dram_ctrl.cc revision 10890:bac38d2a4acb
1/*
2 * Copyright (c) 2010-2015 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2013 Amin Farmahini-Farahani
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Andreas Hansson
41 *          Ani Udipi
42 *          Neha Agarwal
43 *          Omar Naji
44 */
45
46#include "base/bitfield.hh"
47#include "base/trace.hh"
48#include "debug/DRAM.hh"
49#include "debug/DRAMPower.hh"
50#include "debug/DRAMState.hh"
51#include "debug/Drain.hh"
52#include "mem/dram_ctrl.hh"
53#include "sim/system.hh"
54
55using namespace std;
56using namespace Data;
57
58DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
59    AbstractMemory(p),
60    port(name() + ".port", *this), isTimingMode(false),
61    retryRdReq(false), retryWrReq(false),
62    busState(READ),
63    nextReqEvent(this), respondEvent(this),
64    drainManager(NULL),
65    deviceSize(p->device_size),
66    deviceBusWidth(p->device_bus_width), burstLength(p->burst_length),
67    deviceRowBufferSize(p->device_rowbuffer_size),
68    devicesPerRank(p->devices_per_rank),
69    burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8),
70    rowBufferSize(devicesPerRank * deviceRowBufferSize),
71    columnsPerRowBuffer(rowBufferSize / burstSize),
72    columnsPerStripe(range.interleaved() ? range.granularity() / burstSize : 1),
73    ranksPerChannel(p->ranks_per_channel),
74    bankGroupsPerRank(p->bank_groups_per_rank),
75    bankGroupArch(p->bank_groups_per_rank > 0),
76    banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0),
77    readBufferSize(p->read_buffer_size),
78    writeBufferSize(p->write_buffer_size),
79    writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0),
80    writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0),
81    minWritesPerSwitch(p->min_writes_per_switch),
82    writesThisTime(0), readsThisTime(0),
83    tCK(p->tCK), tWTR(p->tWTR), tRTW(p->tRTW), tCS(p->tCS), tBURST(p->tBURST),
84    tCCD_L(p->tCCD_L), tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS),
85    tWR(p->tWR), tRTP(p->tRTP), tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD),
86    tRRD_L(p->tRRD_L), tXAW(p->tXAW), activationLimit(p->activation_limit),
87    memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
88    pageMgmt(p->page_policy),
89    maxAccessesPerRow(p->max_accesses_per_row),
90    frontendLatency(p->static_frontend_latency),
91    backendLatency(p->static_backend_latency),
92    busBusyUntil(0), prevArrival(0),
93    nextReqTime(0), activeRank(0), timeStampOffset(0)
94{
95    // sanity check the ranks since we rely on bit slicing for the
96    // address decoding
97    fatal_if(!isPowerOf2(ranksPerChannel), "DRAM rank count of %d is not "
98             "allowed, must be a power of two\n", ranksPerChannel);
99
100    fatal_if(!isPowerOf2(burstSize), "DRAM burst size %d is not allowed, "
101             "must be a power of two\n", burstSize);
102
103    for (int i = 0; i < ranksPerChannel; i++) {
104        Rank* rank = new Rank(*this, p);
105        ranks.push_back(rank);
106
107        rank->actTicks.resize(activationLimit, 0);
108        rank->banks.resize(banksPerRank);
109        rank->rank = i;
110
111        for (int b = 0; b < banksPerRank; b++) {
112            rank->banks[b].bank = b;
113            // GDDR addressing of banks to BG is linear.
114            // Here we assume that all DRAM generations address bank groups as
115            // follows:
116            if (bankGroupArch) {
117                // Simply assign lower bits to bank group in order to
118                // rotate across bank groups as banks are incremented
119                // e.g. with 4 banks per bank group and 16 banks total:
120                //    banks 0,4,8,12  are in bank group 0
121                //    banks 1,5,9,13  are in bank group 1
122                //    banks 2,6,10,14 are in bank group 2
123                //    banks 3,7,11,15 are in bank group 3
124                rank->banks[b].bankgr = b % bankGroupsPerRank;
125            } else {
126                // No bank groups; simply assign to bank number
127                rank->banks[b].bankgr = b;
128            }
129        }
130    }
131
132    // perform a basic check of the write thresholds
133    if (p->write_low_thresh_perc >= p->write_high_thresh_perc)
134        fatal("Write buffer low threshold %d must be smaller than the "
135              "high threshold %d\n", p->write_low_thresh_perc,
136              p->write_high_thresh_perc);
137
138    // determine the rows per bank by looking at the total capacity
139    uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size());
140
141    // determine the dram actual capacity from the DRAM config in Mbytes
142    uint64_t deviceCapacity = deviceSize / (1024 * 1024) * devicesPerRank *
143        ranksPerChannel;
144
145    // if actual DRAM size does not match memory capacity in system warn!
146    if (deviceCapacity != capacity / (1024 * 1024))
147        warn("DRAM device capacity (%d Mbytes) does not match the "
148             "address range assigned (%d Mbytes)\n", deviceCapacity,
149             capacity / (1024 * 1024));
150
151    DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
152            AbstractMemory::size());
153
154    DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n",
155            rowBufferSize, columnsPerRowBuffer);
156
157    rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel);
158
159    // some basic sanity checks
160    if (tREFI <= tRP || tREFI <= tRFC) {
161        fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n",
162              tREFI, tRP, tRFC);
163    }
164
165    // basic bank group architecture checks ->
166    if (bankGroupArch) {
167        // must have at least one bank per bank group
168        if (bankGroupsPerRank > banksPerRank) {
169            fatal("banks per rank (%d) must be equal to or larger than "
170                  "banks groups per rank (%d)\n",
171                  banksPerRank, bankGroupsPerRank);
172        }
173        // must have same number of banks in each bank group
174        if ((banksPerRank % bankGroupsPerRank) != 0) {
175            fatal("Banks per rank (%d) must be evenly divisible by bank groups "
176                  "per rank (%d) for equal banks per bank group\n",
177                  banksPerRank, bankGroupsPerRank);
178        }
179        // tCCD_L should be greater than minimal, back-to-back burst delay
180        if (tCCD_L <= tBURST) {
181            fatal("tCCD_L (%d) should be larger than tBURST (%d) when "
182                  "bank groups per rank (%d) is greater than 1\n",
183                  tCCD_L, tBURST, bankGroupsPerRank);
184        }
185        // tRRD_L is greater than minimal, same bank group ACT-to-ACT delay
186        // some datasheets might specify it equal to tRRD
187        if (tRRD_L < tRRD) {
188            fatal("tRRD_L (%d) should be larger than tRRD (%d) when "
189                  "bank groups per rank (%d) is greater than 1\n",
190                  tRRD_L, tRRD, bankGroupsPerRank);
191        }
192    }
193
194}
195
196void
197DRAMCtrl::init()
198{
199    AbstractMemory::init();
200
201   if (!port.isConnected()) {
202        fatal("DRAMCtrl %s is unconnected!\n", name());
203    } else {
204        port.sendRangeChange();
205    }
206
207    // a bit of sanity checks on the interleaving, save it for here to
208    // ensure that the system pointer is initialised
209    if (range.interleaved()) {
210        if (channels != range.stripes())
211            fatal("%s has %d interleaved address stripes but %d channel(s)\n",
212                  name(), range.stripes(), channels);
213
214        if (addrMapping == Enums::RoRaBaChCo) {
215            if (rowBufferSize != range.granularity()) {
216                fatal("Channel interleaving of %s doesn't match RoRaBaChCo "
217                      "address map\n", name());
218            }
219        } else if (addrMapping == Enums::RoRaBaCoCh ||
220                   addrMapping == Enums::RoCoRaBaCh) {
221            // for the interleavings with channel bits in the bottom,
222            // if the system uses a channel striping granularity that
223            // is larger than the DRAM burst size, then map the
224            // sequential accesses within a stripe to a number of
225            // columns in the DRAM, effectively placing some of the
226            // lower-order column bits as the least-significant bits
227            // of the address (above the ones denoting the burst size)
228            assert(columnsPerStripe >= 1);
229
230            // channel striping has to be done at a granularity that
231            // is equal or larger to a cache line
232            if (system()->cacheLineSize() > range.granularity()) {
233                fatal("Channel interleaving of %s must be at least as large "
234                      "as the cache line size\n", name());
235            }
236
237            // ...and equal or smaller than the row-buffer size
238            if (rowBufferSize < range.granularity()) {
239                fatal("Channel interleaving of %s must be at most as large "
240                      "as the row-buffer size\n", name());
241            }
242            // this is essentially the check above, so just to be sure
243            assert(columnsPerStripe <= columnsPerRowBuffer);
244        }
245    }
246}
247
248void
249DRAMCtrl::startup()
250{
251    // remember the memory system mode of operation
252    isTimingMode = system()->isTimingMode();
253
254    if (isTimingMode) {
255        // timestamp offset should be in clock cycles for DRAMPower
256        timeStampOffset = divCeil(curTick(), tCK);
257
258        // update the start tick for the precharge accounting to the
259        // current tick
260        for (auto r : ranks) {
261            r->startup(curTick() + tREFI - tRP);
262        }
263
264        // shift the bus busy time sufficiently far ahead that we never
265        // have to worry about negative values when computing the time for
266        // the next request, this will add an insignificant bubble at the
267        // start of simulation
268        busBusyUntil = curTick() + tRP + tRCD + tCL;
269    }
270}
271
272Tick
273DRAMCtrl::recvAtomic(PacketPtr pkt)
274{
275    DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
276
277    // do the actual memory access and turn the packet into a response
278    access(pkt);
279
280    Tick latency = 0;
281    if (!pkt->memInhibitAsserted() && pkt->hasData()) {
282        // this value is not supposed to be accurate, just enough to
283        // keep things going, mimic a closed page
284        latency = tRP + tRCD + tCL;
285    }
286    return latency;
287}
288
289bool
290DRAMCtrl::readQueueFull(unsigned int neededEntries) const
291{
292    DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n",
293            readBufferSize, readQueue.size() + respQueue.size(),
294            neededEntries);
295
296    return
297        (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize;
298}
299
300bool
301DRAMCtrl::writeQueueFull(unsigned int neededEntries) const
302{
303    DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n",
304            writeBufferSize, writeQueue.size(), neededEntries);
305    return (writeQueue.size() + neededEntries) > writeBufferSize;
