dram_ctrl.cc revision 10890:bac38d2a4acb
1/* 2 * Copyright (c) 2010-2015 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2013 Amin Farmahini-Farahani 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Andreas Hansson 41 * Ani Udipi 42 * Neha Agarwal 43 * Omar Naji 44 */ 45 46#include "base/bitfield.hh" 47#include "base/trace.hh" 48#include "debug/DRAM.hh" 49#include "debug/DRAMPower.hh" 50#include "debug/DRAMState.hh" 51#include "debug/Drain.hh" 52#include "mem/dram_ctrl.hh" 53#include "sim/system.hh" 54 55using namespace std; 56using namespace Data; 57 58DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) : 59 AbstractMemory(p), 60 port(name() + ".port", *this), isTimingMode(false), 61 retryRdReq(false), retryWrReq(false), 62 busState(READ), 63 nextReqEvent(this), respondEvent(this), 64 drainManager(NULL), 65 deviceSize(p->device_size), 66 deviceBusWidth(p->device_bus_width), burstLength(p->burst_length), 67 deviceRowBufferSize(p->device_rowbuffer_size), 68 devicesPerRank(p->devices_per_rank), 69 burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8), 70 rowBufferSize(devicesPerRank * deviceRowBufferSize), 71 columnsPerRowBuffer(rowBufferSize / burstSize), 72 columnsPerStripe(range.interleaved() ? range.granularity() / burstSize : 1), 73 ranksPerChannel(p->ranks_per_channel), 74 bankGroupsPerRank(p->bank_groups_per_rank), 75 bankGroupArch(p->bank_groups_per_rank > 0), 76 banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0), 77 readBufferSize(p->read_buffer_size), 78 writeBufferSize(p->write_buffer_size), 79 writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0), 80 writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0), 81 minWritesPerSwitch(p->min_writes_per_switch), 82 writesThisTime(0), readsThisTime(0), 83 tCK(p->tCK), tWTR(p->tWTR), tRTW(p->tRTW), tCS(p->tCS), tBURST(p->tBURST), 84 tCCD_L(p->tCCD_L), tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS), 85 tWR(p->tWR), tRTP(p->tRTP), tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD), 86 tRRD_L(p->tRRD_L), tXAW(p->tXAW), activationLimit(p->activation_limit), 87 memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping), 88 pageMgmt(p->page_policy), 89 maxAccessesPerRow(p->max_accesses_per_row), 90 frontendLatency(p->static_frontend_latency), 91 backendLatency(p->static_backend_latency), 92 busBusyUntil(0), prevArrival(0), 93 nextReqTime(0), activeRank(0), timeStampOffset(0) 94{ 95 // sanity check the ranks since we rely on bit slicing for the 96 // address decoding 97 fatal_if(!isPowerOf2(ranksPerChannel), "DRAM rank count of %d is not " 98 "allowed, must be a power of two\n", ranksPerChannel); 99 100 fatal_if(!isPowerOf2(burstSize), "DRAM burst size %d is not allowed, " 101 "must be a power of two\n", burstSize); 102 103 for (int i = 0; i < ranksPerChannel; i++) { 104 Rank* rank = new Rank(*this, p); 105 ranks.push_back(rank); 106 107 rank->actTicks.resize(activationLimit, 0); 108 rank->banks.resize(banksPerRank); 109 rank->rank = i; 110 111 for (int b = 0; b < banksPerRank; b++) { 112 rank->banks[b].bank = b; 113 // GDDR addressing of banks to BG is linear. 114 // Here we assume that all DRAM generations address bank groups as 115 // follows: 116 if (bankGroupArch) { 117 // Simply assign lower bits to bank group in order to 118 // rotate across bank groups as banks are incremented 119 // e.g. with 4 banks per bank group and 16 banks total: 120 // banks 0,4,8,12 are in bank group 0 121 // banks 1,5,9,13 are in bank group 1 122 // banks 2,6,10,14 are in bank group 2 123 // banks 3,7,11,15 are in bank group 3 124 rank->banks[b].bankgr = b % bankGroupsPerRank; 125 } else { 126 // No bank groups; simply assign to bank number 127 rank->banks[b].bankgr = b; 128 } 129 } 130 } 131 132 // perform a basic check of the write thresholds 133 if (p->write_low_thresh_perc >= p->write_high_thresh_perc) 134 fatal("Write buffer low threshold %d must be smaller than the " 135 "high threshold %d\n", p->write_low_thresh_perc, 136 p->write_high_thresh_perc); 137 138 // determine the rows per bank by looking at the total capacity 139 uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size()); 140 141 // determine the dram actual capacity from the DRAM config in Mbytes 142 uint64_t deviceCapacity = deviceSize / (1024 * 1024) * devicesPerRank * 143 ranksPerChannel; 144 145 // if actual DRAM size does not match memory capacity in system warn! 146 if (deviceCapacity != capacity / (1024 * 1024)) 147 warn("DRAM device capacity (%d Mbytes) does not match the " 148 "address range assigned (%d Mbytes)\n", deviceCapacity, 149 capacity / (1024 * 1024)); 150 151 DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity, 152 AbstractMemory::size()); 153 154 DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n", 155 rowBufferSize, columnsPerRowBuffer); 156 157 rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel); 158 159 // some basic sanity checks 160 if (tREFI <= tRP || tREFI <= tRFC) { 161 fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n", 162 tREFI, tRP, tRFC); 163 } 164 165 // basic bank group architecture checks -> 166 if (bankGroupArch) { 167 // must have at least one bank per bank group 168 if (bankGroupsPerRank > banksPerRank) { 169 fatal("banks per rank (%d) must be equal to or larger than " 170 "banks groups per rank (%d)\n", 171 banksPerRank, bankGroupsPerRank); 172 } 173 // must have same number of banks in each bank group 174 if ((banksPerRank % bankGroupsPerRank) != 0) { 175 fatal("Banks per rank (%d) must be evenly divisible by bank groups " 176 "per rank (%d) for equal banks per bank group\n", 177 banksPerRank, bankGroupsPerRank); 178 } 179 // tCCD_L should be greater than minimal, back-to-back burst delay 180 if (tCCD_L <= tBURST) { 181 fatal("tCCD_L (%d) should be larger than tBURST (%d) when " 182 "bank groups per rank (%d) is greater than 1\n", 183 tCCD_L, tBURST, bankGroupsPerRank); 184 } 185 // tRRD_L is greater than minimal, same bank group ACT-to-ACT delay 186 // some datasheets might specify it equal to tRRD 187 if (tRRD_L < tRRD) { 188 fatal("tRRD_L (%d) should be larger than tRRD (%d) when " 189 "bank groups per rank (%d) is greater than 1\n", 190 tRRD_L, tRRD, bankGroupsPerRank); 191 } 192 } 193 194} 195 196void 197DRAMCtrl::init() 198{ 199 AbstractMemory::init(); 200 201 if (!port.isConnected()) { 202 fatal("DRAMCtrl %s is unconnected!\n", name()); 203 } else { 204 port.sendRangeChange(); 205 } 206 207 // a bit of sanity checks on the interleaving, save it for here to 208 // ensure that the system pointer is initialised 209 if (range.interleaved()) { 210 if (channels != range.stripes()) 211 fatal("%s has %d interleaved address stripes but %d channel(s)\n", 212 name(), range.stripes(), channels); 213 214 if (addrMapping == Enums::RoRaBaChCo) { 215 if (rowBufferSize != range.granularity()) { 216 fatal("Channel interleaving of %s doesn't match RoRaBaChCo " 217 "address map\n", name()); 218 } 219 } else if (addrMapping == Enums::RoRaBaCoCh || 220 addrMapping == Enums::RoCoRaBaCh) { 221 // for the interleavings with channel bits in the bottom, 222 // if the system uses a channel striping granularity that 223 // is larger than the DRAM burst size, then map the 224 // sequential accesses within a stripe to a number of 225 // columns in the DRAM, effectively placing some of the 226 // lower-order column bits as the least-significant bits 227 // of the address (above the ones denoting the burst size) 228 assert(columnsPerStripe >= 1); 229 230 // channel striping has to be done at a granularity that 231 // is equal or larger to a cache line 232 if (system()->cacheLineSize() > range.granularity()) { 233 fatal("Channel interleaving of %s must be at least as large " 234 "as the cache line size\n", name()); 235 } 236 237 // ...and equal or smaller than the row-buffer size 238 if (rowBufferSize < range.granularity()) { 239 fatal("Channel interleaving of %s must be at most as large " 240 "as the row-buffer size\n", name()); 241 } 242 // this is essentially the check above, so just to be sure 243 assert(columnsPerStripe <= columnsPerRowBuffer); 244 } 245 } 246} 247 248void 249DRAMCtrl::startup() 250{ 251 // remember the memory system mode of operation 252 isTimingMode = system()->isTimingMode(); 253 254 if (isTimingMode) { 255 // timestamp offset should be in clock cycles for DRAMPower 256 timeStampOffset = divCeil(curTick(), tCK); 257 258 // update the start tick for the precharge accounting to the 259 // current tick 260 for (auto r : ranks) { 261 r->startup(curTick() + tREFI - tRP); 262 } 263 264 // shift the bus busy time sufficiently far ahead that we never 265 // have to worry about negative values when computing the time for 266 // the next request, this will add an insignificant bubble at the 267 // start of simulation 268 busBusyUntil = curTick() + tRP + tRCD + tCL; 269 } 270} 271 272Tick 273DRAMCtrl::recvAtomic(PacketPtr pkt) 274{ 275 DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr()); 276 277 // do the actual memory access and turn the packet into a response 278 access(pkt); 279 280 Tick latency = 0; 281 if (!pkt->memInhibitAsserted() && pkt->hasData()) { 282 // this value is not supposed to be accurate, just enough to 283 // keep things going, mimic a closed page 284 latency = tRP + tRCD + tCL; 285 } 286 return latency; 287} 288 289bool 