dram_ctrl.cc revision 10620:74834c49fbbe
1/*
2 * Copyright (c) 2010-2014 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2013 Amin Farmahini-Farahani
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Andreas Hansson
41 *          Ani Udipi
42 *          Neha Agarwal
43 *          Omar Naji
44 */
45
46#include "base/bitfield.hh"
47#include "base/trace.hh"
48#include "debug/DRAM.hh"
49#include "debug/DRAMPower.hh"
50#include "debug/DRAMState.hh"
51#include "debug/Drain.hh"
52#include "mem/dram_ctrl.hh"
53#include "sim/system.hh"
54
55using namespace std;
56using namespace Data;
57
58DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
59    AbstractMemory(p),
60    port(name() + ".port", *this), isTimingMode(false),
61    retryRdReq(false), retryWrReq(false),
62    busState(READ),
63    nextReqEvent(this), respondEvent(this),
64    drainManager(NULL),
65    deviceSize(p->device_size),
66    deviceBusWidth(p->device_bus_width), burstLength(p->burst_length),
67    deviceRowBufferSize(p->device_rowbuffer_size),
68    devicesPerRank(p->devices_per_rank),
69    burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8),
70    rowBufferSize(devicesPerRank * deviceRowBufferSize),
71    columnsPerRowBuffer(rowBufferSize / burstSize),
72    columnsPerStripe(range.granularity() / burstSize),
73    ranksPerChannel(p->ranks_per_channel),
74    bankGroupsPerRank(p->bank_groups_per_rank),
75    bankGroupArch(p->bank_groups_per_rank > 0),
76    banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0),
77    readBufferSize(p->read_buffer_size),
78    writeBufferSize(p->write_buffer_size),
79    writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0),
80    writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0),
81    minWritesPerSwitch(p->min_writes_per_switch),
82    writesThisTime(0), readsThisTime(0),
83    tCK(p->tCK), tWTR(p->tWTR), tRTW(p->tRTW), tCS(p->tCS), tBURST(p->tBURST),
84    tCCD_L(p->tCCD_L), tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS),
85    tWR(p->tWR), tRTP(p->tRTP), tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD),
86    tRRD_L(p->tRRD_L), tXAW(p->tXAW), activationLimit(p->activation_limit),
87    memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
88    pageMgmt(p->page_policy),
89    maxAccessesPerRow(p->max_accesses_per_row),
90    frontendLatency(p->static_frontend_latency),
91    backendLatency(p->static_backend_latency),
92    busBusyUntil(0), prevArrival(0),
93    nextReqTime(0), activeRank(0), timeStampOffset(0)
94{
95    // sanity check the ranks since we rely on bit slicing for the
96    // address decoding
97    fatal_if(!isPowerOf2(ranksPerChannel), "DRAM rank count of %d is not "
98             "allowed, must be a power of two\n", ranksPerChannel);
99
100    for (int i = 0; i < ranksPerChannel; i++) {
101        Rank* rank = new Rank(*this, p);
102        ranks.push_back(rank);
103
104        rank->actTicks.resize(activationLimit, 0);
105        rank->banks.resize(banksPerRank);
106        rank->rank = i;
107
108        for (int b = 0; b < banksPerRank; b++) {
109            rank->banks[b].bank = b;
110            // GDDR addressing of banks to BG is linear.
111            // Here we assume that all DRAM generations address bank groups as
112            // follows:
113            if (bankGroupArch) {
114                // Simply assign lower bits to bank group in order to
115                // rotate across bank groups as banks are incremented
116                // e.g. with 4 banks per bank group and 16 banks total:
117                //    banks 0,4,8,12  are in bank group 0
118                //    banks 1,5,9,13  are in bank group 1
119                //    banks 2,6,10,14 are in bank group 2
120                //    banks 3,7,11,15 are in bank group 3
121                rank->banks[b].bankgr = b % bankGroupsPerRank;
122            } else {
123                // No bank groups; simply assign to bank number
124                rank->banks[b].bankgr = b;
125            }
126        }
127    }
128
129    // perform a basic check of the write thresholds
130    if (p->write_low_thresh_perc >= p->write_high_thresh_perc)
131        fatal("Write buffer low threshold %d must be smaller than the "
132              "high threshold %d\n", p->write_low_thresh_perc,
133              p->write_high_thresh_perc);
134
135    // determine the rows per bank by looking at the total capacity
136    uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size());
137
138    // determine the dram actual capacity from the DRAM config in Mbytes
139    uint64_t deviceCapacity = deviceSize / (1024 * 1024) * devicesPerRank *
140        ranksPerChannel;
141
142    // if actual DRAM size does not match memory capacity in system warn!
143    if (deviceCapacity != capacity / (1024 * 1024))
144        warn("DRAM device capacity (%d Mbytes) does not match the "
145             "address range assigned (%d Mbytes)\n", deviceCapacity,
146             capacity / (1024 * 1024));
147
148    DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
149            AbstractMemory::size());
150
151    DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n",
152            rowBufferSize, columnsPerRowBuffer);
153
154    rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel);
155
156    // a bit of sanity checks on the interleaving
157    if (range.interleaved()) {
158        if (channels != range.stripes())
159            fatal("%s has %d interleaved address stripes but %d channel(s)\n",
160                  name(), range.stripes(), channels);
161
162        if (addrMapping == Enums::RoRaBaChCo) {
163            if (rowBufferSize != range.granularity()) {
164                fatal("Channel interleaving of %s doesn't match RoRaBaChCo "
165                      "address map\n", name());
166            }
167        } else if (addrMapping == Enums::RoRaBaCoCh ||
168                   addrMapping == Enums::RoCoRaBaCh) {
169            // for the interleavings with channel bits in the bottom,
170            // if the system uses a channel striping granularity that
171            // is larger than the DRAM burst size, then map the
172            // sequential accesses within a stripe to a number of
173            // columns in the DRAM, effectively placing some of the
174            // lower-order column bits as the least-significant bits
175            // of the address (above the ones denoting the burst size)
176            assert(columnsPerStripe >= 1);
177
178            // channel striping has to be done at a granularity that
179            // is equal or larger to a cache line
180            if (system()->cacheLineSize() > range.granularity()) {
181                fatal("Channel interleaving of %s must be at least as large "
182                      "as the cache line size\n", name());
183            }
184
185            // ...and equal or smaller than the row-buffer size
186            if (rowBufferSize < range.granularity()) {
187                fatal("Channel interleaving of %s must be at most as large "
188                      "as the row-buffer size\n", name());
189            }
190            // this is essentially the check above, so just to be sure
191            assert(columnsPerStripe <= columnsPerRowBuffer);
192        }
193    }
194
195    // some basic sanity checks
196    if (tREFI <= tRP || tREFI <= tRFC) {
197        fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n",
198              tREFI, tRP, tRFC);
199    }
200
201    // basic bank group architecture checks ->
202    if (bankGroupArch) {
203        // must have at least one bank per bank group
204        if (bankGroupsPerRank > banksPerRank) {
205            fatal("banks per rank (%d) must be equal to or larger than "
206                  "banks groups per rank (%d)\n",
207                  banksPerRank, bankGroupsPerRank);
208        }
209        // must have same number of banks in each bank group
210        if ((banksPerRank % bankGroupsPerRank) != 0) {
211            fatal("Banks per rank (%d) must be evenly divisible by bank groups "
212                  "per rank (%d) for equal banks per bank group\n",
213                  banksPerRank, bankGroupsPerRank);
214        }
215        // tCCD_L should be greater than minimal, back-to-back burst delay
216        if (tCCD_L <= tBURST) {
217            fatal("tCCD_L (%d) should be larger than tBURST (%d) when "
218                  "bank groups per rank (%d) is greater than 1\n",
219                  tCCD_L, tBURST, bankGroupsPerRank);
220        }
221        // tRRD_L is greater than minimal, same bank group ACT-to-ACT delay
222        // some datasheets might specify it equal to tRRD
223        if (tRRD_L < tRRD) {
224            fatal("tRRD_L (%d) should be larger than tRRD (%d) when "
225                  "bank groups per rank (%d) is greater than 1\n",
226                  tRRD_L, tRRD, bankGroupsPerRank);
227        }
228    }
229
230}
231
232void
233DRAMCtrl::init()
234{
235    AbstractMemory::init();
236
237   if (!port.isConnected()) {
238        fatal("DRAMCtrl %s is unconnected!\n", name());
239    } else {
240        port.sendRangeChange();
241    }
242}
243
244void
245DRAMCtrl::startup()
246{
247    // remember the memory system mode of operation
248    isTimingMode = system()->isTimingMode();
249
250    if (isTimingMode) {
251        // timestamp offset should be in clock cycles for DRAMPower
252        timeStampOffset = divCeil(curTick(), tCK);
253
254        // update the start tick for the precharge accounting to the
255        // current tick
256        for (auto r : ranks) {
257            r->startup(curTick() + tREFI - tRP);
258        }
259
260        // shift the bus busy time sufficiently far ahead that we never
261        // have to worry about negative values when computing the time for
262        // the next request, this will add an insignificant bubble at the
263        // start of simulation
264        busBusyUntil = curTick() + tRP + tRCD + tCL;
265    }
266}
267
268Tick
269DRAMCtrl::recvAtomic(PacketPtr pkt)
270{
271    DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
272
273    // do the actual memory access and turn the packet into a response
274    access(pkt);
275
276    Tick latency = 0;
277    if (!pkt->memInhibitAsserted() && pkt->hasData()) {
278        // this value is not supposed to be accurate, just enough to
279        // keep things going, mimic a closed page
280        latency = tRP + tRCD + tCL;
281    }
282    return latency;
283}
284
285bool
286DRAMCtrl::readQueueFull(unsigned int neededEntries) const
287{
288    DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n",
289            readBufferSize, readQueue.size() + respQueue.size(),
290            neededEntries);
291
292    return
293        (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize;
294}
295
296bool
297DRAMCtrl::writeQueueFull(unsigned int neededEntries) const
298{
299    DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n",
300            writeBufferSize, writeQueue.size(), neededEntries);
301    return (writeQueue.size() + neededEntries) > writeBufferSize;
302}
303
304DRAMCtrl::DRAMPacket*
305DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size,
306                       bool isRead)
307{
308    // decode the address based on the address mapping scheme, with
309    // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and
310    // channel, respectively
311    uint8_t rank;
312    uint8_t bank;
313    // use a 64-bit unsigned during the computations as the row is
314    // always the top bits, and check before creating the DRAMPacket
315    uint64_t row;
316
