groups; simply assign to bank number 126 rank->banks[b].bankgr = b; 127 } 128 } 129 } 130 131 // perform a basic check of the write thresholds 132 if (p->write_low_thresh_perc >= p->write_high_thresh_perc) 133 fatal("Write buffer low threshold %d must be smaller than the " 134 "high threshold %d\n", p->write_low_thresh_perc, 135 p->write_high_thresh_perc); 136 137 // determine the rows per bank by looking at the total capacity 138 uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size()); 139 140 // determine the dram actual capacity from the DRAM config in Mbytes 141 uint64_t deviceCapacity = deviceSize / (1024 * 1024) * devicesPerRank * 142 ranksPerChannel; 143 144 // if actual DRAM size does not match memory capacity in system warn! 145 if (deviceCapacity != capacity / (1024 * 1024)) 146 warn("DRAM device capacity (%d Mbytes) does not match the " 147 "address range assigned (%d Mbytes)\n", deviceCapacity, 148 capacity / (1024 * 1024)); 149 150 DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity, 151 AbstractMemory::size()); 152 153 DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n", 154 rowBufferSize, columnsPerRowBuffer); 155 156 rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel); 157 158 // some basic sanity checks 159 if (tREFI <= tRP || tREFI <= tRFC) { 160 fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n", 161 tREFI, tRP, tRFC); 162 } 163 164 // basic bank group architecture checks -> 165 if (bankGroupArch) { 166 // must have at least one bank per bank group 167 if (bankGroupsPerRank > banksPerRank) { 168 fatal("banks per rank (%d) must be equal to or larger than " 169 "banks groups per rank (%d)\n", 170 banksPerRank, bankGroupsPerRank); 171 } 172 // must have same number of banks in each bank group 173 if ((banksPerRank % bankGroupsPerRank) != 0) { 174 fatal("Banks per rank (%d) must be evenly divisible by bank groups " 175 "per rank (%d) for equal banks per bank group\n", 176 banksPerRank, bankGroupsPerRank); 177 } 178 // tCCD_L should be greater than minimal, back-to-back burst delay 179 if (tCCD_L <= tBURST) { 180 fatal("tCCD_L (%d) should be larger than tBURST (%d) when " 181 "bank groups per rank (%d) is greater than 1\n", 182 tCCD_L, tBURST, bankGroupsPerRank); 183 } 184 // tRRD_L is greater than minimal, same bank group ACT-to-ACT delay 185 // some datasheets might specify it equal to tRRD 186 if (tRRD_L < tRRD) { 187 fatal("tRRD_L (%d) should be larger than tRRD (%d) when " 188 "bank groups per rank (%d) is greater than 1\n", 189 tRRD_L, tRRD, bankGroupsPerRank); 190 } 191 } 192 193} 194 195void 196DRAMCtrl::init() 197{ 198 AbstractMemory::init(); 199 200 if (!port.isConnected()) { 201 fatal("DRAMCtrl %s is unconnected!\n", name()); 202 } else { 203 port.sendRangeChange(); 204 } 205 206 // a bit of sanity checks on the interleaving, save it for here to 207 // ensure that the system pointer is initialised 208 if (range.interleaved()) { 209 if (channels != range.stripes()) 210 fatal("%s has %d interleaved address stripes but %d channel(s)\n", 211 name(), range.stripes(), channels); 212 213 if (addrMapping == Enums::RoRaBaChCo) { 214 if (rowBufferSize != range.granularity()) { 215 fatal("Channel interleaving of %s doesn't match RoRaBaChCo " 216 "address map\n", name()); 217 } 218 } else if (addrMapping == Enums::RoRaBaCoCh || 219 addrMapping == Enums::RoCoRaBaCh) { 220 // for the interleavings with channel bits in the bottom, 221 // if the system uses a channel striping granularity that 222 // is larger than the DRAM burst size, then map the 223 // sequential accesses within a stripe to a number of 224 // columns in the DRAM, effectively placing some of the 225 // lower-order column bits as the least-significant bits 226 // of the address (above the ones denoting the burst size) 227 assert(columnsPerStripe >= 1); 228 229 // channel striping has to be done at a granularity that 230 // is equal or larger to a cache line 231 if (system()->cacheLineSize() > range.granularity()) { 232 fatal("Channel interleaving of %s must be at least as large " 233 "as the cache line size\n", name()); 234 } 235 236 // ...and equal or smaller than the row-buffer size 237 if (rowBufferSize < range.granularity()) { 238 fatal("Channel interleaving of %s must be at most as large " 239 "as the row-buffer size\n", name()); 240 } 241 // this is essentially the check above, so just to be sure 242 assert(columnsPerStripe <= columnsPerRowBuffer); 243 } 244 } 245} 246 247void 248DRAMCtrl::startup() 249{ 250 // remember the memory system mode of operation 251 isTimingMode = system()->isTimingMode(); 252 253 if (isTimingMode) { 254 // timestamp offset should be in clock cycles for DRAMPower 255 timeStampOffset = divCeil(curTick(), tCK); 256 257 // update the start tick for the precharge accounting to the 258 // current tick 259 for (auto r : ranks) { 260 r->startup(curTick() + tREFI - tRP); 261 } 262 263 // shift the bus busy time sufficiently far ahead that we never 264 // have to worry about negative values when computing the time for 265 // the next request, this will add an insignificant bubble at the 266 // start of simulation 267 busBusyUntil = curTick() + tRP + tRCD + tCL; 268 } 269} 270 271Tick 272DRAMCtrl::recvAtomic(PacketPtr pkt) 273{ 274 DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr()); 275 276 // do the actual memory access and turn the packet into a response 277 access(pkt); 278 279 Tick latency = 0; 280 if (!pkt->memInhibitAsserted() && pkt->hasData()) { 281 // this value is not supposed to be accurate, just enough to 282 // keep things going, mimic a closed page 283 latency = tRP + tRCD + tCL; 284 } 285 return latency; 286} 287 288bool 289DRAMCtrl::readQueueFull(unsigned int neededEntries) const 290{ 291 DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n", 292 readBufferSize, readQueue.size() + respQueue.size(), 293 neededEntries); 294 295 return 296 (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize; 297} 298 299bool 300DRAMCtrl::writeQueueFull(unsigned int neededEntries) const 301{ 302 DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n", 303 writeBufferSize, writeQueue.size(), neededEntries); 304 return (writeQueue.size() + neededEntries) > writeBufferSize; 305} 306 307DRAMCtrl::DRAMPacket* 308DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size, 309 bool isRead) 310{ 311 // decode the address based on the address mapping scheme, with 312 // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and 313 // channel, respectively 314 uint8_t rank; 315 uint8_t bank; 316 // use a 64-bit unsigned during the computations as the row is 317 // always the top bits, and check before creating the DRAMPacket 318 uint64_t row; 319 320 // truncate the address to a DRAM burst, which makes it unique to 321 // a specific column, row, bank, rank and channel 322 Addr addr = dramPktAddr / burstSize; 323 324 // we have removed the lowest order address bits that denote the 325 // position within the column 326 if (addrMapping == Enums::RoRaBaChCo) { 327 // the lowest order bits denote the column to ensure that 328 // sequential cache lines occupy the same row 329 addr = addr / columnsPerRowBuffer; 330 331 // take out the channel part of the address 332 addr = addr / channels; 333 334 // after the channel bits, get the bank bits to interleave 335 // over the banks 336 bank = addr % banksPerRank; 337 addr = addr / banksPerRank; 338 339 // after the bank, we get the rank bits which thus interleaves 340 // over the ranks 341 rank = addr % ranksPerChannel; 342 addr = addr / ranksPerChannel; 343 344 // lastly, get the row bits, no need to remove them from addr 345 row = addr % rowsPerBank; 346 } else if (addrMapping == Enums::RoRaBaCoCh) { 347 // take out the lower-order column bits 348 addr = addr / columnsPerStripe; 349 350 // take out the channel part of the address 351 addr = addr / channels; 352 353 // next, the higher-order column bites 354 addr = addr / (columnsPerRowBuffer / columnsPerStripe); 355 356 // after the column bits, we get the bank bits to interleave 357 // over the banks 358 bank = addr % banksPerRank; 359 addr = addr / banksPerRank; 360 361 // after the bank, we get the rank bits which thus interleaves 362 // over the ranks 363 rank = addr % ranksPerChannel; 364 addr = addr / ranksPerChannel; 365 366 // lastly, get the row bits, no need to remove them from addr 367 row = addr % rowsPerBank; 368 } else if (addrMapping == Enums::RoCoRaBaCh) { 369 // optimise for closed page mode and utilise maximum 370 // parallelism of the DRAM (at the cost of power) 371 372 // take out the lower-order column bits 373 addr = addr / columnsPerStripe; 374 375 // take out the channel part of the address, not that this has 376 // to match with how accesses are interleaved between the 377 // controllers in the address mapping 378 addr = addr / channels; 379 380 // start with the bank bits, as this provides the maximum 381 // opportunity for parallelism between requests 382 bank = addr % banksPerRank; 383 addr = addr / banksPerRank; 384 385 // next get the rank bits 386 rank = addr % ranksPerChannel; 387 addr = addr / ranksPerChannel; 388 389 // next, the higher-order column bites 390 addr = addr / (columnsPerRowBuffer / columnsPerStripe); 391 392 // lastly, get the row bits, no need to remove them from addr 393 row = addr % rowsPerBank; 394 } else 395 panic("Unknown address mapping policy chosen!"); 396 397 assert(rank < ranksPerChannel); 398 assert(bank < banksPerRank); 399 assert(row < rowsPerBank); 400 assert(row < Bank::NO_ROW); 401 402 DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n", 403 dramPktAddr, rank, bank, row); 404 405 // create the corresponding DRAM packet with the entry time and 406 // ready time set to the current tick, the latter will be updated 407 // later 408 uint16_t bank_id = banksPerRank * rank + bank; 409 return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr, 410 size, ranks[rank]->banks[bank], *ranks[rank]); 411} 412 413void 414DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount) 415{ 416 // only add to the read queue here. whenever the request is 417 // eventually done, set the readyTime, and call schedule() 418 assert(!pkt->isWrite()); 419 420 assert(pktCount != 0); 421 422 // if the request size is larger than burst size, the pkt is split into 423 // multiple DRAM packets 424 // Note if the pkt starting address is not aligened to burst size, the 425 // address of first DRAM packet is kept unaliged. Subsequent DRAM packets 426 // are aligned to burst size boundaries. This is to ensure we accurately 427 // check read packets against packets in write queue. 428 Addr addr = pkt->getAddr(); 429 unsigned pktsServicedByWrQ = 0; 430 BurstHelper* burst_helper = NULL; 431 for (int cnt = 0; cnt < pktCount; ++cnt) { 432 unsigned size = std::min((addr | (burstSize - 1)) + 1, 433 pkt->getAddr() + pkt->getSize()) - addr; 434 readPktSize[ceilLog2(size)]++; 435 readBursts++; 436 437 // First check write buffer to see if the data is already at 438 // the controller 439 bool foundInWrQ = false; 440 Addr burst_addr = burstAlign(addr); 441 // if the burst address is not present then there is no need 442 // looking any further 443 if (isInWriteQueue.find(burst_addr) != isInWriteQueue.end()) { 444 for (const auto& p : writeQueue) { 445 // check if the read is subsumed in the write queue 446 // packet we are looking at 447 if (p->addr <= addr && (addr + size) <= (p->addr + p->size)) { 448 foundInWrQ = true; 449 servicedByWrQ++; 450 pktsServicedByWrQ++; 451 DPRINTF(DRAM, "Read to addr %lld with size %d serviced by " 452 "write queue\n", addr, size); 453 bytesReadWrQ += burstSize; 454 break; 455 } 456 } 457 } 458 459 // If not found in the write q, make a DRAM packet and 460 // push it onto the read queue 461 if (!foundInWrQ) { 462 463 // Make the burst helper for split packets 464 if (pktCount > 1 && burst_helper == NULL) { 465 DPRINTF(DRAM, "Read to addr %lld translates to %d " 466 "dram requests\n", pkt->getAddr(), pktCount); 467 burst_helper = new BurstHelper(pktCount); 468 } 469 470 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true); 471 dram_pkt->burstHelper = burst_helper; 472 473 assert(!readQueueFull(1)); 474 rdQLenPdf[readQueue.size() + respQueue.size()]++; 475 476 DPRINTF(DRAM, "Adding to read queue\n"); 477 478 readQueue.push_back(dram_pkt); 479 480 // Update stats 481 avgRdQLen = readQueue.size() + respQueue.size(); 482 } 483 484 // Starting address of next dram pkt (aligend to burstSize boundary) 485 addr = (addr | (burstSize - 1)) + 1; 486 } 487 488 // If all packets are serviced by write queue, we send the repsonse back 489 if (pktsServicedByWrQ == pktCount) { 490 accessAndRespond(pkt, frontendLatency); 491 return; 492 } 493 494 // Update how many split packets are serviced by write queue 495 if (burst_helper != NULL) 496 burst_helper->burstsServiced = pktsServicedByWrQ; 497 498 // If we are not already scheduled to get a request out of the 499 // queue, do so now 500 if (!nextReqEvent.scheduled()) { 501 DPRINTF(DRAM, "Request scheduled immediately\n"); 502 schedule(nextReqEvent, curTick()); 503 } 504} 505 506void 507DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount) 508{ 509 // only add to the write queue here. whenever the request is 510 // eventually done, set the readyTime, and call schedule() 511 assert(pkt->isWrite()); 512 513 // if the request size is larger than burst size, the pkt is split into 514 // multiple DRAM packets 515 Addr addr = pkt->getAddr(); 516 for (int cnt = 0; cnt < pktCount; ++cnt) { 517 unsigned size = std::min((addr | (burstSize - 1)) + 1, 518 pkt->getAddr() + pkt->getSize()) - addr; 519 writePktSize[ceilLog2(size)]++; 520 writeBursts++; 521 522 // see if we can merge with an existing item in the write 523 // queue and keep track of whether we have merged or not 524 bool merged = isInWriteQueue.find(burstAlign(addr)) != 525 isInWriteQueue.end(); 526 527 // if the item was not merged we need to create a new write 528 // and enqueue it 529 if (!merged) { 530 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false); 531 532 assert(writeQueue.size() < writeBufferSize); 533 wrQLenPdf[writeQueue.size()]++; 534 535 DPRINTF(DRAM, "Adding to write queue\n"); 536 537 writeQueue.push_back(dram_pkt); 538 isInWriteQueue.insert(burstAlign(addr)); 539 assert(writeQueue.size() == isInWriteQueue.size()); 540 541 // Update stats 542 avgWrQLen = writeQueue.size(); 543 } else { 544 DPRINTF(DRAM, "Merging write burst with existing queue entry\n"); 545 546 // keep track of the fact that this burst effectively 547 // disappeared as it was merged with an existing one 548 mergedWrBursts++; 549 } 550 551 // Starting address of next dram pkt (aligend to burstSize boundary) 552 addr = (addr | (burstSize - 1)) + 1; 553 } 554 555 // we do not wait for the writes to be send to the actual memory, 556 // but instead take responsibility for the consistency here and 557 // snoop the write queue for any upcoming reads 558 // @todo, if a pkt size is larger than burst size, we might need a 559 // different front end latency 560 accessAndRespond(pkt, frontendLatency); 561 562 // If we are not already scheduled to get a request out of the 563 // queue, do so now 564 if (!nextReqEvent.scheduled()) { 565 DPRINTF(DRAM, "Request scheduled immediately\n"); 566 schedule(nextReqEvent, curTick()); 567 } 568} 569 570void 571DRAMCtrl::printQs() const { 572 DPRINTF(DRAM, "===READ QUEUE===\n\n"); 573 for (auto i = readQueue.begin() ; i != readQueue.end() ; ++i) { 574 DPRINTF(DRAM, "Read %lu\n", (*i)->addr); 575 } 576 DPRINTF(DRAM, "\n===RESP QUEUE===\n\n"); 577 for (auto i = respQueue.begin() ; i != respQueue.end() ; ++i) { 578 DPRINTF(DRAM, "Response %lu\n", (*i)->addr); 579 } 580 DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n"); 581 for (auto i = writeQueue.begin() ; i != writeQueue.end() ; ++i) { 582 DPRINTF(DRAM, "Write %lu\n", (*i)->addr); 583 } 584} 585 586bool 587DRAMCtrl::recvTimingReq(PacketPtr pkt) 588{ 589 // This is where we enter from the outside world 590 DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n", 591 pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 592 593 // simply drop inhibited packets and clean evictions 594 if (pkt->memInhibitAsserted() || 595 pkt->cmd == MemCmd::CleanEvict) { 596 DPRINTF(DRAM, "Inhibited packet or clean evict -- Dropping it now\n"); 597 pendingDelete.reset(pkt); 598 return true; 599 } 600 601 // Calc avg gap between requests 602 if (prevArrival != 0) { 603 totGap += curTick() - prevArrival; 604 } 605 prevArrival = curTick(); 606 607 608 // Find out how many dram packets a pkt translates to 609 // If the burst size is equal or larger than the pkt size, then a pkt 610 // translates to only one dram packet. Otherwise, a pkt translates to 611 // multiple dram packets 612 unsigned size = pkt->getSize(); 613 unsigned offset = pkt->getAddr() & (burstSize - 1); 614 unsigned int dram_pkt_count = divCeil(offset + size, burstSize); 615 616 // check local buffers and do not accept if full 617 if (pkt->isRead()) { 618 assert(size != 0); 619 if (readQueueFull(dram_pkt_count)) { 620 DPRINTF(DRAM, "Read queue full, not accepting\n"); 621 // remember that we have to retry this port 622 retryRdReq = true; 623 numRdRetry++; 624 return false; 625 } else { 626 addToReadQueue(pkt, dram_pkt_count); 627 readReqs++; 628 bytesReadSys += size; 629 } 630 } else if (pkt->isWrite()) { 631 assert(size != 0); 632 if (writeQueueFull(dram_pkt_count)) { 633 DPRINTF(DRAM, "Write queue full, not accepting\n"); 634 // remember that we have to retry this port 635 retryWrReq = true; 636 numWrRetry++; 637 return false; 638 } else { 639 