dram_ctrl.cc revision 10889:c4c13fced000
1/* 2 * Copyright (c) 2010-2015 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2013 Amin Farmahini-Farahani 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Andreas Hansson 41 * Ani Udipi 42 * Neha Agarwal 43 * Omar Naji 44 */ 45 46#include "base/bitfield.hh" 47#include "base/trace.hh" 48#include "debug/DRAM.hh" 49#include "debug/DRAMPower.hh" 50#include "debug/DRAMState.hh" 51#include "debug/Drain.hh" 52#include "mem/dram_ctrl.hh" 53#include "sim/system.hh" 54 55using namespace std; 56using namespace Data; 57 58DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) : 59 AbstractMemory(p), 60 port(name() + ".port", *this), isTimingMode(false), 61 retryRdReq(false), retryWrReq(false), 62 busState(READ), 63 nextReqEvent(this), respondEvent(this), 64 drainManager(NULL), 65 deviceSize(p->device_size), 66 deviceBusWidth(p->device_bus_width), burstLength(p->burst_length), 67 deviceRowBufferSize(p->device_rowbuffer_size), 68 devicesPerRank(p->devices_per_rank), 69 burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8), 70 rowBufferSize(devicesPerRank * deviceRowBufferSize), 71 columnsPerRowBuffer(rowBufferSize / burstSize), 72 columnsPerStripe(range.interleaved() ? range.granularity() / burstSize : 1), 73 ranksPerChannel(p->ranks_per_channel), 74 bankGroupsPerRank(p->bank_groups_per_rank), 75 bankGroupArch(p->bank_groups_per_rank > 0), 76 banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0), 77 readBufferSize(p->read_buffer_size), 78 writeBufferSize(p->write_buffer_size), 79 writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0), 80 writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0), 81 minWritesPerSwitch(p->min_writes_per_switch), 82 writesThisTime(0), readsThisTime(0), 83 tCK(p->tCK), tWTR(p->tWTR), tRTW(p->tRTW), tCS(p->tCS), tBURST(p->tBURST), 84 tCCD_L(p->tCCD_L), tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS), 85 tWR(p->tWR), tRTP(p->tRTP), tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD), 86 tRRD_L(p->tRRD_L), tXAW(p->tXAW), activationLimit(p->activation_limit), 87 memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping), 88 pageMgmt(p->page_policy), 89 maxAccessesPerRow(p->max_accesses_per_row), 90 frontendLatency(p->static_frontend_latency), 91 backendLatency(p->static_backend_latency), 92 busBusyUntil(0), prevArrival(0), 93 nextReqTime(0), activeRank(0), timeStampOffset(0) 94{ 95 // sanity check the ranks since we rely on bit slicing for the 96 // address decoding 97 fatal_if(!isPowerOf2(ranksPerChannel), "DRAM rank count of %d is not " 98 "allowed, must be a power of two\n", ranksPerChannel); 99 100 fatal_if(!isPowerOf2(burstSize), "DRAM burst size %d is not allowed, " 101 "must be a power of two\n", burstSize); 102 103 for (int i = 0; i < ranksPerChannel; i++) { 104 Rank* rank = new Rank(*this, p); 105 ranks.push_back(rank); 106 107 rank->actTicks.resize(activationLimit, 0); 108 rank->banks.resize(banksPerRank); 109 rank->rank = i; 110 111 for (int b = 0; b < banksPerRank; b++) { 112 rank->banks[b].bank = b; 113 // GDDR addressing of banks to BG is linear. 114 // Here we assume that all DRAM generations address bank groups as 115 // follows: 116 if (bankGroupArch) { 117 // Simply assign lower bits to bank group in order to 118 // rotate across bank groups as banks are incremented 119 // e.g. with 4 banks per bank group and 16 banks total: 120 // banks 0,4,8,12 are in bank group 0 121 // banks 1,5,9,13 are in bank group 1 122 // banks 2,6,10,14 are in bank group 2 123 // banks 3,7,11,15 are in bank group 3 124 rank->banks[b].bankgr = b % bankGroupsPerRank; 125 } else { 126 // No bank groups; simply assign to bank number 127 rank->banks[b].bankgr = b; 128 } 129 } 130 } 131 132 // perform a basic check of the write thresholds 133 if (p->write_low_thresh_perc >= p->write_high_thresh_perc) 134 fatal("Write buffer low threshold %d must be smaller than the " 135 "high threshold %d\n", p->write_low_thresh_perc, 136 p->write_high_thresh_perc); 137 138 // determine the rows per bank by looking at the total capacity 139 uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size()); 140 141 // determine the dram actual capacity from the DRAM config in Mbytes 142 uint64_t deviceCapacity = deviceSize / (1024 * 1024) * devicesPerRank * 143 ranksPerChannel; 144 145 // if actual DRAM size does not match memory capacity in system warn! 146 if (deviceCapacity != capacity / (1024 * 1024)) 147 warn("DRAM device capacity (%d Mbytes) does not match the " 148 "address range assigned (%d Mbytes)\n", deviceCapacity, 149 capacity / (1024 * 1024)); 150 151 DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity, 152 AbstractMemory::size()); 153 154 DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n", 155 rowBufferSize, columnsPerRowBuffer); 156 157 rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel); 158 159 // some basic sanity checks 160 if (tREFI <= tRP || tREFI <= tRFC) { 161 fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n", 162 tREFI, tRP, tRFC); 163 } 164 165 // basic bank group architecture checks -> 166 if (bankGroupArch) { 167 // must have at least one bank per bank group 168 if (bankGroupsPerRank > banksPerRank) { 169 fatal("banks per rank (%d) must be equal to or larger than " 170 "banks groups per rank (%d)\n", 171 banksPerRank, bankGroupsPerRank); 172 } 173 // must have same number of banks in each bank group 174 if ((banksPerRank % bankGroupsPerRank) != 0) { 175 fatal("Banks per rank (%d) must be evenly divisible by bank groups " 176 "per rank (%d) for equal banks per bank group\n", 177 banksPerRank, bankGroupsPerRank); 178 } 179 // tCCD_L should be greater than minimal, back-to-back burst delay 180 if (tCCD_L <= tBURST) { 181 fatal("tCCD_L (%d) should be larger than tBURST (%d) when " 182 "bank groups per rank (%d) is greater than 1\n", 183 tCCD_L, tBURST, bankGroupsPerRank); 184 } 185 // tRRD_L is greater than minimal, same bank group ACT-to-ACT delay 186 // some datasheets might specify it equal to tRRD 187 if (tRRD_L < tRRD) { 188 fatal("tRRD_L (%d) should be larger than tRRD (%d) when " 189 "bank groups per rank (%d) is greater than 1\n", 190 tRRD_L, tRRD, bankGroupsPerRank); 191 } 192 } 193 194} 195 196void 197DRAMCtrl::init() 198{ 199 AbstractMemory::init(); 200 201 if (!port.isConnected()) { 202 fatal("DRAMCtrl %s is unconnected!\n", name()); 203 } else { 204 port.sendRangeChange(); 205 } 206 207 // a bit of sanity checks on the interleaving, save it for here to 208 // ensure that the system pointer is initialised 209 if (range.interleaved()) { 210 if (channels != range.stripes()) 211 fatal("%s has %d interleaved address stripes but %d channel(s)\n", 212 name(), range.stripes(), channels); 213 214 if (addrMapping == Enums::RoRaBaChCo) { 215 if (rowBufferSize != range.granularity()) { 216 fatal("Channel interleaving of %s doesn't match RoRaBaChCo " 217 "address map\n", name()); 218 } 219 } else if (addrMapping == Enums::RoRaBaCoCh || 220 addrMapping == Enums::RoCoRaBaCh) { 221 // for the interleavings with channel bits in the bottom, 222 // if the system uses a channel striping granularity that 223 // is larger than the DRAM burst size, then map the 224 // sequential accesses within a stripe to a number of 225 // columns in the DRAM, effectively placing some of the 226 // lower-order column bits as the least-significant bits 227 // of the address (above the ones denoting the burst size) 228 assert(columnsPerStripe >= 1); 229 230 // channel striping has to be done at a granularity that 231 // is equal or larger to a cache line 232 if (system()->cacheLineSize() > range.granularity()) { 233 fatal("Channel interleaving of %s must be at least as large " 234 "as the cache line size\n", name()); 235 } 236 237 // ...and equal or smaller than the row-buffer size 238 if (rowBufferSize < range.granularity()) { 239 fatal("Channel interleaving of %s must be at most as large " 240 "as the row-buffer size\n", name()); 241 } 242 // this is essentially the check above, so just to be sure 243 assert(columnsPerStripe <= columnsPerRowBuffer); 244 } 245 } 246} 247 248void 249DRAMCtrl::startup() 250{ 251 // remember the memory system mode of operation 252 isTimingMode = system()->isTimingMode(); 253 254 if (isTimingMode) { 255 // timestamp offset should be in clock cycles for DRAMPower 256 timeStampOffset = divCeil(curTick(), tCK); 257 258 // update the start tick for the precharge accounting to the 259 // current tick 260 for (auto r : ranks) { 261 r->startup(curTick() + tREFI - tRP); 262 } 263 264 // shift the bus busy time sufficiently far ahead that we never 265 // have to worry about negative values when computing the time for 266 // the next request, this will add an insignificant bubble at the 267 // start of simulation 268 busBusyUntil = curTick() + tRP + tRCD + tCL; 269 } 270} 271 272Tick 273DRAMCtrl::recvAtomic(PacketPtr pkt) 274{ 275 DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr()); 276 277 // do the actual memory access and turn the packet into a response 278 access(pkt); 279 280 Tick latency = 0; 281 if (!pkt->memInhibitAsserted() && pkt->hasData()) { 282 // this value is not supposed to be accurate, just enough to 283 // keep things going, mimic a closed page 284 latency = tRP + tRCD + tCL; 