317    // truncate the address to a DRAM burst, which makes it unique to
318    // a specific column, row, bank, rank and channel
319    Addr addr = dramPktAddr / burstSize;
320
321    // we have removed the lowest order address bits that denote the
322    // position within the column
323    if (addrMapping == Enums::RoRaBaChCo) {
324        // the lowest order bits denote the column to ensure that
325        // sequential cache lines occupy the same row
326        addr = addr / columnsPerRowBuffer;
327
328        // take out the channel part of the address
329        addr = addr / channels;
330
331        // after the channel bits, get the bank bits to interleave
332        // over the banks
333        bank = addr % banksPerRank;
334        addr = addr / banksPerRank;
335
336        // after the bank, we get the rank bits which thus interleaves
337        // over the ranks
338        rank = addr % ranksPerChannel;
339        addr = addr / ranksPerChannel;
340
341        // lastly, get the row bits
342        row = addr % rowsPerBank;
343        addr = addr / rowsPerBank;
344    } else if (addrMapping == Enums::RoRaBaCoCh) {
345        // take out the lower-order column bits
346        addr = addr / columnsPerStripe;
347
348        // take out the channel part of the address
349        addr = addr / channels;
350
351        // next, the higher-order column bites
352        addr = addr / (columnsPerRowBuffer / columnsPerStripe);
353
354        // after the column bits, we get the bank bits to interleave
355        // over the banks
356        bank = addr % banksPerRank;
357        addr = addr / banksPerRank;
358
359        // after the bank, we get the rank bits which thus interleaves
360        // over the ranks
361        rank = addr % ranksPerChannel;
362        addr = addr / ranksPerChannel;
363
364        // lastly, get the row bits
365        row = addr % rowsPerBank;
366        addr = addr / rowsPerBank;
367    } else if (addrMapping == Enums::RoCoRaBaCh) {
368        // optimise for closed page mode and utilise maximum
369        // parallelism of the DRAM (at the cost of power)
370
371        // take out the lower-order column bits
372        addr = addr / columnsPerStripe;
373
374        // take out the channel part of the address, not that this has
375        // to match with how accesses are interleaved between the
376        // controllers in the address mapping
377        addr = addr / channels;
378
379        // start with the bank bits, as this provides the maximum
380        // opportunity for parallelism between requests
381        bank = addr % banksPerRank;
382        addr = addr / banksPerRank;
383
384        // next get the rank bits
385        rank = addr % ranksPerChannel;
386        addr = addr / ranksPerChannel;
387
388        // next, the higher-order column bites
389        addr = addr / (columnsPerRowBuffer / columnsPerStripe);
390
391        // lastly, get the row bits
392        row = addr % rowsPerBank;
393        addr = addr / rowsPerBank;
394    } else
395        panic("Unknown address mapping policy chosen!");
396
397    assert(rank < ranksPerChannel);
398    assert(bank < banksPerRank);
399    assert(row < rowsPerBank);
400    assert(row < Bank::NO_ROW);
401
402    DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
403            dramPktAddr, rank, bank, row);
404
405    // create the corresponding DRAM packet with the entry time and
406    // ready time set to the current tick, the latter will be updated
407    // later
408    uint16_t bank_id = banksPerRank * rank + bank;
409    return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr,
410                          size, ranks[rank]->banks[bank], *ranks[rank]);
411}
412
413void
414DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount)
415{
416    // only add to the read queue here. whenever the request is
417    // eventually done, set the readyTime, and call schedule()
418    assert(!pkt->isWrite());
419
420    assert(pktCount != 0);
421
422    // if the request size is larger than burst size, the pkt is split into
423    // multiple DRAM packets
424    // Note if the pkt starting address is not aligened to burst size, the
425    // address of first DRAM packet is kept unaliged. Subsequent DRAM packets
426    // are aligned to burst size boundaries. This is to ensure we accurately
427    // check read packets against packets in write queue.
428    Addr addr = pkt->getAddr();
429    unsigned pktsServicedByWrQ = 0;
430    BurstHelper* burst_helper = NULL;
431    for (int cnt = 0; cnt < pktCount; ++cnt) {
432        unsigned size = std::min((addr | (burstSize - 1)) + 1,
433                        pkt->getAddr() + pkt->getSize()) - addr;
434        readPktSize[ceilLog2(size)]++;
435        readBursts++;
436
437        // First check write buffer to see if the data is already at
438        // the controller
439        bool foundInWrQ = false;
440        for (auto i = writeQueue.begin(); i != writeQueue.end(); ++i) {
441            // check if the read is subsumed in the write entry we are
442            // looking at
443            if ((*i)->addr <= addr &&
444                (addr + size) <= ((*i)->addr + (*i)->size)) {
445                foundInWrQ = true;
446                servicedByWrQ++;
447                pktsServicedByWrQ++;
448                DPRINTF(DRAM, "Read to addr %lld with size %d serviced by "
449                        "write queue\n", addr, size);
450                bytesReadWrQ += burstSize;
451                break;
452            }
453        }
454
455        // If not found in the write q, make a DRAM packet and
456        // push it onto the read queue
457        if (!foundInWrQ) {
458
459            // Make the burst helper for split packets
460            if (pktCount > 1 && burst_helper == NULL) {
461                DPRINTF(DRAM, "Read to addr %lld translates to %d "
462                        "dram requests\n", pkt->getAddr(), pktCount);
463                burst_helper = new BurstHelper(pktCount);
464            }
465
466            DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true);
467            dram_pkt->burstHelper = burst_helper;
468
469            assert(!readQueueFull(1));
470            rdQLenPdf[readQueue.size() + respQueue.size()]++;
471
472            DPRINTF(DRAM, "Adding to read queue\n");
473
474            readQueue.push_back(dram_pkt);
475
476            // Update stats
477            avgRdQLen = readQueue.size() + respQueue.size();
478        }
479
480        // Starting address of next dram pkt (aligend to burstSize boundary)
481        addr = (addr | (burstSize - 1)) + 1;
482    }
483
484    // If all packets are serviced by write queue, we send the repsonse back
485    if (pktsServicedByWrQ == pktCount) {
486        accessAndRespond(pkt, frontendLatency);
487        return;
488    }
489
490    // Update how many split packets are serviced by write queue
491    if (burst_helper != NULL)
492        burst_helper->burstsServiced = pktsServicedByWrQ;
493
494    // If we are not already scheduled to get a request out of the
495    // queue, do so now
496    if (!nextReqEvent.scheduled()) {
497        DPRINTF(DRAM, "Request scheduled immediately\n");
498        schedule(nextReqEvent, curTick());
499    }
500}
501
502void
503DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount)
504{
505    // only add to the write queue here. whenever the request is
506    // eventually done, set the readyTime, and call schedule()
507    assert(pkt->isWrite());
508
509    // if the request size is larger than burst size, the pkt is split into
510    // multiple DRAM packets
511    Addr addr = pkt->getAddr();
512    for (int cnt = 0; cnt < pktCount; ++cnt) {
513        unsigned size = std::min((addr | (burstSize - 1)) + 1,
514                        pkt->getAddr() + pkt->getSize()) - addr;
515        writePktSize[ceilLog2(size)]++;
516        writeBursts++;
517
518        // see if we can merge with an existing item in the write
519        // queue and keep track of whether we have merged or not so we
520        // can stop at that point and also avoid enqueueing a new
521        // request
522        bool merged = false;
523        auto w = writeQueue.begin();
524
525        while(!merged && w != writeQueue.end()) {
526            // either of the two could be first, if they are the same
527            // it does not matter which way we go
528            if ((*w)->addr >= addr) {
529                // the existing one starts after the new one, figure
530                // out where the new one ends with respect to the
531                // existing one
532                if ((addr + size) >= ((*w)->addr + (*w)->size)) {
533                    // check if the existing one is completely
534                    // subsumed in the new one
535                    DPRINTF(DRAM, "Merging write covering existing burst\n");
536                    merged = true;
537                    // update both the address and the size
538                    (*w)->addr = addr;
539                    (*w)->size = size;
540                } else if ((addr + size) >= (*w)->addr &&
541                           ((*w)->addr + (*w)->size - addr) <= burstSize) {
542                    // the new one is just before or partially
543                    // overlapping with the existing one, and together
544                    // they fit within a burst
545                    DPRINTF(DRAM, "Merging write before existing burst\n");
546                    merged = true;
547                    // the existing queue item needs to be adjusted with
548                    // respect to both address and size
549                    (*w)->size = (*w)->addr + (*w)->size - addr;
550                    (*w)->addr = addr;
551                }
552            } else {
553                // the new one starts after the current one, figure
554                // out where the existing one ends with respect to the
555                // new one
556                if (((*w)->addr + (*w)->size) >= (addr + size)) {
557                    // check if the new one is completely subsumed in the
558                    // existing one
559                    DPRINTF(DRAM, "Merging write into existing burst\n");
560                    merged = true;
561                    // no adjustments necessary
562                } else if (((*w)->addr + (*w)->size) >= addr &&
563                           (addr + size - (*w)->addr) <= burstSize) {
564                    // the existing one is just before or partially
565                    // overlapping with the new one, and together
566                    // they fit within a burst
567                    DPRINTF(DRAM, "Merging write after existing burst\n");
568                    merged = true;
569                    // the address is right, and only the size has
570                    // to be adjusted
571                    (*w)->size = addr + size - (*w)->addr;
572                }
573            }
574            ++w;
575        }
576
577        // if the item was not merged we need to create a new write
578        // and enqueue it
579        if (!merged) {
580            DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false);
581
582            assert(writeQueue.size() < writeBufferSize);
583            wrQLenPdf[writeQueue.size()]++;
584
585            DPRINTF(DRAM, "Adding to write queue\n");
586
587            writeQueue.push_back(dram_pkt);
588
589            // Update stats
590            avgWrQLen = writeQueue.size();
591        } else {
592            // keep track of the fact that this burst effectively