addToWriteQueue(pkt, dram_pkt_count); 640 writeReqs++; 641 bytesWrittenSys += size; 642 } 643 } else { 644 DPRINTF(DRAM,"Neither read nor write, ignore timing\n"); 645 neitherReadNorWrite++; 646 accessAndRespond(pkt, 1); 647 } 648 649 return true; 650} 651 652void 653DRAMCtrl::processRespondEvent() 654{ 655 DPRINTF(DRAM, 656 "processRespondEvent(): Some req has reached its readyTime\n"); 657 658 DRAMPacket* dram_pkt = respQueue.front(); 659 660 if (dram_pkt->burstHelper) { 661 // it is a split packet 662 dram_pkt->burstHelper->burstsServiced++; 663 if (dram_pkt->burstHelper->burstsServiced == 664 dram_pkt->burstHelper->burstCount) { 665 // we have now serviced all children packets of a system packet 666 // so we can now respond to the requester 667 // @todo we probably want to have a different front end and back 668 // end latency for split packets 669 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency); 670 delete dram_pkt->burstHelper; 671 dram_pkt->burstHelper = NULL; 672 } 673 } else { 674 // it is not a split packet 675 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency); 676 } 677 678 delete respQueue.front(); 679 respQueue.pop_front(); 680 681 if (!respQueue.empty()) { 682 assert(respQueue.front()->readyTime >= curTick()); 683 assert(!respondEvent.scheduled()); 684 schedule(respondEvent, respQueue.front()->readyTime); 685 } else { 686 // if there is nothing left in any queue, signal a drain 687 if (drainState() == DrainState::Draining && 688 writeQueue.empty() && readQueue.empty()) { 689 690 DPRINTF(Drain, "DRAM controller done draining\n"); 691 signalDrainDone(); 692 } 693 } 694 695 // We have made a location in the queue available at this point, 696 // so if there is a read that was forced to wait, retry now 697 if (retryRdReq) { 698 retryRdReq = false; 699 port.sendRetryReq(); 700 } 701} 702 703bool 704DRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue, Tick extra_col_delay) 705{ 706 // This method does the arbitration between requests. The chosen 707 // packet is simply moved to the head of the queue. The other 708 // methods know that this is the place to look. For example, with 709 // FCFS, this method does nothing 710 assert(!queue.empty()); 711 712 // bool to indicate if a packet to an available rank is found 713 bool found_packet = false; 714 if (queue.size() == 1) { 715 DRAMPacket* dram_pkt = queue.front(); 716 // available rank corresponds to state refresh idle 717 if (ranks[dram_pkt->rank]->isAvailable()) { 718 found_packet = true; 719 DPRINTF(DRAM, "Single request, going to a free rank\n"); 720 } else { 721 DPRINTF(DRAM, "Single request, going to a busy rank\n"); 722 } 723 return found_packet; 724 } 725 726 if (memSchedPolicy == Enums::fcfs) { 727 // check if there is a packet going to a free rank 728 for(auto i = queue.begin(); i != queue.end() ; ++i) { 729 DRAMPacket* dram_pkt = *i; 730 if (ranks[dram_pkt->rank]->isAvailable()) { 731 queue.erase(i); 732 queue.push_front(dram_pkt); 733 found_packet = true; 734 break; 735 } 736 } 737 } else if (memSchedPolicy == Enums::frfcfs) { 738 found_packet = reorderQueue(queue, extra_col_delay); 739 } else 740 panic("No scheduling policy chosen\n"); 741 return found_packet; 742} 743 744bool 745DRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue, Tick extra_col_delay) 746{ 747 // Only determine this if needed 748 uint64_t earliest_banks = 0; 749 bool hidden_bank_prep = false; 750 751 // search for seamless row hits first, if no seamless row hit is 752 // found then determine if there are other packets that can be issued 753 // without incurring additional bus delay due to bank timing 754 // Will select closed rows first to enable more open row possibilies 755 // in future selections 756 bool found_hidden_bank = false; 757 758 // remember if we found a row hit, not seamless, but bank prepped 759 // and ready 760 bool found_prepped_pkt = false; 761 762 // if we have no row hit, prepped or not, and no seamless packet, 763 // just go for the earliest possible 764 bool found_earliest_pkt = false; 765 766 auto selected_pkt_it = queue.end(); 767 768 // time we need to issue a column command to be seamless 769 const Tick min_col_at = std::max(busBusyUntil - tCL + extra_col_delay, 770 curTick()); 771 772 for (auto i = queue.begin(); i != queue.end() ; ++i) { 773 DRAMPacket* dram_pkt = *i; 774 const Bank& bank = dram_pkt->bankRef; 775 776 // check if rank is available, if not, jump to the next packet 777 if (dram_pkt->rankRef.isAvailable()) { 778 // check if it is a row hit 779 if (bank.openRow == dram_pkt->row) { 780 // no additional rank-to-rank or same bank-group 781 // delays, or we switched read/write and might as well 782 // go for the row hit 783 if (bank.colAllowedAt <= min_col_at) { 784 // FCFS within the hits, giving priority to 785 // commands that can issue seamlessly, without 786 // additional delay, such as same rank accesses 787 // and/or different bank-group accesses 788 DPRINTF(DRAM, "Seamless row buffer hit\n"); 789 selected_pkt_it = i; 790 // no need to look through the remaining queue entries 791 break; 792 } else if (!found_hidden_bank && !found_prepped_pkt) { 793 // if we did not find a packet to a closed row that can 794 // issue the bank commands without incurring delay, and 795 // did not yet find a packet to a prepped row, remember 796 // the current one 797 selected_pkt_it = i; 798 found_prepped_pkt = true; 799 DPRINTF(DRAM, "Prepped row buffer hit\n"); 800 } 801 } else if (!found_earliest_pkt) { 802 // if we have not initialised the bank status, do it 803 // now, and only once per scheduling decisions 804 if (earliest_banks == 0) { 805 // determine entries with earliest bank delay 806 pair<uint64_t, bool> bankStatus = 807 minBankPrep(queue, min_col_at); 808 earliest_banks = bankStatus.first; 809 hidden_bank_prep = bankStatus.second; 810 } 811 812 // bank is amongst first available banks 813 // minBankPrep will give priority to packets that can 814 // issue seamlessly 815 if (bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) { 816 found_earliest_pkt = true; 817 found_hidden_bank = hidden_bank_prep; 818 819 // give priority to packets that can issue 820 // bank commands 'behind the scenes' 821 // any additional delay if any will be due to 822 // col-to-col command requirements 823 if (hidden_bank_prep || !found_prepped_pkt) 824 selected_pkt_it = i; 825 } 826 } 827 } 828 } 829 830 if (selected_pkt_it != queue.end()) { 831 DRAMPacket* selected_pkt = *selected_pkt_it; 832 queue.erase(selected_pkt_it); 833 queue.push_front(selected_pkt); 834 return true; 835 } 836 837 return false; 838} 839 840void 841DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency) 842{ 843 DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr()); 844 845 bool needsResponse = pkt->needsResponse(); 846 // do the actual memory access which also turns the packet into a 847 // response 848 access(pkt); 849 850 // turn packet around to go back to requester if response expected 851 if (needsResponse) { 852 // access already turned the packet into a response 853 assert(pkt->isResponse()); 854 // response_time consumes the static latency and is charged also 855 // with headerDelay that takes into account the delay provided by 856 // the xbar and also the payloadDelay that takes into account the 857 // number of data beats. 858 Tick response_time = curTick() + static_latency + pkt->headerDelay + 859 pkt->payloadDelay; 860 // Here we reset the timing of the packet before sending it out. 861 pkt->headerDelay = pkt->payloadDelay = 0; 862 863 // queue the packet in the response queue to be sent out after 864 // the static latency has passed 865 port.schedTimingResp(pkt, response_time); 866 } else { 867 // @todo the packet is going to be deleted, and the DRAMPacket 868 // is still having a pointer to it 869 pendingDelete.reset(pkt); 870 } 871 872 DPRINTF(DRAM, "Done\n"); 873 874 return; 875} 876 877void 878DRAMCtrl::activateBank(Rank& rank_ref, Bank& bank_ref, 879 Tick act_tick, uint32_t row) 880{ 881 assert(rank_ref.actTicks.size() == activationLimit); 882 883 DPRINTF(DRAM, "Activate at tick %d\n", act_tick); 884 885 // update the open row 886 assert(bank_ref.openRow == Bank::NO_ROW); 887 bank_ref.openRow = row; 888 889 // start counting anew, this covers both the case when we 890 // auto-precharged, and when this access is forced to 891 // precharge 892 bank_ref.bytesAccessed = 0; 893 bank_ref.rowAccesses = 0; 894 895 ++rank_ref.numBanksActive; 896 assert(rank_ref.numBanksActive <= banksPerRank); 897 898 DPRINTF(DRAM, "Activate bank %d, rank %d at tick %lld, now got %d active\n", 899 bank_ref.bank, rank_ref.rank, act_tick, 900 ranks[rank_ref.rank]->numBanksActive); 901 902 rank_ref.power.powerlib.doCommand(MemCommand::ACT, bank_ref.bank, 903 divCeil(act_tick, tCK) - 904 timeStampOffset); 905 906 