dram_ctrl.cc revision 10619:6dd27a0e0d23
1/*
2 * Copyright (c) 2010-2014 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2013 Amin Farmahini-Farahani
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Andreas Hansson
41 *          Ani Udipi
42 *          Neha Agarwal
43 *          Omar Naji
44 */
45
46#include "base/bitfield.hh"
47#include "base/trace.hh"
48#include "debug/DRAM.hh"
49#include "debug/DRAMPower.hh"
50#include "debug/DRAMState.hh"
51#include "debug/Drain.hh"
52#include "mem/dram_ctrl.hh"
53#include "sim/system.hh"
54
55using namespace std;
56using namespace Data;
57
58DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
59    AbstractMemory(p),
60    port(name() + ".port", *this), isTimingMode(false),
61    retryRdReq(false), retryWrReq(false),
62    busState(READ),
63    nextReqEvent(this), respondEvent(this),
64    drainManager(NULL),
65    deviceSize(p->device_size),
66    deviceBusWidth(p->device_bus_width), burstLength(p->burst_length),
67    deviceRowBufferSize(p->device_rowbuffer_size),
68    devicesPerRank(p->devices_per_rank),
69    burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8),
70    rowBufferSize(devicesPerRank * deviceRowBufferSize),
71    columnsPerRowBuffer(rowBufferSize / burstSize),
72    columnsPerStripe(range.granularity() / burstSize),
73    ranksPerChannel(p->ranks_per_channel),
74    bankGroupsPerRank(p->bank_groups_per_rank),
75    bankGroupArch(p->bank_groups_per_rank > 0),
76    banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0),
77    readBufferSize(p->read_buffer_size),
78    writeBufferSize(p->write_buffer_size),
79    writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0),
80    writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0),
81    minWritesPerSwitch(p->min_writes_per_switch),
82    writesThisTime(0), readsThisTime(0),
83    tCK(p->tCK), tWTR(p->tWTR), tRTW(p->tRTW), tCS(p->tCS), tBURST(p->tBURST),
84    tCCD_L(p->tCCD_L), tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS),
85    tWR(p->tWR), tRTP(p->tRTP), tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD),
86    tRRD_L(p->tRRD_L), tXAW(p->tXAW), activationLimit(p->activation_limit),
87    memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
88    pageMgmt(p->page_policy),
89    maxAccessesPerRow(p->max_accesses_per_row),
90    frontendLatency(p->static_frontend_latency),
91    backendLatency(p->static_backend_latency),
92    busBusyUntil(0), prevArrival(0),
93    nextReqTime(0), activeRank(0), timeStampOffset(0)
94{
95    for (int i = 0; i < ranksPerChannel; i++) {
96        Rank* rank = new Rank(*this, p);
97        ranks.push_back(rank);
98
99        rank->actTicks.resize(activationLimit, 0);
100        rank->banks.resize(banksPerRank);
101        rank->rank = i;
102
103        for (int b = 0; b < banksPerRank; b++) {
104            rank->banks[b].bank = b;
105            // GDDR addressing of banks to BG is linear.
106            // Here we assume that all DRAM generations address bank groups as
107            // follows:
108            if (bankGroupArch) {
109                // Simply assign lower bits to bank group in order to
110                // rotate across bank groups as banks are incremented
111                // e.g. with 4 banks per bank group and 16 banks total:
112                //    banks 0,4,8,12  are in bank group 0
113                //    banks 1,5,9,13  are in bank group 1
114                //    banks 2,6,10,14 are in bank group 2
115                //    banks 3,7,11,15 are in bank group 3
116                rank->banks[b].bankgr = b % bankGroupsPerRank;
117            } else {
118                // No bank groups; simply assign to bank number
119                rank->banks[b].bankgr = b;
120            }
121        }
122    }
123
124    // perform a basic check of the write thresholds
125    if (p->write_low_thresh_perc >= p->write_high_thresh_perc)
126        fatal("Write buffer low threshold %d must be smaller than the "
127              "high threshold %d\n", p->write_low_thresh_perc,
128              p->write_high_thresh_perc);
129
130    // determine the rows per bank by looking at the total capacity
131    uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size());
132
133    // determine the dram actual capacity from the DRAM config in Mbytes
134    uint64_t deviceCapacity = deviceSize / (1024 * 1024) * devicesPerRank *
135        ranksPerChannel;
136
137    // if actual DRAM size does not match memory capacity in system warn!