290DRAMCtrl::readQueueFull(unsigned int neededEntries) const 291{ 292 DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n", 293 readBufferSize, readQueue.size() + respQueue.size(), 294 neededEntries); 295 296 return 297 (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize; 298} 299 300bool 301DRAMCtrl::writeQueueFull(unsigned int neededEntries) const 302{ 303 DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n", 304 writeBufferSize, writeQueue.size(), neededEntries); 305 return (writeQueue.size() + neededEntries) > writeBufferSize; 306} 307 308DRAMCtrl::DRAMPacket* 309DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size, 310 bool isRead) 311{ 312 // decode the address based on the address mapping scheme, with 313 // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and 314 // channel, respectively 315 uint8_t rank; 316 uint8_t bank; 317 // use a 64-bit unsigned during the computations as the row is 318 // always the top bits, and check before creating the DRAMPacket 319 uint64_t row; 320 321 // truncate the address to a DRAM burst, which makes it unique to 322 // a specific column, row, bank, rank and channel 323 Addr addr = dramPktAddr / burstSize; 324 325 // we have removed the lowest order address bits that denote the 326 // position within the column 327 if (addrMapping == Enums::RoRaBaChCo) { 328 // the lowest order bits denote the column to ensure that 329 // sequential cache lines occupy the same row 330 addr = addr / columnsPerRowBuffer; 331 332 // take out the channel part of the address 333 addr = addr / channels; 334 335 // after the channel bits, get the bank bits to interleave 336 // over the banks 337 bank = addr % banksPerRank; 338 addr = addr / banksPerRank; 339 340 // after the bank, we get the rank bits which thus interleaves 341 // over the ranks 342 rank = addr % ranksPerChannel; 343 addr = addr / ranksPerChannel; 344 345 // lastly, get the row bits 346 row = addr % rowsPerBank; 347 addr = addr / rowsPerBank; 348 } else if (addrMapping == Enums::RoRaBaCoCh) { 349 // take out the lower-order column bits 350 addr = addr / columnsPerStripe; 351 352 // take out the channel part of the address 353 addr = addr / channels; 354 355 // next, the higher-order column bites 356 addr = addr / (columnsPerRowBuffer / columnsPerStripe); 357 358 // after the column bits, we get the bank bits to interleave 359 // over the banks 360 bank = addr % banksPerRank; 361 addr = addr / banksPerRank; 362 363 // after the bank, we get the rank bits which thus interleaves 364 // over the ranks 365 rank = addr % ranksPerChannel; 366 addr = addr / ranksPerChannel; 367 368 // lastly, get the row bits 369 row = addr % rowsPerBank; 370 addr = addr / rowsPerBank; 371 } else if (addrMapping == Enums::RoCoRaBaCh) { 372 // optimise for closed page mode and utilise maximum 373 // parallelism of the DRAM (at the cost of power) 374 375 // take out the lower-order column bits 376 addr = addr / columnsPerStripe; 377 378 // take out the channel part of the address, not that this has 379 // to match with how accesses are interleaved between the 380 // controllers in the address mapping 381 addr = addr / channels; 382 383 // start with the bank bits, as this provides the maximum 384 // opportunity for parallelism between requests 385 bank = addr % banksPerRank; 386 addr = addr / banksPerRank; 387 388 // next get the rank bits 389 rank = addr % ranksPerChannel; 390 addr = addr / ranksPerChannel; 391 392 // next, the higher-order column bites 393 addr = addr / (columnsPerRowBuffer / columnsPerStripe); 394 395 // lastly, get the row bits 396 row = addr % rowsPerBank; 397 addr = addr / rowsPerBank; 398 } else 399 panic("Unknown address mapping policy chosen!"); 400 401 assert(rank < ranksPerChannel); 402 assert(bank < banksPerRank); 403 assert(row < rowsPerBank); 404 assert(row < Bank::NO_ROW); 405 406 DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n", 407 dramPktAddr, rank, bank, row); 408 409 // create the corresponding DRAM packet with the entry time and 410 // ready time set to the current tick, the latter will be updated 411 // later 412 uint16_t bank_id = banksPerRank * rank + bank; 413 return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr, 414 size, ranks[rank]->banks[bank], *ranks[rank]); 415} 416 417void 418DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount) 419{ 420 // only add to the read queue here. whenever the request is 421 // eventually done, set the readyTime, and call schedule() 422 assert(!pkt->isWrite()); 423 424 assert(pktCount != 0); 425 426 // if the request size is larger than burst size, the pkt is split into 427 // multiple DRAM packets 428 // Note if the pkt starting address is not aligened to burst size, the 429 // address of first DRAM packet is kept unaliged. Subsequent DRAM packets 430 // are aligned to burst size boundaries. This is to ensure we accurately 431 // check read packets against packets in write queue. 432 Addr addr = pkt->getAddr(); 433 unsigned pktsServicedByWrQ = 0; 434 BurstHelper* burst_helper = NULL; 435 for (int cnt = 0; cnt < pktCount; ++cnt) { 436 unsigned size = std::min((addr | (burstSize - 1)) + 1, 437 pkt->getAddr() + pkt->getSize()) - addr; 438 readPktSize[ceilLog2(size)]++; 439 readBursts++; 440 441 // First check write buffer to see if the data is already at 442 // the controller 443 bool foundInWrQ = false; 444 Addr burst_addr = burstAlign(addr); 445 // if the burst address is not present then there is no need 446 // looking any further 447 if (isInWriteQueue.find(burst_addr) != isInWriteQueue.end()) { 448 for (const auto& p : writeQueue) { 449 // check if the read is subsumed in the write queue 450 // packet we are looking at 451 if (p->addr <= addr && (addr + size) <= (p->addr + p->size)) { 452 foundInWrQ = true; 453 servicedByWrQ++; 454 pktsServicedByWrQ++; 455 DPRINTF(DRAM, "Read to addr %lld with size %d serviced by " 456 "write queue\n", addr, size); 457 bytesReadWrQ += burstSize; 458 break; 459 } 460 } 461 } 462 463 // If not found in the write q, make a DRAM packet and 464 // push it onto the read queue 465 if (!foundInWrQ) { 466 467 // Make the burst helper for split packets 468 if (pktCount > 1 && burst_helper == NULL) { 469 DPRINTF(DRAM, "Read to addr %lld translates to %d " 470 "dram requests\n", pkt->getAddr(), pktCount); 471 burst_helper = new BurstHelper(pktCount); 472 } 473 474 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true); 475 dram_pkt->burstHelper = burst_helper; 476 477 assert(!readQueueFull(1)); 478 rdQLenPdf[readQueue.size() + respQueue.size()]++; 479 480 DPRINTF(DRAM, "Adding to read queue\n"); 481 482 readQueue.push_back(dram_pkt); 483 484 // Update stats 485 avgRdQLen = readQueue.size() + respQueue.size(); 486 } 487 488 // Starting address of next dram pkt (aligend to burstSize boundary) 489 addr = (addr | (burstSize - 1)) + 1; 490 } 491 492 // If all packets are serviced by write queue, we send the repsonse back 493 if (pktsServicedByWrQ == pktCount) { 494 accessAndRespond(pkt, frontendLatency); 495 return; 496 } 497 498 // Update how many split packets are serviced by write queue 499 if (burst_helper != NULL) 500 burst_helper->burstsServiced = pktsServicedByWrQ; 501 502 // If we are not already scheduled to get a request out of the 503 // queue, do so now 504 if (!nextReqEvent.scheduled()) { 505 DPRINTF(DRAM, "Request scheduled immediately\n"); 506 schedule(nextReqEvent, curTick()); 507 } 508} 509 510void 511DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount) 512{ 513 // only add to the write queue here. whenever the request is 514 // eventually done, set the readyTime, and call schedule() 515 assert(pkt->isWrite()); 516 517 // if the request size is larger than burst size, the pkt is split into 518 // multiple DRAM packets 519 Addr addr = pkt->getAddr(); 520 for (int cnt = 0; cnt < pktCount; ++cnt) { 521 unsigned size = std::min((addr | (burstSize - 1)) + 1, 522 pkt->getAddr() + pkt->getSize()) - addr; 523 writePktSize[ceilLog2(size)]++; 524 writeBursts++; 525 526 // see if we can merge with an existing item in the write 527 // queue and keep track of whether we have merged or not 528 bool merged = isInWriteQueue.find(burstAlign(addr)) != 529 isInWriteQueue.end(); 530 531 // if the item was not merged we need to create a new write 532 // and enqueue it 533 if (!merged) { 534 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false); 535 536 assert(writeQueue.size() < writeBufferSize); 537 wrQLenPdf[writeQueue.size()]++; 538 539 DPRINTF(DRAM, "Adding to write queue\n"); 540 541 writeQueue.push_back(dram_pkt); 542 isInWriteQueue.insert(burstAlign(addr)); 543 assert(writeQueue.size() == isInWriteQueue.size()); 544 545 // Update stats 546 avgWrQLen = writeQueue.size(); 547 } else { 548 DPRINTF(DRAM, "Merging write burst with existing queue entry\n"); 549 550 // keep track of the fact that this burst effectively 551 // disappeared as it was merged with an existing one 552 mergedWrBursts++; 553 } 554 555 // Starting address of next dram pkt (aligend to burstSize boundary) 556 addr = (addr | (burstSize - 1)) + 1; 557 } 558 559 // we do not wait for the writes to be send to the actual memory, 560 // but instead take responsibility for the consistency here and 561 // snoop the write queue for any upcoming reads 562 // @todo, if a pkt size is larger than