DPRINTF(DRAMPower, "%llu,ACT,%d,%d\n", divCeil(act_tick, tCK) - 907 timeStampOffset, bank_ref.bank, rank_ref.rank); 908 909 // The next access has to respect tRAS for this bank 910 bank_ref.preAllowedAt = act_tick + tRAS; 911 912 // Respect the row-to-column command delay 913 bank_ref.colAllowedAt = std::max(act_tick + tRCD, bank_ref.colAllowedAt); 914 915 // start by enforcing tRRD 916 for(int i = 0; i < banksPerRank; i++) { 917 // next activate to any bank in this rank must not happen 918 // before tRRD 919 if (bankGroupArch && (bank_ref.bankgr == rank_ref.banks[i].bankgr)) { 920 // bank group architecture requires longer delays between 921 // ACT commands within the same bank group. Use tRRD_L 922 // in this case 923 rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD_L, 924 rank_ref.banks[i].actAllowedAt); 925 } else { 926 // use shorter tRRD value when either 927 // 1) bank group architecture is not supportted 928 // 2) bank is in a different bank group 929 rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD, 930 rank_ref.banks[i].actAllowedAt); 931 } 932 } 933 934 // next, we deal with tXAW, if the activation limit is disabled 935 // then we directly schedule an activate power event 936 if (!rank_ref.actTicks.empty()) { 937 // sanity check 938 if (rank_ref.actTicks.back() && 939 (act_tick - rank_ref.actTicks.back()) < tXAW) { 940 panic("Got %d activates in window %d (%llu - %llu) which " 941 "is smaller than %llu\n", activationLimit, act_tick - 942 rank_ref.actTicks.back(), act_tick, 943 rank_ref.actTicks.back(), tXAW); 944 } 945 946 // shift the times used for the book keeping, the last element 947 // (highest index) is the oldest one and hence the lowest value 948 rank_ref.actTicks.pop_back(); 949 950 // record an new activation (in the future) 951 rank_ref.actTicks.push_front(act_tick); 952 953 // cannot activate more than X times in time window tXAW, push the 954 // next one (the X + 1'st activate) to be tXAW away from the 955 // oldest in our window of X 956 if (rank_ref.actTicks.back() && 957 (act_tick - rank_ref.actTicks.back()) < tXAW) { 958 DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate " 959 "no earlier than %llu\n", activationLimit, 960 rank_ref.actTicks.back() + tXAW); 961 for(int j = 0; j < banksPerRank; j++) 962 // next activate must not happen before end of window 963 rank_ref.banks[j].actAllowedAt = 964 std::max(rank_ref.actTicks.back() + tXAW, 965 rank_ref.banks[j].actAllowedAt); 966 } 967 } 968 969 // at the point when this activate takes place, make sure we 970 // transition to the active power state 971 if (!rank_ref.activateEvent.scheduled()) 972 schedule(rank_ref.activateEvent, act_tick); 973 else if (rank_ref.activateEvent.when() > act_tick) 974 // move it sooner in time 975 reschedule(rank_ref.activateEvent, act_tick); 976} 977 978void 979DRAMCtrl::prechargeBank(Rank& rank_ref, Bank& bank, Tick pre_at, bool trace) 980{ 981 // make sure the bank has an open row 982 assert(bank.openRow != Bank::NO_ROW); 983 984 // sample the bytes per activate here since we are closing 985 // the page 986 bytesPerActivate.sample(bank.bytesAccessed); 987 988 bank.openRow = Bank::NO_ROW; 989 990 // no precharge allowed before this one 991 bank.preAllowedAt = pre_at; 992 993 Tick pre_done_at = pre_at + tRP; 994 995 bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at); 996 997 assert(rank_ref.numBanksActive != 0); 998 --rank_ref.numBanksActive; 999 1000 DPRINTF(DRAM, "Precharging bank %d, rank %d at tick %lld, now got " 1001 "%d active\n", bank.bank, rank_ref.rank, pre_at, 1002 rank_ref.numBanksActive); 1003 1004 if (trace) { 1005 1006 rank_ref.power.powerlib.doCommand(MemCommand::PRE, bank.bank, 1007 divCeil(pre_at, tCK) - 1008 timeStampOffset); 1009 DPRINTF(DRAMPower, "%llu,PRE,%d,%d\n", divCeil(pre_at, tCK) - 1010 timeStampOffset, bank.bank, rank_ref.rank); 1011 } 1012 // if we look at the current number of active banks we might be 1013 // tempted to think the DRAM is now idle, however this can be 1014 // undone by an activate that is scheduled to happen before we 1015 // would have reached the idle state, so schedule an event and 1016 // rather check once we actually make it to the point in time when 1017 // the (last) precharge takes place 1018 if (!rank_ref.prechargeEvent.scheduled()) 1019 schedule(rank_ref.prechargeEvent, pre_done_at); 1020 else if (rank_ref.prechargeEvent.when() < pre_done_at) 1021 reschedule(rank_ref.prechargeEvent, pre_done_at); 1022} 1023 1024void 1025DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt) 1026{ 1027 DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n", 1028 dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row); 1029 1030 // get the rank 1031 Rank& rank = dram_pkt->rankRef; 1032 1033 // get the bank 1034 Bank& bank = dram_pkt->bankRef; 1035 1036 // for the state we need to track if it is a row hit or not 1037 bool row_hit = true; 1038 1039 // respect any constraints on the command (e.g. tRCD or tCCD) 1040 Tick cmd_at = std::max(bank.colAllowedAt, curTick()); 1041 1042 // Determine the access latency and update the bank state 1043 if (bank.openRow == dram_pkt->row) { 1044 // nothing to do 1045 } else { 1046 row_hit = false; 1047 1048 // If there is a page open, precharge it. 1049 if (bank.openRow != Bank::NO_ROW) { 1050 prechargeBank(rank, bank, std::max(bank.preAllowedAt, curTick())); 1051 } 1052 1053 // next we need to account for the delay in activating the 1054 // page 1055 Tick act_tick = std::max(bank.actAllowedAt, curTick()); 1056 1057 // Record the activation and deal with all the global timing 1058 // constraints caused be a new activation (tRRD and tXAW) 1059 activateBank(rank, bank, act_tick, dram_pkt->row); 1060 1061 // issue the command as early as possible 1062 cmd_at = bank.colAllowedAt; 1063 } 1064 1065 // we need to wait until the bus is available before we can issue 1066 // the command 1067 cmd_at = std::max(cmd_at, busBusyUntil - tCL); 1068 1069 // update the packet ready time 1070 dram_pkt->readyTime = cmd_at + tCL + tBURST; 1071 1072 // only one burst can use the bus at any one point in time 1073 assert(dram_pkt->readyTime - busBusyUntil >= tBURST); 1074 1075 // update the time for the next read/write burst for each 1076 // bank (add a max with tCCD/tCCD_L here) 1077 Tick cmd_dly; 1078 for(int j = 0; j < ranksPerChannel; j++) { 1079 for(int i = 0; i < banksPerRank; i++) { 1080 // next burst to same bank group in this rank must not happen 1081 // before tCCD_L. Different bank group timing requirement is 1082 // tBURST; Add tCS for different ranks 1083 if (dram_pkt->rank == j) { 1084 if (bankGroupArch && 1085 (bank.bankgr == ranks[j]->banks[i].bankgr)) { 1086 // bank group architecture requires longer delays between 1087 // RD/WR burst commands to the same bank group. 1088 // Use tCCD_L in this case 1089 cmd_dly = tCCD_L; 1090 } else { 1091 // use tBURST (equivalent to tCCD_S), the shorter 1092 // cas-to-cas delay value, when either: 1093 // 1) bank group architecture is not supportted 1094 // 2) bank is in a different bank group 1095 cmd_dly = tBURST; 1096 } 1097 } else { 1098 // different rank is by default in a different bank group 1099 // use tBURST (equivalent to tCCD_S), which is the shorter 1100 // cas-to-cas delay in this case 1101 // Add tCS to account for rank-to-rank bus delay requirements 1102 cmd_dly = tBURST + tCS; 1103 } 1104 ranks[j]->banks[i].colAllowedAt = std::max(cmd_at + cmd_dly, 1105 ranks[j]->banks[i].colAllowedAt); 1106 } 1107 } 1108 1109 // Save rank of current access 1110 activeRank = dram_pkt->rank; 1111 1112 // If this is a write, we also need to respect the write recovery 1113 // time before a precharge, in the case of a read, respect the 1114 // read to precharge constraint 1115 bank.preAllowedAt = std::max(bank.preAllowedAt, 1116 dram_pkt->isRead ? cmd_at + tRTP : 1117 dram_pkt->readyTime + tWR); 1118 1119 // increment the bytes accessed and the accesses per row 1120 bank.bytesAccessed += burstSize; 1121 ++bank.rowAccesses; 1122 1123 // if we reached the max, then issue with an auto-precharge 1124 bool auto_precharge = pageMgmt == Enums::close || 1125 bank.rowAccesses == maxAccessesPerRow; 1126 1127 // if we did not hit the limit, we might still want to 1128 // auto-precharge 1129 if (!auto_precharge && 1130 (pageMgmt == Enums::open_adaptive || 1131 pageMgmt == Enums::close_adaptive)) { 1132 // a twist on the open and close page policies: 1133 // 1) open_adaptive page policy does not blindly keep the 1134 // page open, but close it if there are no row hits, and there 1135 // are bank conflicts in the queue 1136 // 2) close_adaptive page policy does not blindly close the 1137 // page, but closes it only if there are no row hits in the queue. 