285 } 286 return latency; 287} 288 289bool 290DRAMCtrl::readQueueFull(unsigned int neededEntries) const 291{ 292 DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n", 293 readBufferSize, readQueue.size() + respQueue.size(), 294 neededEntries); 295 296 return 297 (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize; 298} 299 300bool 301DRAMCtrl::writeQueueFull(unsigned int neededEntries) const 302{ 303 DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n", 304 writeBufferSize, writeQueue.size(), neededEntries); 305 return (writeQueue.size() + neededEntries) > writeBufferSize; 306} 307 308DRAMCtrl::DRAMPacket* 309DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size, 310 bool isRead) 311{ 312 // decode the address based on the address mapping scheme, with 313 // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and 314 // channel, respectively 315 uint8_t rank; 316 uint8_t bank; 317 // use a 64-bit unsigned during the computations as the row is 318 // always the top bits, and check before creating the DRAMPacket 319 uint64_t row; 320 321 // truncate the address to a DRAM burst, which makes it unique to 322 // a specific column, row, bank, rank and channel 323 Addr addr = dramPktAddr / burstSize; 324 325 // we have removed the lowest order address bits that denote the 326 // position within the column 327 if (addrMapping == Enums::RoRaBaChCo) { 328 // the lowest order bits denote the column to ensure that 329 // sequential cache lines occupy the same row 330 addr = addr / columnsPerRowBuffer; 331 332 // take out the channel part of the address 333 addr = addr / channels; 334 335 // after the channel bits, get the bank bits to interleave 336 // over the banks 337 bank = addr % banksPerRank; 338 addr = addr / banksPerRank; 339 340 // after the bank, we get the rank bits which thus interleaves 341 // over the ranks 342 rank = addr % ranksPerChannel; 343 addr = addr / ranksPerChannel; 344 345 // lastly, get the row bits 346 row = addr % rowsPerBank; 347 addr = addr / rowsPerBank; 348 } else if (addrMapping == Enums::RoRaBaCoCh) { 349 // take out the lower-order column bits 350 addr = addr / columnsPerStripe; 351 352 // take out the channel part of the address 353 addr = addr / channels; 354 355 // next, the higher-order column bites 356 addr = addr / (columnsPerRowBuffer / columnsPerStripe); 357 358 // after the column bits, we get the bank bits to interleave 359 // over the banks 360 bank = addr % banksPerRank; 361 addr = addr / banksPerRank; 362 363 // after the bank, we get the rank bits which thus interleaves 364 // over the ranks 365 rank = addr % ranksPerChannel; 366 addr = addr / ranksPerChannel; 367 368 // lastly, get the row bits 369 row = addr % rowsPerBank; 370 addr = addr / rowsPerBank; 371 } else if (addrMapping == Enums::RoCoRaBaCh) { 372 // optimise for closed page mode and utilise maximum 373 // parallelism of the DRAM (at the cost of power) 374 375 // take out the lower-order column bits 376 addr = addr / columnsPerStripe; 377 378 // take out the channel part of the address, not that this has 379 // to match with how accesses are interleaved between the 380 // controllers in the address mapping 381 addr = addr / channels; 382 383 // start with the bank bits, as this provides the maximum 384 // opportunity for parallelism between requests 385 bank = addr % banksPerRank; 386 addr = addr / banksPerRank; 387 388 // next get the rank bits 389 rank = addr % ranksPerChannel; 390 addr = addr / ranksPerChannel; 391 392 // next, the higher-order column bites 393 addr = addr / (columnsPerRowBuffer / columnsPerStripe); 394 395 // lastly, get the row bits 396 row = addr % rowsPerBank; 397 addr = addr / rowsPerBank; 398 } else 399 panic("Unknown address mapping policy chosen!"); 400 401 assert(rank < ranksPerChannel); 402 assert(bank < banksPerRank); 403 assert(row < rowsPerBank); 404 assert(row < Bank::NO_ROW); 405 406 DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n", 407 dramPktAddr, rank, bank, row); 408 409 // create the corresponding DRAM packet with the entry time and 410 // ready time set to the current tick, the latter will be updated 411 // later 412 uint16_t bank_id = banksPerRank * rank + bank; 413 return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr, 414 size, ranks[rank]->banks[bank], *ranks[rank]); 415} 416 417void 418DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount) 419{ 420 // only add to the read queue here. whenever the request is 421 // eventually done, set the readyTime, and call schedule() 422 assert(!pkt->isWrite()); 423 424 assert(pktCount != 0); 425 426 // if the request size is larger than burst size, the pkt is split into 427 // multiple DRAM packets 428 // Note if the pkt starting address is not aligened to burst size, the 429 // address of first DRAM packet is kept unaliged. Subsequent DRAM packets 430 // are aligned to burst size boundaries. This is to ensure we accurately 431 // check read packets against packets in write queue. 432 Addr addr = pkt->getAddr(); 433 unsigned pktsServicedByWrQ = 0; 434 BurstHelper* burst_helper = NULL; 435 for (int cnt = 0; cnt < pktCount; ++cnt) { 436 unsigned size = std::min((addr | (burstSize - 1)) + 1, 437 pkt->getAddr() + pkt->getSize()) - addr; 438 readPktSize[ceilLog2(size)]++; 439 readBursts++; 440 441 // First check write buffer to see if the data is already at 442 // the controller 443 bool foundInWrQ = false; 444 Addr burst_addr = burstAlign(addr); 445 // if the burst address is not present then there is no need 446 // looking any further 447 if (isInWriteQueue.find(burst_addr) != isInWriteQueue.end()) { 448 for (const auto& p : writeQueue) { 449 // check if the read is subsumed in the write queue 450 // packet we are looking at 451 if (p->addr <= addr && (addr + size) <= (p->addr + p->size)) { 452 foundInWrQ = true; 453 servicedByWrQ++; 454 pktsServicedByWrQ++; 455 DPRINTF(DRAM, "Read to addr %lld with size %d serviced by " 456 "write queue\n", addr, size); 457 bytesReadWrQ += burstSize; 458 break; 459 } 460 } 461 } 462 463 // If not found in the write q, make a DRAM packet and 464 // push it onto the read queue 465 if (!foundInWrQ) { 466 467 // Make the burst helper for split packets 468 if (pktCount > 1 && burst_helper == NULL) { 469 DPRINTF(DRAM, "Read to addr %lld translates to %d " 470 "dram requests\n", pkt->getAddr(), pktCount); 471 burst_helper = new BurstHelper(pktCount); 472 } 473 474 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true); 475 dram_pkt->burstHelper = burst_helper; 476 477 assert(!readQueueFull(1)); 478 rdQLenPdf[readQueue.size() + respQueue.size()]++; 479 480 DPRINTF(DRAM, "Adding to read queue\n"); 481 482 readQueue.push_back(dram_pkt); 483 484 // Update stats 485 avgRdQLen = readQueue.size() + respQueue.size(); 486 } 487 488 // Starting address of next dram pkt (aligend to burstSize boundary) 489 addr = (addr | (burstSize - 1)) + 1; 490 } 491 492 // If all packets are serviced by write queue, we send the repsonse back 493 if (pktsServicedByWrQ == pktCount) { 494 accessAndRespond(pkt, frontendLatency); 495 return; 496 } 497 498 // Update how many split packets are serviced by write queue 499 if (burst_helper != NULL) 500 burst_helper->burstsServiced = pktsServicedByWrQ; 501 502 // If we are not already scheduled to get a request out of the 503 // queue, do so now 504 if (!nextReqEvent.scheduled()) { 505 DPRINTF(DRAM, "Request scheduled immediately\n"); 506 schedule(nextReqEvent, curTick()); 507 } 508} 509 510void 511DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount) 512{ 513 // only add to the write queue here. whenever the request is 514 // eventually done, set the readyTime, and call schedule() 515 assert(pkt->isWrite()); 516 517 // if the request size is larger than burst size, the pkt is split into 518 // multiple DRAM packets 519 Addr addr = pkt->getAddr(); 520 for (int cnt = 0; cnt < pktCount; ++cnt) { 521 unsigned size = std::min((addr | (burstSize - 1)) + 1, 522 pkt->getAddr() + pkt->getSize()) - addr; 523 writePktSize[ceilLog2(size)]++; 524 writeBursts++; 525 526 // see if we can merge with an existing item in the write 527 // queue and keep track of whether we have merged or not 528 bool merged = isInWriteQueue.find(burstAlign(addr)) != 529 isInWriteQueue.end(); 530 531 // if the item was not merged we need to create a new write 532 // and enqueue it 533 if (!merged) { 534 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false); 535 536 assert(writeQueue.size() < writeBufferSize); 537 wrQLenPdf[writeQueue.size()]++; 538 539 DPRINTF(DRAM, "Adding to write queue\n"); 540 541 writeQueue.push_back(dram_pkt); 542 isInWriteQueue.insert(burstAlign(addr)); 543 assert(writeQueue.size() == isInWriteQueue.size()); 544 545 // Update stats 546 avgWrQLen = writeQueue.size(); 547 } else { 548 DPRINTF(DRAM, "Merging write burst with existing queue entry\n"); 549 550 // keep track of the fact that this burst effectively 551 // disappeared as it was merged with an existing one 552 mergedWrBursts++; 553 } 554 555 // Starting address of next dram pkt (aligend to burstSize boundary) 556 addr = (addr | (burstSize - 1)) + 1; 557 } 558 559 // we do not wait for the writes to be send to the actual memory, 560 // but instead take responsibility for the consistency