306}
307
308DRAMCtrl::DRAMPacket*
309DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size,
310                       bool isRead)
311{
312    // decode the address based on the address mapping scheme, with
313    // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and
314    // channel, respectively
315    uint8_t rank;
316    uint8_t bank;
317    // use a 64-bit unsigned during the computations as the row is
318    // always the top bits, and check before creating the DRAMPacket
319    uint64_t row;
320
321    // truncate the address to a DRAM burst, which makes it unique to
322    // a specific column, row, bank, rank and channel
323    Addr addr = dramPktAddr / burstSize;
324
325    // we have removed the lowest order address bits that denote the
326    // position within the column
327    if (addrMapping == Enums::RoRaBaChCo) {
328        // the lowest order bits denote the column to ensure that
329        // sequential cache lines occupy the same row
330        addr = addr / columnsPerRowBuffer;
331
332        // take out the channel part of the address
333        addr = addr / channels;
334
335        // after the channel bits, get the bank bits to interleave
336        // over the banks
337        bank = addr % banksPerRank;
338        addr = addr / banksPerRank;
339
340        // after the bank, we get the rank bits which thus interleaves
341        // over the ranks
342        rank = addr % ranksPerChannel;
343        addr = addr / ranksPerChannel;
344
345        // lastly, get the row bits
346        row = addr % rowsPerBank;
347        addr = addr / rowsPerBank;
348    } else if (addrMapping == Enums::RoRaBaCoCh) {
349        // take out the lower-order column bits
350        addr = addr / columnsPerStripe;
351
352        // take out the channel part of the address
353        addr = addr / channels;
354
355        // next, the higher-order column bites
356        addr = addr / (columnsPerRowBuffer / columnsPerStripe);
357
358        // after the column bits, we get the bank bits to interleave
359        // over the banks
360        bank = addr % banksPerRank;
361        addr = addr / banksPerRank;
362
363        // after the bank, we get the rank bits which thus interleaves
364        // over the ranks
365        rank = addr % ranksPerChannel;
366        addr = addr / ranksPerChannel;
367
368        // lastly, get the row bits
369        row = addr % rowsPerBank;
370        addr = addr / rowsPerBank;
371    } else if (addrMapping == Enums::RoCoRaBaCh) {
372        // optimise for closed page mode and utilise maximum
373        // parallelism of the DRAM (at the cost of power)
374
375        // take out the lower-order column bits
376        addr = addr / columnsPerStripe;
377
378        // take out the channel part of the address, not that this has
379        // to match with how accesses are interleaved between the
380        // controllers in the address mapping
381        addr = addr / channels;
382
383        // start with the bank bits, as this provides the maximum
384        // opportunity for parallelism between requests
385        bank = addr % banksPerRank;
386        addr = addr / banksPerRank;
387
388        // next get the rank bits
389        rank = addr % ranksPerChannel;
390        addr = addr / ranksPerChannel;
391
392        // next, the higher-order column bites
393        addr = addr / (columnsPerRowBuffer / columnsPerStripe);
394
395        // lastly, get the row bits
396        row = addr % rowsPerBank;
397        addr = addr / rowsPerBank;
398    } else
399        panic("Unknown address mapping policy chosen!");
400
401    assert(rank < ranksPerChannel);
402    assert(bank < banksPerRank);
403    assert(row < rowsPerBank);
404    assert(row < Bank::NO_ROW);
405
406    DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
407            dramPktAddr, rank, bank, row);
408
409    // create the corresponding DRAM packet with the entry time and
410    // ready time set to the current tick, the latter will be updated
411    // later
412    uint16_t bank_id = banksPerRank * rank + bank;
413    return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr,
414                          size, ranks[rank]->banks[bank], *ranks[rank]);
415}
416
417void
418DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount)
419{
420    // only add to the read queue here. whenever the request is
421    // eventually done, set the readyTime, and call schedule()
422    assert(!pkt->isWrite());
423
424    assert(pktCount != 0);
425
426    // if the request size is larger than burst size, the pkt is split into
427    // multiple DRAM packets
428    // Note if the pkt starting address is not aligened to burst size, the
429    // address of first DRAM packet is kept unaliged. Subsequent DRAM packets
430    // are aligned to burst size boundaries. This is to ensure we accurately
431    // check read packets against packets in write queue.
432    Addr addr = pkt->getAddr();
433    unsigned pktsServicedByWrQ = 0;
434    BurstHelper* burst_helper = NULL;
435    for (int cnt = 0; cnt < pktCount; ++cnt) {
436        unsigned size = std::min((addr | (burstSize - 1)) + 1,
437                        pkt->getAddr() + pkt->getSize()) - addr;
438        readPktSize[ceilLog2(size)]++;
439        readBursts++;
440
441        // First check write buffer to see if the data is already at
442        // the controller
443        bool foundInWrQ = false;
444        Addr burst_addr = burstAlign(addr);
445        // if the burst address is not present then there is no need
446        // looking any further
447        if (isInWriteQueue.find(burst_addr) != isInWriteQueue.end()) {
448            for (const auto& p : writeQueue) {
449                // check if the read is subsumed in the write queue
450                // packet we are looking at
451                if (p->addr <= addr && (addr + size) <= (p->addr + p->size)) {
452                    foundInWrQ = true;
453                    servicedByWrQ++;
454                    pktsServicedByWrQ++;
455                    DPRINTF(DRAM, "Read to addr %lld with size %d serviced by "
456                            "write queue\n", addr, size);
457                    bytesReadWrQ += burstSize;
458                    break;
459                }
460            }
461        }
462
463        // If not found in the write q, make a DRAM packet and
464        // push it onto the read queue
465        if (!foundInWrQ) {
466
467            // Make the burst helper for split packets
468            if (pktCount > 1 && burst_helper == NULL) {
469                DPRINTF(DRAM, "Read to addr %lld translates to %d "
470                        "dram requests\n", pkt->getAddr(), pktCount);
471                burst_helper = new BurstHelper(pktCount);
472            }
473
474            DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true);
475            dram_pkt->burstHelper = burst_helper;
476
477            assert(!readQueueFull(1));
478            rdQLenPdf[readQueue.size() + respQueue.size()]++;
479
480            DPRINTF(DRAM, "Adding to read queue\n");
481
482            readQueue.push_back(dram_pkt);
483
484            // Update stats
485            avgRdQLen = readQueue.size() + respQueue.size();
486        }
487
488        // Starting address of next dram pkt (aligend to burstSize boundary)
489        addr = (addr | (burstSize - 1)) + 1;
490    }
491
492    // If all packets are serviced by write queue, we send the repsonse back
493    if (pktsServicedByWrQ == pktCount) {
494        accessAndRespond(pkt, frontendLatency);
495        return;
496    }
497
498    // Update how many split packets are serviced by write queue
499    if (burst_helper != NULL)
500        burst_helper->burstsServiced = pktsServicedByWrQ;
501
502    // If we are not already scheduled to get a request out of the
503    // queue, do so now
504    if (!nextReqEvent.scheduled()) {
505        DPRINTF(DRAM, "Request scheduled immediately\n");
506        schedule(nextReqEvent, curTick());
507    }
508}
509
510void
511DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount)
512{
513    // only add to the write queue here. whenever the request is
514    // eventually done, set the readyTime, and call schedule()
515    assert(pkt->isWrite());
516
517    // if the request size is larger than burst size, the pkt is split into
518    // multiple DRAM packets
519    Addr addr = pkt->getAddr();
520    for (int cnt = 0; cnt < pktCount; ++cnt) {
521        unsigned size = std::min((addr | (burstSize - 1)) + 1,
522                        pkt->getAddr() + pkt->getSize()) - addr;
523        writePktSize[ceilLog2(size)]++;
524        writeBursts++;
525
526        // see if we can merge with an existing item in the write
527        // queue and keep track of whether we have merged or not
528        bool merged = isInWriteQueue.find(burstAlign(addr)) !=
529            isInWriteQueue.end();
530
531        // if the item was not merged we need to create a new write
532        // and enqueue it
533        if (!merged) {
534            DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false);
535
536            assert(writeQueue.size() < writeBufferSize);
537            wrQLenPdf[writeQueue.size()]++;
538
539            DPRINTF(DRAM, "Adding to write queue\n");
540
541            writeQueue.push_back(dram_pkt);
542            isInWriteQueue.insert(burstAlign(addr));
543            assert(writeQueue.size() == isInWriteQueue.size());
544
545            // Update stats
546            avgWrQLen = writeQueue.size();
547        } else {
548            DPRINTF(DRAM, "Merging write burst with existing queue entry\n");
549
550            // keep track of the fact that this burst effectively
551            // disappeared as it was merged with an existing one
552            mergedWrBursts++;
553        }
554
555        // Starting address of next dram pkt (aligend to burstSize boundary)
556        addr = (addr | (burstSize - 1)) + 1;
557    }
558
559    // we do not wait for the writes to be send to the actual memory,
560    // but instead take responsibility for the consistency here and
561    // snoop the write queue for any upcoming reads
562    // @todo, if a pkt size is larger than burst size, we might need a
563    // different front end latency
564    accessAndRespond(pkt, frontendLatency);
565
566    // If we are not already scheduled to get a request out of the
567    // queue, do so now
568    if (!nextReqEvent.scheduled()) {
569        DPRINTF(DRAM, "Request scheduled immediately\n");
570        schedule(nextReqEvent, curTick());
571    }
572}
573
574void
575DRAMCtrl::printQs() const {
576    DPRINTF(DRAM, "===READ QUEUE===\n\n");
577    for (auto i = readQueue.begin() ;  i != readQueue.end() ; ++i) {
578        DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
579    }
580    DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
581    for (auto i = respQueue.begin() ;  i != respQueue.end() ; ++i) {
582        DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
583    }
584    DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
585    for (auto i = writeQueue.begin() ;  i != writeQueue.end() ; ++i) {
586        DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
587    }
588}
589
590bool
591DRAMCtrl::recvTimingReq(PacketPtr pkt)
592{