burst size, we might need a 563 // different front end latency 564 accessAndRespond(pkt, frontendLatency); 565 566 // If we are not already scheduled to get a request out of the 567 // queue, do so now 568 if (!nextReqEvent.scheduled()) { 569 DPRINTF(DRAM, "Request scheduled immediately\n"); 570 schedule(nextReqEvent, curTick()); 571 } 572} 573 574void 575DRAMCtrl::printQs() const { 576 DPRINTF(DRAM, "===READ QUEUE===\n\n"); 577 for (auto i = readQueue.begin() ; i != readQueue.end() ; ++i) { 578 DPRINTF(DRAM, "Read %lu\n", (*i)->addr); 579 } 580 DPRINTF(DRAM, "\n===RESP QUEUE===\n\n"); 581 for (auto i = respQueue.begin() ; i != respQueue.end() ; ++i) { 582 DPRINTF(DRAM, "Response %lu\n", (*i)->addr); 583 } 584 DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n"); 585 for (auto i = writeQueue.begin() ; i != writeQueue.end() ; ++i) { 586 DPRINTF(DRAM, "Write %lu\n", (*i)->addr); 587 } 588} 589 590bool 591DRAMCtrl::recvTimingReq(PacketPtr pkt) 592{ 593 /// @todo temporary hack to deal with memory corruption issues until 594 /// 4-phase transactions are complete 595 for (int x = 0; x < pendingDelete.size(); x++) 596 delete pendingDelete[x]; 597 pendingDelete.clear(); 598 599 // This is where we enter from the outside world 600 DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n", 601 pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 602 603 // simply drop inhibited packets and clean evictions 604 if (pkt->memInhibitAsserted() || 605 pkt->cmd == MemCmd::CleanEvict) { 606 DPRINTF(DRAM, "Inhibited packet or clean evict -- Dropping it now\n"); 607 pendingDelete.push_back(pkt); 608 return true; 609 } 610 611 // Calc avg gap between requests 612 if (prevArrival != 0) { 613 totGap += curTick() - prevArrival; 614 } 615 prevArrival = curTick(); 616 617 618 // Find out how many dram packets a pkt translates to 619 // If the burst size is equal or larger than the pkt size, then a pkt 620 // translates to only one dram packet. Otherwise, a pkt translates to 621 // multiple dram packets 622 unsigned size = pkt->getSize(); 623 unsigned offset = pkt->getAddr() & (burstSize - 1); 624 unsigned int dram_pkt_count = divCeil(offset + size, burstSize); 625 626 // check local buffers and do not accept if full 627 if (pkt->isRead()) { 628 assert(size != 0); 629 if (readQueueFull(dram_pkt_count)) { 630 DPRINTF(DRAM, "Read queue full, not accepting\n"); 631 // remember that we have to retry this port 632 retryRdReq = true; 633 numRdRetry++; 634 return false; 635 } else { 636 addToReadQueue(pkt, dram_pkt_count); 637 readReqs++; 638 bytesReadSys += size; 639 } 640 } else if (pkt->isWrite()) { 641 assert(size != 0); 642 if (writeQueueFull(dram_pkt_count)) { 643 DPRINTF(DRAM, "Write queue full, not accepting\n"); 644 // remember that we have to retry this port 645 retryWrReq = true; 646 numWrRetry++; 647 return false; 648 } else { 649 addToWriteQueue(pkt, dram_pkt_count); 650 writeReqs++; 651 bytesWrittenSys += size; 652 } 653 } else { 654 DPRINTF(DRAM,"Neither read nor write, ignore timing\n"); 655 neitherReadNorWrite++; 656 accessAndRespond(pkt, 1); 657 } 658 659 return true; 660} 661 662void 663DRAMCtrl::processRespondEvent() 664{ 665 DPRINTF(DRAM, 666 "processRespondEvent(): Some req has reached its readyTime\n"); 667 668 DRAMPacket* dram_pkt = respQueue.front(); 669 670 if (dram_pkt->burstHelper) { 671 // it is a split packet 672 dram_pkt->burstHelper->burstsServiced++; 673 if (dram_pkt->burstHelper->burstsServiced == 674 dram_pkt->burstHelper->burstCount) { 675 // we have now serviced all children packets of a system packet 676 // so we can now respond to the requester 677 // @todo we probably want to have a different front end and back 678 // end latency for split packets 679 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency); 680 delete dram_pkt->burstHelper; 681 dram_pkt->burstHelper = NULL; 682 } 683 } else { 684 // it is not a split packet 685 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency); 686 } 687 688 delete respQueue.front(); 689 respQueue.pop_front(); 690 691 if (!respQueue.empty()) { 692 assert(respQueue.front()->readyTime >= curTick()); 693 assert(!respondEvent.scheduled()); 694 schedule(respondEvent, respQueue.front()->readyTime); 695 } else { 696 // if there is nothing left in any queue, signal a drain 697 if (writeQueue.empty() && readQueue.empty() && 698 drainManager) { 699 DPRINTF(Drain, "DRAM controller done draining\n"); 700 drainManager->signalDrainDone(); 701 drainManager = NULL; 702 } 703 } 704 705 // We have made a location in the queue available at this point, 706 // so if there is a read that was forced to wait, retry now 707 if (retryRdReq) { 708 retryRdReq = false; 709 port.sendRetryReq(); 710 } 711} 712 713bool 714DRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue, Tick extra_col_delay) 715{ 716 // This method does the arbitration between requests. The chosen 717 // packet is simply moved to the head of the queue. The other 718 // methods know that this is the place to look. For example, with 719 // FCFS, this method does nothing 720 assert(!queue.empty()); 721 722 // bool to indicate if a packet to an available rank is found 723 bool found_packet = false; 724 if (queue.size() == 1) { 725 DRAMPacket* dram_pkt = queue.front(); 726 // available rank corresponds to state refresh idle 727 if (ranks[dram_pkt->rank]->isAvailable()) { 728 found_packet = true; 729 DPRINTF(DRAM, "Single request, going to a free rank\n"); 730 } else { 731 DPRINTF(DRAM, "Single request, going to a busy rank\n"); 732 } 733 return found_packet; 734 } 735 736 if (memSchedPolicy == Enums::fcfs) { 737 // check if there is a packet going to a free rank 738 for(auto i = queue.begin(); i != queue.end() ; ++i) { 739 DRAMPacket* dram_pkt = *i; 740 if (ranks[dram_pkt->rank]->isAvailable()) { 741 queue.erase(i); 742 queue.push_front(dram_pkt); 743 found_packet = true; 744 break; 745 } 746 } 747 } else if (memSchedPolicy == Enums::frfcfs) { 748 found_packet = reorderQueue(queue, extra_col_delay); 749 } else 750 panic("No scheduling policy chosen\n"); 751 return found_packet; 752} 753 754bool 755DRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue, Tick extra_col_delay) 756{ 757 // Only determine this if needed 758 uint64_t earliest_banks = 0; 759 bool hidden_bank_prep = false; 760 761 // search for seamless row hits first, if no seamless row hit is 762 // found then determine if there are other packets that can be issued 763 // without incurring additional bus delay due to bank timing 764 // Will select closed rows first to enable more open row possibilies 765 // in future selections 766 bool found_hidden_bank = false; 767 768 // remember if we found a row hit, not seamless, but bank prepped 769 // and ready 770 bool found_prepped_pkt = false; 771 772 // if we have no row hit, prepped or not, and no seamless packet, 773 // just go for the earliest possible 774 bool found_earliest_pkt = false; 775 776 auto selected_pkt_it = queue.end(); 777 778 // time we need to issue a column command to be seamless 779 const Tick min_col_at = std::max(busBusyUntil - tCL + extra_col_delay, 780 curTick()); 781 782 for (auto i = queue.begin(); i != queue.end() ; ++i) { 783 DRAMPacket* dram_pkt = *i; 784 const Bank& bank = dram_pkt->bankRef; 785 786 // check if rank is available, if not, jump to the next packet 787 if (dram_pkt->rankRef.isAvailable()) { 788 // check if it is a row hit 789 if (bank.openRow == dram_pkt->row) { 790 // no additional rank-to-rank or same bank-group 791 // delays, or we switched read/write and might as well 792 // go for the row hit 793 if (bank.colAllowedAt <= min_col_at) { 794 // FCFS within the hits, giving priority to 795 // commands that can issue seamlessly, without 796 // additional delay, such as same rank accesses 797 // and/or different bank-group accesses 798 DPRINTF(DRAM, "Seamless row buffer hit\n"); 799 selected_pkt_it = i; 800 // no need to look through the remaining queue entries 801 break; 802 } else if (!found_hidden_bank && !found_prepped_pkt) { 803 // if we did not find a packet to a closed row that can 804 // issue the bank commands without incurring delay, and 805 // did not yet find a packet to a prepped row, remember 806 // the current one 807 selected_pkt_it = i; 808 found_prepped_pkt = true; 809 DPRINTF(DRAM, "Prepped row buffer hit\n"); 810 } 811 } else if (!found_earliest_pkt) { 812 // if we have not initialised the bank status, do it 813 // now, and only once per scheduling decisions 814 if (earliest_banks == 0) { 815 // determine entries with earliest bank delay 816 pair<uint64_t, bool> bankStatus = 817 minBankPrep(queue, min_col_at); 818 earliest_banks = bankStatus.first; 819 hidden_bank_prep = bankStatus.second; 820 } 821 822 // bank is amongst first available banks 823 // minBankPrep will give priority to packets that can 824 // issue seamlessly 825 if (bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) { 826 found_earliest_pkt = true; 827 found_hidden_bank = hidden_bank_prep; 828 829 // give priority to packets that can issue 830 // bank commands 'behind the scenes' 831 // any additional delay if any will be due to 832 // col-to-col command requirements 833 if (hidden_bank_prep || !found_prepped_pkt) 834 selected_pkt_it = i; 835 } 836 } 837 } 838 } 839 840 if (selected_pkt_it != queue.end()) { 841 DRAMPacket* selected_pkt = *selected_pkt_it; 842 queue.erase(selected_pkt_it); 843 queue.push_front(selected_pkt); 844 return true; 845 } 846 847 return false; 848} 849 850void 851DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency) 852{ 853 DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr()); 854 855 bool needsResponse = pkt->needsResponse(); 856 // do the actual memory access which also turns the packet into a 857 // response 858 access(pkt); 859 860 // turn packet around to go back to requester if response expected 861 if (needsResponse) { 862 // access already turned the packet into a response 863 assert(pkt->isResponse()); 864 // response_time consumes the static latency and is charged also 865 // with headerDelay that takes into account the delay provided by 866 // the xbar and also the payloadDelay that takes into account the 867 // number of data beats. 