here and 561 // snoop the write queue for any upcoming reads 562 // @todo, if a pkt size is larger than burst size, we might need a 563 // different front end latency 564 accessAndRespond(pkt, frontendLatency); 565 566 // If we are not already scheduled to get a request out of the 567 // queue, do so now 568 if (!nextReqEvent.scheduled()) { 569 DPRINTF(DRAM, "Request scheduled immediately\n"); 570 schedule(nextReqEvent, curTick()); 571 } 572} 573 574void 575DRAMCtrl::printQs() const { 576 DPRINTF(DRAM, "===READ QUEUE===\n\n"); 577 for (auto i = readQueue.begin() ; i != readQueue.end() ; ++i) { 578 DPRINTF(DRAM, "Read %lu\n", (*i)->addr); 579 } 580 DPRINTF(DRAM, "\n===RESP QUEUE===\n\n"); 581 for (auto i = respQueue.begin() ; i != respQueue.end() ; ++i) { 582 DPRINTF(DRAM, "Response %lu\n", (*i)->addr); 583 } 584 DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n"); 585 for (auto i = writeQueue.begin() ; i != writeQueue.end() ; ++i) { 586 DPRINTF(DRAM, "Write %lu\n", (*i)->addr); 587 } 588} 589 590bool 591DRAMCtrl::recvTimingReq(PacketPtr pkt) 592{ 593 /// @todo temporary hack to deal with memory corruption issues until 594 /// 4-phase transactions are complete 595 for (int x = 0; x < pendingDelete.size(); x++) 596 delete pendingDelete[x]; 597 pendingDelete.clear(); 598 599 // This is where we enter from the outside world 600 DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n", 601 pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 602 603 // simply drop inhibited packets and clean evictions 604 if (pkt->memInhibitAsserted() || 605 pkt->cmd == MemCmd::CleanEvict) { 606 DPRINTF(DRAM, "Inhibited packet or clean evict -- Dropping it now\n"); 607 pendingDelete.push_back(pkt); 608 return true; 609 } 610 611 // Calc avg gap between requests 612 if (prevArrival != 0) { 613 totGap += curTick() - prevArrival; 614 } 615 prevArrival = curTick(); 616 617 618 // Find out how many dram packets a pkt translates to 619 // If the burst size is equal or larger than the pkt size, then a pkt 620 // translates to only one dram packet. Otherwise, a pkt translates to 621 // multiple dram packets 622 unsigned size = pkt->getSize(); 623 unsigned offset = pkt->getAddr() & (burstSize - 1); 624 unsigned int dram_pkt_count = divCeil(offset + size, burstSize); 625 626 // check local buffers and do not accept if full 627 if (pkt->isRead()) { 628 assert(size != 0); 629 if (readQueueFull(dram_pkt_count)) { 630 DPRINTF(DRAM, "Read queue full, not accepting\n"); 631 // remember that we have to retry this port 632 retryRdReq = true; 633 numRdRetry++; 634 return false; 635 } else { 636 addToReadQueue(pkt, dram_pkt_count); 637 readReqs++; 638 bytesReadSys += size; 639 } 640 } else if (pkt->isWrite()) { 641 assert(size != 0); 642 if (writeQueueFull(dram_pkt_count)) { 643 DPRINTF(DRAM, "Write queue full, not accepting\n"); 644 // remember that we have to retry this port 645 retryWrReq = true; 646 numWrRetry++; 647 return false; 648 } else { 649 addToWriteQueue(pkt, dram_pkt_count); 650 writeReqs++; 651 bytesWrittenSys += size; 652 } 653 } else { 654 DPRINTF(DRAM,"Neither read nor write, ignore timing\n"); 655 neitherReadNorWrite++; 656 accessAndRespond(pkt, 1); 657 } 658 659 return true; 660} 661 662void 663DRAMCtrl::processRespondEvent() 664{ 665 DPRINTF(DRAM, 666 "processRespondEvent(): Some req has reached its readyTime\n"); 667 668 DRAMPacket* dram_pkt = respQueue.front(); 669 670 if (dram_pkt->burstHelper) { 671 // it is a split packet 672 dram_pkt->burstHelper->burstsServiced++; 673 if (dram_pkt->burstHelper->burstsServiced == 674 dram_pkt->burstHelper->burstCount) { 675 // we have now serviced all children packets of a system packet 676 // so we can now respond to the requester 677 // @todo we probably want to have a different front end and back 678 // end latency for split packets 679 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency); 680 delete dram_pkt->burstHelper; 681 dram_pkt->burstHelper = NULL; 682 } 683 } else { 684 // it is not a split packet 685 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency); 686 } 687 688 delete respQueue.front(); 689 respQueue.pop_front(); 690 691 if (!respQueue.empty()) { 692 assert(respQueue.front()->readyTime >= curTick()); 693 assert(!respondEvent.scheduled()); 694 schedule(respondEvent, respQueue.front()->readyTime); 695 } else { 696 // if there is nothing left in any queue, signal a drain 697 if (writeQueue.empty() && readQueue.empty() && 698 drainManager) { 699 DPRINTF(Drain, "DRAM controller done draining\n"); 700 drainManager->signalDrainDone(); 701 drainManager = NULL; 702 } 703 } 704 705 // We have made a location in the queue available at this point, 706 // so if there is a read that was forced to wait, retry now 707 if (retryRdReq) { 708 retryRdReq = false; 709 port.sendRetryReq(); 710 } 711} 712 713bool 714DRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue, bool switched_cmd_type) 715{ 716 // This method does the arbitration between requests. The chosen 717 // packet is simply moved to the head of the queue. The other 718 // methods know that this is the place to look. For example, with 719 // FCFS, this method does nothing 720 assert(!queue.empty()); 721 722 // bool to indicate if a packet to an available rank is found 723 bool found_packet = false; 724 if (queue.size() == 1) { 725 DRAMPacket* dram_pkt = queue.front(); 726 // available rank corresponds to state refresh idle 727 if (ranks[dram_pkt->rank]->isAvailable()) { 728 found_packet = true; 729 DPRINTF(DRAM, "Single request, going to a free rank\n"); 730 } else { 731 DPRINTF(DRAM, "Single request, going to a busy rank\n"); 732 } 733 return found_packet; 734 } 735 736 if (memSchedPolicy == Enums::fcfs) { 737 // check if there is a packet going to a free rank 738 for(auto i = queue.begin(); i != queue.end() ; ++i) { 739 DRAMPacket* dram_pkt = *i; 740 if (ranks[dram_pkt->rank]->isAvailable()) { 741 queue.erase(i); 742 queue.push_front(dram_pkt); 743 found_packet = true; 744 break; 745 } 746 } 747 } else if (memSchedPolicy == Enums::frfcfs) { 748 found_packet = reorderQueue(queue, switched_cmd_type); 749 } else 750 panic("No scheduling policy chosen\n"); 751 return found_packet; 752} 753 754bool 755DRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue, bool switched_cmd_type) 756{ 757 // Only determine this when needed 758 uint64_t earliest_banks = 0; 759 760 // Search for row hits first, if no row hit is found then schedule the 761 // packet to one of the earliest banks available 762 bool found_packet = false; 763 bool found_earliest_pkt = false; 764 bool found_prepped_diff_rank_pkt = false; 765 auto selected_pkt_it = queue.end(); 766 767 for (auto i = queue.begin(); i != queue.end() ; ++i) { 768 DRAMPacket* dram_pkt = *i; 769 const Bank& bank = dram_pkt->bankRef; 770 // check if rank is busy. If this is the case jump to the next packet 771 // Check if it is a row hit 772 if (dram_pkt->rankRef.isAvailable()) { 773 if (bank.openRow == dram_pkt->row) { 774 if (dram_pkt->rank == activeRank || switched_cmd_type) { 775 // FCFS within the hits, giving priority to commands 776 // that access the same rank as the previous burst 777 // to minimize bus turnaround delays 778 // Only give rank prioity when command type is 779 // not changing 780 DPRINTF(DRAM, "Row buffer hit\n"); 781 selected_pkt_it = i; 782 break; 783 } else if (!found_prepped_diff_rank_pkt) { 784 // found row hit for command on different rank 785 // than prev burst 786 selected_pkt_it = i; 787 found_prepped_diff_rank_pkt = true; 788 } 789 } else if (!found_earliest_pkt & !found_prepped_diff_rank_pkt) { 790 // packet going to a rank which is currently not waiting for a 791 // refresh, No row hit and 792 // haven't found an entry with a row hit to a new rank 793 if (earliest_banks == 0) 794 // Determine entries with earliest bank prep delay 795 // Function will give priority to commands that access the 796 // same rank as previous burst and can prep 797 // the bank seamlessly 798 earliest_banks = minBankPrep(queue, switched_cmd_type); 799 800 // FCFS - Bank is first available bank 801 if (bits(earliest_banks, dram_pkt->bankId, 802 dram_pkt->bankId)) { 803 // Remember the packet to be scheduled to one of 804 // the earliest banks available, FCFS amongst the 805 // earliest banks 806 selected_pkt_it = i; 807 //if the packet found is going to a rank that is currently 808 //not busy then update the found_packet to true 809 found_earliest_pkt = true; 810 } 811 } 812 } 813 } 814 815 if (selected_pkt_it != queue.end()) { 816 DRAMPacket* selected_pkt = *selected_pkt_it; 817 queue.erase(selected_pkt_it); 818 queue.push_front(selected_pkt); 819 found_packet = true; 820 } 821 return found_packet; 822} 823 824void 825DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency) 826{ 827 DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr()); 828 829 bool needsResponse = pkt->needsResponse(); 830 // do the actual memory access which also turns the packet into a 831 // response 832 access(pkt); 833 834 // turn packet around to go back to requester if response expected 835 if (needsResponse) { 836 // access already turned the packet into a response 837 assert(pkt->isResponse()); 838 // response_time consumes the static latency and is charged also 839 // with headerDelay that takes into account the delay provided by 840 // the xbar and also the payloadDelay that takes into account the 841 // number of data beats. 