593    /// @todo temporary hack to deal with memory corruption issues until
594    /// 4-phase transactions are complete
595    for (int x = 0; x < pendingDelete.size(); x++)
596        delete pendingDelete[x];
597    pendingDelete.clear();
598
599    // This is where we enter from the outside world
600    DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n",
601            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
602
603    // simply drop inhibited packets and clean evictions
604    if (pkt->memInhibitAsserted() ||
605        pkt->cmd == MemCmd::CleanEvict) {
606        DPRINTF(DRAM, "Inhibited packet or clean evict -- Dropping it now\n");
607        pendingDelete.push_back(pkt);
608        return true;
609    }
610
611    // Calc avg gap between requests
612    if (prevArrival != 0) {
613        totGap += curTick() - prevArrival;
614    }
615    prevArrival = curTick();
616
617
618    // Find out how many dram packets a pkt translates to
619    // If the burst size is equal or larger than the pkt size, then a pkt
620    // translates to only one dram packet. Otherwise, a pkt translates to
621    // multiple dram packets
622    unsigned size = pkt->getSize();
623    unsigned offset = pkt->getAddr() & (burstSize - 1);
624    unsigned int dram_pkt_count = divCeil(offset + size, burstSize);
625
626    // check local buffers and do not accept if full
627    if (pkt->isRead()) {
628        assert(size != 0);
629        if (readQueueFull(dram_pkt_count)) {
630            DPRINTF(DRAM, "Read queue full, not accepting\n");
631            // remember that we have to retry this port
632            retryRdReq = true;
633            numRdRetry++;
634            return false;
635        } else {
636            addToReadQueue(pkt, dram_pkt_count);
637            readReqs++;
638            bytesReadSys += size;
639        }
640    } else if (pkt->isWrite()) {
641        assert(size != 0);
642        if (writeQueueFull(dram_pkt_count)) {
643            DPRINTF(DRAM, "Write queue full, not accepting\n");
644            // remember that we have to retry this port
645            retryWrReq = true;
646            numWrRetry++;
647            return false;
648        } else {
649            addToWriteQueue(pkt, dram_pkt_count);
650            writeReqs++;
651            bytesWrittenSys += size;
652        }
653    } else {
654        DPRINTF(DRAM,"Neither read nor write, ignore timing\n");
655        neitherReadNorWrite++;
656        accessAndRespond(pkt, 1);
657    }
658
659    return true;
660}
661
662void
663DRAMCtrl::processRespondEvent()
664{
665    DPRINTF(DRAM,
666            "processRespondEvent(): Some req has reached its readyTime\n");
667
668    DRAMPacket* dram_pkt = respQueue.front();
669
670    if (dram_pkt->burstHelper) {
671        // it is a split packet
672        dram_pkt->burstHelper->burstsServiced++;
673        if (dram_pkt->burstHelper->burstsServiced ==
674            dram_pkt->burstHelper->burstCount) {
675            // we have now serviced all children packets of a system packet
676            // so we can now respond to the requester
677            // @todo we probably want to have a different front end and back
678            // end latency for split packets
679            accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
680            delete dram_pkt->burstHelper;
681            dram_pkt->burstHelper = NULL;
682        }
683    } else {
684        // it is not a split packet
685        accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
686    }
687
688    delete respQueue.front();
689    respQueue.pop_front();
690
691    if (!respQueue.empty()) {
692        assert(respQueue.front()->readyTime >= curTick());
693        assert(!respondEvent.scheduled());
694        schedule(respondEvent, respQueue.front()->readyTime);
695    } else {
696        // if there is nothing left in any queue, signal a drain
697        if (writeQueue.empty() && readQueue.empty() &&
698            drainManager) {
699            DPRINTF(Drain, "DRAM controller done draining\n");
700            drainManager->signalDrainDone();
701            drainManager = NULL;
702        }
703    }
704
705    // We have made a location in the queue available at this point,
706    // so if there is a read that was forced to wait, retry now
707    if (retryRdReq) {
708        retryRdReq = false;
709        port.sendRetryReq();
710    }
711}
712
713bool
714DRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue, Tick extra_col_delay)
715{
716    // This method does the arbitration between requests. The chosen
717    // packet is simply moved to the head of the queue. The other
718    // methods know that this is the place to look. For example, with
719    // FCFS, this method does nothing
720    assert(!queue.empty());
721
722    // bool to indicate if a packet to an available rank is found
723    bool found_packet = false;
724    if (queue.size() == 1) {
725        DRAMPacket* dram_pkt = queue.front();
726        // available rank corresponds to state refresh idle
727        if (ranks[dram_pkt->rank]->isAvailable()) {
728            found_packet = true;
729            DPRINTF(DRAM, "Single request, going to a free rank\n");
730        } else {
731            DPRINTF(DRAM, "Single request, going to a busy rank\n");
732        }
733        return found_packet;
734    }
735
736    if (memSchedPolicy == Enums::fcfs) {
737        // check if there is a packet going to a free rank
738        for(auto i = queue.begin(); i != queue.end() ; ++i) {
739            DRAMPacket* dram_pkt = *i;
740            if (ranks[dram_pkt->rank]->isAvailable()) {
741                queue.erase(i);
742                queue.push_front(dram_pkt);
743                found_packet = true;
744                break;
745            }
746        }
747    } else if (memSchedPolicy == Enums::frfcfs) {
748        found_packet = reorderQueue(queue, extra_col_delay);
749    } else
750        panic("No scheduling policy chosen\n");
751    return found_packet;
752}
753
754bool
755DRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue, Tick extra_col_delay)
756{
757    // Only determine this if needed
758    uint64_t earliest_banks = 0;
759    bool hidden_bank_prep = false;
760
761    // search for seamless row hits first, if no seamless row hit is
762    // found then determine if there are other packets that can be issued
763    // without incurring additional bus delay due to bank timing
764    // Will select closed rows first to enable more open row possibilies
765    // in future selections
766    bool found_hidden_bank = false;
767
768    // remember if we found a row hit, not seamless, but bank prepped
769    // and ready
770    bool found_prepped_pkt = false;
771
772    // if we have no row hit, prepped or not, and no seamless packet,
773    // just go for the earliest possible
774    bool found_earliest_pkt = false;
775
776    auto selected_pkt_it = queue.end();
777
778    // time we need to issue a column command to be seamless
779    const Tick min_col_at = std::max(busBusyUntil - tCL + extra_col_delay,
780                                     curTick());
781
782    for (auto i = queue.begin(); i != queue.end() ; ++i) {
783        DRAMPacket* dram_pkt = *i;
784        const Bank& bank = dram_pkt->bankRef;
785
786        // check if rank is available, if not, jump to the next packet
787        if (dram_pkt->rankRef.isAvailable()) {
788            // check if it is a row hit
789            if (bank.openRow == dram_pkt->row) {
790                // no additional rank-to-rank or same bank-group
791                // delays, or we switched read/write and might as well
792                // go for the row hit
793                if (bank.colAllowedAt <= min_col_at) {
794                    // FCFS within the hits, giving priority to
795                    // commands that can issue seamlessly, without
796                    // additional delay, such as same rank accesses
797                    // and/or different bank-group accesses
798                    DPRINTF(DRAM, "Seamless row buffer hit\n");
799                    selected_pkt_it = i;
800                    // no need to look through the remaining queue entries
801                    break;
802                } else if (!found_hidden_bank && !found_prepped_pkt) {
803                    // if we did not find a packet to a closed row that can
804                    // issue the bank commands without incurring delay, and
805                    // did not yet find a packet to a prepped row, remember
806                    // the current one
807                    selected_pkt_it = i;
808                    found_prepped_pkt = true;
809                    DPRINTF(DRAM, "Prepped row buffer hit\n");
810                }
811            } else if (!found_earliest_pkt) {
812                // if we have not initialised the bank status, do it
813                // now, and only once per scheduling decisions
814                if (earliest_banks == 0) {
815                    // determine entries with earliest bank delay
816                    pair<uint64_t, bool> bankStatus =
817                        minBankPrep(queue, min_col_at);
818                    earliest_banks = bankStatus.first;
819                    hidden_bank_prep = bankStatus.second;
820                }
821
822                // bank is amongst first available banks
823                // minBankPrep will give priority to packets that can
824                // issue seamlessly
825                if (bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) {
826                    found_earliest_pkt = true;
827                    found_hidden_bank = hidden_bank_prep;
828
829                    // give priority to packets that can issue
830                    // bank commands 'behind the scenes'
831                    // any additional delay if any will be due to
832                    // col-to-col command requirements
833                    if (hidden_bank_prep || !found_prepped_pkt)
834                        selected_pkt_it = i;
835                }
836            }
837        }
838    }
839
840    if (selected_pkt_it != queue.end()) {
841        DRAMPacket* selected_pkt = *selected_pkt_it;
842        queue.erase(selected_pkt_it);
843        queue.push_front(selected_pkt);
844        return true;
845    }
846
847    return false;
848}
849
850void
851DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency)
852{
853    DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
854
855    bool needsResponse = pkt->needsResponse();
856    // do the actual memory access which also turns the packet into a
857    // response
858    access(pkt);
859
860    // turn packet around to go back to requester if response expected
861    if (needsResponse) {
862        // access already turned the packet into a response
863        assert(pkt->isResponse());
864        // response_time consumes the static latency and is charged also
865        // with headerDelay that takes into account the delay provided by
866        // the xbar and also the payloadDelay that takes into account the
867        // number of data beats.
868        Tick response_time = curTick() + static_latency + pkt->headerDelay +
869                             pkt->payloadDelay;
870        // Here we reset the timing of the packet before sending it out.