138    if (deviceCapacity != capacity / (1024 * 1024))
139        warn("DRAM device capacity (%d Mbytes) does not match the "
140             "address range assigned (%d Mbytes)\n", deviceCapacity,
141             capacity / (1024 * 1024));
142
143    DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
144            AbstractMemory::size());
145
146    DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n",
147            rowBufferSize, columnsPerRowBuffer);
148
149    rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel);
150
151    // a bit of sanity checks on the interleaving
152    if (range.interleaved()) {
153        if (channels != range.stripes())
154            fatal("%s has %d interleaved address stripes but %d channel(s)\n",
155                  name(), range.stripes(), channels);
156
157        if (addrMapping == Enums::RoRaBaChCo) {
158            if (rowBufferSize != range.granularity()) {
159                fatal("Channel interleaving of %s doesn't match RoRaBaChCo "
160                      "address map\n", name());
161            }
162        } else if (addrMapping == Enums::RoRaBaCoCh ||
163                   addrMapping == Enums::RoCoRaBaCh) {
164            // for the interleavings with channel bits in the bottom,
165            // if the system uses a channel striping granularity that
166            // is larger than the DRAM burst size, then map the
167            // sequential accesses within a stripe to a number of
168            // columns in the DRAM, effectively placing some of the
169            // lower-order column bits as the least-significant bits
170            // of the address (above the ones denoting the burst size)
171            assert(columnsPerStripe >= 1);
172
173            // channel striping has to be done at a granularity that
174            // is equal or larger to a cache line
175            if (system()->cacheLineSize() > range.granularity()) {
176                fatal("Channel interleaving of %s must be at least as large "
177                      "as the cache line size\n", name());
178            }
179
180            // ...and equal or smaller than the row-buffer size
181            if (rowBufferSize < range.granularity()) {
182                fatal("Channel interleaving of %s must be at most as large "
183                      "as the row-buffer size\n", name());
184            }
185            // this is essentially the check above, so just to be sure
186            assert(columnsPerStripe <= columnsPerRowBuffer);
187        }
188    }
189
190    // some basic sanity checks
191    if (tREFI <= tRP || tREFI <= tRFC) {
192        fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n",
193              tREFI, tRP, tRFC);
194    }
195
196    // basic bank group architecture checks ->
197    if (bankGroupArch) {
198        // must have at least one bank per bank group
199        if (bankGroupsPerRank > banksPerRank) {
200            fatal("banks per rank (%d) must be equal to or larger than "
201                  "banks groups per rank (%d)\n",
202                  banksPerRank, bankGroupsPerRank);
203        }
204        // must have same number of banks in each bank group
205        if ((banksPerRank % bankGroupsPerRank) != 0) {
206            fatal("Banks per rank (%d) must be evenly divisible by bank groups "
207                  "per rank (%d) for equal banks per bank group\n",
208                  banksPerRank, bankGroupsPerRank);
209        }
210        // tCCD_L should be greater than minimal, back-to-back burst delay
211        if (tCCD_L <= tBURST) {
212            fatal("tCCD_L (%d) should be larger than tBURST (%d) when "
213                  "bank groups per rank (%d) is greater than 1\n",
214                  tCCD_L, tBURST, bankGroupsPerRank);
215        }
216        // tRRD_L is greater than minimal, same bank group ACT-to-ACT delay
217        // some datasheets might specify it equal to tRRD
218        if (tRRD_L < tRRD) {
219            fatal("tRRD_L (%d) should be larger than tRRD (%d) when "
220                  "bank groups per rank (%d) is greater than 1\n",
221                  tRRD_L, tRRD, bankGroupsPerRank);
222        }
223    }
224
225}
226
227void
228DRAMCtrl::init()
229{
230    AbstractMemory::init();
231
232   if (!port.isConnected()) {
233        fatal("DRAMCtrl %s is unconnected!\n", name());
234    } else {
235        port.sendRangeChange();
236    }
237}
238
239void
240DRAMCtrl::startup()
241{
242    // remember the memory system mode of operation
243    isTimingMode = system()->isTimingMode();
244
245    if (isTimingMode) {
246        // timestamp offset should be in clock cycles for DRAMPower
247        timeStampOffset = divCeil(curTick(), tCK);
248