842 Tick response_time = curTick() + static_latency + pkt->headerDelay + 843 pkt->payloadDelay; 844 // Here we reset the timing of the packet before sending it out. 845 pkt->headerDelay = pkt->payloadDelay = 0; 846 847 // queue the packet in the response queue to be sent out after 848 // the static latency has passed 849 port.schedTimingResp(pkt, response_time); 850 } else { 851 // @todo the packet is going to be deleted, and the DRAMPacket 852 // is still having a pointer to it 853 pendingDelete.push_back(pkt); 854 } 855 856 DPRINTF(DRAM, "Done\n"); 857 858 return; 859} 860 861void 862DRAMCtrl::activateBank(Rank& rank_ref, Bank& bank_ref, 863 Tick act_tick, uint32_t row) 864{ 865 assert(rank_ref.actTicks.size() == activationLimit); 866 867 DPRINTF(DRAM, "Activate at tick %d\n", act_tick); 868 869 // update the open row 870 assert(bank_ref.openRow == Bank::NO_ROW); 871 bank_ref.openRow = row; 872 873 // start counting anew, this covers both the case when we 874 // auto-precharged, and when this access is forced to 875 // precharge 876 bank_ref.bytesAccessed = 0; 877 bank_ref.rowAccesses = 0; 878 879 ++rank_ref.numBanksActive; 880 assert(rank_ref.numBanksActive <= banksPerRank); 881 882 DPRINTF(DRAM, "Activate bank %d, rank %d at tick %lld, now got %d active\n", 883 bank_ref.bank, rank_ref.rank, act_tick, 884 ranks[rank_ref.rank]->numBanksActive); 885 886 rank_ref.power.powerlib.doCommand(MemCommand::ACT, bank_ref.bank, 887 divCeil(act_tick, tCK) - 888 timeStampOffset); 889 890 DPRINTF(DRAMPower, "%llu,ACT,%d,%d\n", divCeil(act_tick, tCK) - 891 timeStampOffset, bank_ref.bank, rank_ref.rank); 892 893 // The next access has to respect tRAS for this bank 894 bank_ref.preAllowedAt = act_tick + tRAS; 895 896 // Respect the row-to-column command delay 897 bank_ref.colAllowedAt = std::max(act_tick + tRCD, bank_ref.colAllowedAt); 898 899 // start by enforcing tRRD 900 for(int i = 0; i < banksPerRank; i++) { 901 // next activate to any bank in this rank must not happen 902 // before tRRD 903 if (bankGroupArch && (bank_ref.bankgr == rank_ref.banks[i].bankgr)) { 904 // bank group architecture requires longer delays between 905 // ACT commands within the same bank group. Use tRRD_L 906 // in this case 907 rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD_L, 908 rank_ref.banks[i].actAllowedAt); 909 } else { 910 // use shorter tRRD value when either 911 // 1) bank group architecture is not supportted 912 // 2) bank is in a different bank group 913 rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD, 914 rank_ref.banks[i].actAllowedAt); 915 } 916 } 917 918 // next, we deal with tXAW, if the activation limit is disabled 919 // then we directly schedule an activate power event 920 if (!rank_ref.actTicks.empty()) { 921 // sanity check 922 if (rank_ref.actTicks.back() && 923 (act_tick - rank_ref.actTicks.back()) < tXAW) { 924 panic("Got %d activates in window %d (%llu - %llu) which " 925 "is smaller than %llu\n", activationLimit, act_tick - 926 rank_ref.actTicks.back(), act_tick, 927 rank_ref.actTicks.back(), tXAW); 928 } 929 930 // shift the times used for the book keeping, the last element 931 // (highest index) is the oldest one and hence the lowest value 932 rank_ref.actTicks.pop_back(); 933 934 // record an new activation (in the future) 935 rank_ref.actTicks.push_front(act_tick); 936 937 // cannot activate more than X times in time window tXAW, push the 938 // next one (the X + 1'st activate) to be tXAW away from the 939 // oldest in our window of X 940 if (rank_ref.actTicks.back() && 941 (act_tick - rank_ref.actTicks.back()) < tXAW) { 942 DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate " 943 "no earlier than %llu\n", activationLimit, 944 rank_ref.actTicks.back() + tXAW); 945 for(int j = 0; j < banksPerRank; j++) 946 // next activate must not happen before end of window 947 rank_ref.banks[j].actAllowedAt = 948 std::max(rank_ref.actTicks.back() + tXAW, 949 rank_ref.banks[j].actAllowedAt); 950 } 951 } 952 953 // at the point when this activate takes place, make sure we 954 // transition to the active power state 955 if (!rank_ref.activateEvent.scheduled()) 956 schedule(rank_ref.activateEvent, act_tick); 957 else if (rank_ref.activateEvent.when() > act_tick) 958 // move it sooner in time 959 reschedule(rank_ref.activateEvent, act_tick); 960} 961 962void 963DRAMCtrl::prechargeBank(Rank& rank_ref, Bank& bank, Tick pre_at, bool trace) 964{ 965 // make sure the bank has an open row 966 assert(bank.openRow != Bank::NO_ROW); 967 968 // sample the bytes per activate here since we are closing 969 // the page 970 bytesPerActivate.sample(bank.bytesAccessed); 971 972 bank.openRow = Bank::NO_ROW; 973 974 // no precharge allowed before this one 975 bank.preAllowedAt = pre_at; 976 977 Tick pre_done_at = pre_at + tRP; 978 979 bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at); 980 981 assert(rank_ref.numBanksActive != 0); 982 --rank_ref.numBanksActive; 983 984 DPRINTF(DRAM, "Precharging bank %d, rank %d at tick %lld, now got " 985 "%d active\n", bank.bank, rank_ref.rank, pre_at, 986 rank_ref.numBanksActive); 987 988 if (trace) { 989 990 rank_ref.power.powerlib.doCommand(MemCommand::PRE, bank.bank, 991 divCeil(pre_at, tCK) - 992 timeStampOffset); 993 DPRINTF(DRAMPower, "%llu,PRE,%d,%d\n", divCeil(pre_at, tCK) - 994 timeStampOffset, bank.bank, rank_ref.rank); 995 } 996 // if we look at the current number of active banks we might be 997 // tempted to think the DRAM is now idle, however this can be 998 // undone by an activate that is scheduled to happen before we 999 // would have reached the idle state, so schedule an event and 1000 // rather check once we actually make it to the point in time when 1001 // the (last) precharge takes place 1002 if (!rank_ref.prechargeEvent.scheduled()) 1003 schedule(rank_ref.prechargeEvent, pre_done_at); 1004 else if (rank_ref.prechargeEvent.when() < pre_done_at) 1005 reschedule(rank_ref.prechargeEvent, pre_done_at); 1006} 1007 1008void 1009DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt) 1010{ 1011 DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n", 1012 dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row); 1013 1014 // get the rank 1015 Rank& rank = dram_pkt->rankRef; 1016 1017 // get the bank 1018 Bank& bank = dram_pkt->bankRef; 1019 1020 // for the state we need to track if it is a row hit or not 1021 bool row_hit = true; 1022 1023 // respect any constraints on the command (e.g. tRCD or tCCD) 1024 Tick cmd_at = std::max(bank.colAllowedAt, curTick()); 1025 1026 // Determine the access latency and update the bank state 1027 if (bank.openRow == dram_pkt->row) { 1028 // nothing to do 1029 } else { 1030 row_hit = false; 1031 1032 // If there is a page open, precharge it. 1033 if (bank.openRow != Bank::NO_ROW) { 1034 prechargeBank(rank, bank, std::max(bank.preAllowedAt, curTick())); 1035 } 1036 1037 // next we need to account for the delay in activating the 1038 // page 1039 Tick act_tick = std::max(bank.actAllowedAt, curTick()); 1040 1041 // Record the activation and deal with all the global timing 1042 // constraints caused be a new activation (tRRD and tXAW) 1043 activateBank(rank, bank, act_tick, dram_pkt->row); 1044 1045 // issue the command as early as possible 1046 cmd_at = bank.colAllowedAt; 1047 } 1048 1049 // we need to wait until the bus is available before we can issue 1050 // the command 1051 cmd_at = std::max(cmd_at, busBusyUntil - tCL); 1052 1053 // update the packet ready time 1054 dram_pkt->readyTime = cmd_at + tCL + tBURST; 1055 1056 // only one burst can use the bus at any one point in time 1057 assert(dram_pkt->readyTime - busBusyUntil >= tBURST); 1058 1059 // update the time for the next read/write burst for each 1060 // bank (add a max with tCCD/tCCD_L here) 1061 Tick cmd_dly; 1062 for(int j = 0; j < ranksPerChannel; j++) { 1063 for(int i = 0; i < banksPerRank; i++) { 1064 // next burst to same bank group in this rank must not happen 1065 // before tCCD_L. Different bank group timing requirement is 1066 // tBURST; Add tCS for different ranks 1067 if (dram_pkt->rank == j) { 1068 if (bankGroupArch && 1069 (bank.bankgr == ranks[j]->banks[i].bankgr)) { 1070 // bank group architecture requires longer delays between 1071 // RD/WR burst commands to the same bank group. 