871        pkt->headerDelay = pkt->payloadDelay = 0;
872
873        // queue the packet in the response queue to be sent out after
874        // the static latency has passed
875        port.schedTimingResp(pkt, response_time);
876    } else {
877        // @todo the packet is going to be deleted, and the DRAMPacket
878        // is still having a pointer to it
879        pendingDelete.push_back(pkt);
880    }
881
882    DPRINTF(DRAM, "Done\n");
883
884    return;
885}
886
887void
888DRAMCtrl::activateBank(Rank& rank_ref, Bank& bank_ref,
889                       Tick act_tick, uint32_t row)
890{
891    assert(rank_ref.actTicks.size() == activationLimit);
892
893    DPRINTF(DRAM, "Activate at tick %d\n", act_tick);
894
895    // update the open row
896    assert(bank_ref.openRow == Bank::NO_ROW);
897    bank_ref.openRow = row;
898
899    // start counting anew, this covers both the case when we
900    // auto-precharged, and when this access is forced to
901    // precharge
902    bank_ref.bytesAccessed = 0;
903    bank_ref.rowAccesses = 0;
904
905    ++rank_ref.numBanksActive;
906    assert(rank_ref.numBanksActive <= banksPerRank);
907
908    DPRINTF(DRAM, "Activate bank %d, rank %d at tick %lld, now got %d active\n",
909            bank_ref.bank, rank_ref.rank, act_tick,
910            ranks[rank_ref.rank]->numBanksActive);
911
912    rank_ref.power.powerlib.doCommand(MemCommand::ACT, bank_ref.bank,
913                                      divCeil(act_tick, tCK) -
914                                      timeStampOffset);
915
916    DPRINTF(DRAMPower, "%llu,ACT,%d,%d\n", divCeil(act_tick, tCK) -
917            timeStampOffset, bank_ref.bank, rank_ref.rank);
918
919    // The next access has to respect tRAS for this bank
920    bank_ref.preAllowedAt = act_tick + tRAS;
921
922    // Respect the row-to-column command delay
923    bank_ref.colAllowedAt = std::max(act_tick + tRCD, bank_ref.colAllowedAt);
924
925    // start by enforcing tRRD
926    for(int i = 0; i < banksPerRank; i++) {
927        // next activate to any bank in this rank must not happen
928        // before tRRD
929        if (bankGroupArch && (bank_ref.bankgr == rank_ref.banks[i].bankgr)) {
930            // bank group architecture requires longer delays between
931            // ACT commands within the same bank group.  Use tRRD_L
932            // in this case
933            rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD_L,
934                                             rank_ref.banks[i].actAllowedAt);
935        } else {
936            // use shorter tRRD value when either
937            // 1) bank group architecture is not supportted
938            // 2) bank is in a different bank group
939            rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD,
940                                             rank_ref.banks[i].actAllowedAt);
941        }
942    }
943
944    // next, we deal with tXAW, if the activation limit is disabled
945    // then we directly schedule an activate power event
946    if (!rank_ref.actTicks.empty()) {
947        // sanity check
948        if (rank_ref.actTicks.back() &&
949           (act_tick - rank_ref.actTicks.back()) < tXAW) {
950            panic("Got %d activates in window %d (%llu - %llu) which "
951                  "is smaller than %llu\n", activationLimit, act_tick -
952                  rank_ref.actTicks.back(), act_tick,
953                  rank_ref.actTicks.back(), tXAW);
954        }
955
956        // shift the times used for the book keeping, the last element
957        // (highest index) is the oldest one and hence the lowest value
958        rank_ref.actTicks.pop_back();
959
960        // record an new activation (in the future)
961        rank_ref.actTicks.push_front(act_tick);
962
963        // cannot activate more than X times in time window tXAW, push the
964        // next one (the X + 1'st activate) to be tXAW away from the
965        // oldest in our window of X
966        if (rank_ref.actTicks.back() &&
967           (act_tick - rank_ref.actTicks.back()) < tXAW) {
968            DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate "
969                    "no earlier than %llu\n", activationLimit,
970                    rank_ref.actTicks.back() + tXAW);
971            for(int j = 0; j < banksPerRank; j++)
972                // next activate must not happen before end of window
973                rank_ref.banks[j].actAllowedAt =
974                    std::max(rank_ref.actTicks.back() + tXAW,
975                             rank_ref.banks[j].actAllowedAt);
976        }
977    }
978
979    // at the point when this activate takes place, make sure we
980    // transition to the active power state
981    if (!rank_ref.activateEvent.scheduled())
982        schedule(rank_ref.activateEvent, act_tick);
983    else if (rank_ref.activateEvent.when() > act_tick)
984        // move it sooner in time
985        reschedule(rank_ref.activateEvent, act_tick);
986}
987
988void
989DRAMCtrl::prechargeBank(Rank& rank_ref, Bank& bank, Tick pre_at, bool trace)
990{
991    // make sure the bank has an open row
992    assert(bank.openRow != Bank::NO_ROW);
993
994    // sample the bytes per activate here since we are closing
995    // the page
996    bytesPerActivate.sample(bank.bytesAccessed);
997
998    bank.openRow = Bank::NO_ROW;
999
1000    // no precharge allowed before this one
1001    bank.preAllowedAt = pre_at;
1002
1003    Tick pre_done_at = pre_at + tRP;
1004
1005    bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at);
1006
1007    assert(rank_ref.numBanksActive != 0);
1008    --rank_ref.numBanksActive;
1009
1010    DPRINTF(DRAM, "Precharging bank %d, rank %d at tick %lld, now got "
1011            "%d active\n", bank.bank, rank_ref.rank, pre_at,
1012            rank_ref.numBanksActive);
1013
1014    if (trace) {
1015
1016        rank_ref.power.powerlib.doCommand(MemCommand::PRE, bank.bank,
1017                                                divCeil(pre_at, tCK) -
1018                                                timeStampOffset);
1019        DPRINTF(DRAMPower, "%llu,PRE,%d,%d\n", divCeil(pre_at, tCK) -
1020                timeStampOffset, bank.bank, rank_ref.rank);
1021    }
1022    // if we look at the current number of active banks we might be
1023    // tempted to think the DRAM is now idle, however this can be
1024    // undone by an activate that is scheduled to happen before we
1025    // would have reached the idle state, so schedule an event and
1026    // rather check once we actually make it to the point in time when
1027    // the (last) precharge takes place
1028    if (!rank_ref.prechargeEvent.scheduled())
1029        schedule(rank_ref.prechargeEvent, pre_done_at);
1030    else if (rank_ref.prechargeEvent.when() < pre_done_at)
1031        reschedule(rank_ref.prechargeEvent, pre_done_at);
1032}
1033
1034void
1035DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
1036{
1037    DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
1038            dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
1039
1040    // get the rank
1041    Rank& rank = dram_pkt->rankRef;
1042
1043    // get the bank
1044    Bank& bank = dram_pkt->bankRef;
1045
1046    // for the state we need to track if it is a row hit or not
1047    bool row_hit = true;
1048
1049    // respect any constraints on the command (e.g. tRCD or tCCD)
1050    Tick cmd_at = std::max(bank.colAllowedAt, curTick());
1051
1052    // Determine the access latency and update the bank state
1053    if (bank.openRow == dram_pkt->row) {
1054        // nothing to do
1055    } else {
1056        row_hit = false;
1057
1058        // If there is a page open, precharge it.
1059        if (bank.openRow != Bank::NO_ROW) {
1060            prechargeBank(rank, bank, std::max(bank.preAllowedAt, curTick()));
1061        }
1062
1063        // next we need to account for the delay in activating the
1064        // page
1065        Tick act_tick = std::max(bank.actAllowedAt, curTick());
1066
1067        // Record the activation and deal with all the global timing
1068        // constraints caused be a new activation (tRRD and tXAW)
1069        activateBank(rank, bank, act_tick, dram_pkt->row);
1070
1071        // issue the command as early as possible
1072        cmd_at = bank.colAllowedAt;
1073    }
1074
1075    // we need to wait until the bus is available before we can issue
1076    // the command
1077    cmd_at = std::max(cmd_at, busBusyUntil - tCL);
1078
1079    // update the packet ready time
1080    dram_pkt->readyTime = cmd_at + tCL + tBURST;
1081
1082    // only one burst can use the bus at any one point in time
1083    assert(dram_pkt->readyTime - busBusyUntil >= tBURST);
1084
1085    // update the time for the next read/write burst for each
1086    // bank (add a max with tCCD/tCCD_L here)
1087    Tick cmd_dly;
1088    for(int j = 0; j < ranksPerChannel; j++) {
1089        for(int i = 0; i < banksPerRank; i++) {
1090            // next burst to same bank group in this rank must not happen
1091            // before tCCD_L.  Different bank group timing requirement is
1092            // tBURST; Add tCS for different ranks
1093            if (dram_pkt->rank == j) {
1094                if (bankGroupArch &&
1095                   (bank.bankgr == ranks[j]->banks[i].bankgr)) {
1096                    // bank group architecture requires longer delays between
1097                    // RD/WR burst commands to the same bank group.
1098                    // Use tCCD_L in this case
1099                    cmd_dly = tCCD_L;
1100                } else {
1101                    // use tBURST (equivalent to tCCD_S), the shorter
1102                    // cas-to-cas delay value, when either:
1103                    // 1) bank group architecture is not supportted
1104                    // 2) bank is in a different bank group
1105                    cmd_dly = tBURST;
1106                }
1107            } else {
1108                // different rank is by default in a different bank group
1109                // use tBURST (equivalent to tCCD_S), which is the shorter
1110                // cas-to-cas delay in this case
1111                // Add tCS to account for rank-to-rank bus delay requirements
1112                cmd_dly = tBURST + tCS;
1113            }
1114            ranks[j]->banks[i].colAllowedAt = std::max(cmd_at + cmd_dly,
1115                                             ranks[j]->banks[i].colAllowedAt);
1116        }
1117    }
1118
1119    // Save rank of current access
1120    activeRank = dram_pkt->rank;
1121
1122    // If this is a write, we also need to respect the write recovery
1123    // time before a precharge, in the case of a read, respect the
1124    // read to precharge constraint
1125    bank.preAllowedAt = std::max(bank.preAllowedAt,
1126                                 dram_pkt->isRead ? cmd_at + tRTP :
1127                                 dram_pkt->readyTime + tWR);
1128
1129    // increment the bytes accessed and the accesses per row
1130    bank.bytesAccessed += burstSize;
1131    ++bank.rowAccesses;
1132
1133    // if we reached the max, then issue with an auto-precharge
1134    bool auto_precharge = pageMgmt == Enums::close ||
1135        bank.rowAccesses == maxAccessesPerRow;
1136
1137    // if we did not hit the limit, we might still want to
1138    // auto-precharge
1139    if (!auto_precharge &&
1140        (pageMgmt == Enums::open_adaptive ||
1141         pageMgmt == Enums::close_adaptive)) {
1142        // a twist on the open and close page policies:
1143        // 1) open_adaptive page policy does not blindly keep the
1144        // page open, but close it if there are no row hits, and there
1145        // are bank conflicts in the queue
1146        // 2) close_adaptive page policy does not blindly close the
1147        // page, but closes it only if there are no row hits in the queue.