868 Tick response_time = curTick() + static_latency + pkt->headerDelay + 869 pkt->payloadDelay; 870 // Here we reset the timing of the packet before sending it out. 871 pkt->headerDelay = pkt->payloadDelay = 0; 872 873 // queue the packet in the response queue to be sent out after 874 // the static latency has passed 875 port.schedTimingResp(pkt, response_time); 876 } else { 877 // @todo the packet is going to be deleted, and the DRAMPacket 878 // is still having a pointer to it 879 pendingDelete.push_back(pkt); 880 } 881 882 DPRINTF(DRAM, "Done\n"); 883 884 return; 885} 886 887void 888DRAMCtrl::activateBank(Rank& rank_ref, Bank& bank_ref, 889 Tick act_tick, uint32_t row) 890{ 891 assert(rank_ref.actTicks.size() == activationLimit); 892 893 DPRINTF(DRAM, "Activate at tick %d\n", act_tick); 894 895 // update the open row 896 assert(bank_ref.openRow == Bank::NO_ROW); 897 bank_ref.openRow = row; 898 899 // start counting anew, this covers both the case when we 900 // auto-precharged, and when this access is forced to 901 // precharge 902 bank_ref.bytesAccessed = 0; 903 bank_ref.rowAccesses = 0; 904 905 ++rank_ref.numBanksActive; 906 assert(rank_ref.numBanksActive <= banksPerRank); 907 908 DPRINTF(DRAM, "Activate bank %d, rank %d at tick %lld, now got %d active\n", 909 bank_ref.bank, rank_ref.rank, act_tick, 910 ranks[rank_ref.rank]->numBanksActive); 911 912 rank_ref.power.powerlib.doCommand(MemCommand::ACT, bank_ref.bank, 913 divCeil(act_tick, tCK) - 914 timeStampOffset); 915 916 DPRINTF(DRAMPower, "%llu,ACT,%d,%d\n", divCeil(act_tick, tCK) - 917 timeStampOffset, bank_ref.bank, rank_ref.rank); 918 919 // The next access has to respect tRAS for this bank 920 bank_ref.preAllowedAt = act_tick + tRAS; 921 922 // Respect the row-to-column command delay 923 bank_ref.colAllowedAt = std::max(act_tick + tRCD, bank_ref.colAllowedAt); 924 925 // start by enforcing tRRD 926 for(int i = 0; i < banksPerRank; i++) { 927 // next activate to any bank in this rank must not happen 928 // before tRRD 929 if (bankGroupArch && (bank_ref.bankgr == rank_ref.banks[i].bankgr)) { 930 // bank group architecture requires longer delays between 931 // ACT commands within the same bank group. Use tRRD_L 932 // in this case 933 rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD_L, 934 rank_ref.banks[i].actAllowedAt); 935 } else { 936 // use shorter tRRD value when either 937 // 1) bank group architecture is not supportted 938 // 2) bank is in a different bank group 939 rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD, 940 rank_ref.banks[i].actAllowedAt); 941 } 942 } 943 944 // next, we deal with tXAW, if the activation limit is disabled 945 // then we directly schedule an activate power event 946 if (!rank_ref.actTicks.empty()) { 947 // sanity check 948 if (rank_ref.actTicks.back() && 949 (act_tick - rank_ref.actTicks.back()) < tXAW) { 950 panic("Got %d activates in window %d (%llu - %llu) which " 951 "is smaller than %llu\n", activationLimit, act_tick - 952 rank_ref.actTicks.back(), act_tick, 953 rank_ref.actTicks.back(), tXAW); 954 } 955 956 // shift the times used for the book keeping, the last element 957 // (highest index) is the oldest one and hence the lowest value 958 rank_ref.actTicks.pop_back(); 959 960 // record an new activation (in the future) 961 rank_ref.actTicks.push_front(act_tick); 962 963 // cannot activate more than X times in time window tXAW, push the 964 // next one (the X + 1'st activate) to be tXAW away from the 965 // oldest in our window of X 966 if (rank_ref.actTicks.back() && 967 (act_tick - rank_ref.actTicks.back()) < tXAW) { 968 DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate " 969 "no earlier than %llu\n", activationLimit, 970 rank_ref.actTicks.back() + tXAW); 971 for(int j = 0; j < banksPerRank; j++) 972 // next activate must not happen before end of window 973 rank_ref.banks[j].actAllowedAt = 974 std::max(rank_ref.actTicks.back() + tXAW, 975 rank_ref.banks[j].actAllowedAt); 976 } 977 } 978 979 // at the point when this activate takes place, make sure we 980 // transition to the active power state 981 if (!rank_ref.activateEvent.scheduled()) 982 schedule(rank_ref.activateEvent, act_tick); 983 else if (rank_ref.activateEvent.when() > act_tick) 984 // move it sooner in time 985 reschedule(rank_ref.activateEvent, act_tick); 986} 987 988void 989DRAMCtrl::prechargeBank(Rank& rank_ref, Bank& bank, Tick pre_at, bool trace) 990{ 991 // make sure the bank has an open row 992 assert(bank.openRow != Bank::NO_ROW); 993 994 // sample the bytes per activate here since we are closing 995 // the page 996 bytesPerActivate.sample(bank.bytesAccessed); 997 998 bank.openRow = Bank::NO_ROW; 999 1000 // no precharge allowed before this one 1001 bank.preAllowedAt = pre_at; 1002 1003 Tick pre_done_at = pre_at + tRP; 1004 1005 bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at); 1006 1007 assert(rank_ref.numBanksActive != 0); 1008 --rank_ref.numBanksActive; 1009 1010 DPRINTF(DRAM, "Precharging bank %d, rank %d at tick %lld, now got " 1011 "%d active\n", bank.bank, rank_ref.rank, pre_at, 1012 rank_ref.numBanksActive); 1013 1014 if (trace) { 1015 1016 rank_ref.power.powerlib.doCommand(MemCommand::PRE, bank.bank, 1017 divCeil(pre_at, tCK) - 1018 timeStampOffset); 1019 DPRINTF(DRAMPower, "%llu,PRE,%d,%d\n", divCeil(pre_at, tCK) - 1020 timeStampOffset, bank.bank, rank_ref.rank); 1021 } 1022 // if we look at the current number of active banks we might be 1023 // tempted to think the DRAM is now idle, however this can be 1024 // undone by an activate that is scheduled to happen before we 1025 // would have reached the idle state, so schedule an event and 1026 // rather check once we actually make it to the point in time when 1027 // the (last) precharge takes place 1028 if (!rank_ref.prechargeEvent.scheduled()) 1029 schedule(rank_ref.prechargeEvent, pre_done_at); 1030 else if (rank_ref.prechargeEvent.when() < pre_done_at) 1031 reschedule(rank_ref.prechargeEvent, pre_done_at); 1032} 1033 1034void 1035DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt) 1036{ 1037 DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n", 1038 dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row); 1039 1040 // get the rank 1041 Rank& rank = dram_pkt->rankRef; 1042 1043 // get the bank 1044 Bank& bank = dram_pkt->bankRef; 1045 1046 // for the state we need to track if it is a row hit or not 1047 bool row_hit = true; 1048 1049 // respect any constraints on the command (e.g. tRCD or tCCD) 1050 Tick cmd_at = std::max(bank.colAllowedAt, curTick()); 1051 1052 // Determine the access latency and update the bank state 1053 if (bank.openRow == dram_pkt->row) { 1054 // nothing to do 1055 } else { 1056 row_hit = false; 1057 1058 // If there is a page open, precharge it. 1059 if (bank.openRow != Bank::NO_ROW) { 1060 prechargeBank(rank, bank, std::max(bank.preAllowedAt, curTick())); 1061 } 1062 1063 // next we need to account for the delay in activating the 1064 // page 1065 Tick act_tick = std::max(bank.actAllowedAt, curTick()); 1066 1067 // Record the activation and deal with all the global timing 1068 // constraints caused be a new activation (tRRD and tXAW) 1069 activateBank(rank, bank, act_tick, dram_pkt->row); 1070 1071 // issue the command as early as possible 1072 cmd_at = bank.colAllowedAt; 1073 } 1074 1075 // we need to wait until the bus is available before we can issue 1076 // the command 1077 cmd_at = std::max(cmd_at, busBusyUntil - tCL); 1078 1079 // update the packet ready time 1080 dram_pkt->readyTime = cmd_at + tCL + tBURST; 1081 1082 // only one burst can use the bus at any one point in time 1083 assert(dram_pkt->readyTime - busBusyUntil >= tBURST); 1084 1085 // update the time for the next read/write burst for each 1086 // bank (add a max with tCCD/tCCD_L here) 1087 Tick cmd_dly; 1088 for(int j = 0; j < ranksPerChannel; j++) { 1089 for(int i = 0; i < banksPerRank; i++) { 1090 // next burst to same bank group in this rank must not happen 1091 // before tCCD_L. Different bank group timing requirement is 1092 // tBURST; Add tCS for different ranks 1093 if (dram_pkt->rank == j) { 1094 if (bankGroupArch && 1095 (bank.bankgr == ranks[j]->banks[i].bankgr)) { 1096 // bank group architecture requires longer delays between 1097 // RD/WR burst commands to the same bank group. 