1072 // Use tCCD_L in this case 1073 cmd_dly = tCCD_L; 1074 } else { 1075 // use tBURST (equivalent to tCCD_S), the shorter 1076 // cas-to-cas delay value, when either: 1077 // 1) bank group architecture is not supportted 1078 // 2) bank is in a different bank group 1079 cmd_dly = tBURST; 1080 } 1081 } else { 1082 // different rank is by default in a different bank group 1083 // use tBURST (equivalent to tCCD_S), which is the shorter 1084 // cas-to-cas delay in this case 1085 // Add tCS to account for rank-to-rank bus delay requirements 1086 cmd_dly = tBURST + tCS; 1087 } 1088 ranks[j]->banks[i].colAllowedAt = std::max(cmd_at + cmd_dly, 1089 ranks[j]->banks[i].colAllowedAt); 1090 } 1091 } 1092 1093 // Save rank of current access 1094 activeRank = dram_pkt->rank; 1095 1096 // If this is a write, we also need to respect the write recovery 1097 // time before a precharge, in the case of a read, respect the 1098 // read to precharge constraint 1099 bank.preAllowedAt = std::max(bank.preAllowedAt, 1100 dram_pkt->isRead ? cmd_at + tRTP : 1101 dram_pkt->readyTime + tWR); 1102 1103 // increment the bytes accessed and the accesses per row 1104 bank.bytesAccessed += burstSize; 1105 ++bank.rowAccesses; 1106 1107 // if we reached the max, then issue with an auto-precharge 1108 bool auto_precharge = pageMgmt == Enums::close || 1109 bank.rowAccesses == maxAccessesPerRow; 1110 1111 // if we did not hit the limit, we might still want to 1112 // auto-precharge 1113 if (!auto_precharge && 1114 (pageMgmt == Enums::open_adaptive || 1115 pageMgmt == Enums::close_adaptive)) { 1116 // a twist on the open and close page policies: 1117 // 1) open_adaptive page policy does not blindly keep the 1118 // page open, but close it if there are no row hits, and there 1119 // are bank conflicts in the queue 1120 // 2) close_adaptive page policy does not blindly close the 1121 // page, but closes it only if there are no row hits in the queue. 1122 // In this case, only force an auto precharge when there 1123 // are no same page hits in the queue 1124 bool got_more_hits = false; 1125 bool got_bank_conflict = false; 1126 1127 // either look at the read queue or write queue 1128 const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue : 1129 writeQueue; 1130 auto p = queue.begin(); 1131 // make sure we are not considering the packet that we are 1132 // currently dealing with (which is the head of the queue) 1133 ++p; 1134 1135 // keep on looking until we find a hit or reach the end of the queue 1136 // 1) if a hit is found, then both open and close adaptive policies keep 1137 // the page open 1138 // 2) if no hit is found, got_bank_conflict is set to true if a bank 1139 // conflict request is waiting in the queue 1140 while (!got_more_hits && p != queue.end()) { 1141 bool same_rank_bank = (dram_pkt->rank == (*p)->rank) && 1142 (dram_pkt->bank == (*p)->bank); 1143 bool same_row = dram_pkt->row == (*p)->row; 1144 got_more_hits |= same_rank_bank && same_row; 1145 got_bank_conflict |= same_rank_bank && !same_row; 1146 ++p; 1147 } 1148 1149 // auto pre-charge when either 1150 // 1) open_adaptive policy, we have not got any more hits, and 1151 // have a bank conflict 1152 // 2) close_adaptive policy and we have not got any more hits 1153 auto_precharge = !got_more_hits && 1154 (got_bank_conflict || pageMgmt == Enums::close_adaptive); 1155 } 1156 1157 // DRAMPower trace command to be written 1158 std::string mem_cmd = dram_pkt->isRead ? "RD" : "WR"; 1159 1160 // MemCommand required for DRAMPower library 1161 MemCommand::cmds command = (mem_cmd == "RD") ? MemCommand::RD : 1162 MemCommand::WR; 1163 1164 // if this access should use auto-precharge, then we are 1165 // closing the row 1166 if (auto_precharge) { 1167 // if auto-precharge push a PRE command at the correct tick to the 1168 // list used by DRAMPower library to calculate power 1169 prechargeBank(rank, bank, std::max(curTick(), bank.preAllowedAt)); 1170 1171 DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId); 1172 } 1173 1174 // Update bus state 1175 busBusyUntil = dram_pkt->readyTime; 1176 1177 DPRINTF(DRAM, "Access to %lld, ready at %lld bus busy until %lld.\n", 1178 dram_pkt->addr, dram_pkt->readyTime, busBusyUntil); 1179 1180 dram_pkt->rankRef.power.powerlib.doCommand(command, dram_pkt->bank, 1181 divCeil(cmd_at, tCK) - 1182 timeStampOffset); 1183 1184 DPRINTF(DRAMPower, "%llu,%s,%d,%d\n", divCeil(cmd_at, tCK) - 1185 timeStampOffset, mem_cmd, dram_pkt->bank, dram_pkt->rank); 1186 1187 // Update the minimum timing between the requests, this is a 1188 // conservative estimate of when we have to schedule the next 1189 // request to not introduce any unecessary bubbles. In most cases 1190 // we will wake up sooner than we have to. 1191 nextReqTime = busBusyUntil - (tRP + tRCD + tCL); 1192 1193 // Update the stats and schedule the next request 1194 if (dram_pkt->isRead) { 1195 ++readsThisTime; 1196 if (row_hit) 1197 readRowHits++; 1198 bytesReadDRAM += burstSize; 1199 perBankRdBursts[dram_pkt->bankId]++; 1200 1201 // Update latency stats 1202 totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime; 1203 totBusLat += tBURST; 1204 totQLat += cmd_at - dram_pkt->entryTime; 1205 } else { 1206 ++writesThisTime; 1207 if (row_hit) 1208 writeRowHits++; 1209 bytesWritten += burstSize; 1210 perBankWrBursts[dram_pkt->bankId]++; 1211 } 1212} 1213 1214void 1215DRAMCtrl::processNextReqEvent() 1216{ 1217 int busyRanks = 0; 1218 for (auto r : ranks) { 1219 if (!r->isAvailable()) { 1220 // rank is busy refreshing 1221 busyRanks++; 1222 1223 // let the rank know that if it was waiting to drain, it 1224 // is now done and ready to proceed 1225 r->checkDrainDone(); 1226 } 1227 } 1228 1229 if (busyRanks == ranksPerChannel) { 1230 // if all ranks are refreshing wait for them to finish 1231 // and stall this state machine without taking any further 1232 // action, and do not schedule a new nextReqEvent 1233 return; 1234 } 1235 1236 // pre-emptively set to false. Overwrite if in READ_TO_WRITE 1237 // or WRITE_TO_READ state 1238 bool switched_cmd_type = false; 1239 if (busState == READ_TO_WRITE) { 1240 DPRINTF(DRAM, "Switching to writes after %d reads with %d reads " 1241 "waiting\n", readsThisTime, readQueue.size()); 1242 1243 // sample and reset the read-related stats as we are now 1244 // transitioning to writes, and all reads are done 1245 rdPerTurnAround.sample(readsThisTime); 1246 readsThisTime = 0; 1247 1248 // now proceed to do the actual writes 1249 busState = WRITE; 1250 switched_cmd_type = true; 1251 } else if (busState == WRITE_TO_READ) { 1252 DPRINTF(DRAM, "Switching to reads after %d writes with %d writes " 1253 "waiting\n", writesThisTime, writeQueue.size()); 1254 1255 wrPerTurnAround.sample(writesThisTime); 1256 writesThisTime = 0; 1257 1258 busState = READ; 1259 switched_cmd_type = true; 1260 } 1261 1262 // when we get here it is either a read or a write 1263 if (busState == READ) { 1264 1265 // track if we should switch or not 1266 bool switch_to_writes = false; 1267 1268 if (readQueue.empty()) { 1269 // In the case there is no read request to go next, 1270 // trigger writes if we have passed the low threshold (or 1271 // if we are draining) 1272 if (!writeQueue.empty() && 1273 (drainManager || writeQueue.size() > writeLowThreshold)) { 1274 1275 switch_to_writes = true; 1276 } else { 1277 // check if we are drained 1278 if (respQueue.empty () && drainManager) { 1279 DPRINTF(Drain, "DRAM controller done draining\n"); 1280 drainManager->signalDrainDone(); 1281 drainManager = NULL; 1282 } 1283 1284 // nothing to do, not even any point in scheduling an 1285 // event for the next request 1286 return; 1287 } 1288 } else { 1289 // bool to check if there is a read to a free rank 1290 bool found_read = false; 1291 1292 // Figure out which read request goes next, and move it to the 1293 // front of the read queue 1294 found_read = chooseNext(readQueue, switched_cmd_type); 1295 1296 // if no read to an available rank is found then return 1297 // at this point. There could be writes to the available ranks 1298 // which are above the required threshold. However, to 1299 // avoid adding more complexity to the code, return and wait 1300 // for a refresh event to kick things into action again. 1301 if (!found_read) 1302 return; 1303 1304 DRAMPacket* dram_pkt = readQueue.front(); 1305 assert(dram_pkt->rankRef.isAvailable()); 1306 // here we get a bit creative and shift the bus busy time not 1307 // just the tWTR, but also a CAS latency to capture the fact 1308 // that we are allowed to prepare a new bank, but not issue a 1309 // read command until after tWTR, in essence we capture a 1310 // bubble on the data bus that is tWTR + tCL 1311 if (switched_cmd_type && dram_pkt->rank == activeRank) { 1312 busBusyUntil += tWTR + tCL; 1313 } 1314 1315 doDRAMAccess(dram_pkt); 1316 1317 // At this point we're done dealing with the request 1318 readQueue.pop_front(); 1319 1320 // sanity check 1321 assert(dram_pkt->size <= burstSize); 1322 assert(dram_pkt->readyTime >= curTick()); 1323 1324 // Insert into response queue. It will be sent back to the 1325 // requestor at its readyTime 1326 if (respQueue.empty()) { 1327 assert(!respondEvent.scheduled()); 1328 schedule(respondEvent, dram_pkt->readyTime); 1329 } else { 1330 assert(respQueue.back()->readyTime <= dram_pkt->readyTime); 1331 assert(respondEvent.scheduled()); 1332 } 1333 1334 respQueue.push_back(dram_pkt); 1335 1336 // we have so many writes that we have to transition 1337 if (writeQueue.size() > writeHighThreshold) { 1338 switch_to_writes = true; 1339 } 1340 } 1341 1342 // switching to writes, either because the read queue is empty 1343 // and the writes have passed the low threshold (or we are 1344 // draining), or because the writes hit the hight threshold 1345 if (switch_to_writes) { 1346 // transition to writing 1347 busState = READ_TO_WRITE; 1348 } 1349 } else { 1350 // bool to check if write to free rank is found 1351 bool found_write = false; 1352 1353 found_write = chooseNext(writeQueue, switched_cmd_type); 1354 1355 // if no writes to an available rank are found then return. 