249        // update the start tick for the precharge accounting to the
250        // current tick
251        for (auto r : ranks) {
252            r->startup(curTick() + tREFI - tRP);
253        }
254
255        // shift the bus busy time sufficiently far ahead that we never
256        // have to worry about negative values when computing the time for
257        // the next request, this will add an insignificant bubble at the
258        // start of simulation
259        busBusyUntil = curTick() + tRP + tRCD + tCL;
260    }
261}
262
263Tick
264DRAMCtrl::recvAtomic(PacketPtr pkt)
265{
266    DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
267
268    // do the actual memory access and turn the packet into a response
269    access(pkt);
270
271    Tick latency = 0;
272    if (!pkt->memInhibitAsserted() && pkt->hasData()) {
273        // this value is not supposed to be accurate, just enough to
274        // keep things going, mimic a closed page
275        latency = tRP + tRCD + tCL;
276    }
277    return latency;
278}
279
280bool
281DRAMCtrl::readQueueFull(unsigned int neededEntries) const
282{
283    DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n",
284            readBufferSize, readQueue.size() + respQueue.size(),
285            neededEntries);
286
287    return
288        (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize;
289}
290
291bool
292DRAMCtrl::writeQueueFull(unsigned int neededEntries) const
293{
294    DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n",
295            writeBufferSize, writeQueue.size(), neededEntries);
296    return (writeQueue.size() + neededEntries) > writeBufferSize;
297}
298
299DRAMCtrl::DRAMPacket*
300DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size,
301                       bool isRead)
302{
303    // decode the address based on the address mapping scheme, with
304    // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and
305    // channel, respectively
306    uint8_t rank;
307    uint8_t bank;
308    // use a 64-bit unsigned during the computations as the row is
309    // always the top bits, and check before creating the DRAMPacket
310    uint64_t row;
311
312    // truncate the address to a DRAM burst, which makes it unique to
313    // a specific column, row, bank, rank and channel
314    Addr addr = dramPktAddr / burstSize;
315
316    // we have removed the lowest order address bits that denote the
317    // position within the column
318    if (addrMapping == Enums::RoRaBaChCo) {
319        // the lowest order bits denote the column to ensure that
320        // sequential cache lines occupy the same row
321        addr = addr / columnsPerRowBuffer;
322
323        // take out the channel part of the address
324        addr = addr / channels;
325
326        // after the channel bits, get the bank bits to interleave
327        // over the banks
328        bank = addr % banksPerRank;
329        addr = addr / banksPerRank;
330
331        // after the bank, we get the rank bits which thus interleaves
332        // over the ranks
333        rank = addr % ranksPerChannel;
334        addr = addr / ranksPerChannel;
335
336        // lastly, get the row bits
337        row = addr % rowsPerBank;
338        addr = addr / rowsPerBank;
339    } else if (addrMapping == Enums::RoRaBaCoCh) {
340        // take out the lower-order column bits
341        addr = addr / columnsPerStripe;
342
343        // take out the channel part of the address
344        addr = addr / channels;
345
346        // next, the higher-order column bites
347        addr = addr / (columnsPerRowBuffer / columnsPerStripe);
348
349        // after the column bits, we get the bank bits to interleave
350        // over the banks
351        bank = addr % banksPerRank;
352        addr = addr / banksPerRank;
353
354        // after the bank, we get the rank bits which thus interleaves
355        // over the ranks
356        rank = addr % ranksPerChannel;
357        addr = addr / ranksPerChannel;
358
359        // lastly, get the row bits
360        row = addr % rowsPerBank;
361        addr = addr / rowsPerBank;
362    } else if (addrMapping == Enums::RoCoRaBaCh) {
363        // optimise for closed page mode and utilise maximum
364        // parallelism of the DRAM (at the cost of power)
365
366        // take out the lower-order column bits
367        addr = addr / columnsPerStripe;
368
369        // take out the channel part of the address, not that this has
370        // to match with how accesses are interleaved between the
371        // controllers in the address mapping
372        addr = addr / channels;
373
374        // start with the bank bits, as this provides the maximum
375        // opportunity for parallelism between requests