1138 // In this case, only force an auto precharge when there 1139 // are no same page hits in the queue 1140 bool got_more_hits = false; 1141 bool got_bank_conflict = false; 1142 1143 // either look at the read queue or write queue 1144 const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue : 1145 writeQueue; 1146 auto p = queue.begin(); 1147 // make sure we are not considering the packet that we are 1148 // currently dealing with (which is the head of the queue) 1149 ++p; 1150 1151 // keep on looking until we find a hit or reach the end of the queue 1152 // 1) if a hit is found, then both open and close adaptive policies keep 1153 // the page open 1154 // 2) if no hit is found, got_bank_conflict is set to true if a bank 1155 // conflict request is waiting in the queue 1156 while (!got_more_hits && p != queue.end()) { 1157 bool same_rank_bank = (dram_pkt->rank == (*p)->rank) && 1158 (dram_pkt->bank == (*p)->bank); 1159 bool same_row = dram_pkt->row == (*p)->row; 1160 got_more_hits |= same_rank_bank && same_row; 1161 got_bank_conflict |= same_rank_bank && !same_row; 1162 ++p; 1163 } 1164 1165 // auto pre-charge when either 1166 // 1) open_adaptive policy, we have not got any more hits, and 1167 // have a bank conflict 1168 // 2) close_adaptive policy and we have not got any more hits 1169 auto_precharge = !got_more_hits && 1170 (got_bank_conflict || pageMgmt == Enums::close_adaptive); 1171 } 1172 1173 // DRAMPower trace command to be written 1174 std::string mem_cmd = dram_pkt->isRead ? "RD" : "WR"; 1175 1176 // MemCommand required for DRAMPower library 1177 MemCommand::cmds command = (mem_cmd == "RD") ? MemCommand::RD : 1178 MemCommand::WR; 1179 1180 // if this access should use auto-precharge, then we are 1181 // closing the row 1182 if (auto_precharge) { 1183 // if auto-precharge push a PRE command at the correct tick to the 1184 // list used by DRAMPower library to calculate power 1185 prechargeBank(rank, bank, std::max(curTick(), bank.preAllowedAt)); 1186 1187 DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId); 1188 } 1189 1190 // Update bus state 1191 busBusyUntil = dram_pkt->readyTime; 1192 1193 DPRINTF(DRAM, "Access to %lld, ready at %lld bus busy until %lld.\n", 1194 dram_pkt->addr, dram_pkt->readyTime, busBusyUntil); 1195 1196 dram_pkt->rankRef.power.powerlib.doCommand(command, dram_pkt->bank, 1197 divCeil(cmd_at, tCK) - 1198 timeStampOffset); 1199 1200 DPRINTF(DRAMPower, "%llu,%s,%d,%d\n", divCeil(cmd_at, tCK) - 1201 timeStampOffset, mem_cmd, dram_pkt->bank, dram_pkt->rank); 1202 1203 // Update the minimum timing between the requests, this is a 1204 // conservative estimate of when we have to schedule the next 1205 // request to not introduce any unecessary bubbles. In most cases 1206 // we will wake up sooner than we have to. 1207 nextReqTime = busBusyUntil - (tRP + tRCD + tCL); 1208 1209 // Update the stats and schedule the next request 1210 if (dram_pkt->isRead) { 1211 ++readsThisTime; 1212 if (row_hit) 1213 readRowHits++; 1214 bytesReadDRAM += burstSize; 1215 perBankRdBursts[dram_pkt->bankId]++; 1216 1217 // Update latency stats 1218 totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime; 1219 totBusLat += tBURST; 1220 totQLat += cmd_at - dram_pkt->entryTime; 1221 } else { 1222 ++writesThisTime; 1223 if (row_hit) 1224 writeRowHits++; 1225 bytesWritten += burstSize; 1226 perBankWrBursts[dram_pkt->bankId]++; 1227 } 1228} 1229 1230void 1231DRAMCtrl::processNextReqEvent() 1232{ 1233 int busyRanks = 0; 1234 for (auto r : ranks) { 1235 if (!r->isAvailable()) { 1236 // rank is busy refreshing 1237 busyRanks++; 1238 1239 // let the rank know that if it was waiting to drain, it 1240 // is now done and ready to proceed 1241 r->checkDrainDone(); 1242 } 1243 } 1244 1245 if (busyRanks == ranksPerChannel) { 1246 // if all ranks are refreshing wait for them to finish 1247 // and stall this state machine without taking any further 1248 // action, and do not schedule a new nextReqEvent 1249 return; 1250 } 1251 1252 // pre-emptively set to false. Overwrite if in READ_TO_WRITE 1253 // or WRITE_TO_READ state 1254 bool switched_cmd_type = false; 1255 if (busState == READ_TO_WRITE) { 1256 DPRINTF(DRAM, "Switching to writes after %d reads with %d reads " 1257 "waiting\n", readsThisTime, readQueue.size()); 1258 1259 // sample and reset the read-related stats as we are now 1260 // transitioning to writes, and all reads are done 1261 rdPerTurnAround.sample(readsThisTime); 1262 readsThisTime = 0; 1263 1264 // now proceed to do the actual writes 1265 busState = WRITE; 1266 switched_cmd_type = true; 1267 } else if (busState == WRITE_TO_READ) { 1268 DPRINTF(DRAM, "Switching to reads after %d writes with %d writes " 1269 "waiting\n", writesThisTime, writeQueue.size()); 1270 1271 wrPerTurnAround.sample(writesThisTime); 1272 writesThisTime = 0; 1273 1274 busState = READ; 1275 switched_cmd_type = true; 1276 } 1277 1278 // when we get here it is either a read or a write 1279 if (busState == READ) { 1280 1281 // track if we should switch or not 1282 bool switch_to_writes = false; 1283 1284 if (readQueue.empty()) { 1285 // In the case there is no read request to go next, 1286 // trigger writes if we have passed the low threshold (or 1287 // if we are draining) 1288 if (!writeQueue.empty() && 1289 (drainState() == DrainState::Draining || 1290 writeQueue.size() > writeLowThreshold)) { 1291 1292 switch_to_writes = true; 1293 } else { 1294 // check if we are drained 1295 if (drainState() == DrainState::Draining && 1296 respQueue.empty()) { 1297 1298 DPRINTF(Drain, "DRAM controller done draining\n"); 1299 signalDrainDone(); 1300 } 1301 1302 // nothing to do, not even any point in scheduling an 1303 // event for the next request 1304 return; 1305 } 1306 } else { 1307 // bool to check if there is a read to a free rank 1308 bool found_read = false; 1309 1310 // Figure out which read request goes next, and move it to the 1311 // front of the read queue 1312 // If we are changing command type, incorporate the minimum 1313 // bus turnaround delay which will be tCS (different rank) case 1314 found_read = chooseNext(readQueue, 1315 switched_cmd_type ? tCS : 0); 1316 1317 // if no read to an available rank is found then return 1318 // at this point. There could be writes to the available ranks 1319 // which are above the required threshold. However, to 1320 // avoid adding more complexity to the code, return and wait 1321 // for a refresh event to kick things into action again. 1322 if (!found_read) 1323 return; 1324 1325 DRAMPacket* dram_pkt = readQueue.front(); 1326 assert(dram_pkt->rankRef.isAvailable()); 1327 // here we get a bit creative and shift the bus busy time not 1328 // just the tWTR, but also a CAS latency to capture the fact 1329 // that we are allowed to prepare a new bank, but not issue a 1330 // read command until after tWTR, in essence we capture a 1331 // bubble on the data bus that is tWTR + tCL 1332 if (switched_cmd_type && dram_pkt->rank == activeRank) { 1333 busBusyUntil += tWTR + tCL; 1334 } 1335 1336 doDRAMAccess(dram_pkt); 1337 1338 // At this point we're done dealing with the request 1339 readQueue.pop_front(); 1340 1341 // sanity check 1342 assert(dram_pkt->size <= burstSize); 1343 assert(dram_pkt->readyTime >= curTick()); 1344 1345 // Insert into response queue. It will be sent back to the 1346 // requestor at its readyTime 1347 if (respQueue.empty()) { 1348 assert(!respondEvent.scheduled()); 1349 schedule(respondEvent, dram_pkt->readyTime); 1350 } else { 1351 assert(respQueue.back()->readyTime <= dram_pkt->readyTime); 1352 assert(respondEvent.scheduled()); 1353 } 1354 1355 respQueue.push_back(dram_pkt); 1356 1357 // we have so many writes that we have to transition 1358 if (writeQueue.size() > writeHighThreshold) { 1359 switch_to_writes = true; 1360 } 1361 } 1362 1363 // switching to writes, either because the read queue is empty 1364 // and the writes have passed the low threshold (or we are 1365 // draining), or because the writes hit the hight threshold 1366 if (switch_to_writes) { 1367 // transition to writing 1368 busState = READ_TO_WRITE; 1369 } 1370 } else { 1371 // bool to check if write to free rank is found 1372 bool found_write = false; 1373 1374 // If we are changing command type, incorporate the minimum 1375 // bus turnaround delay 1376 found_write = chooseNext(writeQueue, 1377 switched_cmd_type ? std::min(tRTW, tCS) : 0); 1378 1379 // if no writes to an available rank are found then return. 1380 // There could be reads to the available ranks. However, to avoid 1381 // adding more complexity to the code, return at this point and wait 1382 // for a refresh event to kick things into action again. 