1356 // There could be reads to the available ranks. However, to avoid 1357 // adding more complexity to the code, return at this point and wait 1358 // for a refresh event to kick things into action again. 1359 if (!found_write) 1360 return; 1361 1362 DRAMPacket* dram_pkt = writeQueue.front(); 1363 assert(dram_pkt->rankRef.isAvailable()); 1364 // sanity check 1365 assert(dram_pkt->size <= burstSize); 1366 1367 // add a bubble to the data bus, as defined by the 1368 // tRTW when access is to the same rank as previous burst 1369 // Different rank timing is handled with tCS, which is 1370 // applied to colAllowedAt 1371 if (switched_cmd_type && dram_pkt->rank == activeRank) { 1372 busBusyUntil += tRTW; 1373 } 1374 1375 doDRAMAccess(dram_pkt); 1376 1377 writeQueue.pop_front(); 1378 isInWriteQueue.erase(burstAlign(dram_pkt->addr)); 1379 delete dram_pkt; 1380 1381 // If we emptied the write queue, or got sufficiently below the 1382 // threshold (using the minWritesPerSwitch as the hysteresis) and 1383 // are not draining, or we have reads waiting and have done enough 1384 // writes, then switch to reads. 1385 if (writeQueue.empty() || 1386 (writeQueue.size() + minWritesPerSwitch < writeLowThreshold && 1387 !drainManager) || 1388 (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) { 1389 // turn the bus back around for reads again 1390 busState = WRITE_TO_READ; 1391 1392 // note that the we switch back to reads also in the idle 1393 // case, which eventually will check for any draining and 1394 // also pause any further scheduling if there is really 1395 // nothing to do 1396 } 1397 } 1398 // It is possible that a refresh to another rank kicks things back into 1399 // action before reaching this point. 1400 if (!nextReqEvent.scheduled()) 1401 schedule(nextReqEvent, std::max(nextReqTime, curTick())); 1402 1403 // If there is space available and we have writes waiting then let 1404 // them retry. This is done here to ensure that the retry does not 1405 // cause a nextReqEvent to be scheduled before we do so as part of 1406 // the next request processing 1407 if (retryWrReq && writeQueue.size() < writeBufferSize) { 1408 retryWrReq = false; 1409 port.sendRetryReq(); 1410 } 1411} 1412 1413uint64_t 1414DRAMCtrl::minBankPrep(const deque<DRAMPacket*>& queue, 1415 bool switched_cmd_type) const 1416{ 1417 uint64_t bank_mask = 0; 1418 Tick min_act_at = MaxTick; 1419 1420 uint64_t bank_mask_same_rank = 0; 1421 Tick min_act_at_same_rank = MaxTick; 1422 1423 // Give precedence to commands that access same rank as previous command 1424 bool same_rank_match = false; 1425 1426 // determine if we have queued transactions targetting the 1427 // bank in question 1428 vector<bool> got_waiting(ranksPerChannel * banksPerRank, false); 1429 for (const auto& p : queue) { 1430 if(p->rankRef.isAvailable()) 1431 got_waiting[p->bankId] = true; 1432 } 1433 1434 for (int i = 0; i < ranksPerChannel; i++) { 1435 for (int j = 0; j < banksPerRank; j++) { 1436 uint16_t bank_id = i * banksPerRank + j; 1437 1438 // if we have waiting requests for the bank, and it is 1439 // amongst the first available, update the mask 1440 if (got_waiting[bank_id]) { 1441 // make sure this rank is not currently refreshing. 1442 assert(ranks[i]->isAvailable()); 1443 // simplistic approximation of when the bank can issue 1444 // an activate, ignoring any rank-to-rank switching 1445 // cost in this calculation 1446 Tick act_at = ranks[i]->banks[j].openRow == Bank::NO_ROW ? 1447 ranks[i]->banks[j].actAllowedAt : 1448 std::max(ranks[i]->banks[j].preAllowedAt, curTick()) + tRP; 1449 1450 // prioritize commands that access the 1451 // same rank as previous burst 1452 // Calculate bank mask separately for the case and 1453 // evaluate after loop iterations complete 1454 if (i == activeRank && ranksPerChannel > 1) { 1455 if (act_at <= min_act_at_same_rank) { 1456 // reset same rank bank mask if new minimum is found 1457 // and previous minimum could not immediately send ACT 1458 if (act_at < min_act_at_same_rank && 1459 min_act_at_same_rank > curTick()) 1460 bank_mask_same_rank = 0; 1461 1462 // Set flag indicating that a same rank 1463 // opportunity was found 1464 same_rank_match = true; 1465 1466 // set the bit corresponding to the available bank 1467 replaceBits(bank_mask_same_rank, bank_id, bank_id, 1); 1468 min_act_at_same_rank = act_at; 1469 } 1470 } else { 1471 if (act_at <= min_act_at) { 1472 // reset bank mask if new minimum is found 1473 // and either previous minimum could not immediately send ACT 1474 if (act_at < min_act_at && min_act_at > curTick()) 1475 bank_mask = 0; 1476 // set the bit corresponding to the available bank 1477 replaceBits(bank_mask, bank_id, bank_id, 1); 1478 min_act_at = act_at; 1479 } 1480 } 1481 } 1482 } 1483 } 1484 1485 // Determine the earliest time when the next burst can issue based 1486 // on the current busBusyUntil delay. 1487 // Offset by tRCD to correlate with ACT timing variables 1488 Tick min_cmd_at = busBusyUntil - tCL - tRCD; 1489 1490 // if we have multiple ranks and all 1491 // waiting packets are accessing a rank which was previously active 1492 // then bank_mask_same_rank will be set to a value while bank_mask will 1493 // remain 0. In this case, the function should return the value of 1494 // bank_mask_same_rank. 1495 // else if waiting packets access a rank which was previously active and 1496 // other ranks, prioritize same rank accesses that can issue B2B 1497 // Only optimize for same ranks when the command type 1498 // does not change; do not want to unnecessarily incur tWTR 1499 // 1500 // Resulting FCFS prioritization Order is: 1501 // 1) Commands that access the same rank as previous burst 1502 // and can prep the bank seamlessly. 1503 // 2) Commands (any rank) with earliest bank prep 1504 if ((bank_mask == 0) || (!switched_cmd_type && same_rank_match && 1505 min_act_at_same_rank <= min_cmd_at)) { 1506 bank_mask = bank_mask_same_rank; 1507 } 1508 1509 return bank_mask; 1510} 1511 1512DRAMCtrl::Rank::Rank(DRAMCtrl& _memory, const DRAMCtrlParams* _p) 1513 : EventManager(&_memory), memory(_memory), 1514 pwrStateTrans(PWR_IDLE), pwrState(PWR_IDLE), pwrStateTick(0), 1515 refreshState(REF_IDLE), refreshDueAt(0), 1516 power(_p, false), numBanksActive(0), 1517 activateEvent(*this), prechargeEvent(*this), 1518 refreshEvent(*this), powerEvent(*this) 1519{ } 1520 1521void 1522DRAMCtrl::Rank::startup(Tick ref_tick) 1523{ 1524 assert(ref_tick > curTick()); 1525 1526 pwrStateTick = curTick(); 1527 1528 // kick off the refresh, and give ourselves enough time to 1529 // precharge 1530 schedule(refreshEvent, ref_tick); 1531} 1532 1533void 1534DRAMCtrl::Rank::suspend() 1535{ 1536 deschedule(refreshEvent); 1537} 1538 1539void 1540DRAMCtrl::Rank::checkDrainDone() 1541{ 1542 // if this rank was waiting to drain it is now able to proceed to 1543 // precharge 1544 if (refreshState == REF_DRAIN) { 1545 DPRINTF(DRAM, "Refresh drain done, now precharging\n"); 1546 1547 refreshState = REF_PRE; 1548 1549 // hand control back to the refresh event loop 1550 schedule(refreshEvent, curTick()); 1551 } 1552} 1553 1554void 1555DRAMCtrl::Rank::processActivateEvent() 1556{ 1557 // we should transition to the active state as soon as any bank is active 1558 if (pwrState != PWR_ACT) 1559 // note that at this point numBanksActive could be back at 1560 // zero again due to a precharge scheduled in the future 1561 schedulePowerEvent(PWR_ACT, curTick()); 1562} 1563 1564void 1565DRAMCtrl::Rank::processPrechargeEvent() 1566{ 1567 // if we reached zero, then special conditions apply as we track 1568 // if all banks are precharged for the power models 1569 if (numBanksActive == 0) { 1570 // we should transition to the idle state when the last bank 1571 // is precharged 1572 schedulePowerEvent(PWR_IDLE, curTick()); 1573 } 1574} 1575 1576void 1577DRAMCtrl::Rank::processRefreshEvent() 1578{ 1579 // when first preparing the refresh, remember when it was due 1580 if (refreshState == REF_IDLE) { 1581 // remember when the refresh is due 1582 refreshDueAt = curTick(); 1583 1584 // proceed to drain 1585 refreshState = REF_DRAIN; 1586 1587 DPRINTF(DRAM, "Refresh due\n"); 1588 } 1589 1590 // let any scheduled read or write to the same rank go ahead, 1591 // after which it will 1592 // hand control back to this event loop 1593 if (refreshState == REF_DRAIN) { 1594 // if a request is at the moment being handled and this request is 1595 // accessing the current rank then wait for it to finish 1596 if ((rank == memory.activeRank) 1597 && (memory.nextReqEvent.scheduled())) { 1598 // hand control over to the request loop until it is 1599 // evaluated next 1600 DPRINTF(DRAM, "Refresh awaiting draining\n"); 1601 1602 return; 1603 } else { 1604 refreshState = REF_PRE; 1605 } 1606 } 1607 1608 // at this point, ensure that all banks are precharged 1609 if (refreshState == REF_PRE) { 1610 // precharge any active bank if we are not already in the idle 1611 // state 1612 if (pwrState != PWR_IDLE) { 1613 // at the moment, we use a precharge all even if there is 1614 // only a single bank open 1615 DPRINTF(DRAM, "Precharging all\n"); 1616 1617 // first determine when we can precharge 1618 Tick pre_at = curTick(); 1619 1620 for (auto &b : banks) { 1621 // respect both causality and