593            // disappeared as it was merged with an existing one
594            mergedWrBursts++;
595        }
596
597        // Starting address of next dram pkt (aligend to burstSize boundary)
598        addr = (addr | (burstSize - 1)) + 1;
599    }
600
601    // we do not wait for the writes to be send to the actual memory,
602    // but instead take responsibility for the consistency here and
603    // snoop the write queue for any upcoming reads
604    // @todo, if a pkt size is larger than burst size, we might need a
605    // different front end latency
606    accessAndRespond(pkt, frontendLatency);
607
608    // If we are not already scheduled to get a request out of the
609    // queue, do so now
610    if (!nextReqEvent.scheduled()) {
611        DPRINTF(DRAM, "Request scheduled immediately\n");
612        schedule(nextReqEvent, curTick());
613    }
614}
615
616void
617DRAMCtrl::printQs() const {
618    DPRINTF(DRAM, "===READ QUEUE===\n\n");
619    for (auto i = readQueue.begin() ;  i != readQueue.end() ; ++i) {
620        DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
621    }
622    DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
623    for (auto i = respQueue.begin() ;  i != respQueue.end() ; ++i) {
624        DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
625    }
626    DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
627    for (auto i = writeQueue.begin() ;  i != writeQueue.end() ; ++i) {
628        DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
629    }
630}
631
632bool
633DRAMCtrl::recvTimingReq(PacketPtr pkt)
634{
635    /// @todo temporary hack to deal with memory corruption issues until
636    /// 4-phase transactions are complete
637    for (int x = 0; x < pendingDelete.size(); x++)
638        delete pendingDelete[x];
639    pendingDelete.clear();
640
641    // This is where we enter from the outside world
642    DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n",
643            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
644
645    // simply drop inhibited packets for now
646    if (pkt->memInhibitAsserted()) {
647        DPRINTF(DRAM, "Inhibited packet -- Dropping it now\n");
648        pendingDelete.push_back(pkt);
649        return true;
650    }
651
652    // Calc avg gap between requests
653    if (prevArrival != 0) {
654        totGap += curTick() - prevArrival;
655    }
656    prevArrival = curTick();
657
658
659    // Find out how many dram packets a pkt translates to
660    // If the burst size is equal or larger than the pkt size, then a pkt
661    // translates to only one dram packet. Otherwise, a pkt translates to
662    // multiple dram packets
663    unsigned size = pkt->getSize();
664    unsigned offset = pkt->getAddr() & (burstSize - 1);
665    unsigned int dram_pkt_count = divCeil(offset + size, burstSize);
666
667    // check local buffers and do not accept if full
668    if (pkt->isRead()) {
669        assert(size != 0);
670        if (readQueueFull(dram_pkt_count)) {
671            DPRINTF(DRAM, "Read queue full, not accepting\n");
672            // remember that we have to retry this port
673            retryRdReq = true;
674            numRdRetry++;
675            return false;
676        } else {
677            addToReadQueue(pkt, dram_pkt_count);
678            readReqs++;
679            bytesReadSys += size;
680        }
681    } else if (pkt->isWrite()) {
682        assert(size != 0);
683        if (writeQueueFull(dram_pkt_count)) {
684            DPRINTF(DRAM, "Write queue full, not accepting\n");
685            // remember that we have to retry this port
686            retryWrReq = true;
687            numWrRetry++;
688            return false;
689        } else {
690            addToWriteQueue(pkt, dram_pkt_count);
691            writeReqs++;
692            bytesWrittenSys += size;
693        }
694    } else {
695        DPRINTF(DRAM,"Neither read nor write, ignore timing\n");
696        neitherReadNorWrite++;
697        accessAndRespond(pkt, 1);
698    }
699
700    return true;
701}
702
703void
704DRAMCtrl::processRespondEvent()
705{
706    DPRINTF(DRAM,
707            "processRespondEvent(): Some req has reached its readyTime\n");
708
709    DRAMPacket* dram_pkt = respQueue.front();
710
711    if (dram_pkt->burstHelper) {
712        // it is a split packet
713        dram_pkt->burstHelper->burstsServiced++;
714        if (dram_pkt->burstHelper->burstsServiced ==
715            dram_pkt->burstHelper->burstCount) {
716            // we have now serviced all children packets of a system packet
717            // so we can now respond to the requester
718            // @todo we probably want to have a different front end and back
719            // end latency for split packets
720            accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
721            delete dram_pkt->burstHelper;
722            dram_pkt->burstHelper = NULL;
723        }
724    } else {
725        // it is not a split packet
726        accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
727    }
728
729    delete respQueue.front();
730    respQueue.pop_front();
731
732    if (!respQueue.empty()) {
733        assert(respQueue.front()->readyTime >= curTick());
734        assert(!respondEvent.scheduled());
735        schedule(respondEvent, respQueue.front()->readyTime);
736    } else {
737        // if there is nothing left in any queue, signal a drain
738        if (writeQueue.empty() && readQueue.empty() &&
739            drainManager) {
740            DPRINTF(Drain, "DRAM controller done draining\n");
741            drainManager->signalDrainDone();
742            drainManager = NULL;
743        }
744    }
745
746    // We have made a location in the queue available at this point,
747    // so if there is a read that was forced to wait, retry now
748    if (retryRdReq) {
749        retryRdReq = false;
750        port.sendRetry();
751    }
752}
753
754bool
755DRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue, bool switched_cmd_type)
756{
757    // This method does the arbitration between requests. The chosen
758    // packet is simply moved to the head of the queue. The other
759    // methods know that this is the place to look. For example, with
760    // FCFS, this method does nothing
761    assert(!queue.empty());
762
763    // bool to indicate if a packet to an available rank is found
764    bool found_packet = false;
765    if (queue.size() == 1) {
766        DRAMPacket* dram_pkt = queue.front();
767        // available rank corresponds to state refresh idle
768        if (ranks[dram_pkt->rank]->isAvailable()) {
769            found_packet = true;
770            DPRINTF(DRAM, "Single request, going to a free rank\n");
771        } else {
772            DPRINTF(DRAM, "Single request, going to a busy rank\n");
773        }
774        return found_packet;
775    }
776
777    if (memSchedPolicy == Enums::fcfs) {
778        // check if there is a packet going to a free rank
779        for(auto i = queue.begin(); i != queue.end() ; ++i) {
780            DRAMPacket* dram_pkt = *i;
781            if (ranks[dram_pkt->rank]->isAvailable()) {
782                queue.erase(i);
783                queue.push_front(dram_pkt);
784                found_packet = true;
785                break;
786            }
787        }
788    } else if (memSchedPolicy == Enums::frfcfs) {
789        found_packet = reorderQueue(queue, switched_cmd_type);
790    } else
791        panic("No scheduling policy chosen\n");
792    return found_packet;
793}
794
795bool
796DRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue, bool switched_cmd_type)
797{
798    // Only determine this when needed
799    uint64_t earliest_banks = 0;
800
801    // Search for row hits first, if no row hit is found then schedule the
802    // packet to one of the earliest banks available
803    bool found_packet = false;
804    bool found_earliest_pkt = false;
805    bool found_prepped_diff_rank_pkt = false;
806    auto selected_pkt_it = queue.end();
807
808    for (auto i = queue.begin(); i != queue.end() ; ++i) {
809        DRAMPacket* dram_pkt = *i;
810        const Bank& bank = dram_pkt->bankRef;
811        // check if rank is busy. If this is the case jump to the next packet
812        // Check if it is a row hit
813        if (dram_pkt->rankRef.isAvailable()) {
814            if (bank.openRow == dram_pkt->row) {
815                if (dram_pkt->rank == activeRank || switched_cmd_type) {
816                    // FCFS within the hits, giving priority to commands
817                    // that access the same rank as the previous burst
818                    // to minimize bus turnaround delays
819                    // Only give rank prioity when command type is
820                    // not changing
821                    DPRINTF(DRAM, "Row buffer hit\n");
822                    selected_pkt_it = i;
823                    break;
824                } else if (!found_prepped_diff_rank_pkt) {
825                    // found row hit for command on different rank
826                    // than prev burst
827                    selected_pkt_it = i;
828                    found_prepped_diff_rank_pkt = true;
829                }
830            } else if (!found_earliest_pkt & !found_prepped_diff_rank_pkt) {
831                // packet going to a rank which is currently not waiting for a
832                // refresh, No row hit and
833                // haven't found an entry with a row hit to a new rank
834                if (earliest_banks == 0)
835                    // Determine entries with earliest bank prep delay
836                    // Function will give priority to commands that access the
837                    // same rank as previous burst and can prep
838                    // the bank seamlessly
839                    earliest_banks = minBankPrep(queue, switched_cmd_type);
840
841                // FCFS - Bank is first available bank
842                if (bits(earliest_banks, dram_pkt->bankId,
843                    dram_pkt->bankId)) {
844                    // Remember the packet to be scheduled to one of
845                    // the earliest banks available, FCFS amongst the
846                    // earliest banks
847                    selected_pkt_it = i;
848                    //if the packet found is going to a rank that is currently
849                    //not busy then update the found_packet to true
850                    found_earliest_pkt = true;
851                }
852            }
853        }
854    }
855
856    if (selected_pkt_it != queue.end()) {
857        DRAMPacket* selected_pkt = *selected_pkt_it;
858        queue.erase(selected_pkt_it);
859        queue.push_front(selected_pkt);
860        found_packet = true;
861    }
862    return found_packet;
863}
864
865void
866DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency)
867{
868    DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
869
870    bool needsResponse = pkt->needsResponse();
871    // do the actual memory access which also turns the packet into a
872    // response
873    access(pkt);
874
875    // turn packet around to go back to requester if response expected
876    if (needsResponse) {
877        // access already turned the packet into a response
878        assert(pkt->isResponse());
879
880        // @todo someone should pay for this
881        pkt->firstWordDelay = pkt->lastWordDelay = 0;
882
883        // queue the packet in the response queue to be sent out after
884        // the static latency has passed
885        port.schedTimingResp(pkt, curTick() + static_latency);
886    } else {