376        bank = addr % banksPerRank;
377        addr = addr / banksPerRank;
378
379        // next get the rank bits
380        rank = addr % ranksPerChannel;
381        addr = addr / ranksPerChannel;
382
383        // next, the higher-order column bites
384        addr = addr / (columnsPerRowBuffer / columnsPerStripe);
385
386        // lastly, get the row bits
387        row = addr % rowsPerBank;
388        addr = addr / rowsPerBank;
389    } else
390        panic("Unknown address mapping policy chosen!");
391
392    assert(rank < ranksPerChannel);
393    assert(bank < banksPerRank);
394    assert(row < rowsPerBank);
395    assert(row < Bank::NO_ROW);
396
397    DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
398            dramPktAddr, rank, bank, row);
399
400    // create the corresponding DRAM packet with the entry time and
401    // ready time set to the current tick, the latter will be updated
402    // later
403    uint16_t bank_id = banksPerRank * rank + bank;
404    return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr,
405                          size, ranks[rank]->banks[bank], *ranks[rank]);
406}
407
408void
409DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount)
410{
411    // only add to the read queue here. whenever the request is
412    // eventually done, set the readyTime, and call schedule()
413    assert(!pkt->isWrite());
414
415    assert(pktCount != 0);
416
417    // if the request size is larger than burst size, the pkt is split into
418    // multiple DRAM packets
419    // Note if the pkt starting address is not aligened to burst size, the
420    // address of first DRAM packet is kept unaliged. Subsequent DRAM packets
421    // are aligned to burst size boundaries. This is to ensure we accurately
422    // check read packets against packets in write queue.
423    Addr addr = pkt->getAddr();
424    unsigned pktsServicedByWrQ = 0;
425    BurstHelper* burst_helper = NULL;
426    for (int cnt = 0; cnt < pktCount; ++cnt) {
427        unsigned size = std::min((addr | (burstSize - 1)) + 1,
428                        pkt->getAddr() + pkt->getSize()) - addr;
429        readPktSize[ceilLog2(size)]++;
430        readBursts++;
431
432        // First check write buffer to see if the data is already at
433        // the controller
434        bool foundInWrQ = false;
435        for (auto i = writeQueue.begin(); i != writeQueue.end(); ++i) {
436            // check if the read is subsumed in the write entry we are
437            // looking at
438            if ((*i)->addr <= addr &&
439                (addr + size) <= ((*i)->addr + (*i)->size)) {
440                foundInWrQ = true;
441                servicedByWrQ++;
442                pktsServicedByWrQ++;
443                DPRINTF(DRAM, "Read to addr %lld with size %d serviced by "
444                        "write queue\n", addr, size);
445                bytesReadWrQ += burstSize;
446                break;
447            }
448        }
449
450        // If not found in the write q, make a DRAM packet and
451        // push it onto the read queue
452        if (!foundInWrQ) {
453
454            // Make the burst helper for split packets
455            if (pktCount > 1 && burst_helper == NULL) {
456                DPRINTF(DRAM, "Read to addr %lld translates to %d "
457                        "dram requests\n", pkt->getAddr(), pktCount);
458                burst_helper = new BurstHelper(pktCount);
459            }
460
461            DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true);
462            dram_pkt->burstHelper = burst_helper;
463
464            assert(!readQueueFull(1));
465            rdQLenPdf[readQueue.size() + respQueue.size()]++;
466
467            DPRINTF(DRAM, "Adding to read queue\n");
468
469            readQueue.push_back(dram_pkt);
470
471            // Update stats
472            avgRdQLen = readQueue.size() + respQueue.size();
473        }
474
475        // Starting address of next dram pkt (aligend to burstSize boundary)
476        addr = (addr | (burstSize - 1)) + 1;
477    }
478
479    // If all packets are serviced by write queue, we send the repsonse back
480    if (pktsServicedByWrQ == pktCount) {
481        accessAndRespond(pkt, frontendLatency);
482        return;
483    }
484
485    // Update how many split packets are serviced by write queue
486    if (burst_helper != NULL)
487        burst_helper->burstsServiced = pktsServicedByWrQ;
488
489    // If we are not already scheduled to get a request out of the
490    // queue, do so now
491    if (!nextReqEvent.scheduled()) {
492        DPRINTF(DRAM, "Request scheduled immediately\n");
493        schedule(nextReqEvent, curTick());
494    }
495}
496
497void
498DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount)
499{
500    // only add to the write queue here. whenever the request is
501    // eventually done, set the readyTime, and call schedule()
502    assert(pkt->isWrite());
503
504    // if the request size is larger than burst size, the pkt is split into
505    // multiple DRAM packets
506    Addr addr = pkt->getAddr();
507    for (int cnt = 0; cnt < pktCount; ++cnt) {
508        unsigned size = std::min((addr | (burstSize - 1)) + 1,
509                        pkt->getAddr() + pkt->getSize()) - addr;
510        writePktSize[ceilLog2(size)]++;
511        writeBursts++;
512
513        // see if we can merge with an existing item in the write
514        // queue and keep track of whether we have merged or not so we
515        // can stop at that point and also avoid enqueueing a new
516        // request
517        bool merged = false;
518        auto w = writeQueue.begin();
519
520        while(!merged && w != writeQueue.end()) {
521            // either of the two could be first, if they are the same
522            // it does not matter which way we go
523            if ((*w)->addr >= addr) {
524                // the existing one starts after the new one, figure
525                // out where the new one ends with respect to the
526                // existing one
527                if ((addr + size) >= ((*w)->addr + (*w)->size)) {
528                    // check if the existing one is completely
529                    // subsumed in the new one
530                    DPRINTF(DRAM, "Merging write covering existing burst\n");
531                    merged = true;
532                    // update both the address and the size
533                    (*w)->addr = addr;
534                    (*w)->size = size;
535                } else if ((addr + size) >= (*w)->addr &&
536                           ((*w)->addr + (*w)->size - addr) <= burstSize) {
537                    // the new one is just before or partially
538                    // overlapping with the existing one, and together
539                    // they fit within a burst
540                    DPRINTF(DRAM, "Merging write before existing burst\n");
541                    merged = true;
542                    // the existing queue item needs to be adjusted with
543                    // respect to both address and size
544                    (*w)->size = (*w)->addr + (*w)->size - addr;
545                    (*w)->addr = addr;
546                }
547            } else {
548                // the new one starts after the current one, figure
549                // out where the existing one ends with respect to the
550                // new one
551                if (((*w)->addr + (*w)->size) >= (addr + size)) {
552                    // check if the new one is completely subsumed in the
553                    // existing one
554                    DPRINTF(DRAM, "Merging write into existing burst\n");
555                    merged = true;
556                    // no adjustments necessary
557                } else if (((*w)->addr + (*w)->size) >= addr &&
558                           (addr + size - (*w)->addr) <= burstSize) {
559                    // the existing one is just before or partially
560                    // overlapping with the new one, and together
561                    // they fit within a burst
562                    DPRINTF(DRAM, "Merging write after existing burst\n");
563                    merged = true;
564                    // the address is right, and only the size has
565                    // to be adjusted
566                    (*w)->size = addr + size - (*w)->addr;
567                }
568            }
569            ++w;
570        }
571
572        // if the item was not merged we need to create a new write
573        // and enqueue it
574        if (!merged) {
575            DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false);
576
577            assert(writeQueue.size() < writeBufferSize);
578            wrQLenPdf[writeQueue.size()]++;
579
580            DPRINTF(DRAM, "Adding to write queue\n");
581
582            writeQueue.push_back(dram_pkt);
583
584            // Update stats
585            avgWrQLen = writeQueue.size();
586        } else {
587            // keep track of the fact that this burst effectively
588            // disappeared as it was merged with an existing one
589            mergedWrBursts++;
590        }
591
592        // Starting address of next dram pkt (aligend to burstSize boundary)
593        addr = (addr | (burstSize - 1)) + 1;
594    }
595
596    // we do not wait for the writes to be send to the actual memory,
597    // but instead take responsibility for the consistency here and