1098 // Use tCCD_L in this case 1099 cmd_dly = tCCD_L; 1100 } else { 1101 // use tBURST (equivalent to tCCD_S), the shorter 1102 // cas-to-cas delay value, when either: 1103 // 1) bank group architecture is not supportted 1104 // 2) bank is in a different bank group 1105 cmd_dly = tBURST; 1106 } 1107 } else { 1108 // different rank is by default in a different bank group 1109 // use tBURST (equivalent to tCCD_S), which is the shorter 1110 // cas-to-cas delay in this case 1111 // Add tCS to account for rank-to-rank bus delay requirements 1112 cmd_dly = tBURST + tCS; 1113 } 1114 ranks[j]->banks[i].colAllowedAt = std::max(cmd_at + cmd_dly, 1115 ranks[j]->banks[i].colAllowedAt); 1116 } 1117 } 1118 1119 // Save rank of current access 1120 activeRank = dram_pkt->rank; 1121 1122 // If this is a write, we also need to respect the write recovery 1123 // time before a precharge, in the case of a read, respect the 1124 // read to precharge constraint 1125 bank.preAllowedAt = std::max(bank.preAllowedAt, 1126 dram_pkt->isRead ? cmd_at + tRTP : 1127 dram_pkt->readyTime + tWR); 1128 1129 // increment the bytes accessed and the accesses per row 1130 bank.bytesAccessed += burstSize; 1131 ++bank.rowAccesses; 1132 1133 // if we reached the max, then issue with an auto-precharge 1134 bool auto_precharge = pageMgmt == Enums::close || 1135 bank.rowAccesses == maxAccessesPerRow; 1136 1137 // if we did not hit the limit, we might still want to 1138 // auto-precharge 1139 if (!auto_precharge && 1140 (pageMgmt == Enums::open_adaptive || 1141 pageMgmt == Enums::close_adaptive)) { 1142 // a twist on the open and close page policies: 1143 // 1) open_adaptive page policy does not blindly keep the 1144 // page open, but close it if there are no row hits, and there 1145 // are bank conflicts in the queue 1146 // 2) close_adaptive page policy does not blindly close the 1147 // page, but closes it only if there are no row hits in the queue. 1148 // In this case, only force an auto precharge when there 1149 // are no same page hits in the queue 1150 bool got_more_hits = false; 1151 bool got_bank_conflict = false; 1152 1153 // either look at the read queue or write queue 1154 const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue : 1155 writeQueue; 1156 auto p = queue.begin(); 1157 // make sure we are not considering the packet that we are 1158 // currently dealing with (which is the head of the queue) 1159 ++p; 1160 1161 // keep on looking until we find a hit or reach the end of the queue 1162 // 1) if a hit is found, then both open and close adaptive policies keep 1163 // the page open 1164 // 2) if no hit is found, got_bank_conflict is set to true if a bank 1165 // conflict request is waiting in the queue 1166 while (!got_more_hits && p != queue.end()) { 1167 bool same_rank_bank = (dram_pkt->rank == (*p)->rank) && 1168 (dram_pkt->bank == (*p)->bank); 1169 bool same_row = dram_pkt->row == (*p)->row; 1170 got_more_hits |= same_rank_bank && same_row; 1171 got_bank_conflict |= same_rank_bank && !same_row; 1172 ++p; 1173 } 1174 1175 // auto pre-charge when either 1176 // 1) open_adaptive policy, we have not got any more hits, and 1177 // have a bank conflict 1178 // 2) close_adaptive policy and we have not got any more hits 1179 auto_precharge = !got_more_hits && 1180 (got_bank_conflict || pageMgmt == Enums::close_adaptive); 1181 } 1182 1183 // DRAMPower trace command to be written 1184 std::string mem_cmd = dram_pkt->isRead ? "RD" : "WR"; 1185 1186 // MemCommand required for DRAMPower library 1187 MemCommand::cmds command = (mem_cmd == "RD") ? MemCommand::RD : 1188 MemCommand::WR; 1189 1190 // if this access should use auto-precharge, then we are 1191 // closing the row 1192 if (auto_precharge) { 1193 // if auto-precharge push a PRE command at the correct tick to the 1194 // list used by DRAMPower library to calculate power 1195 prechargeBank(rank, bank, std::max(curTick(), bank.preAllowedAt)); 1196 1197 DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId); 1198 } 1199 1200 // Update bus state 1201 busBusyUntil = dram_pkt->readyTime; 1202 1203 DPRINTF(DRAM, "Access to %lld, ready at %lld bus busy until %lld.\n", 1204 dram_pkt->addr, dram_pkt->readyTime, busBusyUntil); 1205 1206 dram_pkt->rankRef.power.powerlib.doCommand(command, dram_pkt->bank, 1207 divCeil(cmd_at, tCK) - 1208 timeStampOffset); 1209 1210 DPRINTF(DRAMPower, "%llu,%s,%d,%d\n", divCeil(cmd_at, tCK) - 1211 timeStampOffset, mem_cmd, dram_pkt->bank, dram_pkt->rank); 1212 1213 // Update the minimum timing between the requests, this is a 1214 // conservative estimate of when we have to schedule the next 1215 // request to not introduce any unecessary bubbles. In most cases 1216 // we will wake up sooner than we have to. 1217 nextReqTime = busBusyUntil - (tRP + tRCD + tCL); 1218 1219 // Update the stats and schedule the next request 1220 if (dram_pkt->isRead) { 1221 ++readsThisTime; 1222 if (row_hit) 1223 readRowHits++; 1224 bytesReadDRAM += burstSize; 1225 perBankRdBursts[dram_pkt->bankId]++; 1226 1227 // Update latency stats 1228 totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime; 1229 totBusLat += tBURST; 1230 totQLat += cmd_at - dram_pkt->entryTime; 1231 } else { 1232 ++writesThisTime; 1233 if (row_hit) 1234 writeRowHits++; 1235 bytesWritten += burstSize; 1236 perBankWrBursts[dram_pkt->bankId]++; 1237 } 1238} 1239 1240void 1241DRAMCtrl::processNextReqEvent() 1242{ 1243 int busyRanks = 0; 1244 for (auto r : ranks) { 1245 if (!r->isAvailable()) { 1246 // rank is busy refreshing 1247 busyRanks++; 1248 1249 // let the rank know that if it was waiting to drain, it 1250 // is now done and ready to proceed 1251 r->checkDrainDone(); 1252 } 1253 } 1254 1255 if (busyRanks == ranksPerChannel) { 1256 // if all ranks are refreshing wait for them to finish 1257 // and stall this state machine without taking any further 1258 // action, and do not schedule a new nextReqEvent 1259 return; 1260 } 1261 1262 // pre-emptively set to false. Overwrite if in READ_TO_WRITE 1263 // or WRITE_TO_READ state 1264 bool switched_cmd_type = false; 1265 if (busState == READ_TO_WRITE) { 1266 DPRINTF(DRAM, "Switching to writes after %d reads with %d reads " 1267 "waiting\n", readsThisTime, readQueue.size()); 1268 1269 // sample and reset the read-related stats as we are now 1270 // transitioning to writes, and all reads are done 1271 rdPerTurnAround.sample(readsThisTime); 1272 readsThisTime = 0; 1273 1274 // now proceed to do the actual writes 1275 busState = WRITE; 1276 switched_cmd_type = true; 1277 } else if (busState == WRITE_TO_READ) { 1278 DPRINTF(DRAM, "Switching to reads after %d writes with %d writes " 1279 "waiting\n", writesThisTime, writeQueue.size()); 1280 1281 wrPerTurnAround.sample(writesThisTime); 1282 writesThisTime = 0; 1283 1284 busState = READ; 1285 switched_cmd_type = true; 1286 } 1287 1288 // when we get here it is either a read or a write 1289 if (busState == READ) { 1290 1291 // track if we should switch or not 1292 bool switch_to_writes = false; 1293 1294 if (readQueue.empty()) { 1295 // In the case there is no read request to go next, 1296 // trigger writes if we have passed the low threshold (or 1297 // if we are draining) 1298 if (!writeQueue.empty() && 1299 (drainManager || writeQueue.size() > writeLowThreshold)) { 1300 1301 switch_to_writes = true; 1302 } else { 1303 // check if we are drained 1304 if (respQueue.empty () && drainManager) { 1305 DPRINTF(Drain, "DRAM controller done draining\n"); 1306 drainManager->signalDrainDone(); 1307 drainManager = NULL; 1308 } 1309 1310 // nothing to do, not even any point in scheduling an 1311 // event for the next request 1312 return; 1313 } 1314 } else { 1315 // bool to check if there is a read to a free rank 1316 bool found_read = false; 1317 1318 // Figure out which read request goes next, and move it to the 1319 // front of the read queue 1320 // If we are changing command type, incorporate the minimum 1321 // bus turnaround delay which will be tCS (different rank) case 1322 found_read = chooseNext(readQueue, 1323 switched_cmd_type ? tCS : 0); 1324 1325 // if no read to an available rank is found then return 1326 // at this point. There could be writes to the available ranks 1327 // which are above the required threshold. However, to 1328 // avoid adding more complexity to the code, return and wait 1329 // for a refresh event to kick things into action again. 1330 if (!found_read) 1331 return; 1332 1333 DRAMPacket* dram_pkt = readQueue.front(); 1334 assert(dram_pkt->rankRef.isAvailable()); 1335 // here we get a bit creative and shift the bus busy time not 1336 // just the tWTR, but also a CAS latency to capture the fact 1337 // that we are allowed to prepare a new bank, but not issue a 1338 // read command until after tWTR, in essence we capture a 1339 // bubble on the data bus that is tWTR + tCL 1340 if (switched_cmd_type && dram_pkt->rank == activeRank) { 1341 busBusyUntil += tWTR + tCL; 1342 } 1343 1344 doDRAMAccess(dram_pkt); 1345 1346 // At this point we're done dealing with the request 1347 readQueue.pop_front(); 1348 1349 // sanity check 1350 assert(dram_pkt->size <= burstSize); 1351 assert(dram_pkt->readyTime >= curTick()); 1352 1353 // Insert into response queue. It will be sent back to the 1354 // requestor at its readyTime 1355 if (respQueue.empty()) { 1356 assert(!respondEvent.scheduled()); 1357 schedule(respondEvent, dram_pkt->readyTime); 1358 } else { 1359 assert(respQueue.back()->readyTime <= dram_pkt->readyTime); 1360 assert(respondEvent.scheduled()); 1361 } 1362 1363 respQueue.push_back(dram_pkt); 1364 1365 // we have so many writes that we have to transition 1366 if (writeQueue.size() > writeHighThreshold) { 1367 switch_to_writes = true; 1368 } 1369 } 1370 1371 // switching to writes, either because the read queue is empty 1372 // and the writes have passed the low threshold (or we are 1373 // draining), or because the writes hit the hight threshold 1374 if (switch_to_writes) { 1375 // transition to writing 1376 busState = READ_TO_WRITE; 1377 } 1378 } else { 1379 // bool to check if write to free rank is found 1380 bool found_write = false; 1381 1382 // If we are changing command type, incorporate the minimum 1383 // bus turnaround delay 1384 found_write = chooseNext(writeQueue, 1385 switched_cmd_type ? std::min(tRTW, tCS) : 0); 1386 1387 // if no writes to an available rank are found then return. 