1148        // In this case, only force an auto precharge when there
1149        // are no same page hits in the queue
1150        bool got_more_hits = false;
1151        bool got_bank_conflict = false;
1152
1153        // either look at the read queue or write queue
1154        const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue :
1155            writeQueue;
1156        auto p = queue.begin();
1157        // make sure we are not considering the packet that we are
1158        // currently dealing with (which is the head of the queue)
1159        ++p;
1160
1161        // keep on looking until we find a hit or reach the end of the queue
1162        // 1) if a hit is found, then both open and close adaptive policies keep
1163        // the page open
1164        // 2) if no hit is found, got_bank_conflict is set to true if a bank
1165        // conflict request is waiting in the queue
1166        while (!got_more_hits && p != queue.end()) {
1167            bool same_rank_bank = (dram_pkt->rank == (*p)->rank) &&
1168                (dram_pkt->bank == (*p)->bank);
1169            bool same_row = dram_pkt->row == (*p)->row;
1170            got_more_hits |= same_rank_bank && same_row;
1171            got_bank_conflict |= same_rank_bank && !same_row;
1172            ++p;
1173        }
1174
1175        // auto pre-charge when either
1176        // 1) open_adaptive policy, we have not got any more hits, and
1177        //    have a bank conflict
1178        // 2) close_adaptive policy and we have not got any more hits
1179        auto_precharge = !got_more_hits &&
1180            (got_bank_conflict || pageMgmt == Enums::close_adaptive);
1181    }
1182
1183    // DRAMPower trace command to be written
1184    std::string mem_cmd = dram_pkt->isRead ? "RD" : "WR";
1185
1186    // MemCommand required for DRAMPower library
1187    MemCommand::cmds command = (mem_cmd == "RD") ? MemCommand::RD :
1188                                                   MemCommand::WR;
1189
1190    // if this access should use auto-precharge, then we are
1191    // closing the row
1192    if (auto_precharge) {
1193        // if auto-precharge push a PRE command at the correct tick to the
1194        // list used by DRAMPower library to calculate power
1195        prechargeBank(rank, bank, std::max(curTick(), bank.preAllowedAt));
1196
1197        DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId);
1198    }
1199
1200    // Update bus state
1201    busBusyUntil = dram_pkt->readyTime;
1202
1203    DPRINTF(DRAM, "Access to %lld, ready at %lld bus busy until %lld.\n",
1204            dram_pkt->addr, dram_pkt->readyTime, busBusyUntil);
1205
1206    dram_pkt->rankRef.power.powerlib.doCommand(command, dram_pkt->bank,
1207                                                 divCeil(cmd_at, tCK) -
1208                                                 timeStampOffset);
1209
1210    DPRINTF(DRAMPower, "%llu,%s,%d,%d\n", divCeil(cmd_at, tCK) -
1211            timeStampOffset, mem_cmd, dram_pkt->bank, dram_pkt->rank);
1212
1213    // Update the minimum timing between the requests, this is a
1214    // conservative estimate of when we have to schedule the next
1215    // request to not introduce any unecessary bubbles. In most cases
1216    // we will wake up sooner than we have to.
1217    nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
1218
1219    // Update the stats and schedule the next request
1220    if (dram_pkt->isRead) {
1221        ++readsThisTime;
1222        if (row_hit)
1223            readRowHits++;
1224        bytesReadDRAM += burstSize;
1225        perBankRdBursts[dram_pkt->bankId]++;
1226
1227        // Update latency stats
1228        totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
1229        totBusLat += tBURST;
1230        totQLat += cmd_at - dram_pkt->entryTime;
1231    } else {
1232        ++writesThisTime;
1233        if (row_hit)
1234            writeRowHits++;
1235        bytesWritten += burstSize;
1236        perBankWrBursts[dram_pkt->bankId]++;
1237    }
1238}
1239
1240void
1241DRAMCtrl::processNextReqEvent()
1242{
1243    int busyRanks = 0;
1244    for (auto r : ranks) {
1245        if (!r->isAvailable()) {
1246            // rank is busy refreshing
1247            busyRanks++;
1248
1249            // let the rank know that if it was waiting to drain, it
1250            // is now done and ready to proceed
1251            r->checkDrainDone();
1252        }
1253    }
1254
1255    if (busyRanks == ranksPerChannel) {
1256        // if all ranks are refreshing wait for them to finish
1257        // and stall this state machine without taking any further
1258        // action, and do not schedule a new nextReqEvent
1259        return;
1260    }
1261
1262    // pre-emptively set to false.  Overwrite if in READ_TO_WRITE
1263    // or WRITE_TO_READ state
1264    bool switched_cmd_type = false;
1265    if (busState == READ_TO_WRITE) {
1266        DPRINTF(DRAM, "Switching to writes after %d reads with %d reads "
1267                "waiting\n", readsThisTime, readQueue.size());
1268
1269        // sample and reset the read-related stats as we are now
1270        // transitioning to writes, and all reads are done
1271        rdPerTurnAround.sample(readsThisTime);
1272        readsThisTime = 0;
1273
1274        // now proceed to do the actual writes
1275        busState = WRITE;
1276        switched_cmd_type = true;
1277    } else if (busState == WRITE_TO_READ) {
1278        DPRINTF(DRAM, "Switching to reads after %d writes with %d writes "
1279                "waiting\n", writesThisTime, writeQueue.size());
1280
1281        wrPerTurnAround.sample(writesThisTime);
1282        writesThisTime = 0;
1283
1284        busState = READ;
1285        switched_cmd_type = true;
1286    }
1287
1288    // when we get here it is either a read or a write
1289    if (busState == READ) {
1290
1291        // track if we should switch or not
1292        bool switch_to_writes = false;
1293
1294        if (readQueue.empty()) {
1295            // In the case there is no read request to go next,
1296            // trigger writes if we have passed the low threshold (or
1297            // if we are draining)
1298            if (!writeQueue.empty() &&
1299                (drainManager || writeQueue.size() > writeLowThreshold)) {
1300
1301                switch_to_writes = true;
1302            } else {
1303                // check if we are drained
1304                if (respQueue.empty () && drainManager) {
1305                    DPRINTF(Drain, "DRAM controller done draining\n");
1306                    drainManager->signalDrainDone();
1307                    drainManager = NULL;
1308                }
1309
1310                // nothing to do, not even any point in scheduling an
1311                // event for the next request
1312                return;
1313            }
1314        } else {
1315            // bool to check if there is a read to a free rank
1316            bool found_read = false;
1317
1318            // Figure out which read request goes next, and move it to the
1319            // front of the read queue
1320            // If we are changing command type, incorporate the minimum
1321            // bus turnaround delay which will be tCS (different rank) case
1322            found_read = chooseNext(readQueue,
1323                             switched_cmd_type ? tCS : 0);
1324
1325            // if no read to an available rank is found then return
1326            // at this point. There could be writes to the available ranks
1327            // which are above the required threshold. However, to
1328            // avoid adding more complexity to the code, return and wait
1329            // for a refresh event to kick things into action again.
1330            if (!found_read)
1331                return;
1332
1333            DRAMPacket* dram_pkt = readQueue.front();
1334            assert(dram_pkt->rankRef.isAvailable());
1335            // here we get a bit creative and shift the bus busy time not
1336            // just the tWTR, but also a CAS latency to capture the fact
1337            // that we are allowed to prepare a new bank, but not issue a
1338            // read command until after tWTR, in essence we capture a
1339            // bubble on the data bus that is tWTR + tCL
1340            if (switched_cmd_type && dram_pkt->rank == activeRank) {
1341                busBusyUntil += tWTR + tCL;
1342            }
1343
1344            doDRAMAccess(dram_pkt);
1345
1346            // At this point we're done dealing with the request
1347            readQueue.pop_front();
1348
1349            // sanity check
1350            assert(dram_pkt->size <= burstSize);
1351            assert(dram_pkt->readyTime >= curTick());
1352
1353            // Insert into response queue. It will be sent back to the
1354            // requestor at its readyTime
1355            if (respQueue.empty()) {
1356                assert(!respondEvent.scheduled());
1357                schedule(respondEvent, dram_pkt->readyTime);
1358            } else {
1359                assert(respQueue.back()->readyTime <= dram_pkt->readyTime);
1360                assert(respondEvent.scheduled());
1361            }
1362
1363            respQueue.push_back(dram_pkt);
1364
1365            // we have so many writes that we have to transition
1366            if (writeQueue.size() > writeHighThreshold) {
1367                switch_to_writes = true;
1368            }
1369        }
1370
1371        // switching to writes, either because the read queue is empty
1372        // and the writes have passed the low threshold (or we are
1373        // draining), or because the writes hit the hight threshold
1374        if (switch_to_writes) {
1375            // transition to writing
1376            busState = READ_TO_WRITE;
1377        }
1378    } else {
1379        // bool to check if write to free rank is found
1380        bool found_write = false;
1381
1382        // If we are changing command type, incorporate the minimum
1383        // bus turnaround delay
1384        found_write = chooseNext(writeQueue,
1385                                 switched_cmd_type ? std::min(tRTW, tCS) : 0);
1386
1387        // if no writes to an available rank are found then return.
1388        // There could be reads to the available ranks. However, to avoid
1389        // adding more complexity to the code, return at this point and wait
1390        // for a refresh event to kick things into action again.