887        // @todo the packet is going to be deleted, and the DRAMPacket
888        // is still having a pointer to it
889        pendingDelete.push_back(pkt);
890    }
891
892    DPRINTF(DRAM, "Done\n");
893
894    return;
895}
896
897void
898DRAMCtrl::activateBank(Rank& rank_ref, Bank& bank_ref,
899                       Tick act_tick, uint32_t row)
900{
901    assert(rank_ref.actTicks.size() == activationLimit);
902
903    DPRINTF(DRAM, "Activate at tick %d\n", act_tick);
904
905    // update the open row
906    assert(bank_ref.openRow == Bank::NO_ROW);
907    bank_ref.openRow = row;
908
909    // start counting anew, this covers both the case when we
910    // auto-precharged, and when this access is forced to
911    // precharge
912    bank_ref.bytesAccessed = 0;
913    bank_ref.rowAccesses = 0;
914
915    ++rank_ref.numBanksActive;
916    assert(rank_ref.numBanksActive <= banksPerRank);
917
918    DPRINTF(DRAM, "Activate bank %d, rank %d at tick %lld, now got %d active\n",
919            bank_ref.bank, rank_ref.rank, act_tick,
920            ranks[rank_ref.rank]->numBanksActive);
921
922    rank_ref.power.powerlib.doCommand(MemCommand::ACT, bank_ref.bank,
923                                      divCeil(act_tick, tCK) -
924                                      timeStampOffset);
925
926    DPRINTF(DRAMPower, "%llu,ACT,%d,%d\n", divCeil(act_tick, tCK) -
927            timeStampOffset, bank_ref.bank, rank_ref.rank);
928
929    // The next access has to respect tRAS for this bank
930    bank_ref.preAllowedAt = act_tick + tRAS;
931
932    // Respect the row-to-column command delay
933    bank_ref.colAllowedAt = std::max(act_tick + tRCD, bank_ref.colAllowedAt);
934
935    // start by enforcing tRRD
936    for(int i = 0; i < banksPerRank; i++) {
937        // next activate to any bank in this rank must not happen
938        // before tRRD
939        if (bankGroupArch && (bank_ref.bankgr == rank_ref.banks[i].bankgr)) {
940            // bank group architecture requires longer delays between
941            // ACT commands within the same bank group.  Use tRRD_L
942            // in this case
943            rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD_L,
944                                             rank_ref.banks[i].actAllowedAt);
945        } else {
946            // use shorter tRRD value when either
947            // 1) bank group architecture is not supportted
948            // 2) bank is in a different bank group
949            rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD,
950                                             rank_ref.banks[i].actAllowedAt);
951        }
952    }
953
954    // next, we deal with tXAW, if the activation limit is disabled
955    // then we directly schedule an activate power event
956    if (!rank_ref.actTicks.empty()) {
957        // sanity check
958        if (rank_ref.actTicks.back() &&
959           (act_tick - rank_ref.actTicks.back()) < tXAW) {
960            panic("Got %d activates in window %d (%llu - %llu) which "
961                  "is smaller than %llu\n", activationLimit, act_tick -
962                  rank_ref.actTicks.back(), act_tick,
963                  rank_ref.actTicks.back(), tXAW);
964        }
965
966        // shift the times used for the book keeping, the last element
967        // (highest index) is the oldest one and hence the lowest value
968        rank_ref.actTicks.pop_back();
969
970        // record an new activation (in the future)
971        rank_ref.actTicks.push_front(act_tick);
972
973        // cannot activate more than X times in time window tXAW, push the
974        // next one (the X + 1'st activate) to be tXAW away from the
975        // oldest in our window of X
976        if (rank_ref.actTicks.back() &&
977           (act_tick - rank_ref.actTicks.back()) < tXAW) {
978            DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate "
979                    "no earlier than %llu\n", activationLimit,
980                    rank_ref.actTicks.back() + tXAW);
981            for(int j = 0; j < banksPerRank; j++)
982                // next activate must not happen before end of window
983                rank_ref.banks[j].actAllowedAt =
984                    std::max(rank_ref.actTicks.back() + tXAW,
985                             rank_ref.banks[j].actAllowedAt);
986        }
987    }
988
989    // at the point when this activate takes place, make sure we
990    // transition to the active power state
991    if (!rank_ref.activateEvent.scheduled())
992        schedule(rank_ref.activateEvent, act_tick);
993    else if (rank_ref.activateEvent.when() > act_tick)
994        // move it sooner in time
995        reschedule(rank_ref.activateEvent, act_tick);
996}
997
998void
999DRAMCtrl::prechargeBank(Rank& rank_ref, Bank& bank, Tick pre_at, bool trace)
1000{
1001    // make sure the bank has an open row
1002    assert(bank.openRow != Bank::NO_ROW);
1003
1004    // sample the bytes per activate here since we are closing
1005    // the page
1006    bytesPerActivate.sample(bank.bytesAccessed);
1007
1008    bank.openRow = Bank::NO_ROW;
1009
1010    // no precharge allowed before this one
1011    bank.preAllowedAt = pre_at;
1012
1013    Tick pre_done_at = pre_at + tRP;
1014
1015    bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at);
1016
1017    assert(rank_ref.numBanksActive != 0);
1018    --rank_ref.numBanksActive;
1019
1020    DPRINTF(DRAM, "Precharging bank %d, rank %d at tick %lld, now got "
1021            "%d active\n", bank.bank, rank_ref.rank, pre_at,
1022            rank_ref.numBanksActive);
1023
1024    if (trace) {
1025
1026        rank_ref.power.powerlib.doCommand(MemCommand::PRE, bank.bank,
1027                                                divCeil(pre_at, tCK) -
1028                                                timeStampOffset);
1029        DPRINTF(DRAMPower, "%llu,PRE,%d,%d\n", divCeil(pre_at, tCK) -
1030                timeStampOffset, bank.bank, rank_ref.rank);
1031    }
1032    // if we look at the current number of active banks we might be
1033    // tempted to think the DRAM is now idle, however this can be
1034    // undone by an activate that is scheduled to happen before we
1035    // would have reached the idle state, so schedule an event and
1036    // rather check once we actually make it to the point in time when
1037    // the (last) precharge takes place
1038    if (!rank_ref.prechargeEvent.scheduled())
1039        schedule(rank_ref.prechargeEvent, pre_done_at);
1040    else if (rank_ref.prechargeEvent.when() < pre_done_at)
1041        reschedule(rank_ref.prechargeEvent, pre_done_at);
1042}
1043
1044void
1045DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
1046{
1047    DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
1048            dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
1049
1050    // get the rank
1051    Rank& rank = dram_pkt->rankRef;
1052
1053    // get the bank
1054    Bank& bank = dram_pkt->bankRef;
1055
1056    // for the state we need to track if it is a row hit or not
1057    bool row_hit = true;
1058
1059    // respect any constraints on the command (e.g. tRCD or tCCD)
1060    Tick cmd_at = std::max(bank.colAllowedAt, curTick());
1061
1062    // Determine the access latency and update the bank state
1063    if (bank.openRow == dram_pkt->row) {
1064        // nothing to do
1065    } else {
1066        row_hit = false;
1067
1068        // If there is a page open, precharge it.
1069        if (bank.openRow != Bank::NO_ROW) {
1070            prechargeBank(rank, bank, std::max(bank.preAllowedAt, curTick()));
1071        }
1072
1073        // next we need to account for the delay in activating the
1074        // page
1075        Tick act_tick = std::max(bank.actAllowedAt, curTick());
1076
1077        // Record the activation and deal with all the global timing
1078        // constraints caused be a new activation (tRRD and tXAW)
1079        activateBank(rank, bank, act_tick, dram_pkt->row);
1080
1081        // issue the command as early as possible
1082        cmd_at = bank.colAllowedAt;
1083    }
1084
1085    // we need to wait until the bus is available before we can issue
1086    // the command
1087    cmd_at = std::max(cmd_at, busBusyUntil - tCL);
1088
1089    // update the packet ready time
1090    dram_pkt->readyTime = cmd_at + tCL + tBURST;
1091
1092    // only one burst can use the bus at any one point in time
1093    assert(dram_pkt->readyTime - busBusyUntil >= tBURST);
1094
1095    // update the time for the next read/write burst for each
1096    // bank (add a max with tCCD/tCCD_L here)
1097    Tick cmd_dly;
1098    for(int j = 0; j < ranksPerChannel; j++) {
1099        for(int i = 0; i < banksPerRank; i++) {
1100            // next burst to same bank group in this rank must not happen
1101            // before tCCD_L.  Different bank group timing requirement is
1102            // tBURST; Add tCS for different ranks
1103            if (dram_pkt->rank == j) {
1104                if (bankGroupArch &&
1105                   (bank.bankgr == ranks[j]->banks[i].bankgr)) {
1106                    // bank group architecture requires longer delays between
1107                    // RD/WR burst commands to the same bank group.
1108                    // Use tCCD_L in this case
1109                    cmd_dly = tCCD_L;
1110                } else {
1111                    // use tBURST (equivalent to tCCD_S), the shorter
1112                    // cas-to-cas delay value, when either:
1113                    // 1) bank group architecture is not supportted
1114                    // 2) bank is in a different bank group
1115                    cmd_dly = tBURST;
1116                }
1117            } else {
1118                // different rank is by default in a different bank group
1119                // use tBURST (equivalent to tCCD_S), which is the shorter
1120                // cas-to-cas delay in this case
1121                // Add tCS to account for rank-to-rank bus delay requirements
1122                cmd_dly = tBURST + tCS;
1123            }
1124            ranks[j]->banks[i].colAllowedAt = std::max(cmd_at + cmd_dly,
1125                                             ranks[j]->banks[i].colAllowedAt);
1126        }
1127    }
1128
1129    // Save rank of current access
1130    activeRank = dram_pkt->rank;
1131
1132    // If this is a write, we also need to respect the write recovery
1133    // time before a precharge, in the case of a read, respect the
1134    // read to precharge constraint
1135    bank.preAllowedAt = std::max(bank.preAllowedAt,
1136                                 dram_pkt->isRead ? cmd_at + tRTP :
1137                                 dram_pkt->readyTime + tWR);
1138
1139    // increment the bytes accessed and the accesses per row
1140    bank.bytesAccessed += burstSize;
1141    ++bank.rowAccesses;
1142
1143    // if we reached the max, then issue with an auto-precharge
1144    bool auto_precharge = pageMgmt == Enums::close ||
1145        bank.rowAccesses == maxAccessesPerRow;
1146
1147    // if we did not hit the limit, we might still want to
1148    // auto-precharge
1149    if (!auto_precharge &&
1150        (pageMgmt == Enums::open_adaptive ||
1151         pageMgmt == Enums::close_adaptive)) {
1152        // a twist on the open and close page policies:
1153        // 1) open_adaptive page policy does not blindly keep the
1154        // page open, but close it if there are no row hits, and there
1155        // are bank conflicts in the queue
1156        // 2) close_adaptive page policy does not blindly close the
1157        // page, but closes it only if there are no row hits in the queue.