1388 // There could be reads to the available ranks. However, to avoid 1389 // adding more complexity to the code, return at this point and wait 1390 // for a refresh event to kick things into action again. 1391 if (!found_write) 1392 return; 1393 1394 DRAMPacket* dram_pkt = writeQueue.front(); 1395 assert(dram_pkt->rankRef.isAvailable()); 1396 // sanity check 1397 assert(dram_pkt->size <= burstSize); 1398 1399 // add a bubble to the data bus, as defined by the 1400 // tRTW when access is to the same rank as previous burst 1401 // Different rank timing is handled with tCS, which is 1402 // applied to colAllowedAt 1403 if (switched_cmd_type && dram_pkt->rank == activeRank) { 1404 busBusyUntil += tRTW; 1405 } 1406 1407 doDRAMAccess(dram_pkt); 1408 1409 writeQueue.pop_front(); 1410 isInWriteQueue.erase(burstAlign(dram_pkt->addr)); 1411 delete dram_pkt; 1412 1413 // If we emptied the write queue, or got sufficiently below the 1414 // threshold (using the minWritesPerSwitch as the hysteresis) and 1415 // are not draining, or we have reads waiting and have done enough 1416 // writes, then switch to reads. 1417 if (writeQueue.empty() || 1418 (writeQueue.size() + minWritesPerSwitch < writeLowThreshold && 1419 !drainManager) || 1420 (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) { 1421 // turn the bus back around for reads again 1422 busState = WRITE_TO_READ; 1423 1424 // note that the we switch back to reads also in the idle 1425 // case, which eventually will check for any draining and 1426 // also pause any further scheduling if there is really 1427 // nothing to do 1428 } 1429 } 1430 // It is possible that a refresh to another rank kicks things back into 1431 // action before reaching this point. 1432 if (!nextReqEvent.scheduled()) 1433 schedule(nextReqEvent, std::max(nextReqTime, curTick())); 1434 1435 // If there is space available and we have writes waiting then let 1436 // them retry. This is done here to ensure that the retry does not 1437 // cause a nextReqEvent to be scheduled before we do so as part of 1438 // the next request processing 1439 if (retryWrReq && writeQueue.size() < writeBufferSize) { 1440 retryWrReq = false; 1441 port.sendRetryReq(); 1442 } 1443} 1444 1445pair<uint64_t, bool> 1446DRAMCtrl::minBankPrep(const deque<DRAMPacket*>& queue, 1447 Tick min_col_at) const 1448{ 1449 uint64_t bank_mask = 0; 1450 Tick min_act_at = MaxTick; 1451 1452 // latest Tick for which ACT can occur without incurring additoinal 1453 // delay on the data bus 1454 const Tick hidden_act_max = std::max(min_col_at - tRCD, curTick()); 1455 1456 // Flag condition when burst can issue back-to-back with previous burst 1457 bool found_seamless_bank = false; 1458 1459 // Flag condition when bank can be opened without incurring additional 1460 // delay on the data bus 1461 bool hidden_bank_prep = false; 1462 1463 // determine if we have queued transactions targetting the 1464 // bank in question 1465 vector<bool> got_waiting(ranksPerChannel * banksPerRank, false); 1466 for (const auto& p : queue) { 1467 if(p->rankRef.isAvailable()) 1468 got_waiting[p->bankId] = true; 1469 } 1470 1471 // Find command with optimal bank timing 1472 // Will prioritize commands that can issue seamlessly. 1473 for (int i = 0; i < ranksPerChannel; i++) { 1474 for (int j = 0; j < banksPerRank; j++) { 1475 uint16_t bank_id = i * banksPerRank + j; 1476 1477 // if we have waiting requests for the bank, and it is 1478 // amongst the first available, update the mask 1479 if (got_waiting[bank_id]) { 1480 // make sure this rank is not currently refreshing. 1481 assert(ranks[i]->isAvailable()); 1482 // simplistic approximation of when the bank can issue 1483 // an activate, ignoring any rank-to-rank switching 1484 // cost in this calculation 1485 Tick act_at = ranks[i]->banks[j].openRow == Bank::NO_ROW ? 1486 std::max(ranks[i]->banks[j].actAllowedAt, curTick()) : 1487 std::max(ranks[i]->banks[j].preAllowedAt, curTick()) + tRP; 1488 1489 // When is the earliest the R/W burst can issue? 1490 Tick col_at = std::max(ranks[i]->banks[j].colAllowedAt, 1491 act_at + tRCD); 1492 1493 // bank can issue burst back-to-back (seamlessly) with 1494 // previous burst 1495 bool new_seamless_bank = col_at <= min_col_at; 1496 1497 // if we found a new seamless bank or we have no 1498 // seamless banks, and got a bank with an earlier 1499 // activate time, it should be added to the bit mask 1500 if (new_seamless_bank || 1501 (!found_seamless_bank && act_at <= min_act_at)) { 1502 // if we did not have a seamless bank before, and 1503 // we do now, reset the bank mask, also reset it 1504 // if we have not yet found a seamless bank and 1505 // the activate time is smaller than what we have 1506 // seen so far 1507 if (!found_seamless_bank && 1508 (new_seamless_bank || act_at < min_act_at)) { 1509 bank_mask = 0; 1510 } 1511 1512 found_seamless_bank |= new_seamless_bank; 1513 1514 // ACT can occur 'behind the scenes' 1515 hidden_bank_prep = act_at <= hidden_act_max; 1516 1517 // set the bit corresponding to the available bank 1518 replaceBits(bank_mask, bank_id, bank_id, 1); 1519 min_act_at = act_at; 1520 } 1521 } 1522 } 1523 } 1524 1525 return make_pair(bank_mask, hidden_bank_prep); 1526} 1527 1528DRAMCtrl::Rank::Rank(DRAMCtrl& _memory, const DRAMCtrlParams* _p) 1529 : EventManager(&_memory), memory(_memory), 1530 pwrStateTrans(PWR_IDLE), pwrState(PWR_IDLE), pwrStateTick(0), 1531 refreshState(REF_IDLE), refreshDueAt(0), 1532 power(_p, false), numBanksActive(0), 1533 activateEvent(*this), prechargeEvent(*this), 1534 refreshEvent(*this), powerEvent(*this) 1535{ } 1536 1537void 1538DRAMCtrl::Rank::startup(Tick ref_tick) 1539{ 1540 assert(ref_tick > curTick()); 1541 1542 pwrStateTick = curTick(); 1543 1544 // kick off the refresh, and give ourselves enough time to 1545 // precharge 1546 schedule(refreshEvent, ref_tick); 1547} 1548 1549void 1550DRAMCtrl::Rank::suspend() 1551{ 1552 deschedule(refreshEvent); 1553} 1554 1555void 1556DRAMCtrl::Rank::checkDrainDone() 1557{ 1558 // if this rank was waiting to drain it is now able to proceed to 1559 // precharge 1560 if (refreshState == REF_DRAIN) { 1561 DPRINTF(DRAM, "Refresh drain done, now precharging\n"); 1562 1563 refreshState = REF_PRE; 1564 1565 // hand control back to the refresh event loop 1566 schedule(refreshEvent, curTick()); 1567 } 1568} 1569 1570void 1571DRAMCtrl::Rank::processActivateEvent() 1572{ 1573 // we should transition to the active state as soon as any bank is active 1574 if (pwrState != PWR_ACT) 1575 // note that at this point numBanksActive could be back at 1576 // zero again due to a precharge scheduled in the future 1577 schedulePowerEvent(PWR_ACT, curTick()); 1578} 1579 1580void 1581DRAMCtrl::Rank::processPrechargeEvent() 1582{ 1583 // if we reached zero, then special conditions apply as we track 1584 // if all banks are precharged for the power models 1585 if (numBanksActive == 0) { 1586 // we should transition to the idle state when the last bank 1587 // is precharged 1588 schedulePowerEvent(PWR_IDLE, curTick()); 1589 } 1590} 1591 1592void 1593DRAMCtrl::Rank::processRefreshEvent() 1594{ 1595 // when first preparing the refresh, remember when it was due 1596 if (refreshState == REF_IDLE) { 1597 // remember when the refresh is due 1598 refreshDueAt = curTick(); 1599 1600 // proceed to drain 1601 refreshState = REF_DRAIN; 1602 1603 DPRINTF(DRAM, "Refresh due\n"); 1604 } 1605 1606 // let any scheduled read or write to the same rank go ahead, 1607 // after which it will 1608 // hand control back to this event loop 1609 if (refreshState == REF_DRAIN) { 1610 // if a request is at the moment being handled and this request is 1611 // accessing the current rank then wait for it to finish 1612 if ((rank == memory.activeRank) 1613 && (memory.nextReqEvent.scheduled())) { 1614 // hand control over to the request loop until it is 1615 // evaluated next 1616 DPRINTF(DRAM, "Refresh awaiting draining\n"); 1617 1618 return; 1619 } else { 1620 refreshState = REF_PRE; 1621 } 1622 } 1623 1624 // at this point, ensure that all banks are precharged 1625 if (refreshState == REF_PRE) { 1626 // precharge any active bank if we are not already in the idle 1627 // state 1628 if (pwrState != PWR_IDLE) { 1629 // at the moment, we use a precharge all even if there is 1630 // only a single bank open 1631 DPRINTF(DRAM, "Precharging all\n"); 1632 1633 // first determine when we can precharge 