1391        if (!found_write)
1392            return;
1393
1394        DRAMPacket* dram_pkt = writeQueue.front();
1395        assert(dram_pkt->rankRef.isAvailable());
1396        // sanity check
1397        assert(dram_pkt->size <= burstSize);
1398
1399        // add a bubble to the data bus, as defined by the
1400        // tRTW when access is to the same rank as previous burst
1401        // Different rank timing is handled with tCS, which is
1402        // applied to colAllowedAt
1403        if (switched_cmd_type && dram_pkt->rank == activeRank) {
1404            busBusyUntil += tRTW;
1405        }
1406
1407        doDRAMAccess(dram_pkt);
1408
1409        writeQueue.pop_front();
1410        isInWriteQueue.erase(burstAlign(dram_pkt->addr));
1411        delete dram_pkt;
1412
1413        // If we emptied the write queue, or got sufficiently below the
1414        // threshold (using the minWritesPerSwitch as the hysteresis) and
1415        // are not draining, or we have reads waiting and have done enough
1416        // writes, then switch to reads.
1417        if (writeQueue.empty() ||
1418            (writeQueue.size() + minWritesPerSwitch < writeLowThreshold &&
1419             !drainManager) ||
1420            (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) {
1421            // turn the bus back around for reads again
1422            busState = WRITE_TO_READ;
1423
1424            // note that the we switch back to reads also in the idle
1425            // case, which eventually will check for any draining and
1426            // also pause any further scheduling if there is really
1427            // nothing to do
1428        }
1429    }
1430    // It is possible that a refresh to another rank kicks things back into
1431    // action before reaching this point.
1432    if (!nextReqEvent.scheduled())
1433        schedule(nextReqEvent, std::max(nextReqTime, curTick()));
1434
1435    // If there is space available and we have writes waiting then let
1436    // them retry. This is done here to ensure that the retry does not
1437    // cause a nextReqEvent to be scheduled before we do so as part of
1438    // the next request processing
1439    if (retryWrReq && writeQueue.size() < writeBufferSize) {
1440        retryWrReq = false;
1441        port.sendRetryReq();
1442    }
1443}
1444
1445pair<uint64_t, bool>
1446DRAMCtrl::minBankPrep(const deque<DRAMPacket*>& queue,
1447                      Tick min_col_at) const
1448{
1449    uint64_t bank_mask = 0;
1450    Tick min_act_at = MaxTick;
1451
1452    // latest Tick for which ACT can occur without incurring additoinal
1453    // delay on the data bus
1454    const Tick hidden_act_max = std::max(min_col_at - tRCD, curTick());
1455
1456    // Flag condition when burst can issue back-to-back with previous burst
1457    bool found_seamless_bank = false;
1458
1459    // Flag condition when bank can be opened without incurring additional
1460    // delay on the data bus
1461    bool hidden_bank_prep = false;
1462
1463    // determine if we have queued transactions targetting the
1464    // bank in question
1465    vector<bool> got_waiting(ranksPerChannel * banksPerRank, false);
1466    for (const auto& p : queue) {
1467        if(p->rankRef.isAvailable())
1468            got_waiting[p->bankId] = true;
1469    }
1470
1471    // Find command with optimal bank timing
1472    // Will prioritize commands that can issue seamlessly.
1473    for (int i = 0; i < ranksPerChannel; i++) {
1474        for (int j = 0; j < banksPerRank; j++) {
1475            uint16_t bank_id = i * banksPerRank + j;
1476
1477            // if we have waiting requests for the bank, and it is
1478            // amongst the first available, update the mask
1479            if (got_waiting[bank_id]) {
1480                // make sure this rank is not currently refreshing.
1481                assert(ranks[i]->isAvailable());
1482                // simplistic approximation of when the bank can issue
1483                // an activate, ignoring any rank-to-rank switching
1484                // cost in this calculation
1485                Tick act_at = ranks[i]->banks[j].openRow == Bank::NO_ROW ?
1486                    std::max(ranks[i]->banks[j].actAllowedAt, curTick()) :
1487                    std::max(ranks[i]->banks[j].preAllowedAt, curTick()) + tRP;
1488
1489                // When is the earliest the R/W burst can issue?
1490                Tick col_at = std::max(ranks[i]->banks[j].colAllowedAt,
1491                                       act_at + tRCD);
1492
1493                // bank can issue burst back-to-back (seamlessly) with
1494                // previous burst
1495                bool new_seamless_bank = col_at <= min_col_at;
1496
1497                // if we found a new seamless bank or we have no
1498                // seamless banks, and got a bank with an earlier
1499                // activate time, it should be added to the bit mask
1500                if (new_seamless_bank ||
1501                    (!found_seamless_bank && act_at <= min_act_at)) {
1502                    // if we did not have a seamless bank before, and
1503                    // we do now, reset the bank mask, also reset it
1504                    // if we have not yet found a seamless bank and
1505                    // the activate time is smaller than what we have
1506                    // seen so far
1507                    if (!found_seamless_bank &&
1508                        (new_seamless_bank || act_at < min_act_at)) {
1509                        bank_mask = 0;
1510                    }
1511
1512                    found_seamless_bank |= new_seamless_bank;
1513
1514                    // ACT can occur 'behind the scenes'
1515                    hidden_bank_prep = act_at <= hidden_act_max;
1516
1517                    // set the bit corresponding to the available bank
1518                    replaceBits(bank_mask, bank_id, bank_id, 1);
1519                    min_act_at = act_at;
1520                }
1521            }
1522        }
1523    }
1524
1525    return make_pair(bank_mask, hidden_bank_prep);
1526}
1527
1528DRAMCtrl::Rank::Rank(DRAMCtrl& _memory, const DRAMCtrlParams* _p)
1529    : EventManager(&_memory), memory(_memory),
1530      pwrStateTrans(PWR_IDLE), pwrState(PWR_IDLE), pwrStateTick(0),
1531      refreshState(REF_IDLE), refreshDueAt(0),
1532      power(_p, false), numBanksActive(0),
1533      activateEvent(*this), prechargeEvent(*this),
1534      refreshEvent(*this), powerEvent(*this)
1535{ }
1536
1537void
1538DRAMCtrl::Rank::startup(Tick ref_tick)
1539{
1540    assert(ref_tick > curTick());
1541
1542    pwrStateTick = curTick();
1543
1544    // kick off the refresh, and give ourselves enough time to
1545    // precharge
1546    schedule(refreshEvent, ref_tick);
1547}
1548
1549void
1550DRAMCtrl::Rank::suspend()
1551{
1552    deschedule(refreshEvent);
1553}
1554
1555void
1556DRAMCtrl::Rank::checkDrainDone()
1557{
1558    // if this rank was waiting to drain it is now able to proceed to
1559    // precharge
1560    if (refreshState == REF_DRAIN) {
1561        DPRINTF(DRAM, "Refresh drain done, now precharging\n");
1562
1563        refreshState = REF_PRE;
1564
1565        // hand control back to the refresh event loop
1566        schedule(refreshEvent, curTick());
1567    }
1568}
1569
1570void
1571DRAMCtrl::Rank::processActivateEvent()
1572{
1573    // we should transition to the active state as soon as any bank is active
1574    if (pwrState != PWR_ACT)
1575        // note that at this point numBanksActive could be back at
1576        // zero again due to a precharge scheduled in the future
1577        schedulePowerEvent(PWR_ACT, curTick());
1578}
1579
1580void
1581DRAMCtrl::Rank::processPrechargeEvent()
1582{
1583    // if we reached zero, then special conditions apply as we track
1584    // if all banks are precharged for the power models
1585    if (numBanksActive == 0) {
1586        // we should transition to the idle state when the last bank
1587        // is precharged
1588        schedulePowerEvent(PWR_IDLE, curTick());
1589    }
1590}
1591
1592void
1593DRAMCtrl::Rank::processRefreshEvent()
1594{
1595    // when first preparing the refresh, remember when it was due
1596    if (refreshState == REF_IDLE) {
1597        // remember when the refresh is due
1598        refreshDueAt = curTick();
1599
1600        // proceed to drain
1601        refreshState = REF_DRAIN;
1602
1603        DPRINTF(DRAM, "Refresh due\n");
1604    }
1605
1606    // let any scheduled read or write to the same rank go ahead,
1607    // after which it will
1608    // hand control back to this event loop
1609    if (refreshState == REF_DRAIN) {
1610        // if a request is at the moment being handled and this request is
1611        // accessing the current rank then wait for it to finish
1612        if ((rank == memory.activeRank)
1613            && (memory.nextReqEvent.scheduled())) {
1614            // hand control over to the request loop until it is
1615            // evaluated next
1616            DPRINTF(DRAM, "Refresh awaiting draining\n");
1617
1618            return;
1619        } else {
1620            refreshState = REF_PRE;
1621        }
1622    }
1623
1624    // at this point, ensure that all banks are precharged
1625    if (refreshState == REF_PRE) {
1626        // precharge any active bank if we are not already in the idle
1627        // state
1628        if (pwrState != PWR_IDLE) {
1629            // at the moment, we use a precharge all even if there is
1630            // only a single bank open
1631            DPRINTF(DRAM, "Precharging all\n");
1632
1633            // first determine when we can precharge
1634            Tick pre_at = curTick();
1635
1636            for (auto &b : banks) {
1637                // respect both causality and any existing bank
1638                // constraints, some banks could already have a
1639                // (auto) precharge scheduled
1640                pre_at = std::max(b.preAllowedAt, pre_at);
1641            }
1642
1643            // make sure all banks per rank are precharged, and for those that
1644            // already are, update their availability
1645            Tick act_allowed_at = pre_at + memory.tRP;
1646
1647            for (auto &b : banks) {
1648                if (b.openRow != Bank::NO_ROW) {
1649                    memory.prechargeBank(*this, b, pre_at, false);
1650                } else {
1651                    b.actAllowedAt = std::max(b.actAllowedAt, act_allowed_at);
1652                    b.preAllowedAt = std::max(b.preAllowedAt, pre_at);
1653                }
1654            }
1655
1656            // precharge all banks in rank
1657            power.powerlib.doCommand(MemCommand::PREA, 0,
1658                                     divCeil(pre_at, memory.tCK) -
1659                                     memory.timeStampOffset);
1660
1661            DPRINTF(DRAMPower, "%llu,PREA,0,%d\n",
1662                    divCeil(pre_at, memory.tCK) -
1663                            memory.timeStampOffset, rank);
1664        } else {
1665            DPRINTF(DRAM, "All banks already precharged, starting refresh\n");
1666
1667            // go ahead and kick the power state machine into gear if
1668            // we are already idle
1669            schedulePowerEvent(PWR_REF, curTick());
1670        }
1671
1672        refreshState = REF_RUN;
1673        assert(numBanksActive == 0);
1674
1675        // wait for all banks to be precharged, at which point the
1676        // power state machine will transition to the idle state, and
1677        // automatically move to a refresh, at that point it will also
1678        // call this method to get the refresh event loop going again
1679        return;
1680    }
1681
1682    // last but not least we perform the actual refresh
1683    if (refreshState == REF_RUN) {
1684        // should never get here with any banks active
1685        assert(numBanksActive == 0);
1686        assert(pwrState == PWR_REF);
1687
1688        Tick ref_done_at = curTick() + memory.tRFC;
1689
1690        for (auto &b : banks) {
1691            b.actAllowedAt = ref_done_at;
1692        }
1693
1694        // at the moment this affects all ranks
1695        power.powerlib.doCommand(MemCommand::REF, 0,
1696                                 divCeil(curTick(), memory.tCK) -
1697                                 memory.timeStampOffset);
1698
1699        // at the moment sort the list of commands and update the counters
1700        // for DRAMPower libray when doing a refresh
1701        sort(power.powerlib.cmdList.begin(),
1702             power.powerlib.cmdList.end(), DRAMCtrl::sortTime);
1703
1704        // update the counters for DRAMPower, passing false to
1705        // indicate that this is not the last command in the
1706        // list. DRAMPower requires this information for the
1707        // correct calculation of the background energy at the end
1708        // of the simulation. Ideally we would want to call this
1709        // function with true once at the end of the
1710        // simulation. However, the discarded energy is extremly
1711        // small and does not effect the final results.