any existing bank 1622 // constraints, some banks could already have a 1623 // (auto) precharge scheduled 1624 pre_at = std::max(b.preAllowedAt, pre_at); 1625 } 1626 1627 // make sure all banks per rank are precharged, and for those that 1628 // already are, update their availability 1629 Tick act_allowed_at = pre_at + memory.tRP; 1630 1631 for (auto &b : banks) { 1632 if (b.openRow != Bank::NO_ROW) { 1633 memory.prechargeBank(*this, b, pre_at, false); 1634 } else { 1635 b.actAllowedAt = std::max(b.actAllowedAt, act_allowed_at); 1636 b.preAllowedAt = std::max(b.preAllowedAt, pre_at); 1637 } 1638 } 1639 1640 // precharge all banks in rank 1641 power.powerlib.doCommand(MemCommand::PREA, 0, 1642 divCeil(pre_at, memory.tCK) - 1643 memory.timeStampOffset); 1644 1645 DPRINTF(DRAMPower, "%llu,PREA,0,%d\n", 1646 divCeil(pre_at, memory.tCK) - 1647 memory.timeStampOffset, rank); 1648 } else { 1649 DPRINTF(DRAM, "All banks already precharged, starting refresh\n"); 1650 1651 // go ahead and kick the power state machine into gear if 1652 // we are already idle 1653 schedulePowerEvent(PWR_REF, curTick()); 1654 } 1655 1656 refreshState = REF_RUN; 1657 assert(numBanksActive == 0); 1658 1659 // wait for all banks to be precharged, at which point the 1660 // power state machine will transition to the idle state, and 1661 // automatically move to a refresh, at that point it will also 1662 // call this method to get the refresh event loop going again 1663 return; 1664 } 1665 1666 // last but not least we perform the actual refresh 1667 if (refreshState == REF_RUN) { 1668 // should never get here with any banks active 1669 assert(numBanksActive == 0); 1670 assert(pwrState == PWR_REF); 1671 1672 Tick ref_done_at = curTick() + memory.tRFC; 1673 1674 for (auto &b : banks) { 1675 b.actAllowedAt = ref_done_at; 1676 } 1677 1678 // at the moment this affects all ranks 1679 power.powerlib.doCommand(MemCommand::REF, 0, 1680 divCeil(curTick(), memory.tCK) - 1681 memory.timeStampOffset); 1682 1683 // at the moment sort the list of commands and update the counters 1684 // for DRAMPower libray when doing a refresh 1685 sort(power.powerlib.cmdList.begin(), 1686 power.powerlib.cmdList.end(), DRAMCtrl::sortTime); 1687 1688 // update the counters for DRAMPower, passing false to 1689 // indicate that this is not the last command in the 1690 // list. DRAMPower requires this information for the 1691 // correct calculation of the background energy at the end 1692 // of the simulation. Ideally we would want to call this 1693 // function with true once at the end of the 1694 // simulation. However, the discarded energy is extremly 1695 // small and does not effect the final results. 1696 power.powerlib.updateCounters(false); 1697 1698 // call the energy function 1699 power.powerlib.calcEnergy(); 1700 1701 // Update the stats 1702 updatePowerStats(); 1703 1704 DPRINTF(DRAMPower, "%llu,REF,0,%d\n", divCeil(curTick(), memory.tCK) - 1705 memory.timeStampOffset, rank); 1706 1707 // make sure we did not wait so long that we cannot make up 1708 // for it 1709 if (refreshDueAt + memory.tREFI < ref_done_at) { 1710 fatal("Refresh was delayed so long we cannot catch up\n"); 1711 } 1712 1713 // compensate for the delay in actually performing the refresh 1714 // when scheduling the next one 1715 schedule(refreshEvent, refreshDueAt + memory.tREFI - memory.tRP); 1716 1717 assert(!powerEvent.scheduled()); 1718 1719 // move to the idle power state once the refresh is done, this 1720 // will also move the refresh state machine to the refresh 1721 // idle state 1722 schedulePowerEvent(PWR_IDLE, ref_done_at); 1723 1724 DPRINTF(DRAMState, "Refresh done at %llu and next refresh at %llu\n", 1725 ref_done_at, refreshDueAt + memory.tREFI); 1726 } 1727} 1728 1729void 1730DRAMCtrl::Rank::schedulePowerEvent(PowerState pwr_state, Tick tick) 1731{ 1732 // respect causality 1733 assert(tick >= curTick()); 1734 1735 if (!powerEvent.scheduled()) { 1736 DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n", 1737 tick, pwr_state); 1738 1739 // insert the new transition 1740 pwrStateTrans = pwr_state; 1741 1742 schedule(powerEvent, tick); 1743 } else { 1744 panic("Scheduled power event at %llu to state %d, " 1745 "with scheduled event at %llu to %d\n", tick, pwr_state, 1746 powerEvent.when(), pwrStateTrans); 1747 } 1748} 1749 1750void 1751DRAMCtrl::Rank::processPowerEvent() 1752{ 1753 // remember where we were, and for how long 1754 Tick duration = curTick() - pwrStateTick; 1755 PowerState prev_state = pwrState; 1756 1757 // update the accounting 1758 pwrStateTime[prev_state] += duration; 1759 1760 pwrState = pwrStateTrans; 1761 pwrStateTick = curTick(); 1762 1763 if (pwrState == PWR_IDLE) { 1764 DPRINTF(DRAMState, "All banks precharged\n"); 1765 1766 // if we were refreshing, make sure we start scheduling requests again 1767 if (prev_state == PWR_REF) { 1768 DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration); 1769 assert(pwrState == PWR_IDLE); 1770 1771 // kick things into action again 1772 refreshState = REF_IDLE; 1773 // a request event could be already scheduled by the state 1774 // machine of the other rank 1775 if (!memory.nextReqEvent.scheduled()) 1776 schedule(memory.nextReqEvent, curTick()); 1777 } else { 1778 assert(prev_state == PWR_ACT); 1779 1780 // if we have a pending refresh, and are now moving to 1781 // the idle state, direclty transition to a refresh 1782 if (refreshState == REF_RUN) { 1783 // there should be nothing waiting at this point 1784 assert(!powerEvent.scheduled()); 1785 1786 // update the state in zero time and proceed below 1787 pwrState = PWR_REF; 1788 } 1789 } 1790 } 1791 1792 // we transition to the refresh state, let the refresh state 1793 // machine know of this state update and let it deal with the 1794 // scheduling of the next power state transition as well as the 1795 // following refresh 1796 if (pwrState == PWR_REF) { 1797 DPRINTF(DRAMState, "Refreshing\n"); 1798 // kick the refresh event loop into action again, and that 1799 // in turn will schedule a transition to the idle power 1800 // state once the refresh is done 1801 assert(refreshState == REF_RUN); 1802 processRefreshEvent(); 1803 } 1804} 1805 1806void 1807DRAMCtrl::Rank::updatePowerStats() 1808{ 1809 // Get the energy and power from DRAMPower 1810 Data::MemoryPowerModel::Energy energy = 1811 power.powerlib.getEnergy(); 1812 Data::MemoryPowerModel::Power rank_power = 1813 power.powerlib.getPower(); 1814 1815 actEnergy = energy.act_energy * memory.devicesPerRank; 1816 preEnergy = energy.pre_energy * memory.devicesPerRank; 1817 readEnergy = energy.read_energy * memory.devicesPerRank; 1818 writeEnergy = energy.write_energy * memory.devicesPerRank; 1819 refreshEnergy = energy.ref_energy * memory.devicesPerRank; 1820 actBackEnergy = energy.act_stdby_energy * memory.devicesPerRank; 1821 preBackEnergy = energy.pre_stdby_energy * memory.devicesPerRank; 1822 totalEnergy = energy.total_energy * memory.devicesPerRank; 1823 averagePower = rank_power.average_power * memory.devicesPerRank; 1824} 1825 1826void 1827DRAMCtrl::Rank::regStats() 1828{ 1829 using namespace Stats; 1830 1831 pwrStateTime 1832 .init(5) 1833 .name(name() + ".memoryStateTime") 1834 .desc("Time in different power states"); 1835 pwrStateTime.subname(0, "IDLE"); 1836 pwrStateTime.subname(1, "REF"); 1837 pwrStateTime.subname(2, "PRE_PDN"); 1838 pwrStateTime.subname(3, "ACT"); 1839 pwrStateTime.subname(4, "ACT_PDN"); 1840 1841 actEnergy 1842 .name(name() + ".actEnergy") 1843 .desc("Energy for activate commands per rank (pJ)"); 1844 1845 preEnergy 1846 .name(name() + ".preEnergy") 1847 .desc("Energy for precharge commands per rank (pJ)"); 1848 1849 readEnergy 1850 .name(name() + ".readEnergy") 1851 .desc("Energy for read commands per rank (pJ)"); 1852 1853 writeEnergy 1854 .name(name() + ".writeEnergy") 1855 .desc("Energy for write commands per rank (pJ)"); 1856 1857 refreshEnergy 1858 .name(name() + ".refreshEnergy") 1859 .desc("Energy for refresh commands per rank (pJ)"); 1860 1861 actBackEnergy 1862 .name(name() + ".actBackEnergy") 1863 .desc("Energy for active background per rank (pJ)"); 1864 1865 preBackEnergy 1866 .name(name() + ".preBackEnergy") 1867 .desc("Energy for precharge background per rank (pJ)"); 1868 1869 totalEnergy 1870 .name(name() + ".totalEnergy") 1871 .desc("Total energy per rank (pJ)"); 1872 1873 averagePower 1874 .name(name() + ".averagePower") 1875 .desc("Core power per rank (mW)"); 1876} 1877void 1878DRAMCtrl::regStats() 1879{ 1880 using namespace Stats; 1881 1882 AbstractMemory::regStats(); 1883 1884 for (auto r : ranks) { 1885 r->regStats(); 1886 } 1887 1888 readReqs 1889 .name(name() + ".readReqs") 1890 .desc("Number of read requests accepted"); 1891 1892 writeReqs 1893 .name(name() + ".writeReqs") 1894 .desc("Number of write requests accepted"); 1895 1896 readBursts 1897 .name(name() + ".readBursts") 1898 .desc("Number of DRAM read bursts, " 1899 "including those serviced by the write queue"); 1900 1901 writeBursts 1902 .name(name() + ".writeBursts") 1903 .desc("Number of DRAM write bursts, " 1904 "including those merged in the write queue"); 1905 1906 servicedByWrQ 1907 .name(name() + ".servicedByWrQ") 1908 .desc("Number of DRAM read bursts serviced by the write queue"); 1909 1910 mergedWrBursts 