1158        // In this case, only force an auto precharge when there
1159        // are no same page hits in the queue
1160        bool got_more_hits = false;
1161        bool got_bank_conflict = false;
1162
1163        // either look at the read queue or write queue
1164        const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue :
1165            writeQueue;
1166        auto p = queue.begin();
1167        // make sure we are not considering the packet that we are
1168        // currently dealing with (which is the head of the queue)
1169        ++p;
1170
1171        // keep on looking until we have found required condition or
1172        // reached the end
1173        while (!(got_more_hits &&
1174                 (got_bank_conflict || pageMgmt == Enums::close_adaptive)) &&
1175               p != queue.end()) {
1176            bool same_rank_bank = (dram_pkt->rank == (*p)->rank) &&
1177                (dram_pkt->bank == (*p)->bank);
1178            bool same_row = dram_pkt->row == (*p)->row;
1179            got_more_hits |= same_rank_bank && same_row;
1180            got_bank_conflict |= same_rank_bank && !same_row;
1181            ++p;
1182        }
1183
1184        // auto pre-charge when either
1185        // 1) open_adaptive policy, we have not got any more hits, and
1186        //    have a bank conflict
1187        // 2) close_adaptive policy and we have not got any more hits
1188        auto_precharge = !got_more_hits &&
1189            (got_bank_conflict || pageMgmt == Enums::close_adaptive);
1190    }
1191
1192    // DRAMPower trace command to be written
1193    std::string mem_cmd = dram_pkt->isRead ? "RD" : "WR";
1194
1195    // MemCommand required for DRAMPower library
1196    MemCommand::cmds command = (mem_cmd == "RD") ? MemCommand::RD :
1197                                                   MemCommand::WR;
1198
1199    // if this access should use auto-precharge, then we are
1200    // closing the row
1201    if (auto_precharge) {
1202        // if auto-precharge push a PRE command at the correct tick to the
1203        // list used by DRAMPower library to calculate power
1204        prechargeBank(rank, bank, std::max(curTick(), bank.preAllowedAt));
1205
1206        DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId);
1207    }
1208
1209    // Update bus state
1210    busBusyUntil = dram_pkt->readyTime;
1211
1212    DPRINTF(DRAM, "Access to %lld, ready at %lld bus busy until %lld.\n",
1213            dram_pkt->addr, dram_pkt->readyTime, busBusyUntil);
1214
1215    dram_pkt->rankRef.power.powerlib.doCommand(command, dram_pkt->bank,
1216                                                 divCeil(cmd_at, tCK) -
1217                                                 timeStampOffset);
1218
1219    DPRINTF(DRAMPower, "%llu,%s,%d,%d\n", divCeil(cmd_at, tCK) -
1220            timeStampOffset, mem_cmd, dram_pkt->bank, dram_pkt->rank);
1221
1222    // Update the minimum timing between the requests, this is a
1223    // conservative estimate of when we have to schedule the next
1224    // request to not introduce any unecessary bubbles. In most cases
1225    // we will wake up sooner than we have to.
1226    nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
1227
1228    // Update the stats and schedule the next request
1229    if (dram_pkt->isRead) {
1230        ++readsThisTime;
1231        if (row_hit)
1232            readRowHits++;
1233        bytesReadDRAM += burstSize;
1234        perBankRdBursts[dram_pkt->bankId]++;
1235
1236        // Update latency stats
1237        totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
1238        totBusLat += tBURST;
1239        totQLat += cmd_at - dram_pkt->entryTime;
1240    } else {
1241        ++writesThisTime;
1242        if (row_hit)
1243            writeRowHits++;
1244        bytesWritten += burstSize;
1245        perBankWrBursts[dram_pkt->bankId]++;
1246    }
1247}
1248
1249void
1250DRAMCtrl::processNextReqEvent()
1251{
1252    int busyRanks = 0;
1253    for (auto r : ranks) {
1254        if (!r->isAvailable()) {
1255            // rank is busy refreshing
1256            busyRanks++;
1257
1258            // let the rank know that if it was waiting to drain, it
1259            // is now done and ready to proceed
1260            r->checkDrainDone();
1261        }
1262    }
1263
1264    if (busyRanks == ranksPerChannel) {
1265        // if all ranks are refreshing wait for them to finish
1266        // and stall this state machine without taking any further
1267        // action, and do not schedule a new nextReqEvent
1268        return;
1269    }
1270
1271    // pre-emptively set to false.  Overwrite if in READ_TO_WRITE
1272    // or WRITE_TO_READ state
1273    bool switched_cmd_type = false;
1274    if (busState == READ_TO_WRITE) {
1275        DPRINTF(DRAM, "Switching to writes after %d reads with %d reads "
1276                "waiting\n", readsThisTime, readQueue.size());
1277
1278        // sample and reset the read-related stats as we are now
1279        // transitioning to writes, and all reads are done
1280        rdPerTurnAround.sample(readsThisTime);
1281        readsThisTime = 0;
1282
1283        // now proceed to do the actual writes
1284        busState = WRITE;
1285        switched_cmd_type = true;
1286    } else if (busState == WRITE_TO_READ) {
1287        DPRINTF(DRAM, "Switching to reads after %d writes with %d writes "
1288                "waiting\n", writesThisTime, writeQueue.size());
1289
1290        wrPerTurnAround.sample(writesThisTime);
1291        writesThisTime = 0;
1292
1293        busState = READ;
1294        switched_cmd_type = true;
1295    }
1296
1297    // when we get here it is either a read or a write
1298    if (busState == READ) {
1299
1300        // track if we should switch or not
1301        bool switch_to_writes = false;
1302
1303        if (readQueue.empty()) {
1304            // In the case there is no read request to go next,
1305            // trigger writes if we have passed the low threshold (or
1306            // if we are draining)
1307            if (!writeQueue.empty() &&
1308                (drainManager || writeQueue.size() > writeLowThreshold)) {
1309
1310                switch_to_writes = true;
1311            } else {
1312                // check if we are drained
1313                if (respQueue.empty () && drainManager) {
1314                    DPRINTF(Drain, "DRAM controller done draining\n");
1315                    drainManager->signalDrainDone();
1316                    drainManager = NULL;
1317                }
1318
1319                // nothing to do, not even any point in scheduling an
1320                // event for the next request
1321                return;
1322            }
1323        } else {
1324            // bool to check if there is a read to a free rank
1325            bool found_read = false;
1326
1327            // Figure out which read request goes next, and move it to the
1328            // front of the read queue
1329            found_read = chooseNext(readQueue, switched_cmd_type);
1330
1331            // if no read to an available rank is found then return
1332            // at this point. There could be writes to the available ranks
1333            // which are above the required threshold. However, to
1334            // avoid adding more complexity to the code, return and wait
1335            // for a refresh event to kick things into action again.
1336            if (!found_read)
1337                return;
1338
1339            DRAMPacket* dram_pkt = readQueue.front();
1340            assert(dram_pkt->rankRef.isAvailable());
1341            // here we get a bit creative and shift the bus busy time not
1342            // just the tWTR, but also a CAS latency to capture the fact
1343            // that we are allowed to prepare a new bank, but not issue a
1344            // read command until after tWTR, in essence we capture a
1345            // bubble on the data bus that is tWTR + tCL
1346            if (switched_cmd_type && dram_pkt->rank == activeRank) {
1347                busBusyUntil += tWTR + tCL;
1348            }
1349
1350            doDRAMAccess(dram_pkt);
1351
1352            // At this point we're done dealing with the request
1353            readQueue.pop_front();
1354
1355            // sanity check
1356            assert(dram_pkt->size <= burstSize);
1357            assert(dram_pkt->readyTime >= curTick());
1358
1359            // Insert into response queue. It will be sent back to the
1360            // requestor at its readyTime
1361            if (respQueue.empty()) {
1362                assert(!respondEvent.scheduled());
1363                schedule(respondEvent, dram_pkt->readyTime);
1364            } else {
1365                assert(respQueue.back()->readyTime <= dram_pkt->readyTime);
1366                assert(respondEvent.scheduled());
1367            }
1368
1369            respQueue.push_back(dram_pkt);
1370
1371            // we have so many writes that we have to transition
1372            if (writeQueue.size() > writeHighThreshold) {
1373                switch_to_writes = true;
1374            }
1375        }
1376
1377        // switching to writes, either because the read queue is empty
1378        // and the writes have passed the low threshold (or we are
1379        // draining), or because the writes hit the hight threshold
1380        if (switch_to_writes) {
1381            // transition to writing
1382            busState = READ_TO_WRITE;
1383        }
1384    } else {
1385        // bool to check if write to free rank is found
1386        bool found_write = false;
1387
1388        found_write = chooseNext(writeQueue, switched_cmd_type);
1389
1390        // if no writes to an available rank are found then return.
1391        // There could be reads to the available ranks. However, to avoid
1392        // adding more complexity to the code, return at this point and wait
1393        // for a refresh event to kick things into action again.
1394        if (!found_write)
1395            return;
1396
1397        DRAMPacket* dram_pkt = writeQueue.front();
1398        assert(dram_pkt->rankRef.isAvailable());
1399        // sanity check
1400        assert(dram_pkt->size <= burstSize);
1401
1402        // add a bubble to the data bus, as defined by the
1403        // tRTW when access is to the same rank as previous burst
1404        // Different rank timing is handled with tCS, which is
1405        // applied to colAllowedAt
1406        if (switched_cmd_type && dram_pkt->rank == activeRank) {
1407            busBusyUntil += tRTW;
1408        }
1409
1410        doDRAMAccess(dram_pkt);
1411
1412        writeQueue.pop_front();
1413        delete dram_pkt;
1414
1415        // If we emptied the write queue, or got sufficiently below the
1416        // threshold (using the minWritesPerSwitch as the hysteresis) and
1417        // are not draining, or we have reads waiting and have done enough
1418        // writes, then switch to reads.