598    // snoop the write queue for any upcoming reads
599    // @todo, if a pkt size is larger than burst size, we might need a
600    // different front end latency
601    accessAndRespond(pkt, frontendLatency);
602
603    // If we are not already scheduled to get a request out of the
604    // queue, do so now
605    if (!nextReqEvent.scheduled()) {
606        DPRINTF(DRAM, "Request scheduled immediately\n");
607        schedule(nextReqEvent, curTick());
608    }
609}
610
611void
612DRAMCtrl::printQs() const {
613    DPRINTF(DRAM, "===READ QUEUE===\n\n");
614    for (auto i = readQueue.begin() ;  i != readQueue.end() ; ++i) {
615        DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
616    }
617    DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
618    for (auto i = respQueue.begin() ;  i != respQueue.end() ; ++i) {
619        DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
620    }
621    DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
622    for (auto i = writeQueue.begin() ;  i != writeQueue.end() ; ++i) {
623        DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
624    }
625}
626
627bool
628DRAMCtrl::recvTimingReq(PacketPtr pkt)
629{
630    /// @todo temporary hack to deal with memory corruption issues until
631    /// 4-phase transactions are complete
632    for (int x = 0; x < pendingDelete.size(); x++)
633        delete pendingDelete[x];
634    pendingDelete.clear();
635
636    // This is where we enter from the outside world
637    DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n",
638            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
639
640    // simply drop inhibited packets for now
641    if (pkt->memInhibitAsserted()) {
642        DPRINTF(DRAM, "Inhibited packet -- Dropping it now\n");
643        pendingDelete.push_back(pkt);
644        return true;
645    }
646
647    // Calc avg gap between requests
648    if (prevArrival != 0) {
649        totGap += curTick() - prevArrival;
650    }
651    prevArrival = curTick();
652
653
654    // Find out how many dram packets a pkt translates to
655    // If the burst size is equal or larger than the pkt size, then a pkt
656    // translates to only one dram packet. Otherwise, a pkt translates to
657    // multiple dram packets
658    unsigned size = pkt->getSize();
659    unsigned offset = pkt->getAddr() & (burstSize - 1);
660    unsigned int dram_pkt_count = divCeil(offset + size, burstSize);
661
662    // check local buffers and do not accept if full
663    if (pkt->isRead()) {
664        assert(size != 0);
665        if (readQueueFull(dram_pkt_count)) {
666            DPRINTF(DRAM, "Read queue full, not accepting\n");
667            // remember that we have to retry this port
668            retryRdReq = true;
669            numRdRetry++;
670            return false;
671        } else {
672            addToReadQueue(pkt, dram_pkt_count);
673            readReqs++;
674            bytesReadSys += size;
675        }
676    } else if (pkt->isWrite()) {
677        assert(size != 0);
678        if (writeQueueFull(dram_pkt_count)) {
679            DPRINTF(DRAM, "Write queue full, not accepting\n");
680            // remember that we have to retry this port
681            retryWrReq = true;
682            numWrRetry++;
683            return false;
684        } else {
685            addToWriteQueue(pkt, dram_pkt_count);
686            writeReqs++;
687            bytesWrittenSys += size;
688        }
689    } else {
690        DPRINTF(DRAM,"Neither read nor write, ignore timing\n");
691        neitherReadNorWrite++;
692        accessAndRespond(pkt, 1);
693    }
694
695    return true;
696}
697
698void
699DRAMCtrl::processRespondEvent()
700{
701    DPRINTF(DRAM,
702            "processRespondEvent(): Some req has reached its readyTime\n");
703
704    DRAMPacket* dram_pkt = respQueue.front();
705
706    if (dram_pkt->burstHelper) {
707        // it is a split packet
708        dram_pkt->burstHelper->burstsServiced++;
709        if (dram_pkt->burstHelper->burstsServiced ==
710            dram_pkt->burstHelper->burstCount) {
711            // we have now serviced all children packets of a system packet
712            // so we can now respond to the requester
713            // @todo we probably want to have a different front end and back
714            // end latency for split packets
715            accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
716            delete dram_pkt->burstHelper;
717            dram_pkt->burstHelper = NULL;
718        }
719    } else {
720        // it is not a split packet
721        accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
722    }
723
724    delete respQueue.front();
725    respQueue.pop_front();