1383 if (!found_write) 1384 return; 1385 1386 DRAMPacket* dram_pkt = writeQueue.front(); 1387 assert(dram_pkt->rankRef.isAvailable()); 1388 // sanity check 1389 assert(dram_pkt->size <= burstSize); 1390 1391 // add a bubble to the data bus, as defined by the 1392 // tRTW when access is to the same rank as previous burst 1393 // Different rank timing is handled with tCS, which is 1394 // applied to colAllowedAt 1395 if (switched_cmd_type && dram_pkt->rank == activeRank) { 1396 busBusyUntil += tRTW; 1397 } 1398 1399 doDRAMAccess(dram_pkt); 1400 1401 writeQueue.pop_front(); 1402 isInWriteQueue.erase(burstAlign(dram_pkt->addr)); 1403 delete dram_pkt; 1404 1405 // If we emptied the write queue, or got sufficiently below the 1406 // threshold (using the minWritesPerSwitch as the hysteresis) and 1407 // are not draining, or we have reads waiting and have done enough 1408 // writes, then switch to reads. 1409 if (writeQueue.empty() || 1410 (writeQueue.size() + minWritesPerSwitch < writeLowThreshold && 1411 drainState() != DrainState::Draining) || 1412 (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) { 1413 // turn the bus back around for reads again 1414 busState = WRITE_TO_READ; 1415 1416 // note that the we switch back to reads also in the idle 1417 // case, which eventually will check for any draining and 1418 // also pause any further scheduling if there is really 1419 // nothing to do 1420 } 1421 } 1422 // It is possible that a refresh to another rank kicks things back into 1423 // action before reaching this point. 1424 if (!nextReqEvent.scheduled()) 1425 schedule(nextReqEvent, std::max(nextReqTime, curTick())); 1426 1427 // If there is space available and we have writes waiting then let 1428 // them retry. This is done here to ensure that the retry does not 1429 // cause a nextReqEvent to be scheduled before we do so as part of 1430 // the next request processing 1431 if (retryWrReq && writeQueue.size() < writeBufferSize) { 1432 retryWrReq = false; 1433 port.sendRetryReq(); 1434 } 1435} 1436 1437pair<uint64_t, bool> 1438DRAMCtrl::minBankPrep(const deque<DRAMPacket*>& queue, 1439 Tick min_col_at) const 1440{ 1441 uint64_t bank_mask = 0; 1442 Tick min_act_at = MaxTick; 1443 1444 // latest Tick for which ACT can occur without incurring additoinal 1445 // delay on the data bus 1446 const Tick hidden_act_max = std::max(min_col_at - tRCD, curTick()); 1447 1448 // Flag condition when burst can issue back-to-back with previous burst 1449 bool found_seamless_bank = false; 1450 1451 // Flag condition when bank can be opened without incurring additional 1452 // delay on the data bus 1453 bool hidden_bank_prep = false; 1454 1455 // determine if we have queued transactions targetting the 1456 // bank in question 1457 vector<bool> got_waiting(ranksPerChannel * banksPerRank, false); 1458 for (const auto& p : queue) { 1459 if(p->rankRef.isAvailable()) 1460 got_waiting[p->bankId] = true; 1461 } 1462 1463 // Find command with optimal bank timing 1464 // Will prioritize commands that can issue seamlessly. 1465 for (int i = 0; i < ranksPerChannel; i++) { 1466 for (int j = 0; j < banksPerRank; j++) { 1467 uint16_t bank_id = i * banksPerRank + j; 1468 1469 // if we have waiting requests for the bank, and it is 1470 // amongst the first available, update the mask 1471 if (got_waiting[bank_id]) { 1472 // make sure this rank is not currently refreshing. 1473 assert(ranks[i]->isAvailable()); 1474 // simplistic approximation of when the bank can issue 1475 // an activate, ignoring any rank-to-rank switching 1476 // cost in this calculation 1477 Tick act_at = ranks[i]->banks[j].openRow == Bank::NO_ROW ? 1478 std::max(ranks[i]->banks[j].actAllowedAt, curTick()) : 1479 std::max(ranks[i]->banks[j].preAllowedAt, curTick()) + tRP; 1480 1481 // When is the earliest the R/W burst can issue? 1482 Tick col_at = std::max(ranks[i]->banks[j].colAllowedAt, 1483 act_at + tRCD); 1484 1485 // bank can issue burst back-to-back (seamlessly) with 1486 // previous burst 1487 bool new_seamless_bank = col_at <= min_col_at; 1488 1489 // if we found a new seamless bank or we have no 1490 // seamless banks, and got a bank with an earlier 1491 // activate time, it should be added to the bit mask 1492 if (new_seamless_bank || 1493 (!found_seamless_bank && act_at <= min_act_at)) { 1494 // if we did not have a seamless bank before, and 1495 // we do now, reset the bank mask, also reset it 1496 // if we have not yet found a seamless bank and 1497 // the activate time is smaller than what we have 1498 // seen so far 1499 if (!found_seamless_bank && 1500 (new_seamless_bank || act_at < min_act_at)) { 1501 bank_mask = 0; 1502 } 1503 1504 found_seamless_bank |= new_seamless_bank; 1505 1506 // ACT can occur 'behind the scenes' 1507 hidden_bank_prep = act_at <= hidden_act_max; 1508 1509 // set the bit corresponding to the available bank 1510 replaceBits(bank_mask, bank_id, bank_id, 1); 1511 min_act_at = act_at; 1512 } 1513 } 1514 } 1515 } 1516 1517 return make_pair(bank_mask, hidden_bank_prep); 1518} 1519 1520DRAMCtrl::Rank::Rank(DRAMCtrl& _memory, const DRAMCtrlParams* _p) 1521 : EventManager(&_memory), memory(_memory), 1522 pwrStateTrans(PWR_IDLE), pwrState(PWR_IDLE), pwrStateTick(0), 1523 refreshState(REF_IDLE), refreshDueAt(0), 1524 power(_p, false), numBanksActive(0), 1525 activateEvent(*this), prechargeEvent(*this), 1526 refreshEvent(*this), powerEvent(*this) 1527{ } 1528 1529void 1530DRAMCtrl::Rank::startup(Tick ref_tick) 1531{ 1532 assert(ref_tick > curTick()); 1533 1534 pwrStateTick = curTick(); 1535 1536 // kick off the refresh, and give ourselves enough time to 1537 // precharge 1538 schedule(refreshEvent, ref_tick); 1539} 1540 1541void 1542DRAMCtrl::Rank::suspend() 1543{ 1544 deschedule(refreshEvent); 1545} 1546 1547void 1548DRAMCtrl::Rank::checkDrainDone() 1549{ 1550 // if this rank was waiting to drain it is now able to proceed to 1551 // precharge 1552 if (refreshState == REF_DRAIN) { 1553 DPRINTF(DRAM, "Refresh drain done, now precharging\n"); 1554 1555 refreshState = REF_PRE; 1556 1557 // hand control back to the refresh event loop 1558 schedule(refreshEvent, curTick()); 1559 } 1560} 1561 1562void 1563DRAMCtrl::Rank::processActivateEvent() 1564{ 1565 // we should transition to the active state as soon as any bank is active 1566 if (pwrState != PWR_ACT) 1567 // note that at this point numBanksActive could be back at 1568 // zero again due to a precharge scheduled in the future 1569 schedulePowerEvent(PWR_ACT, curTick()); 1570} 1571 1572void 1573DRAMCtrl::Rank::processPrechargeEvent() 1574{ 1575 // if we reached zero, then special conditions apply as we track 1576 // if all banks are precharged for the power models 1577 if (numBanksActive == 0) { 1578 // we should transition to the idle state when the last bank 1579 // is precharged 1580 schedulePowerEvent(PWR_IDLE, curTick()); 1581 } 1582} 1583 1584void 1585DRAMCtrl::Rank::processRefreshEvent() 1586{ 1587 // when first preparing the refresh, remember when it was due 1588 if (refreshState == REF_IDLE) { 1589 // remember when the refresh is due 1590 refreshDueAt = curTick(); 1591 1592 // proceed to drain 1593 refreshState = REF_DRAIN; 1594 1595 DPRINTF(DRAM, "Refresh due\n"); 1596 } 1597 1598 // let any scheduled read or write to the same rank go ahead, 1599 // after which it will 1600 // hand control back to this event loop 1601 if (refreshState == REF_DRAIN) { 1602 // if a request is at the moment being handled and this request is 1603 // accessing the current rank then wait for it to finish 1604 if ((rank == memory.activeRank) 1605 && (memory.nextReqEvent.scheduled())) { 1606 // hand control over to the request loop until it is 1607 // evaluated next 1608 DPRINTF(DRAM, "Refresh awaiting draining\n"); 1609 1610 return; 1611 } else { 1612 refreshState = REF_PRE; 1613 } 1614 } 1615 1616 // at this point, ensure that all banks are precharged 1617 if (refreshState == REF_PRE) { 1618 // precharge any active bank if we are not already in the idle 1619 // state 1620 if (pwrState != PWR_IDLE) { 1621 // at the moment, we use a precharge all even if there is 1622 // only a single bank open 1623 DPRINTF(DRAM, "Precharging all\n"); 1624 1625 // first determine when we can precharge 1626 Tick pre_at = curTick(); 1627 1628 for (auto &b : banks) { 1629 // respect both causality and any existing bank 1630 // constraints, some banks could already have a 1631 // (auto) precharge scheduled 1632 pre_at = std::max(b.preAllowedAt, pre_at); 1633 } 1634 1635 // make sure all banks per rank are precharged, and for those that 1636 // already are, update their availability 1637 Tick act_allowed_at = pre_at + memory.tRP; 1638 1639 for (auto &b : banks) { 1640 if (b.openRow != Bank::NO_ROW) { 1641 memory.prechargeBank(*this, b, pre_at, false); 1642 } else { 1643 b.actAllowedAt = std::max(b.actAllowedAt, act_allowed_at); 1644 b.preAllowedAt = std::max(b.preAllowedAt, pre_at); 1645 } 1646 } 1647 1648 // precharge all banks in rank 1649 power.powerlib.doCommand(MemCommand::PREA, 0, 1650 divCeil(pre_at, memory.tCK) - 1651 