1419        if (writeQueue.empty() ||
1420            (writeQueue.size() + minWritesPerSwitch < writeLowThreshold &&
1421             !drainManager) ||
1422            (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) {
1423            // turn the bus back around for reads again
1424            busState = WRITE_TO_READ;
1425
1426            // note that the we switch back to reads also in the idle
1427            // case, which eventually will check for any draining and
1428            // also pause any further scheduling if there is really
1429            // nothing to do
1430        }
1431    }
1432    // It is possible that a refresh to another rank kicks things back into
1433    // action before reaching this point.
1434    if (!nextReqEvent.scheduled())
1435        schedule(nextReqEvent, std::max(nextReqTime, curTick()));
1436
1437    // If there is space available and we have writes waiting then let
1438    // them retry. This is done here to ensure that the retry does not
1439    // cause a nextReqEvent to be scheduled before we do so as part of
1440    // the next request processing
1441    if (retryWrReq && writeQueue.size() < writeBufferSize) {
1442        retryWrReq = false;
1443        port.sendRetry();
1444    }
1445}
1446
1447uint64_t
1448DRAMCtrl::minBankPrep(const deque<DRAMPacket*>& queue,
1449                      bool switched_cmd_type) const
1450{
1451    uint64_t bank_mask = 0;
1452    Tick min_act_at = MaxTick;
1453
1454    uint64_t bank_mask_same_rank = 0;
1455    Tick min_act_at_same_rank = MaxTick;
1456
1457    // Give precedence to commands that access same rank as previous command
1458    bool same_rank_match = false;
1459
1460    // determine if we have queued transactions targetting the
1461    // bank in question
1462    vector<bool> got_waiting(ranksPerChannel * banksPerRank, false);
1463    for (const auto& p : queue) {
1464        if(p->rankRef.isAvailable())
1465            got_waiting[p->bankId] = true;
1466    }
1467
1468    for (int i = 0; i < ranksPerChannel; i++) {
1469        for (int j = 0; j < banksPerRank; j++) {
1470            uint16_t bank_id = i * banksPerRank + j;
1471
1472            // if we have waiting requests for the bank, and it is
1473            // amongst the first available, update the mask
1474            if (got_waiting[bank_id]) {
1475                // make sure this rank is not currently refreshing.
1476                assert(ranks[i]->isAvailable());
1477                // simplistic approximation of when the bank can issue
1478                // an activate, ignoring any rank-to-rank switching
1479                // cost in this calculation
1480                Tick act_at = ranks[i]->banks[j].openRow == Bank::NO_ROW ?
1481                    ranks[i]->banks[j].actAllowedAt :
1482                    std::max(ranks[i]->banks[j].preAllowedAt, curTick()) + tRP;
1483
1484                // prioritize commands that access the
1485                // same rank as previous burst
1486                // Calculate bank mask separately for the case and
1487                // evaluate after loop iterations complete
1488                if (i == activeRank && ranksPerChannel > 1) {
1489                    if (act_at <= min_act_at_same_rank) {
1490                        // reset same rank bank mask if new minimum is found
1491                        // and previous minimum could not immediately send ACT
1492                        if (act_at < min_act_at_same_rank &&
1493                            min_act_at_same_rank > curTick())
1494                            bank_mask_same_rank = 0;
1495
1496                        // Set flag indicating that a same rank
1497                        // opportunity was found
1498                        same_rank_match = true;
1499
1500                        // set the bit corresponding to the available bank
1501                        replaceBits(bank_mask_same_rank, bank_id, bank_id, 1);
1502                        min_act_at_same_rank = act_at;
1503                    }
1504                } else {
1505                    if (act_at <= min_act_at) {
1506                        // reset bank mask if new minimum is found
1507                        // and either previous minimum could not immediately send ACT
1508                        if (act_at < min_act_at && min_act_at > curTick())
1509                            bank_mask = 0;
1510                        // set the bit corresponding to the available bank
1511                        replaceBits(bank_mask, bank_id, bank_id, 1);
1512                        min_act_at = act_at;
1513                    }
1514                }
1515            }
1516        }
1517    }
1518
1519    // Determine the earliest time when the next burst can issue based
1520    // on the current busBusyUntil delay.
1521    // Offset by tRCD to correlate with ACT timing variables
1522    Tick min_cmd_at = busBusyUntil - tCL - tRCD;
1523
1524    // if we have multiple ranks and all
1525    // waiting packets are accessing a rank which was previously active
1526    // then bank_mask_same_rank will be set to a value while bank_mask will
1527    // remain 0. In this case, the function should return the value of
1528    // bank_mask_same_rank.
1529    // else if waiting packets access a rank which was previously active and
1530    // other ranks, prioritize same rank accesses that can issue B2B
1531    // Only optimize for same ranks when the command type
1532    // does not change; do not want to unnecessarily incur tWTR
1533    //
1534    // Resulting FCFS prioritization Order is:
1535    // 1) Commands that access the same rank as previous burst
1536    //    and can prep the bank seamlessly.
1537    // 2) Commands (any rank) with earliest bank prep
1538    if ((bank_mask == 0) || (!switched_cmd_type && same_rank_match &&
1539        min_act_at_same_rank <= min_cmd_at)) {
1540        bank_mask = bank_mask_same_rank;
1541    }
1542
1543    return bank_mask;
1544}
1545
1546DRAMCtrl::Rank::Rank(DRAMCtrl& _memory, const DRAMCtrlParams* _p)
1547    : EventManager(&_memory), memory(_memory),
1548      pwrStateTrans(PWR_IDLE), pwrState(PWR_IDLE), pwrStateTick(0),
1549      refreshState(REF_IDLE), refreshDueAt(0),
1550      power(_p, false), numBanksActive(0),
1551      activateEvent(*this), prechargeEvent(*this),
1552      refreshEvent(*this), powerEvent(*this)
1553{ }
1554
1555void
1556DRAMCtrl::Rank::startup(Tick ref_tick)
1557{
1558    assert(ref_tick > curTick());
1559
1560    pwrStateTick = curTick();
1561
1562    // kick off the refresh, and give ourselves enough time to
1563    // precharge
1564    schedule(refreshEvent, ref_tick);
1565}
1566
1567void
1568DRAMCtrl::Rank::suspend()
1569{
1570    deschedule(refreshEvent);
1571}
1572
1573void
1574DRAMCtrl::Rank::checkDrainDone()
1575{
1576    // if this rank was waiting to drain it is now able to proceed to
1577    // precharge
1578    if (refreshState == REF_DRAIN) {
1579        DPRINTF(DRAM, "Refresh drain done, now precharging\n");
1580
1581        refreshState = REF_PRE;
1582
1583        // hand control back to the refresh event loop
1584        schedule(refreshEvent, curTick());
1585    }
1586}
1587
1588void
1589DRAMCtrl::Rank::processActivateEvent()
1590{
1591    // we should transition to the active state as soon as any bank is active
1592    if (pwrState != PWR_ACT)
1593        // note that at this point numBanksActive could be back at
1594        // zero again due to a precharge scheduled in the future
1595        schedulePowerEvent(PWR_ACT, curTick());
1596}
1597
1598void
1599DRAMCtrl::Rank::processPrechargeEvent()
1600{
1601    // if we reached zero, then special conditions apply as we track
1602    // if all banks are precharged for the power models
1603    if (numBanksActive == 0) {
1604        // we should transition to the idle state when the last bank
1605        // is precharged
1606        schedulePowerEvent(PWR_IDLE, curTick());
1607    }
1608}
1609
1610void
1611DRAMCtrl::Rank::processRefreshEvent()
1612{
1613    // when first preparing the refresh, remember when it was due
1614    if (refreshState == REF_IDLE) {
1615        // remember when the refresh is due
1616        refreshDueAt = curTick();
1617
1618        // proceed to drain
1619        refreshState = REF_DRAIN;
1620
1621        DPRINTF(DRAM, "Refresh due\n");
1622    }
1623
1624    // let any scheduled read or write to the same rank go ahead,
1625    // after which it will
1626    // hand control back to this event loop
1627    if (refreshState == REF_DRAIN) {
1628        // if a request is at the moment being handled and this request is
1629        // accessing the current rank then wait for it to finish
1630        if ((rank == memory.activeRank)
1631            && (memory.nextReqEvent.scheduled())) {
1632            // hand control over to the request loop until it is
1633            // evaluated next
1634            DPRINTF(DRAM, "Refresh awaiting draining\n");
1635
1636            return;
1637        } else {
1638            refreshState = REF_PRE;
1639        }
1640    }
1641
1642    // at this point, ensure that all banks are precharged
1643    if (refreshState == REF_PRE) {
1644        // precharge any active bank if we are not already in the idle
1645        // state
1646        if (pwrState != PWR_IDLE) {
1647            // at the moment, we use a precharge all even if there is
1648            // only a single bank open
1649            DPRINTF(DRAM, "Precharging all\n");
1650
1651            // first determine when we can precharge
1652            Tick pre_at = curTick();
1653
1654            for (auto &b : banks) {
1655                // respect both causality and any existing bank
1656                // constraints, some banks could already have a
1657                // (auto) precharge scheduled
1658                pre_at = std::max(b.preAllowedAt, pre_at);
1659            }
1660
1661            // make sure all banks per rank are precharged, and for those that
1662            // already are, update their availability
1663            Tick act_allowed_at = pre_at + memory.tRP;
1664
1665            for (auto &b : banks) {
1666                if (b.openRow != Bank::NO_ROW) {
1667                    memory.prechargeBank(*this, b, pre_at, false);
1668                } else {
1669                    b.actAllowedAt = std::max(b.actAllowedAt, act_allowed_at);
1670                    b.preAllowedAt = std::max(b.preAllowedAt, pre_at);
1671                }
1672            }
1673
1674            // precharge all banks in rank
1675            power.powerlib.doCommand(MemCommand::PREA, 0,
1676                                     divCeil(pre_at, memory.tCK) -
1677                                     memory.timeStampOffset);
1678
1679            DPRINTF(DRAMPower, "%llu,PREA,0,%d\n",
1680                    divCeil(pre_at, memory.tCK) -
1681                            memory.timeStampOffset, rank);
1682        } else {
1683            DPRINTF(DRAM, "All banks already precharged, starting refresh\n");
1684
1685            // go ahead and kick the power state machine into gear if
1686            // we are already idle
1687            schedulePowerEvent(PWR_REF, curTick());
1688        }
1689
1690        refreshState = REF_RUN;
1691        assert(numBanksActive == 0);
1692
1693        // wait for all banks to be precharged, at which point the
1694        // power state machine will transition to the idle state, and
1695        // automatically move to a refresh, at that point it will also
1696        // call this method to get the refresh event loop going again
1697        return;
1698    }
1699
1700    // last but not least we perform the actual refresh
1701    if (refreshState == REF_RUN) {
1702        // should never get here with any banks active
1703        assert(numBanksActive == 0);
1704        assert(pwrState == PWR_REF);
1705
1706        Tick ref_done_at = curTick() + memory.tRFC;
1707
1708        for (auto &b : banks) {
1709            b.actAllowedAt = ref_done_at;
1710        }
1711
1712        // at the moment this affects all ranks
1713        power.powerlib.doCommand(MemCommand::REF, 0,
1714                                 divCeil(curTick(), memory.tCK) -
1715                                 memory.timeStampOffset);
1716
1717        // at the moment sort the list of commands and update the counters
1718        // for DRAMPower libray when doing a refresh
1719        sort(power.powerlib.cmdList.begin(),
1720             power.powerlib.cmdList.end(), DRAMCtrl::sortTime);
1721
1722        // update the counters for DRAMPower, passing false to
1723        // indicate that this is not the last command in the
1724        // list. DRAMPower requires this information for the
1725        // correct calculation of the background energy at the end
1726        // of the simulation. Ideally we would want to call this
1727        // function with true once at the end of the
1728        // simulation. However, the discarded energy is extremly
1729        // small and does not effect the final results.