1911 .name(name() + ".mergedWrBursts") 1912 .desc("Number of DRAM write bursts merged with an existing one"); 1913 1914 neitherReadNorWrite 1915 .name(name() + ".neitherReadNorWriteReqs") 1916 .desc("Number of requests that are neither read nor write"); 1917 1918 perBankRdBursts 1919 .init(banksPerRank * ranksPerChannel) 1920 .name(name() + ".perBankRdBursts") 1921 .desc("Per bank write bursts"); 1922 1923 perBankWrBursts 1924 .init(banksPerRank * ranksPerChannel) 1925 .name(name() + ".perBankWrBursts") 1926 .desc("Per bank write bursts"); 1927 1928 avgRdQLen 1929 .name(name() + ".avgRdQLen") 1930 .desc("Average read queue length when enqueuing") 1931 .precision(2); 1932 1933 avgWrQLen 1934 .name(name() + ".avgWrQLen") 1935 .desc("Average write queue length when enqueuing") 1936 .precision(2); 1937 1938 totQLat 1939 .name(name() + ".totQLat") 1940 .desc("Total ticks spent queuing"); 1941 1942 totBusLat 1943 .name(name() + ".totBusLat") 1944 .desc("Total ticks spent in databus transfers"); 1945 1946 totMemAccLat 1947 .name(name() + ".totMemAccLat") 1948 .desc("Total ticks spent from burst creation until serviced " 1949 "by the DRAM"); 1950 1951 avgQLat 1952 .name(name() + ".avgQLat") 1953 .desc("Average queueing delay per DRAM burst") 1954 .precision(2); 1955 1956 avgQLat = totQLat / (readBursts - servicedByWrQ); 1957 1958 avgBusLat 1959 .name(name() + ".avgBusLat") 1960 .desc("Average bus latency per DRAM burst") 1961 .precision(2); 1962 1963 avgBusLat = totBusLat / (readBursts - servicedByWrQ); 1964 1965 avgMemAccLat 1966 .name(name() + ".avgMemAccLat") 1967 .desc("Average memory access latency per DRAM burst") 1968 .precision(2); 1969 1970 avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ); 1971 1972 numRdRetry 1973 .name(name() + ".numRdRetry") 1974 .desc("Number of times read queue was full causing retry"); 1975 1976 numWrRetry 1977 .name(name() + ".numWrRetry") 1978 .desc("Number of times write queue was full causing retry"); 1979 1980 readRowHits 1981 .name(name() + ".readRowHits") 1982 .desc("Number of row buffer hits during reads"); 1983 1984 writeRowHits 1985 .name(name() + ".writeRowHits") 1986 .desc("Number of row buffer hits during writes"); 1987 1988 readRowHitRate 1989 .name(name() + ".readRowHitRate") 1990 .desc("Row buffer hit rate for reads") 1991 .precision(2); 1992 1993 readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100; 1994 1995 writeRowHitRate 1996 .name(name() + ".writeRowHitRate") 1997 .desc("Row buffer hit rate for writes") 1998 .precision(2); 1999 2000 writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100; 2001 2002 readPktSize 2003 .init(ceilLog2(burstSize) + 1) 2004 .name(name() + ".readPktSize") 2005 .desc("Read request sizes (log2)"); 2006 2007 writePktSize 2008 .init(ceilLog2(burstSize) + 1) 2009 .name(name() + ".writePktSize") 2010 .desc("Write request sizes (log2)"); 2011 2012 rdQLenPdf 2013 .init(readBufferSize) 2014 .name(name() + ".rdQLenPdf") 2015 .desc("What read queue length does an incoming req see"); 2016 2017 wrQLenPdf 2018 .init(writeBufferSize) 2019 .name(name() + ".wrQLenPdf") 2020 .desc("What write queue length does an incoming req see"); 2021 2022 bytesPerActivate 2023 .init(maxAccessesPerRow) 2024 .name(name() + ".bytesPerActivate") 2025 .desc("Bytes accessed per row activation") 2026 .flags(nozero); 2027 2028 rdPerTurnAround 2029 .init(readBufferSize) 2030 .name(name() + ".rdPerTurnAround") 2031 .desc("Reads before turning the bus around for writes") 2032 .flags(nozero); 2033 2034 wrPerTurnAround 2035 .init(writeBufferSize) 2036 .name(name() + ".wrPerTurnAround") 2037 .desc("Writes before turning the bus around for reads") 2038 .flags(nozero); 2039 2040 bytesReadDRAM 2041 .name(name() + ".bytesReadDRAM") 2042 .desc("Total number of bytes read from DRAM"); 2043 2044 bytesReadWrQ 2045 .name(name() + ".bytesReadWrQ") 2046 .desc("Total number of bytes read from write queue"); 2047 2048 bytesWritten 2049 .name(name() + ".bytesWritten") 2050 .desc("Total number of bytes written to DRAM"); 2051 2052 bytesReadSys 2053 .name(name() + ".bytesReadSys") 2054 .desc("Total read bytes from the system interface side"); 2055 2056 bytesWrittenSys 2057 .name(name() + ".bytesWrittenSys") 2058 .desc("Total written bytes from the system interface side"); 2059 2060 avgRdBW 2061 .name(name() + ".avgRdBW") 2062 .desc("Average DRAM read bandwidth in MiByte/s") 2063 .precision(2); 2064 2065 avgRdBW = (bytesReadDRAM / 1000000) / simSeconds; 2066 2067 avgWrBW 2068 .name(name() + ".avgWrBW") 2069 .desc("Average achieved write bandwidth in MiByte/s") 2070 .precision(2); 2071 2072 avgWrBW = (bytesWritten / 1000000) / simSeconds; 2073 2074 avgRdBWSys 2075 .name(name() + ".avgRdBWSys") 2076 .desc("Average system read bandwidth in MiByte/s") 2077 .precision(2); 2078 2079 avgRdBWSys = (bytesReadSys / 1000000) / simSeconds; 2080 2081 avgWrBWSys 2082 .name(name() + ".avgWrBWSys") 2083 .desc("Average system write bandwidth in MiByte/s") 2084 .precision(2); 2085 2086 avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds; 2087 2088 peakBW 2089 .name(name() + ".peakBW") 2090 .desc("Theoretical peak bandwidth in MiByte/s") 2091 .precision(2); 2092 2093 peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000; 2094 2095 busUtil 2096 .name(name() + ".busUtil") 2097 .desc("Data bus utilization in percentage") 2098 .precision(2); 2099 busUtil = (avgRdBW + avgWrBW) / peakBW * 100; 2100 2101 totGap 2102 .name(name() + ".totGap") 2103 .desc("Total gap between requests"); 2104 2105 avgGap 2106 .name(name() + ".avgGap") 2107 .desc("Average gap between requests") 2108 .precision(2); 2109 2110 avgGap = totGap / (readReqs + writeReqs); 2111 2112 // Stats for DRAM Power calculation based on Micron datasheet 2113 busUtilRead 2114 .name(name() + ".busUtilRead") 2115 .desc("Data bus utilization in percentage for reads") 2116 .precision(2); 2117 2118 busUtilRead = avgRdBW / peakBW * 100; 2119 2120 busUtilWrite 2121 .name(name() + ".busUtilWrite") 2122 .desc("Data bus utilization in percentage for writes") 2123 .precision(2); 2124 2125 busUtilWrite = avgWrBW / peakBW * 100; 2126 2127 pageHitRate 2128 .name(name() + ".pageHitRate") 2129 .desc("Row buffer hit rate, read and write combined") 2130 .precision(2); 2131 2132 pageHitRate = (writeRowHits + readRowHits) / 2133 (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100; 2134} 2135 2136void 2137DRAMCtrl::recvFunctional(PacketPtr pkt) 2138{ 2139 // rely on the abstract memory 2140 functionalAccess(pkt); 2141} 2142 2143BaseSlavePort& 2144DRAMCtrl::getSlavePort(const string &if_name, PortID idx) 2145{ 2146 if (if_name != "port") { 2147 return MemObject::getSlavePort(if_name, idx); 2148 } else { 2149 return port; 2150 } 2151} 2152 2153unsigned int 2154DRAMCtrl::drain(DrainManager *dm) 2155{ 2156 unsigned int count = port.drain(dm); 2157 2158 // if there is anything in any of our internal queues, keep track 2159 // of that as well 2160 if (!(writeQueue.empty() && readQueue.empty() && 2161 respQueue.empty())) { 2162 DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d," 2163 " resp: %d\n", writeQueue.size(), readQueue.size(), 2164 respQueue.size()); 2165 ++count; 2166 drainManager = dm; 2167 2168 // the only part that is not drained automatically over time 2169 // is the write queue, thus kick things into action if needed 2170 if (!writeQueue.empty() && !nextReqEvent.scheduled()) { 2171 schedule(nextReqEvent, curTick()); 2172 } 2173 } 2174 2175 if (count) 2176 setDrainState(Drainable::Draining); 2177 else 2178 setDrainState(Drainable::Drained); 2179 return count; 2180} 2181 2182void 2183DRAMCtrl::drainResume() 2184{ 2185 if (!isTimingMode && system()->isTimingMode()) { 2186 // if we switched to timing mode, kick things into action, 2187 // and behave as if we restored from a checkpoint 2188 startup(); 2189 } else if (isTimingMode && !system()->isTimingMode()) { 2190 // if we switch from timing mode, stop the refresh events to 2191 // not cause issues with KVM 2192 for (auto r : ranks) { 2193 r->suspend(); 2194 } 2195 } 2196 2197 // update the mode 2198 isTimingMode = system()->isTimingMode(); 2199} 2200 2201DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory) 2202 : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this), 2203 memory(_memory) 2204{ } 2205 2206AddrRangeList 2207DRAMCtrl::MemoryPort::getAddrRanges() const 2208{ 2209 AddrRangeList ranges; 2210 ranges.push_back(memory.getAddrRange()); 2211 return ranges; 2212} 2213 2214void 2215DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt) 2216{ 2217 pkt->pushLabel(memory.name()); 2218 2219 if (!queue.checkFunctional(pkt)) { 2220 // Default implementation of SimpleTimingPort::recvFunctional() 2221 // calls recvAtomic() and throws away the latency; we can save a 2222 // little here by just not calculating the latency. 2223 memory.recvFunctional(pkt); 2224 } 2225 2226 pkt->popLabel(); 2227} 2228 2229Tick 2230DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt) 2231{ 2232 return memory.recvAtomic(pkt); 2233} 2234 2235bool 2236DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt) 2237{ 2238 // pass it to the memory controller 2239 return memory.recvTimingReq(pkt); 2240} 2241 2242DRAMCtrl* 2243DRAMCtrlParams::create() 2244{ 2245 return new DRAMCtrl(this); 2246} 2247