1634 Tick pre_at = curTick(); 1635 1636 for (auto &b : banks) { 1637 // respect both causality and any existing bank 1638 // constraints, some banks could already have a 1639 // (auto) precharge scheduled 1640 pre_at = std::max(b.preAllowedAt, pre_at); 1641 } 1642 1643 // make sure all banks per rank are precharged, and for those that 1644 // already are, update their availability 1645 Tick act_allowed_at = pre_at + memory.tRP; 1646 1647 for (auto &b : banks) { 1648 if (b.openRow != Bank::NO_ROW) { 1649 memory.prechargeBank(*this, b, pre_at, false); 1650 } else { 1651 b.actAllowedAt = std::max(b.actAllowedAt, act_allowed_at); 1652 b.preAllowedAt = std::max(b.preAllowedAt, pre_at); 1653 } 1654 } 1655 1656 // precharge all banks in rank 1657 power.powerlib.doCommand(MemCommand::PREA, 0, 1658 divCeil(pre_at, memory.tCK) - 1659 memory.timeStampOffset); 1660 1661 DPRINTF(DRAMPower, "%llu,PREA,0,%d\n", 1662 divCeil(pre_at, memory.tCK) - 1663 memory.timeStampOffset, rank); 1664 } else { 1665 DPRINTF(DRAM, "All banks already precharged, starting refresh\n"); 1666 1667 // go ahead and kick the power state machine into gear if 1668 // we are already idle 1669 schedulePowerEvent(PWR_REF, curTick()); 1670 } 1671 1672 refreshState = REF_RUN; 1673 assert(numBanksActive == 0); 1674 1675 // wait for all banks to be precharged, at which point the 1676 // power state machine will transition to the idle state, and 1677 // automatically move to a refresh, at that point it will also 1678 // call this method to get the refresh event loop going again 1679 return; 1680 } 1681 1682 // last but not least we perform the actual refresh 1683 if (refreshState == REF_RUN) { 1684 // should never get here with any banks active 1685 assert(numBanksActive == 0); 1686 assert(pwrState == PWR_REF); 1687 1688 Tick ref_done_at = curTick() + memory.tRFC; 1689 1690 for (auto &b : banks) { 1691 b.actAllowedAt = ref_done_at; 1692 } 1693 1694 // at the moment this affects all ranks 1695 power.powerlib.doCommand(MemCommand::REF, 0, 1696 divCeil(curTick(), memory.tCK) - 1697 memory.timeStampOffset); 1698 1699 // at the moment sort the list of commands and update the counters 1700 // for DRAMPower libray when doing a refresh 1701 sort(power.powerlib.cmdList.begin(), 1702 power.powerlib.cmdList.end(), DRAMCtrl::sortTime); 1703 1704 // update the counters for DRAMPower, passing false to 1705 // indicate that this is not the last command in the 1706 // list. DRAMPower requires this information for the 1707 // correct calculation of the background energy at the end 1708 // of the simulation. Ideally we would want to call this 1709 // function with true once at the end of the 1710 // simulation. However, the discarded energy is extremly 1711 // small and does not effect the final results. 1712 power.powerlib.updateCounters(false); 1713 1714 // call the energy function 1715 power.powerlib.calcEnergy(); 1716 1717 // Update the stats 1718 updatePowerStats(); 1719 1720 DPRINTF(DRAMPower, "%llu,REF,0,%d\n", divCeil(curTick(), memory.tCK) - 1721 memory.timeStampOffset, rank); 1722 1723 // make sure we did not wait so long that we cannot make up 1724 // for it 1725 if (refreshDueAt + memory.tREFI < ref_done_at) { 1726 fatal("Refresh was delayed so long we cannot catch up\n"); 1727 } 1728 1729 // compensate for the delay in actually performing the refresh 1730 // when scheduling the next one 1731 schedule(refreshEvent, refreshDueAt + memory.tREFI - memory.tRP); 1732 1733 assert(!powerEvent.scheduled()); 1734 1735 // move to the idle power state once the refresh is done, this 1736 // will also move the refresh state machine to the refresh 1737 // idle state 1738 schedulePowerEvent(PWR_IDLE, ref_done_at); 1739 1740 DPRINTF(DRAMState, "Refresh done at %llu and next refresh at %llu\n", 1741 ref_done_at, refreshDueAt + memory.tREFI); 1742 } 1743} 1744 1745void 1746DRAMCtrl::Rank::schedulePowerEvent(PowerState pwr_state, Tick tick) 1747{ 1748 // respect causality 1749 assert(tick >= curTick()); 1750 1751 if (!powerEvent.scheduled()) { 1752 DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n", 1753 tick, pwr_state); 1754 1755 // insert the new transition 1756 pwrStateTrans = pwr_state; 1757 1758 schedule(powerEvent, tick); 1759 } else { 1760 panic("Scheduled power event at %llu to state %d, " 1761 "with scheduled event at %llu to %d\n", tick, pwr_state, 1762 powerEvent.when(), pwrStateTrans); 1763 } 1764} 1765 1766void 1767DRAMCtrl::Rank::processPowerEvent() 1768{ 1769 // remember where we were, and for how long 1770 Tick duration = curTick() - pwrStateTick; 1771 PowerState prev_state = pwrState; 1772 1773 // update the accounting 1774 pwrStateTime[prev_state] += duration; 1775 1776 pwrState = pwrStateTrans; 1777 pwrStateTick = curTick(); 1778 1779 if (pwrState == PWR_IDLE) { 1780 DPRINTF(DRAMState, "All banks precharged\n"); 1781 1782 // if we were refreshing, make sure we start scheduling requests again 1783 if (prev_state == PWR_REF) { 1784 DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration); 1785 assert(pwrState == PWR_IDLE); 1786 1787 // kick things into action again 1788 refreshState = REF_IDLE; 1789 // a request event could be already scheduled by the state 1790 // machine of the other rank 1791 if (!memory.nextReqEvent.scheduled()) 1792 schedule(memory.nextReqEvent, curTick()); 1793 } else { 1794 assert(prev_state == PWR_ACT); 1795 1796 // if we have a pending refresh, and are now moving to 1797 // the idle state, direclty transition to a refresh 1798 if (refreshState == REF_RUN) { 1799 // there should be nothing waiting at this point 1800 assert(!powerEvent.scheduled()); 1801 1802 // update the state in zero time and proceed below 1803 pwrState = PWR_REF; 1804 } 1805 } 1806 } 1807 1808 // we transition to the refresh state, let the refresh state 1809 // machine know of this state update and let it deal with the 1810 // scheduling of the next power state transition as well as the 1811 // following refresh 1812 if (pwrState == PWR_REF) { 1813 DPRINTF(DRAMState, "Refreshing\n"); 1814 // kick the refresh event loop into action again, and that 1815 // in turn will schedule a transition to the idle power 1816 // state once the refresh is done 1817 assert(refreshState == REF_RUN); 1818 processRefreshEvent(); 1819 } 1820} 1821 1822void 1823DRAMCtrl::Rank::updatePowerStats() 1824{ 1825 // Get the energy and power from DRAMPower 1826 Data::MemoryPowerModel::Energy energy = 1827 power.powerlib.getEnergy(); 1828 Data::MemoryPowerModel::Power rank_power = 1829 power.powerlib.getPower(); 1830 1831 actEnergy = energy.act_energy * memory.devicesPerRank; 1832 preEnergy = energy.pre_energy * memory.devicesPerRank; 1833 readEnergy = energy.read_energy * memory.devicesPerRank; 1834 writeEnergy = energy.write_energy * memory.devicesPerRank; 1835 refreshEnergy = energy.ref_energy * memory.devicesPerRank; 1836 actBackEnergy = energy.act_stdby_energy * memory.devicesPerRank; 1837 preBackEnergy = energy.pre_stdby_energy * memory.devicesPerRank; 1838 totalEnergy = energy.total_energy * memory.devicesPerRank; 1839 averagePower = rank_power.average_power * memory.devicesPerRank; 1840} 1841 1842void 1843DRAMCtrl::Rank::regStats() 1844{ 1845 using namespace Stats; 1846 1847 pwrStateTime 1848 .init(5) 1849 .name(name() + ".memoryStateTime") 1850 .desc("Time in different power states"); 1851 pwrStateTime.subname(0, "IDLE"); 1852 pwrStateTime.subname(1, "REF"); 1853 pwrStateTime.subname(2, "PRE_PDN"); 1854 pwrStateTime.subname(3, "ACT"); 1855 pwrStateTime.subname(4, "ACT_PDN"); 1856 1857 actEnergy 1858 .name(name() + ".actEnergy") 1859 .desc("Energy for activate commands per rank (pJ)"); 1860 1861 preEnergy 1862 .name(name() + ".preEnergy") 1863 .desc("Energy for precharge commands per rank (pJ)"); 1864 1865 readEnergy 1866 .name(name() + ".readEnergy") 1867 .desc("Energy for read commands per rank (pJ)"); 1868 1869 writeEnergy 1870 .name(name() + ".writeEnergy") 1871 .desc("Energy for write commands per rank (pJ)"); 1872 1873 refreshEnergy 1874 .name(name() + ".refreshEnergy") 1875 .desc("Energy for refresh commands per rank (pJ)"); 1876 1877 actBackEnergy 1878 .name(name() + ".actBackEnergy") 1879 .desc("Energy for active background per rank (pJ)"); 1880 1881 preBackEnergy 1882 .name(name() + ".preBackEnergy") 1883 .desc("Energy for precharge background per rank (pJ)"); 1884 1885 totalEnergy 1886 .name(name() + ".totalEnergy") 1887 .desc("Total energy per rank (pJ)"); 1888 1889 averagePower 1890 .name(name() + ".averagePower") 1891 .desc("Core power per rank (mW)"); 1892} 1893void 1894DRAMCtrl::regStats() 1895{ 1896 using namespace Stats; 1897 1898 AbstractMemory::regStats(); 1899 1900 for (auto r : ranks) { 1901 r->regStats(); 1902 } 1903 1904 readReqs 1905 .name(name() + ".readReqs") 1906 .desc("Number of read requests accepted"); 1907 1908 writeReqs 1909 .name(name() + ".writeReqs") 1910 .desc("Number of write requests accepted"); 1911 1912 readBursts 1913 .name(name() + ".readBursts") 1914 .desc("Number of DRAM read bursts, " 1915 "including those serviced by the write queue"); 1916 1917 writeBursts 1918 .name(name() + ".writeBursts") 1919 .desc("Number of DRAM write bursts, " 1920 "including those merged in the write queue"); 1921 1922 servicedByWrQ 1923 .name(name() + ".servicedByWrQ") 1924 .desc("Number of DRAM read bursts