1730        power.powerlib.updateCounters(false);
1731
1732        // call the energy function
1733        power.powerlib.calcEnergy();
1734
1735        // Update the stats
1736        updatePowerStats();
1737
1738        DPRINTF(DRAMPower, "%llu,REF,0,%d\n", divCeil(curTick(), memory.tCK) -
1739                memory.timeStampOffset, rank);
1740
1741        // make sure we did not wait so long that we cannot make up
1742        // for it
1743        if (refreshDueAt + memory.tREFI < ref_done_at) {
1744            fatal("Refresh was delayed so long we cannot catch up\n");
1745        }
1746
1747        // compensate for the delay in actually performing the refresh
1748        // when scheduling the next one
1749        schedule(refreshEvent, refreshDueAt + memory.tREFI - memory.tRP);
1750
1751        assert(!powerEvent.scheduled());
1752
1753        // move to the idle power state once the refresh is done, this
1754        // will also move the refresh state machine to the refresh
1755        // idle state
1756        schedulePowerEvent(PWR_IDLE, ref_done_at);
1757
1758        DPRINTF(DRAMState, "Refresh done at %llu and next refresh at %llu\n",
1759                ref_done_at, refreshDueAt + memory.tREFI);
1760    }
1761}
1762
1763void
1764DRAMCtrl::Rank::schedulePowerEvent(PowerState pwr_state, Tick tick)
1765{
1766    // respect causality
1767    assert(tick >= curTick());
1768
1769    if (!powerEvent.scheduled()) {
1770        DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n",
1771                tick, pwr_state);
1772
1773        // insert the new transition
1774        pwrStateTrans = pwr_state;
1775
1776        schedule(powerEvent, tick);
1777    } else {
1778        panic("Scheduled power event at %llu to state %d, "
1779              "with scheduled event at %llu to %d\n", tick, pwr_state,
1780              powerEvent.when(), pwrStateTrans);
1781    }
1782}
1783
1784void
1785DRAMCtrl::Rank::processPowerEvent()
1786{
1787    // remember where we were, and for how long
1788    Tick duration = curTick() - pwrStateTick;
1789    PowerState prev_state = pwrState;
1790
1791    // update the accounting
1792    pwrStateTime[prev_state] += duration;
1793
1794    pwrState = pwrStateTrans;
1795    pwrStateTick = curTick();
1796
1797    if (pwrState == PWR_IDLE) {
1798        DPRINTF(DRAMState, "All banks precharged\n");
1799
1800        // if we were refreshing, make sure we start scheduling requests again
1801        if (prev_state == PWR_REF) {
1802            DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration);
1803            assert(pwrState == PWR_IDLE);
1804
1805            // kick things into action again
1806            refreshState = REF_IDLE;
1807            // a request event could be already scheduled by the state
1808            // machine of the other rank
1809            if (!memory.nextReqEvent.scheduled())
1810                schedule(memory.nextReqEvent, curTick());
1811        } else {
1812            assert(prev_state == PWR_ACT);
1813
1814            // if we have a pending refresh, and are now moving to
1815            // the idle state, direclty transition to a refresh
1816            if (refreshState == REF_RUN) {
1817                // there should be nothing waiting at this point
1818                assert(!powerEvent.scheduled());
1819
1820                // update the state in zero time and proceed below
1821                pwrState = PWR_REF;
1822            }
1823        }
1824    }
1825
1826    // we transition to the refresh state, let the refresh state
1827    // machine know of this state update and let it deal with the
1828    // scheduling of the next power state transition as well as the
1829    // following refresh
1830    if (pwrState == PWR_REF) {
1831        DPRINTF(DRAMState, "Refreshing\n");
1832        // kick the refresh event loop into action again, and that
1833        // in turn will schedule a transition to the idle power
1834        // state once the refresh is done
1835        assert(refreshState == REF_RUN);
1836        processRefreshEvent();
1837    }
1838}
1839
1840void
1841DRAMCtrl::Rank::updatePowerStats()
1842{
1843    // Get the energy and power from DRAMPower
1844    Data::MemoryPowerModel::Energy energy =
1845        power.powerlib.getEnergy();
1846    Data::MemoryPowerModel::Power rank_power =
1847        power.powerlib.getPower();
1848
1849    actEnergy = energy.act_energy * memory.devicesPerRank;
1850    preEnergy = energy.pre_energy * memory.devicesPerRank;
1851    readEnergy = energy.read_energy * memory.devicesPerRank;
1852    writeEnergy = energy.write_energy * memory.devicesPerRank;
1853    refreshEnergy = energy.ref_energy * memory.devicesPerRank;
1854    actBackEnergy = energy.act_stdby_energy * memory.devicesPerRank;
1855    preBackEnergy = energy.pre_stdby_energy * memory.devicesPerRank;
1856    totalEnergy = energy.total_energy * memory.devicesPerRank;
1857    averagePower = rank_power.average_power * memory.devicesPerRank;
1858}
1859
1860void
1861DRAMCtrl::Rank::regStats()
1862{
1863    using namespace Stats;
1864
1865    pwrStateTime
1866        .init(5)
1867        .name(name() + ".memoryStateTime")
1868        .desc("Time in different power states");
1869    pwrStateTime.subname(0, "IDLE");
1870    pwrStateTime.subname(1, "REF");
1871    pwrStateTime.subname(2, "PRE_PDN");
1872    pwrStateTime.subname(3, "ACT");
1873    pwrStateTime.subname(4, "ACT_PDN");
1874
1875    actEnergy
1876        .name(name() + ".actEnergy")
1877        .desc("Energy for activate commands per rank (pJ)");
1878
1879    preEnergy
1880        .name(name() + ".preEnergy")
1881        .desc("Energy for precharge commands per rank (pJ)");
1882
1883    readEnergy
1884        .name(name() + ".readEnergy")
1885        .desc("Energy for read commands per rank (pJ)");
1886
1887    writeEnergy
1888        .name(name() + ".writeEnergy")
1889        .desc("Energy for write commands per rank (pJ)");
1890
1891    refreshEnergy
1892        .name(name() + ".refreshEnergy")
1893        .desc("Energy for refresh commands per rank (pJ)");
1894
1895    actBackEnergy
1896        .name(name() + ".actBackEnergy")
1897        .desc("Energy for active background per rank (pJ)");
1898
1899    preBackEnergy
1900        .name(name() + ".preBackEnergy")
1901        .desc("Energy for precharge background per rank (pJ)");
1902
1903    totalEnergy
1904        .name(name() + ".totalEnergy")
1905        .desc("Total energy per rank (pJ)");
1906
1907    averagePower
1908        .name(name() + ".averagePower")
1909        .desc("Core power per rank (mW)");
1910}
1911void
1912DRAMCtrl::regStats()
1913{
1914    using namespace Stats;
1915
1916    AbstractMemory::regStats();
1917
1918    for (auto r : ranks) {
1919        r->regStats();
1920    }
1921
1922    readReqs
1923        .name(name() + ".readReqs")
1924        .desc("Number of read requests accepted");
1925
1926    writeReqs
1927        .name(name() + ".writeReqs")
1928        .desc("Number of write requests accepted");
1929
1930    readBursts
1931        .name(name() + ".readBursts")
1932        .desc("Number of DRAM read bursts, "
1933              "including those serviced by the write queue");
1934
1935    writeBursts
1936        .name(name() + ".writeBursts")
1937        .desc("Number of DRAM write bursts, "
1938              "including those merged in the write queue");
1939
1940    servicedByWrQ
1941        .name(name() + ".servicedByWrQ")
1942        .desc("Number of DRAM read bursts serviced by the write queue");
1943
1944    mergedWrBursts
1945        .name(name() + ".mergedWrBursts")
1946        .desc("Number of DRAM write bursts merged with an existing one");
1947
1948    neitherReadNorWrite
1949        .name(name() + ".neitherReadNorWriteReqs")
1950        .desc("Number of requests that are neither read nor write");
1951
1952    perBankRdBursts
1953        .init(banksPerRank * ranksPerChannel)
1954        .name(name() + ".perBankRdBursts")
1955        .desc("Per bank write bursts");
1956
1957    perBankWrBursts
1958        .init(banksPerRank * ranksPerChannel)
1959        .name(name() + ".perBankWrBursts")
1960        .desc("Per bank write bursts");
1961
1962    avgRdQLen
1963        .name(name() + ".avgRdQLen")
1964        .desc("Average read queue length when enqueuing")
1965        .precision(2);
1966
1967    avgWrQLen
1968        .name(name() + ".avgWrQLen")
1969        .desc("Average write queue length when enqueuing")
1970        .precision(2);
1971
1972    totQLat
1973        .name(name() + ".totQLat")
1974        .desc("Total ticks spent queuing");
1975
1976    totBusLat
1977        .name(name() + ".totBusLat")
1978        .desc("Total ticks spent in databus transfers");
1979
1980    totMemAccLat
1981        .name(name() + ".totMemAccLat")
1982        .desc("Total ticks spent from burst creation until serviced "
1983              "by the DRAM");
1984
1985    avgQLat
1986        .name(name() + ".avgQLat")
1987        .desc("Average queueing delay per DRAM burst")
1988        .precision(2);
1989