memory.timeStampOffset); 1652 1653 DPRINTF(DRAMPower, "%llu,PREA,0,%d\n", 1654 divCeil(pre_at, memory.tCK) - 1655 memory.timeStampOffset, rank); 1656 } else { 1657 DPRINTF(DRAM, "All banks already precharged, starting refresh\n"); 1658 1659 // go ahead and kick the power state machine into gear if 1660 // we are already idle 1661 schedulePowerEvent(PWR_REF, curTick()); 1662 } 1663 1664 refreshState = REF_RUN; 1665 assert(numBanksActive == 0); 1666 1667 // wait for all banks to be precharged, at which point the 1668 // power state machine will transition to the idle state, and 1669 // automatically move to a refresh, at that point it will also 1670 // call this method to get the refresh event loop going again 1671 return; 1672 } 1673 1674 // last but not least we perform the actual refresh 1675 if (refreshState == REF_RUN) { 1676 // should never get here with any banks active 1677 assert(numBanksActive == 0); 1678 assert(pwrState == PWR_REF); 1679 1680 Tick ref_done_at = curTick() + memory.tRFC; 1681 1682 for (auto &b : banks) { 1683 b.actAllowedAt = ref_done_at; 1684 } 1685 1686 // at the moment this affects all ranks 1687 power.powerlib.doCommand(MemCommand::REF, 0, 1688 divCeil(curTick(), memory.tCK) - 1689 memory.timeStampOffset); 1690 1691 // at the moment sort the list of commands and update the counters 1692 // for DRAMPower libray when doing a refresh 1693 sort(power.powerlib.cmdList.begin(), 1694 power.powerlib.cmdList.end(), DRAMCtrl::sortTime); 1695 1696 // update the counters for DRAMPower, passing false to 1697 // indicate that this is not the last command in the 1698 // list. DRAMPower requires this information for the 1699 // correct calculation of the background energy at the end 1700 // of the simulation. Ideally we would want to call this 1701 // function with true once at the end of the 1702 // simulation. However, the discarded energy is extremly 1703 // small and does not effect the final results. 1704 power.powerlib.updateCounters(false); 1705 1706 // call the energy function 1707 power.powerlib.calcEnergy(); 1708 1709 // Update the stats 1710 updatePowerStats(); 1711 1712 DPRINTF(DRAMPower, "%llu,REF,0,%d\n", divCeil(curTick(), memory.tCK) - 1713 memory.timeStampOffset, rank); 1714 1715 // make sure we did not wait so long that we cannot make up 1716 // for it 1717 if (refreshDueAt + memory.tREFI < ref_done_at) { 1718 fatal("Refresh was delayed so long we cannot catch up\n"); 1719 } 1720 1721 // compensate for the delay in actually performing the refresh 1722 // when scheduling the next one 1723 schedule(refreshEvent, refreshDueAt + memory.tREFI - memory.tRP); 1724 1725 assert(!powerEvent.scheduled()); 1726 1727 // move to the idle power state once the refresh is done, this 1728 // will also move the refresh state machine to the refresh 1729 // idle state 1730 schedulePowerEvent(PWR_IDLE, ref_done_at); 1731 1732 DPRINTF(DRAMState, "Refresh done at %llu and next refresh at %llu\n", 1733 ref_done_at, refreshDueAt + memory.tREFI); 1734 } 1735} 1736 1737void 1738DRAMCtrl::Rank::schedulePowerEvent(PowerState pwr_state, Tick tick) 1739{ 1740 // respect causality 1741 assert(tick >= curTick()); 1742 1743 if (!powerEvent.scheduled()) { 1744 DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n", 1745 tick, pwr_state); 1746 1747 // insert the new transition 1748 pwrStateTrans = pwr_state; 1749 1750 schedule(powerEvent, tick); 1751 } else { 1752 panic("Scheduled power event at %llu to state %d, " 1753 "with scheduled event at %llu to %d\n", tick, pwr_state, 1754 powerEvent.when(), pwrStateTrans); 1755 } 1756} 1757 1758void 1759DRAMCtrl::Rank::processPowerEvent() 1760{ 1761 // remember where we were, and for how long 1762 Tick duration = curTick() - pwrStateTick; 1763 PowerState prev_state = pwrState; 1764 1765 // update the accounting 1766 pwrStateTime[prev_state] += duration; 1767 1768 pwrState = pwrStateTrans; 1769 pwrStateTick = curTick(); 1770 1771 if (pwrState == PWR_IDLE) { 1772 DPRINTF(DRAMState, "All banks precharged\n"); 1773 1774 // if we were refreshing, make sure we start scheduling requests again 1775 if (prev_state == PWR_REF) { 1776 DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration); 1777 assert(pwrState == PWR_IDLE); 1778 1779 // kick things into action again 1780 refreshState = REF_IDLE; 1781 // a request event could be already scheduled by the state 1782 // machine of the other rank 1783 if (!memory.nextReqEvent.scheduled()) 1784 schedule(memory.nextReqEvent, curTick()); 1785 } else { 1786 assert(prev_state == PWR_ACT); 1787 1788 // if we have a pending refresh, and are now moving to 1789 // the idle state, direclty transition to a refresh 1790 if (refreshState == REF_RUN) { 1791 // there should be nothing waiting at this point 1792 assert(!powerEvent.scheduled()); 1793 1794 // update the state in zero time and proceed below 1795 pwrState = PWR_REF; 1796 } 1797 } 1798 } 1799 1800 // we transition to the refresh state, let the refresh state 1801 // machine know of this state update and let it deal with the 1802 // scheduling of the next power state transition as well as the 1803 // following refresh 1804 if (pwrState == PWR_REF) { 1805 DPRINTF(DRAMState, "Refreshing\n"); 1806 // kick the refresh event loop into action again, and that 1807 // in turn will schedule a transition to the idle power 1808 // state once the refresh is done 1809 assert(refreshState == REF_RUN); 1810 processRefreshEvent(); 1811 } 1812} 1813 1814void 1815DRAMCtrl::Rank::updatePowerStats() 1816{ 1817 // Get the energy and power from DRAMPower 1818 Data::MemoryPowerModel::Energy energy = 1819 power.powerlib.getEnergy(); 1820 Data::MemoryPowerModel::Power rank_power = 1821 power.powerlib.getPower(); 1822 1823 actEnergy = energy.act_energy * memory.devicesPerRank; 1824 preEnergy = energy.pre_energy * memory.devicesPerRank; 1825 readEnergy = energy.read_energy * memory.devicesPerRank; 1826 writeEnergy = energy.write_energy * memory.devicesPerRank; 1827 refreshEnergy = energy.ref_energy * memory.devicesPerRank; 1828 actBackEnergy = energy.act_stdby_energy * memory.devicesPerRank; 1829 preBackEnergy = energy.pre_stdby_energy * memory.devicesPerRank; 1830 totalEnergy = energy.total_energy * memory.devicesPerRank; 1831 averagePower = rank_power.average_power * memory.devicesPerRank; 1832} 1833 1834void 1835DRAMCtrl::Rank::regStats() 1836{ 1837 using namespace Stats; 1838 1839 pwrStateTime 1840 .init(5) 1841 .name(name() + ".memoryStateTime") 1842 .desc("Time in different power states"); 1843 pwrStateTime.subname(0, "IDLE"); 1844 pwrStateTime.subname(1, "REF"); 1845 pwrStateTime.subname(2, "PRE_PDN"); 1846 pwrStateTime.subname(3, "ACT"); 1847 pwrStateTime.subname(4, "ACT_PDN"); 1848 1849 actEnergy 1850 .name(name() + ".actEnergy") 1851 .desc("Energy for activate commands per rank (pJ)"); 1852 1853 preEnergy 1854 .name(name() + ".preEnergy") 1855 .desc("Energy for precharge commands per rank (pJ)"); 1856 1857 readEnergy 1858 .name(name() + ".readEnergy") 1859 .desc("Energy for read commands per rank (pJ)"); 1860 1861 writeEnergy 1862 .name(name() + ".writeEnergy") 1863 .desc("Energy for write commands per rank (pJ)"); 1864 1865 refreshEnergy 1866 .name(name() + ".refreshEnergy") 1867 .desc("Energy for refresh commands per rank (pJ)"); 1868 1869 actBackEnergy 1870 .name(name() + ".actBackEnergy") 1871 .desc("Energy for active background per rank (pJ)"); 1872 1873 preBackEnergy 1874 .name(name() + ".preBackEnergy") 1875 .desc("Energy for precharge background per rank (pJ)"); 1876 1877 totalEnergy 1878 .name(name() + ".totalEnergy") 1879 .desc("Total energy per rank (pJ)"); 1880 1881 averagePower 1882 .name(name() + ".averagePower") 1883 .desc("Core power per rank (mW)"); 1884} 1885void 1886DRAMCtrl::regStats() 1887{ 1888 using namespace Stats; 1889 1890 AbstractMemory::regStats(); 1891 1892 for (auto r : ranks) { 1893 r->regStats(); 1894 } 1895 1896 readReqs 1897 .name(name() + ".readReqs") 1898 .desc("Number of read requests accepted"); 1899 1900 writeReqs 1901 .name(name() + ".writeReqs") 1902 .desc("Number of write requests accepted"); 1903 1904 readBursts 1905 .name(name() + ".readBursts") 1906 .desc("Number of DRAM read bursts, " 1907 "including those serviced by the write queue"); 1908 1909 writeBursts 1910 .name(name() + ".writeBursts") 1911 .desc("Number of DRAM write bursts, " 1912 "including those merged in the write queue"); 1913 1914 servicedByWrQ 1915 .name(name() + ".servicedByWrQ") 1916 .desc("Number of DRAM read bursts serviced by the write queue"); 1917 1918 mergedWrBursts 1919 .name(name() + ".mergedWrBursts") 1920 .desc("Number of DRAM write bursts merged with an existing one"); 1921 1922 neitherReadNorWrite 1923 .name(name() + ".neitherReadNorWriteReqs") 1924 .desc("Number of requests that are neither read nor write"); 1925 1926 perBankRdBursts 1927 .init(banksPerRank * ranksPerChannel) 1928 .name(name() + ".perBankRdBursts") 1929 .desc("Per bank write bursts"); 1930 1931 perBankWrBursts 1932 .init(banksPerRank * ranksPerChannel) 1933 .name(name() + ".perBankWrBursts") 1934 .desc("Per bank write bursts"); 1935 1936 avgRdQLen 1937 .name(name() + ".avgRdQLen") 1938 .desc("Average read queue length when enqueuing") 1939 .precision(2); 1940 1941 avgWrQLen 1942 .name(name() + ".avgWrQLen") 1943 .desc("Average write queue length when enqueuing") 1944 .precision(2); 1945 1946 totQLat 1947 .name(name() + ".totQLat") 1948 .desc("Total ticks spent queuing"); 1949 1950 totBusLat 1951 .name(name() + ".totBusLat") 1952 .desc("Total ticks spent in databus transfers"); 1953 1954 totMemAccLat 1955 .name(name() + ".totMemAccLat") 1956 .desc("Total ticks spent from burst creation until serviced " 1957 "by the DRAM"); 1958 1959 avgQLat 1960 .name(name() + ".avgQLat") 1961 .desc("Average queueing delay per DRAM burst") 1962 .precision(2); 1963 1964 avgQLat = totQLat / (readBursts - servicedByWrQ); 1965 1966 avgBusLat 1967 .name(name() + ".avgBusLat") 1968 .desc("Average bus latency per DRAM burst") 1969 .precision(2); 1970 1971 avgBusLat = totBusLat / (readBursts - servicedByWrQ); 1972 1973 avgMemAccLat 1974 .name(name() + ".avgMemAccLat") 1975 .desc("Average memory access latency per DRAM burst") 1976 .precision(2); 1977 1978 avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ); 1979 1980 numRdRetry 1981 .name(name() + ".numRdRetry") 1982 .desc("Number of times read queue was full causing retry"); 1983 1984 numWrRetry 1985 .name(name() + ".numWrRetry") 1986 .desc("Number of times write queue was full causing retry"); 1987 1988 readRowHits 1989 .name(name() + ".readRowHits") 1990 .desc("Number of row buffer hits during reads"); 1991 1992 writeRowHits 1993 .name(name() + ".writeRowHits") 1994 .desc("Number of row buffer hits during writes"); 1995 1996 readRowHitRate 1997 .name(name() + ".readRowHitRate") 1998 .desc("Row buffer hit rate for reads") 1999 .precision(2); 2000 2001 readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100; 2002 2003 writeRowHitRate 2004 .name(name() + ".writeRowHitRate") 2005 .desc("Row buffer hit rate for writes") 2006 .precision(2); 2007 2008 writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100; 2009 2010 readPktSize 2011 .init(ceilLog2(burstSize) + 1) 2012 .name(name() + ".readPktSize") 2013 .desc("Read request sizes (log2)"); 2014 2015 writePktSize 2016 .init(ceilLog2(burstSize) + 1) 2017 .name(name() + ".writePktSize") 2018 .desc("Write request sizes (log2)"); 2019 2020 rdQLenPdf 2021 .init(readBufferSize) 2022 .name(name() + ".rdQLenPdf") 2023 .desc("What read queue length does an incoming req see"); 2024 2025 wrQLenPdf 2026 .init(writeBufferSize) 2027 .name(name() + ".wrQLenPdf") 2028 .desc("What write queue length does an incoming req see"); 2029 2030 bytesPerActivate 2031 .init(maxAccessesPerRow) 2032 .name(name() + ".bytesPerActivate") 2033 .desc("Bytes accessed per row activation") 2034 .flags(nozero); 2035 2036 rdPerTurnAround 2037 .init(readBufferSize) 2038 .name(name() + ".rdPerTurnAround") 2039 .desc("Reads before turning the bus around for writes") 2040 .flags(nozero); 2041 2042 wrPerTurnAround 2043 .init(writeBufferSize) 2044 .name(name() + ".wrPerTurnAround") 2045 .desc("Writes before turning the bus around for reads") 2046 .flags(nozero); 2047 2048 bytesReadDRAM 2049 .name(name() + ".bytesReadDRAM") 2050 .desc("Total number of bytes read from DRAM"); 2051 2052 bytesReadWrQ 2053 .name(name() + ".bytesReadWrQ") 2054 .desc("Total number of bytes read from write queue"); 2055 2056 bytesWritten 2057 .name(name() + ".bytesWritten") 2058 .desc("Total number of bytes written to DRAM"); 2059 2060 bytesReadSys 2061 .name(name() + ".bytesReadSys") 2062 .desc("Total read bytes from the system interface side"); 2063 2064 bytesWrittenSys 2065 .name(name() + ".bytesWrittenSys") 2066 .desc("Total written bytes from the system interface side"); 2067 2068 avgRdBW 2069 .name(name() + ".avgRdBW") 2070 .desc("Average DRAM read bandwidth in MiByte/s") 2071 .precision(2); 2072 2073 avgRdBW = (bytesReadDRAM / 1000000) / simSeconds; 2074 2075 avgWrBW 2076 .name(name() + ".avgWrBW") 2077 .desc("Average achieved write bandwidth in MiByte/s") 2078 .precision(2); 2079 2080 avgWrBW = (bytesWritten / 1000000) / simSeconds; 2081 2082 avgRdBWSys 2083 .name(name() + ".avgRdBWSys") 2084 .desc("Average system read bandwidth in MiByte/s") 2085 .precision(2); 2086 2087 avgRdBWSys = (bytesReadSys / 1000000) / simSeconds; 2088 2089 avgWrBWSys 2090 .name(name() + ".avgWrBWSys") 2091 .desc("Average system write bandwidth in MiByte/s") 2092 .precision(2); 2093 2094 avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds; 2095 2096 peakBW 2097 .name(name() + ".peakBW") 2098 .desc("Theoretical peak bandwidth in MiByte/s") 2099 .precision(2); 2100 2101 peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000; 2102 2103 busUtil 2104 .name(name() + ".busUtil") 2105 .desc("Data bus utilization in percentage") 2106 .precision(2); 2107 busUtil = (avgRdBW + avgWrBW) / peakBW * 100; 2108 2109 totGap 2110 .name(name() + ".totGap") 2111 .desc("Total gap between requests"); 2112 2113 avgGap 2114 .name(name() + ".avgGap") 2115 .desc("Average gap between requests") 2116 .precision(2); 2117 2118 avgGap = totGap / (readReqs + writeReqs); 2119 2120 // Stats for DRAM Power calculation based on Micron datasheet 2121 busUtilRead 2122 .name(name() + ".busUtilRead") 2123 .desc("Data bus utilization in percentage for reads") 2124 .precision(2); 2125 2126 busUtilRead = avgRdBW / peakBW * 100; 2127 2128 busUtilWrite 2129 .name(name() + ".busUtilWrite") 2130 .desc("Data bus utilization in percentage for writes") 2131 .precision(2); 2132 2133 busUtilWrite = avgWrBW / peakBW * 100; 2134 2135 pageHitRate 2136 .name(name() + ".pageHitRate") 2137 .desc("Row buffer hit rate, read and write combined") 2138 .precision(2); 2139 2140 pageHitRate = (writeRowHits + readRowHits) / 2141 (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100; 2142} 2143 2144void 2145DRAMCtrl::recvFunctional(PacketPtr pkt) 2146{ 2147 // rely on the abstract memory 2148 functionalAccess(pkt); 2149} 2150 2151BaseSlavePort& 2152DRAMCtrl::getSlavePort(const string &if_name, PortID idx) 2153{ 2154 if (if_name != "port") { 2155 return MemObject::getSlavePort(if_name, idx); 2156 } else { 2157 return port; 2158 } 2159} 2160 2161DrainState 2162DRAMCtrl::drain() 2163{ 2164 // if there is anything in any of our internal queues, keep track 2165 // of that as well 2166 if (!(writeQueue.empty() && readQueue.empty() && respQueue.empty())) { 2167 DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d," 2168 " resp: %d\n", writeQueue.size(), readQueue.size(), 2169 respQueue.size()); 2170 2171 // the only part that is not drained automatically over time 2172 // is the write queue, thus kick things into action if needed 2173 if (!writeQueue.empty() && !nextReqEvent.scheduled()) { 2174 schedule(nextReqEvent, curTick()); 2175 } 2176 return DrainState::Draining; 2177 } else { 2178 return DrainState::Drained; 2179 } 2180} 2181 2182void 2183DRAMCtrl::drainResume() 2184{ 2185 if (!isTimingMode && system()->isTimingMode()) { 2186 // if we switched to timing mode, kick things into action, 2187 // and behave as if we restored from a checkpoint 2188 startup(); 2189 } else if (isTimingMode && !system()->isTimingMode()) { 2190 // if we switch from timing mode, stop the refresh events to 2191 // not cause issues with KVM 2192 for (auto r : ranks) { 2193 r->suspend(); 2194 } 2195 } 2196 2197 // update the mode 2198 isTimingMode = system()->isTimingMode(); 2199} 2200 2201DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory) 2202 : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this), 2203 memory(_memory) 2204{ } 2205 2206AddrRangeList 2207DRAMCtrl::MemoryPort::getAddrRanges() const 2208{ 2209 AddrRangeList ranges; 2210 ranges.push_back(memory.getAddrRange()); 2211 return ranges; 2212} 2213 2214void 2215DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt) 2216{ 2217 pkt->pushLabel(memory.name()); 2218 2219 if (!queue.checkFunctional(pkt)) { 2220 // Default implementation of SimpleTimingPort::recvFunctional() 2221 // calls recvAtomic() and throws away the latency; we can save a 2222 // little here by just not calculating the latency. 2223 memory.recvFunctional(pkt); 2224 } 2225 2226 pkt->popLabel(); 2227} 2228 2229Tick 2230DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt) 2231{ 2232 return memory.recvAtomic(pkt); 2233} 2234 2235bool 2236DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt) 2237{ 2238 // pass it to the memory controller 2239 return memory.recvTimingReq(pkt); 2240} 2241 2242DRAMCtrl* 2243DRAMCtrlParams::create() 2244{ 2245 return new DRAMCtrl(this); 2246} 2247