726
727    if (!respQueue.empty()) {
728        assert(respQueue.front()->readyTime >= curTick());
729        assert(!respondEvent.scheduled());
730        schedule(respondEvent, respQueue.front()->readyTime);
731    } else {
732        // if there is nothing left in any queue, signal a drain
733        if (writeQueue.empty() && readQueue.empty() &&
734            drainManager) {
735            DPRINTF(Drain, "DRAM controller done draining\n");
736            drainManager->signalDrainDone();
737            drainManager = NULL;
738        }
739    }
740
741    // We have made a location in the queue available at this point,
742    // so if there is a read that was forced to wait, retry now
743    if (retryRdReq) {
744        retryRdReq = false;
745        port.sendRetry();
746    }
747}
748
749bool
750DRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue, bool switched_cmd_type)
751{
752    // This method does the arbitration between requests. The chosen
753    // packet is simply moved to the head of the queue. The other
754    // methods know that this is the place to look. For example, with
755    // FCFS, this method does nothing
756    assert(!queue.empty());
757
758    // bool to indicate if a packet to an available rank is found
759    bool found_packet = false;
760    if (queue.size() == 1) {
761        DRAMPacket* dram_pkt = queue.front();
762        // available rank corresponds to state refresh idle
763        if (ranks[dram_pkt->rank]->isAvailable()) {
764            found_packet = true;
765            DPRINTF(DRAM, "Single request, going to a free rank\n");
766        } else {
767            DPRINTF(DRAM, "Single request, going to a busy rank\n");
768        }
769        return found_packet;
770    }
771
772    if (memSchedPolicy == Enums::fcfs) {
773        // check if there is a packet going to a free rank
774        for(auto i = queue.begin(); i != queue.end() ; ++i) {
775            DRAMPacket* dram_pkt = *i;
776            if (ranks[dram_pkt->rank]->isAvailable()) {
777                queue.erase(i);
778                queue.push_front(dram_pkt);
779                found_packet = true;
780                break;
781            }
782        }
783    } else if (memSchedPolicy == Enums::frfcfs) {
784        found_packet = reorderQueue(queue, switched_cmd_type);
785    } else
786        panic("No scheduling policy chosen\n");
787    return found_packet;
788}
789
790bool
791DRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue, bool switched_cmd_type)
792{
793    // Only determine this when needed
794    uint64_t earliest_banks = 0;
795
796    // Search for row hits first, if no row hit is found then schedule the
797    // packet to one of the earliest banks available
798    bool found_packet = false;
799    bool found_earliest_pkt = false;
800    bool found_prepped_diff_rank_pkt = false;
801    auto selected_pkt_it = queue.end();
802
803    for (auto i = queue.begin(); i != queue.end() ; ++i) {
804        DRAMPacket* dram_pkt = *i;
805        const Bank& bank = dram_pkt->bankRef;
806        // check if rank is busy. If this is the case jump to the next packet
807        // Check if it is a row hit
808        if (dram_pkt->rankRef.isAvailable()) {
809            if (bank.openRow == dram_pkt->row) {
810                if (dram_pkt->rank == activeRank || switched_cmd_type) {
811                    // FCFS within the hits, giving priority to commands
812                    // that access the same rank as the previous burst
813                    // to minimize bus turnaround delays
814                    // Only give rank prioity when command type is
815                    // not changing
816                    DPRINTF(DRAM, "Row buffer hit\n");
817                    selected_pkt_it = i;
818                    break;
819                } else if (!found_prepped_diff_rank_pkt) {
820                    // found row hit for command on different rank
821                    // than prev burst
822                    selected_pkt_it = i;
823                    found_prepped_diff_rank_pkt = true;
824                }
825            } else if (!found_earliest_pkt & !found_prepped_diff_rank_pkt) {
826                // packet going to a rank which is currently not waiting for a
827                // refresh, No row hit and
828                // haven't found an entry with a row hit to a new rank
829                if (earliest_banks == 0)
830                    // Determine entries with earliest bank prep delay
831                    // Function will give priority to commands that access the
832                    // same rank as previous burst and can prep
833                    // the bank seamlessly