1990    avgQLat = totQLat / (readBursts - servicedByWrQ);
1991
1992    avgBusLat
1993        .name(name() + ".avgBusLat")
1994        .desc("Average bus latency per DRAM burst")
1995        .precision(2);
1996
1997    avgBusLat = totBusLat / (readBursts - servicedByWrQ);
1998
1999    avgMemAccLat
2000        .name(name() + ".avgMemAccLat")
2001        .desc("Average memory access latency per DRAM burst")
2002        .precision(2);
2003
2004    avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ);
2005
2006    numRdRetry
2007        .name(name() + ".numRdRetry")
2008        .desc("Number of times read queue was full causing retry");
2009
2010    numWrRetry
2011        .name(name() + ".numWrRetry")
2012        .desc("Number of times write queue was full causing retry");
2013
2014    readRowHits
2015        .name(name() + ".readRowHits")
2016        .desc("Number of row buffer hits during reads");
2017
2018    writeRowHits
2019        .name(name() + ".writeRowHits")
2020        .desc("Number of row buffer hits during writes");
2021
2022    readRowHitRate
2023        .name(name() + ".readRowHitRate")
2024        .desc("Row buffer hit rate for reads")
2025        .precision(2);
2026
2027    readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100;
2028
2029    writeRowHitRate
2030        .name(name() + ".writeRowHitRate")
2031        .desc("Row buffer hit rate for writes")
2032        .precision(2);
2033
2034    writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100;
2035
2036    readPktSize
2037        .init(ceilLog2(burstSize) + 1)
2038        .name(name() + ".readPktSize")
2039        .desc("Read request sizes (log2)");
2040
2041     writePktSize
2042        .init(ceilLog2(burstSize) + 1)
2043        .name(name() + ".writePktSize")
2044        .desc("Write request sizes (log2)");
2045
2046     rdQLenPdf
2047        .init(readBufferSize)
2048        .name(name() + ".rdQLenPdf")
2049        .desc("What read queue length does an incoming req see");
2050
2051     wrQLenPdf
2052        .init(writeBufferSize)
2053        .name(name() + ".wrQLenPdf")
2054        .desc("What write queue length does an incoming req see");
2055
2056     bytesPerActivate
2057         .init(maxAccessesPerRow)
2058         .name(name() + ".bytesPerActivate")
2059         .desc("Bytes accessed per row activation")
2060         .flags(nozero);
2061
2062     rdPerTurnAround
2063         .init(readBufferSize)
2064         .name(name() + ".rdPerTurnAround")
2065         .desc("Reads before turning the bus around for writes")
2066         .flags(nozero);
2067
2068     wrPerTurnAround
2069         .init(writeBufferSize)
2070         .name(name() + ".wrPerTurnAround")
2071         .desc("Writes before turning the bus around for reads")
2072         .flags(nozero);
2073
2074    bytesReadDRAM
2075        .name(name() + ".bytesReadDRAM")
2076        .desc("Total number of bytes read from DRAM");
2077
2078    bytesReadWrQ
2079        .name(name() + ".bytesReadWrQ")
2080        .desc("Total number of bytes read from write queue");
2081
2082    bytesWritten
2083        .name(name() + ".bytesWritten")
2084        .desc("Total number of bytes written to DRAM");
2085
2086    bytesReadSys
2087        .name(name() + ".bytesReadSys")
2088        .desc("Total read bytes from the system interface side");
2089
2090    bytesWrittenSys
2091        .name(name() + ".bytesWrittenSys")
2092        .desc("Total written bytes from the system interface side");
2093
2094    avgRdBW
2095        .name(name() + ".avgRdBW")
2096        .desc("Average DRAM read bandwidth in MiByte/s")
2097        .precision(2);
2098
2099    avgRdBW = (bytesReadDRAM / 1000000) / simSeconds;
2100
2101    avgWrBW
2102        .name(name() + ".avgWrBW")
2103        .desc("Average achieved write bandwidth in MiByte/s")
2104        .precision(2);
2105
2106    avgWrBW = (bytesWritten / 1000000) / simSeconds;
2107
2108    avgRdBWSys
2109        .name(name() + ".avgRdBWSys")
2110        .desc("Average system read bandwidth in MiByte/s")
2111        .precision(2);
2112
2113    avgRdBWSys = (bytesReadSys / 1000000) / simSeconds;
2114
2115    avgWrBWSys
2116        .name(name() + ".avgWrBWSys")
2117        .desc("Average system write bandwidth in MiByte/s")
2118        .precision(2);
2119
2120    avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds;
2121
2122    peakBW
2123        .name(name() + ".peakBW")
2124        .desc("Theoretical peak bandwidth in MiByte/s")
2125        .precision(2);
2126
2127    peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000;
2128
2129    busUtil
2130        .name(name() + ".busUtil")
2131        .desc("Data bus utilization in percentage")
2132        .precision(2);
2133    busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
2134
2135    totGap
2136        .name(name() + ".totGap")
2137        .desc("Total gap between requests");
2138
2139    avgGap
2140        .name(name() + ".avgGap")
2141        .desc("Average gap between requests")
2142        .precision(2);
2143
2144    avgGap = totGap / (readReqs + writeReqs);
2145
2146    // Stats for DRAM Power calculation based on Micron datasheet
2147    busUtilRead
2148        .name(name() + ".busUtilRead")
2149        .desc("Data bus utilization in percentage for reads")
2150        .precision(2);
2151
2152    busUtilRead = avgRdBW / peakBW * 100;
2153
2154    busUtilWrite
2155        .name(name() + ".busUtilWrite")
2156        .desc("Data bus utilization in percentage for writes")
2157        .precision(2);
2158
2159    busUtilWrite = avgWrBW / peakBW * 100;
2160
2161    pageHitRate
2162        .name(name() + ".pageHitRate")
2163        .desc("Row buffer hit rate, read and write combined")
2164        .precision(2);
2165
2166    pageHitRate = (writeRowHits + readRowHits) /
2167        (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100;
2168}
2169
2170void
2171DRAMCtrl::recvFunctional(PacketPtr pkt)
2172{
2173    // rely on the abstract memory
2174    functionalAccess(pkt);
2175}
2176
2177BaseSlavePort&
2178DRAMCtrl::getSlavePort(const string &if_name, PortID idx)
2179{
2180    if (if_name != "port") {
2181        return MemObject::getSlavePort(if_name, idx);
2182    } else {
2183        return port;
2184    }
2185}
2186
2187unsigned int
2188DRAMCtrl::drain(DrainManager *dm)
2189{
2190    unsigned int count = port.drain(dm);
2191
2192    // if there is anything in any of our internal queues, keep track
2193    // of that as well
2194    if (!(writeQueue.empty() && readQueue.empty() &&
2195          respQueue.empty())) {
2196        DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
2197                " resp: %d\n", writeQueue.size(), readQueue.size(),
2198                respQueue.size());
2199        ++count;
2200        drainManager = dm;
2201
2202        // the only part that is not drained automatically over time
2203        // is the write queue, thus kick things into action if needed
2204        if (!writeQueue.empty() && !nextReqEvent.scheduled()) {
2205            schedule(nextReqEvent, curTick());
2206        }
2207    }
2208
2209    if (count)
2210        setDrainState(Drainable::Draining);
2211    else
2212        setDrainState(Drainable::Drained);
2213    return count;
2214}
2215
2216void
2217DRAMCtrl::drainResume()
2218{
2219    if (!isTimingMode && system()->isTimingMode()) {
2220        // if we switched to timing mode, kick things into action,
2221        // and behave as if we restored from a checkpoint
2222        startup();
2223    } else if (isTimingMode && !system()->isTimingMode()) {
2224        // if we switch from timing mode, stop the refresh events to
2225        // not cause issues with KVM
2226        for (auto r : ranks) {
2227            r->suspend();
2228        }
2229    }
2230
2231    // update the mode
2232    isTimingMode = system()->isTimingMode();
2233}
2234
2235DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory)
2236    : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
2237      memory(_memory)
2238{ }
2239
2240AddrRangeList
2241DRAMCtrl::MemoryPort::getAddrRanges() const
2242{
2243    AddrRangeList ranges;
2244    ranges.push_back(memory.getAddrRange());
2245    return ranges;
2246}
2247
2248void
2249DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt)
2250{
2251    pkt->pushLabel(memory.name());
2252
2253    if (!queue.checkFunctional(pkt)) {
2254        // Default implementation of SimpleTimingPort::recvFunctional()
2255        // calls recvAtomic() and throws away the latency; we can save a
2256        // little here by just not calculating the latency.
2257        memory.recvFunctional(pkt);
2258    }
2259
2260    pkt->popLabel();
2261}
2262
2263Tick
2264DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt)
2265{
2266    return memory.recvAtomic(pkt);
2267}
2268
2269bool
2270DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt)
2271{
2272    // pass it to the memory controller
2273    return memory.recvTimingReq(pkt);
2274}
2275
2276DRAMCtrl*
2277DRAMCtrlParams::create()
2278{
2279    return new DRAMCtrl(this);
2280}
2281