1712        power.powerlib.updateCounters(false);
1713
1714        // call the energy function
1715        power.powerlib.calcEnergy();
1716
1717        // Update the stats
1718        updatePowerStats();
1719
1720        DPRINTF(DRAMPower, "%llu,REF,0,%d\n", divCeil(curTick(), memory.tCK) -
1721                memory.timeStampOffset, rank);
1722
1723        // make sure we did not wait so long that we cannot make up
1724        // for it
1725        if (refreshDueAt + memory.tREFI < ref_done_at) {
1726            fatal("Refresh was delayed so long we cannot catch up\n");
1727        }
1728
1729        // compensate for the delay in actually performing the refresh
1730        // when scheduling the next one
1731        schedule(refreshEvent, refreshDueAt + memory.tREFI - memory.tRP);
1732
1733        assert(!powerEvent.scheduled());
1734
1735        // move to the idle power state once the refresh is done, this
1736        // will also move the refresh state machine to the refresh
1737        // idle state
1738        schedulePowerEvent(PWR_IDLE, ref_done_at);
1739
1740        DPRINTF(DRAMState, "Refresh done at %llu and next refresh at %llu\n",
1741                ref_done_at, refreshDueAt + memory.tREFI);
1742    }
1743}
1744
1745void
1746DRAMCtrl::Rank::schedulePowerEvent(PowerState pwr_state, Tick tick)
1747{
1748    // respect causality
1749    assert(tick >= curTick());
1750
1751    if (!powerEvent.scheduled()) {
1752        DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n",
1753                tick, pwr_state);
1754
1755        // insert the new transition
1756        pwrStateTrans = pwr_state;
1757
1758        schedule(powerEvent, tick);
1759    } else {
1760        panic("Scheduled power event at %llu to state %d, "
1761              "with scheduled event at %llu to %d\n", tick, pwr_state,
1762              powerEvent.when(), pwrStateTrans);
1763    }
1764}
1765
1766void
1767DRAMCtrl::Rank::processPowerEvent()
1768{
1769    // remember where we were, and for how long
1770    Tick duration = curTick() - pwrStateTick;
1771    PowerState prev_state = pwrState;
1772
1773    // update the accounting
1774    pwrStateTime[prev_state] += duration;
1775
1776    pwrState = pwrStateTrans;
1777    pwrStateTick = curTick();
1778
1779    if (pwrState == PWR_IDLE) {
1780        DPRINTF(DRAMState, "All banks precharged\n");
1781
1782        // if we were refreshing, make sure we start scheduling requests again
1783        if (prev_state == PWR_REF) {
1784            DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration);
1785            assert(pwrState == PWR_IDLE);
1786
1787            // kick things into action again
1788            refreshState = REF_IDLE;
1789            // a request event could be already scheduled by the state
1790            // machine of the other rank
1791            if (!memory.nextReqEvent.scheduled())
1792                schedule(memory.nextReqEvent, curTick());
1793        } else {
1794            assert(prev_state == PWR_ACT);
1795
1796            // if we have a pending refresh, and are now moving to
1797            // the idle state, direclty transition to a refresh
1798            if (refreshState == REF_RUN) {
1799                // there should be nothing waiting at this point
1800                assert(!powerEvent.scheduled());
1801
1802                // update the state in zero time and proceed below
1803                pwrState = PWR_REF;
1804            }
1805        }
1806    }
1807
1808    // we transition to the refresh state, let the refresh state
1809    // machine know of this state update and let it deal with the
1810    // scheduling of the next power state transition as well as the
1811    // following refresh
1812    if (pwrState == PWR_REF) {
1813        DPRINTF(DRAMState, "Refreshing\n");
1814        // kick the refresh event loop into action again, and that
1815        // in turn will schedule a transition to the idle power
1816        // state once the refresh is done
1817        assert(refreshState == REF_RUN);
1818        processRefreshEvent();
1819    }
1820}
1821
1822void
1823DRAMCtrl::Rank::updatePowerStats()
1824{
1825    // Get the energy and power from DRAMPower
1826    Data::MemoryPowerModel::Energy energy =
1827        power.powerlib.getEnergy();
1828    Data::MemoryPowerModel::Power rank_power =
1829        power.powerlib.getPower();
1830
1831    actEnergy = energy.act_energy * memory.devicesPerRank;
1832    preEnergy = energy.pre_energy * memory.devicesPerRank;
1833    readEnergy = energy.read_energy * memory.devicesPerRank;
1834    writeEnergy = energy.write_energy * memory.devicesPerRank;
1835    refreshEnergy = energy.ref_energy * memory.devicesPerRank;
1836    actBackEnergy = energy.act_stdby_energy * memory.devicesPerRank;
1837    preBackEnergy = energy.pre_stdby_energy * memory.devicesPerRank;
1838    totalEnergy = energy.total_energy * memory.devicesPerRank;
1839    averagePower = rank_power.average_power * memory.devicesPerRank;
1840}
1841
1842void
1843DRAMCtrl::Rank::regStats()
1844{
1845    using namespace Stats;
1846
1847    pwrStateTime
1848        .init(5)
1849        .name(name() + ".memoryStateTime")
1850        .desc("Time in different power states");
1851    pwrStateTime.subname(0, "IDLE");
1852    pwrStateTime.subname(1, "REF");
1853    pwrStateTime.subname(2, "PRE_PDN");
1854    pwrStateTime.subname(3, "ACT");
1855    pwrStateTime.subname(4, "ACT_PDN");
1856
1857    actEnergy
1858        .name(name() + ".actEnergy")
1859        .desc("Energy for activate commands per rank (pJ)");
1860
1861    preEnergy
1862        .name(name() + ".preEnergy")
1863        .desc("Energy for precharge commands per rank (pJ)");
1864
1865    readEnergy
1866        .name(name() + ".readEnergy")
1867        .desc("Energy for read commands per rank (pJ)");
1868
1869    writeEnergy
1870        .name(name() + ".writeEnergy")
1871        .desc("Energy for write commands per rank (pJ)");
1872
1873    refreshEnergy
1874        .name(name() + ".refreshEnergy")
1875        .desc("Energy for refresh commands per rank (pJ)");
1876
1877    actBackEnergy
1878        .name(name() + ".actBackEnergy")
1879        .desc("Energy for active background per rank (pJ)");
1880
1881    preBackEnergy
1882        .name(name() + ".preBackEnergy")
1883        .desc("Energy for precharge background per rank (pJ)");
1884
1885    totalEnergy
1886        .name(name() + ".totalEnergy")
1887        .desc("Total energy per rank (pJ)");
1888
1889    averagePower
1890        .name(name() + ".averagePower")
1891        .desc("Core power per rank (mW)");
1892}
1893void
1894DRAMCtrl::regStats()
1895{
1896    using namespace Stats;
1897
1898    AbstractMemory::regStats();
1899
1900    for (auto r : ranks) {
1901        r->regStats();
1902    }
1903
1904    readReqs
1905        .name(name() + ".readReqs")
1906        .desc("Number of read requests accepted");
1907
1908    writeReqs
1909        .name(name() + ".writeReqs")
1910        .desc("Number of write requests accepted");
1911
1912    readBursts
1913        .name(name() + ".readBursts")
1914        .desc("Number of DRAM read bursts, "
1915              "including those serviced by the write queue");
1916
1917    writeBursts
1918        .name(name() + ".writeBursts")
1919        .desc("Number of DRAM write bursts, "
1920              "including those merged in the write queue");
1921
1922    servicedByWrQ
1923        .name(name() + ".servicedByWrQ")
1924        .desc("Number of DRAM read bursts serviced by the write queue");
1925
1926    mergedWrBursts
1927        .name(name() + ".mergedWrBursts")
1928        .desc("Number of DRAM write bursts merged with an existing one");
1929
1930    neitherReadNorWrite
1931        .name(name() + ".neitherReadNorWriteReqs")
1932        .desc("Number of requests that are neither read nor write");
1933
1934    perBankRdBursts
1935        .init(banksPerRank * ranksPerChannel)
1936        .name(name() + ".perBankRdBursts")
1937        .desc("Per bank write bursts");
1938
1939    perBankWrBursts
1940        .init(banksPerRank * ranksPerChannel)
1941        .name(name() + ".perBankWrBursts")
1942        .desc("Per bank write bursts");
1943
1944    avgRdQLen
1945        .name(name() + ".avgRdQLen")
1946        .desc("Average read queue length when enqueuing")
1947        .precision(2);
1948
1949    avgWrQLen
1950        .name(name() + ".avgWrQLen")
1951        .desc("Average write queue length when enqueuing")
1952        .precision(2);
1953
1954    totQLat
1955        .name(name() + ".totQLat")
1956        .desc("Total ticks spent queuing");
1957
1958    totBusLat
1959        .name(name() + ".totBusLat")
1960        .desc("Total ticks spent in databus transfers");
1961
1962    totMemAccLat
1963        .name(name() + ".totMemAccLat")
1964        .desc("Total ticks spent from burst creation until serviced "
1965              "by the DRAM");
1966
1967    avgQLat
1968        .name(name() + ".avgQLat")
1969        .desc("Average queueing delay per DRAM burst")
1970        .precision(2);
1971