serviced by the write queue"); 1925 1926 mergedWrBursts 1927 .name(name() + ".mergedWrBursts") 1928 .desc("Number of DRAM write bursts merged with an existing one"); 1929 1930 neitherReadNorWrite 1931 .name(name() + ".neitherReadNorWriteReqs") 1932 .desc("Number of requests that are neither read nor write"); 1933 1934 perBankRdBursts 1935 .init(banksPerRank * ranksPerChannel) 1936 .name(name() + ".perBankRdBursts") 1937 .desc("Per bank write bursts"); 1938 1939 perBankWrBursts 1940 .init(banksPerRank * ranksPerChannel) 1941 .name(name() + ".perBankWrBursts") 1942 .desc("Per bank write bursts"); 1943 1944 avgRdQLen 1945 .name(name() + ".avgRdQLen") 1946 .desc("Average read queue length when enqueuing") 1947 .precision(2); 1948 1949 avgWrQLen 1950 .name(name() + ".avgWrQLen") 1951 .desc("Average write queue length when enqueuing") 1952 .precision(2); 1953 1954 totQLat 1955 .name(name() + ".totQLat") 1956 .desc("Total ticks spent queuing"); 1957 1958 totBusLat 1959 .name(name() + ".totBusLat") 1960 .desc("Total ticks spent in databus transfers"); 1961 1962 totMemAccLat 1963 .name(name() + ".totMemAccLat") 1964 .desc("Total ticks spent from burst creation until serviced " 1965 "by the DRAM"); 1966 1967 avgQLat 1968 .name(name() + ".avgQLat") 1969 .desc("Average queueing delay per DRAM burst") 1970 .precision(2); 1971 1972 avgQLat = totQLat / (readBursts - servicedByWrQ); 1973 1974 avgBusLat 1975 .name(name() + ".avgBusLat") 1976 .desc("Average bus latency per DRAM burst") 1977 .precision(2); 1978 1979 avgBusLat = totBusLat / (readBursts - servicedByWrQ); 1980 1981 avgMemAccLat 1982 .name(name() + ".avgMemAccLat") 1983 .desc("Average memory access latency per DRAM burst") 1984 .precision(2); 1985 1986 avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ); 1987 1988 numRdRetry 1989 .name(name() + ".numRdRetry") 1990 .desc("Number of times read queue was full causing retry"); 1991 1992 numWrRetry 1993 .name(name() + ".numWrRetry") 1994 .desc("Number of times write queue was full causing retry"); 1995 1996 readRowHits 1997 .name(name() + ".readRowHits") 1998 .desc("Number of row buffer hits during reads"); 1999 2000 writeRowHits 2001 .name(name() + ".writeRowHits") 2002 .desc("Number of row buffer hits during writes"); 2003 2004 readRowHitRate 2005 .name(name() + ".readRowHitRate") 2006 .desc("Row buffer hit rate for reads") 2007 .precision(2); 2008 2009 readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100; 2010 2011 writeRowHitRate 2012 .name(name() + ".writeRowHitRate") 2013 .desc("Row buffer hit rate for writes") 2014 .precision(2); 2015 2016 writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100; 2017 2018 readPktSize 2019 .init(ceilLog2(burstSize) + 1) 2020 .name(name() + ".readPktSize") 2021 .desc("Read request sizes (log2)"); 2022 2023 writePktSize 2024 .init(ceilLog2(burstSize) + 1) 2025 .name(name() + ".writePktSize") 2026 .desc("Write request sizes (log2)"); 2027 2028 rdQLenPdf 2029 .init(readBufferSize) 2030 .name(name() + ".rdQLenPdf") 2031 .desc("What read queue length does an incoming req see"); 2032 2033 wrQLenPdf 2034 .init(writeBufferSize) 2035 .name(name() + ".wrQLenPdf") 2036 .desc("What write queue length does an incoming req see"); 2037 2038 bytesPerActivate 2039 .init(maxAccessesPerRow) 2040 .name(name() + ".bytesPerActivate") 2041 .desc("Bytes accessed per row activation") 2042 .flags(nozero); 2043 2044 rdPerTurnAround 2045 .init(readBufferSize) 2046 .name(name() + ".rdPerTurnAround") 2047 .desc("Reads before turning the bus around for writes") 2048 .flags(nozero); 2049 2050 wrPerTurnAround 2051 .init(writeBufferSize) 2052 .name(name() + ".wrPerTurnAround") 2053 .desc("Writes before turning the bus around for reads") 2054 .flags(nozero); 2055 2056 bytesReadDRAM 2057 .name(name() + ".bytesReadDRAM") 2058 .desc("Total number of bytes read from DRAM"); 2059 2060 bytesReadWrQ 2061 .name(name() + ".bytesReadWrQ") 2062 .desc("Total number of bytes read from write queue"); 2063 2064 bytesWritten 2065 .name(name() + ".bytesWritten") 2066 .desc("Total number of bytes written to DRAM"); 2067 2068 bytesReadSys 2069 .name(name() + ".bytesReadSys") 2070 .desc("Total read bytes from the system interface side"); 2071 2072 bytesWrittenSys 2073 .name(name() + ".bytesWrittenSys") 2074 .desc("Total written bytes from the system interface side"); 2075 2076 avgRdBW 2077 .name(name() + ".avgRdBW") 2078 .desc("Average DRAM read bandwidth in MiByte/s") 2079 .precision(2); 2080 2081 avgRdBW = (bytesReadDRAM / 1000000) / simSeconds; 2082 2083 avgWrBW 2084 .name(name() + ".avgWrBW") 2085 .desc("Average achieved write bandwidth in MiByte/s") 2086 .precision(2); 2087 2088 avgWrBW = (bytesWritten / 1000000) / simSeconds; 2089 2090 avgRdBWSys 2091 .name(name() + ".avgRdBWSys") 2092 .desc("Average system read bandwidth in MiByte/s") 2093 .precision(2); 2094 2095 avgRdBWSys = (bytesReadSys / 1000000) / simSeconds; 2096 2097 avgWrBWSys 2098 .name(name() + ".avgWrBWSys") 2099 .desc("Average system write bandwidth in MiByte/s") 2100 .precision(2); 2101 2102 avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds; 2103 2104 peakBW 2105 .name(name() + ".peakBW") 2106 .desc("Theoretical peak bandwidth in MiByte/s") 2107 .precision(2); 2108 2109 peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000; 2110 2111 busUtil 2112 .name(name() + ".busUtil") 2113 .desc("Data bus utilization in percentage") 2114 .precision(2); 2115 busUtil = (avgRdBW + avgWrBW) / peakBW * 100; 2116 2117 totGap 2118 .name(name() + ".totGap") 2119 .desc("Total gap between requests"); 2120 2121 avgGap 2122 .name(name() + ".avgGap") 2123 .desc("Average gap between requests") 2124 .precision(2); 2125 2126 avgGap = totGap / (readReqs + writeReqs); 2127 2128 // Stats for DRAM Power calculation based on Micron datasheet 2129 busUtilRead 2130 .name(name() + ".busUtilRead") 2131 .desc("Data bus utilization in percentage for reads") 2132 .precision(2); 2133 2134 busUtilRead = avgRdBW / peakBW * 100; 2135 2136 busUtilWrite 2137 .name(name() + ".busUtilWrite") 2138 .desc("Data bus utilization in percentage for writes") 2139 .precision(2); 2140 2141 busUtilWrite = avgWrBW / peakBW * 100; 2142 2143 pageHitRate 2144 .name(name() + ".pageHitRate") 2145 .desc("Row buffer hit rate, read and write combined") 2146 .precision(2); 2147 2148 pageHitRate = (writeRowHits + readRowHits) / 2149 (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100; 2150} 2151 2152void 2153DRAMCtrl::recvFunctional(PacketPtr pkt) 2154{ 2155 // rely on the abstract memory 2156 functionalAccess(pkt); 2157} 2158 2159BaseSlavePort& 2160DRAMCtrl::getSlavePort(const string &if_name, PortID idx) 2161{ 2162 if (if_name != "port") { 2163 return MemObject::getSlavePort(if_name, idx); 2164 } else { 2165 return port; 2166 } 2167} 2168 2169unsigned int 2170DRAMCtrl::drain(DrainManager *dm) 2171{ 2172 unsigned int count = port.drain(dm); 2173 2174 // if there is anything in any of our internal queues, keep track 2175 // of that as well 2176 if (!(writeQueue.empty() && readQueue.empty() && 2177 respQueue.empty())) { 2178 DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d," 2179 " resp: %d\n", writeQueue.size(), readQueue.size(), 2180 respQueue.size()); 2181 ++count; 2182 drainManager = dm; 2183 2184 // the only part that is not drained automatically over time 2185 // is the write queue, thus kick things into action if needed 2186 if (!writeQueue.empty() && !nextReqEvent.scheduled()) { 2187 schedule(nextReqEvent, curTick()); 2188 } 2189 } 2190 2191 if (count) 2192 setDrainState(Drainable::Draining); 2193 else 2194 setDrainState(Drainable::Drained); 2195 return count; 2196} 2197 2198void 2199DRAMCtrl::drainResume() 2200{ 2201 if (!isTimingMode && system()->isTimingMode()) { 2202 // if we switched to timing mode, kick things into action, 2203 // and behave as if we restored from a checkpoint 2204 startup(); 2205 } else if (isTimingMode && !system()->isTimingMode()) { 2206 // if we switch from timing mode, stop the refresh events to 2207 // not cause issues with KVM 2208 for (auto r : ranks) { 2209 r->suspend(); 2210 } 2211 } 2212 2213 // update the mode 2214 isTimingMode = system()->isTimingMode(); 2215} 2216 2217DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory) 2218 : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this), 2219 memory(_memory) 2220{ } 2221 2222AddrRangeList 2223DRAMCtrl::MemoryPort::getAddrRanges() const 2224{ 2225 AddrRangeList ranges; 2226 ranges.push_back(memory.getAddrRange()); 2227 return ranges; 2228} 2229 2230void 2231DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt) 2232{ 2233 pkt->pushLabel(memory.name()); 2234 2235 if (!queue.checkFunctional(pkt)) { 2236 // Default implementation of SimpleTimingPort::recvFunctional() 2237 // calls recvAtomic() and throws away the latency; we can save a 2238 // little here by just not calculating the latency. 2239 memory.recvFunctional(pkt); 2240 } 2241 2242 pkt->popLabel(); 2243} 2244 2245Tick 2246DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt) 2247{ 2248 return memory.recvAtomic(pkt); 2249} 2250 2251bool 2252DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt) 2253{ 2254 // pass it to the memory controller 2255 return memory.recvTimingReq(pkt); 2256} 2257 2258DRAMCtrl* 2259DRAMCtrlParams::create() 2260{ 2261 return new DRAMCtrl(this); 2262} 2263