1972    avgQLat = totQLat / (readBursts - servicedByWrQ);
1973
1974    avgBusLat
1975        .name(name() + ".avgBusLat")
1976        .desc("Average bus latency per DRAM burst")
1977        .precision(2);
1978
1979    avgBusLat = totBusLat / (readBursts - servicedByWrQ);
1980
1981    avgMemAccLat
1982        .name(name() + ".avgMemAccLat")
1983        .desc("Average memory access latency per DRAM burst")
1984        .precision(2);
1985
1986    avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ);
1987
1988    numRdRetry
1989        .name(name() + ".numRdRetry")
1990        .desc("Number of times read queue was full causing retry");
1991
1992    numWrRetry
1993        .name(name() + ".numWrRetry")
1994        .desc("Number of times write queue was full causing retry");
1995
1996    readRowHits
1997        .name(name() + ".readRowHits")
1998        .desc("Number of row buffer hits during reads");
1999
2000    writeRowHits
2001        .name(name() + ".writeRowHits")
2002        .desc("Number of row buffer hits during writes");
2003
2004    readRowHitRate
2005        .name(name() + ".readRowHitRate")
2006        .desc("Row buffer hit rate for reads")
2007        .precision(2);
2008
2009    readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100;
2010
2011    writeRowHitRate
2012        .name(name() + ".writeRowHitRate")
2013        .desc("Row buffer hit rate for writes")
2014        .precision(2);
2015
2016    writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100;
2017
2018    readPktSize
2019        .init(ceilLog2(burstSize) + 1)
2020        .name(name() + ".readPktSize")
2021        .desc("Read request sizes (log2)");
2022
2023     writePktSize
2024        .init(ceilLog2(burstSize) + 1)
2025        .name(name() + ".writePktSize")
2026        .desc("Write request sizes (log2)");
2027
2028     rdQLenPdf
2029        .init(readBufferSize)
2030        .name(name() + ".rdQLenPdf")
2031        .desc("What read queue length does an incoming req see");
2032
2033     wrQLenPdf
2034        .init(writeBufferSize)
2035        .name(name() + ".wrQLenPdf")
2036        .desc("What write queue length does an incoming req see");
2037
2038     bytesPerActivate
2039         .init(maxAccessesPerRow)
2040         .name(name() + ".bytesPerActivate")
2041         .desc("Bytes accessed per row activation")
2042         .flags(nozero);
2043
2044     rdPerTurnAround
2045         .init(readBufferSize)
2046         .name(name() + ".rdPerTurnAround")
2047         .desc("Reads before turning the bus around for writes")
2048         .flags(nozero);
2049
2050     wrPerTurnAround
2051         .init(writeBufferSize)
2052         .name(name() + ".wrPerTurnAround")
2053         .desc("Writes before turning the bus around for reads")
2054         .flags(nozero);
2055
2056    bytesReadDRAM
2057        .name(name() + ".bytesReadDRAM")
2058        .desc("Total number of bytes read from DRAM");
2059
2060    bytesReadWrQ
2061        .name(name() + ".bytesReadWrQ")
2062        .desc("Total number of bytes read from write queue");
2063
2064    bytesWritten
2065        .name(name() + ".bytesWritten")
2066        .desc("Total number of bytes written to DRAM");
2067
2068    bytesReadSys
2069        .name(name() + ".bytesReadSys")
2070        .desc("Total read bytes from the system interface side");
2071
2072    bytesWrittenSys
2073        .name(name() + ".bytesWrittenSys")
2074        .desc("Total written bytes from the system interface side");
2075
2076    avgRdBW
2077        .name(name() + ".avgRdBW")
2078        .desc("Average DRAM read bandwidth in MiByte/s")
2079        .precision(2);
2080
2081    avgRdBW = (bytesReadDRAM / 1000000) / simSeconds;
2082
2083    avgWrBW
2084        .name(name() + ".avgWrBW")
2085        .desc("Average achieved write bandwidth in MiByte/s")
2086        .precision(2);
2087
2088    avgWrBW = (bytesWritten / 1000000) / simSeconds;
2089
2090    avgRdBWSys
2091        .name(name() + ".avgRdBWSys")
2092        .desc("Average system read bandwidth in MiByte/s")
2093        .precision(2);
2094
2095    avgRdBWSys = (bytesReadSys / 1000000) / simSeconds;
2096
2097    avgWrBWSys
2098        .name(name() + ".avgWrBWSys")
2099        .desc("Average system write bandwidth in MiByte/s")
2100        .precision(2);
2101
2102    avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds;
2103
2104    peakBW
2105        .name(name() + ".peakBW")
2106        .desc("Theoretical peak bandwidth in MiByte/s")
2107        .precision(2);
2108
2109    peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000;
2110
2111    busUtil
2112        .name(name() + ".busUtil")
2113        .desc("Data bus utilization in percentage")
2114        .precision(2);
2115    busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
2116
2117    totGap
2118        .name(name() + ".totGap")
2119        .desc("Total gap between requests");
2120
2121    avgGap
2122        .name(name() + ".avgGap")
2123        .desc("Average gap between requests")
2124        .precision(2);
2125
2126    avgGap = totGap / (readReqs + writeReqs);
2127
2128    // Stats for DRAM Power calculation based on Micron datasheet
2129    busUtilRead
2130        .name(name() + ".busUtilRead")
2131        .desc("Data bus utilization in percentage for reads")
2132        .precision(2);
2133
2134    busUtilRead = avgRdBW / peakBW * 100;
2135
2136    busUtilWrite
2137        .name(name() + ".busUtilWrite")
2138        .desc("Data bus utilization in percentage for writes")
2139        .precision(2);
2140
2141    busUtilWrite = avgWrBW / peakBW * 100;
2142
2143    pageHitRate
2144        .name(name() + ".pageHitRate")
2145        .desc("Row buffer hit rate, read and write combined")
2146        .precision(2);
2147
2148    pageHitRate = (writeRowHits + readRowHits) /
2149        (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100;
2150}
2151
2152void
2153DRAMCtrl::recvFunctional(PacketPtr pkt)
2154{
2155    // rely on the abstract memory
2156    functionalAccess(pkt);
2157}
2158
2159BaseSlavePort&
2160DRAMCtrl::getSlavePort(const string &if_name, PortID idx)
2161{
2162    if (if_name != "port") {
2163        return MemObject::getSlavePort(if_name, idx);
2164    } else {
2165        return port;
2166    }
2167}
2168
2169unsigned int
2170DRAMCtrl::drain(DrainManager *dm)
2171{
2172    unsigned int count = port.drain(dm);
2173
2174    // if there is anything in any of our internal queues, keep track
2175    // of that as well
2176    if (!(writeQueue.empty() && readQueue.empty() &&
2177          respQueue.empty())) {
2178        DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
2179                " resp: %d\n", writeQueue.size(), readQueue.size(),
2180                respQueue.size());
2181        ++count;
2182        drainManager = dm;
2183
2184        // the only part that is not drained automatically over time
2185        // is the write queue, thus kick things into action if needed
2186        if (!writeQueue.empty() && !nextReqEvent.scheduled()) {
2187            schedule(nextReqEvent, curTick());
2188        }
2189    }
2190
2191    if (count)
2192        setDrainState(Drainable::Draining);
2193    else
2194        setDrainState(Drainable::Drained);
2195    return count;
2196}
2197
2198void
2199DRAMCtrl::drainResume()
2200{
2201    if (!isTimingMode && system()->isTimingMode()) {
2202        // if we switched to timing mode, kick things into action,
2203        // and behave as if we restored from a checkpoint
2204        startup();
2205    } else if (isTimingMode && !system()->isTimingMode()) {
2206        // if we switch from timing mode, stop the refresh events to
2207        // not cause issues with KVM
2208        for (auto r : ranks) {
2209            r->suspend();
2210        }
2211    }
2212
2213    // update the mode
2214    isTimingMode = system()->isTimingMode();
2215}
2216
2217DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory)
2218    : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
2219      memory(_memory)
2220{ }
2221
2222AddrRangeList
2223DRAMCtrl::MemoryPort::getAddrRanges() const
2224{
2225    AddrRangeList ranges;
2226    ranges.push_back(memory.getAddrRange());
2227    return ranges;
2228}
2229
2230void
2231DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt)
2232{
2233    pkt->pushLabel(memory.name());
2234
2235    if (!queue.checkFunctional(pkt)) {
2236        // Default implementation of SimpleTimingPort::recvFunctional()
2237        // calls recvAtomic() and throws away the latency; we can save a
2238        // little here by just not calculating the latency.
2239        memory.recvFunctional(pkt);
2240    }
2241
2242    pkt->popLabel();
2243}
2244
2245Tick
2246DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt)
2247{
2248    return memory.recvAtomic(pkt);
2249}
2250
2251bool
2252DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt)
2253{
2254    // pass it to the memory controller
2255    return memory.recvTimingReq(pkt);
2256}
2257
2258DRAMCtrl*
2259DRAMCtrlParams::create()
2260{
2261    return new DRAMCtrl(this);
2262}
2263