834                    earliest_banks = minBankPrep(queue, switched_cmd_type);
835
836                // FCFS - Bank is first available bank
837                if (bits(earliest_banks, dram_pkt->bankId,
838                    dram_pkt->bankId)) {
839                    // Remember the packet to be scheduled to one of
840                    // the earliest banks available, FCFS amongst the
841                    // earliest banks
842                    selected_pkt_it = i;
843                    //if the packet found is going to a rank that is currently
844                    //not busy then update the found_packet to true
845                    found_earliest_pkt = true;
846                }
847            }
848        }
849    }
850
851    if (selected_pkt_it != queue.end()) {
852        DRAMPacket* selected_pkt = *selected_pkt_it;
853        queue.erase(selected_pkt_it);
854        queue.push_front(selected_pkt);
855        found_packet = true;
856    }
857    return found_packet;
858}
859
860void
861DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency)
862{
863    DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
864
865    bool needsResponse = pkt->needsResponse();
866    // do the actual memory access which also turns the packet into a
867    // response
868    access(pkt);
869
870    // turn packet around to go back to requester if response expected
871    if (needsResponse) {
872        // access already turned the packet into a response
873        assert(pkt->isResponse());
874
875        // @todo someone should pay for this
876        pkt->firstWordDelay = pkt->lastWordDelay = 0;
877
878        // queue the packet in the response queue to be sent out after
879        // the static latency has passed
880        port.schedTimingResp(pkt, curTick() + static_latency);
881    } else {
882        // @todo the packet is going to be deleted, and the DRAMPacket
883        // is still having a pointer to it
884        pendingDelete.push_back(pkt);
885    }
886
887    DPRINTF(DRAM, "Done\n");
888
889    return;
890}
891
892void
893DRAMCtrl::activateBank(Rank& rank_ref, Bank& bank_ref,
894                       Tick act_tick, uint32_t row)
895{
896    assert(rank_ref.actTicks.size() == activationLimit);
897
898    DPRINTF(DRAM, "Activate at tick %d\n", act_tick);
899
900    // update the open row
901    assert(bank_ref.openRow == Bank::NO_ROW);
902    bank_ref.openRow = row;
903
904    // start counting anew, this covers both the case when we
905    // auto-precharged, and when this access is forced to
906    // precharge
907    bank_ref.bytesAccessed = 0;
908    bank_ref.rowAccesses = 0;
909
910    ++rank_ref.numBanksActive;
911    assert(rank_ref.numBanksActive <= banksPerRank);
912
913    DPRINTF(DRAM, "Activate bank %d, rank %d at tick %lld, now got %d active\n",
914            bank_ref.bank, rank_ref.rank, act_tick,
915            ranks[rank_ref.rank]->numBanksActive);
916
917    rank_ref.power.powerlib.doCommand(MemCommand::ACT, bank_ref.bank,
918                                      divCeil(act_tick, tCK) -
919                                      timeStampOffset);
920
921    DPRINTF(DRAMPower, "%llu,ACT,%d,%d\n", divCeil(act_tick, tCK) -
922            timeStampOffset, bank_ref.bank, rank_ref.rank);
923
924    // The next access has to respect tRAS for this bank
925    bank_ref.preAllowedAt = act_tick + tRAS;
926
927    // Respect the row-to-column command delay
928    bank_ref.colAllowedAt = std::max(act_tick + tRCD, bank_ref.colAllowedAt);
929
930    // start by enforcing tRRD
931    for(int i = 0; i < banksPerRank; i++) {
932        // next activate to any bank in this rank must not happen
933        // before tRRD
934        if (bankGroupArch && (bank_ref.bankgr == rank_ref.banks[i].bankgr)) {
935            // bank group architecture requires longer delays between
936            // ACT commands within the same bank group.  Use tRRD_L
937            // in this case
938            rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD_L,
939                                             rank_ref.banks[i].actAllowedAt);
940        } else {
941            // use shorter tRRD value when either
942            // 1) bank group architecture is not supportted
943            // 2) bank is in a different bank group
944            rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD,
945                                             rank_ref.banks[i].actAllowedAt);
946        }
947    }
948
949    // next, we deal with tXAW, if the activation limit is disabled
950    // then we directly schedule an activate power event
951    if (!rank_ref.actTicks.empty()) {
952        // sanity check
953        if (rank_ref.actTicks.back() &&
954           (act_tick - rank_ref.actTicks.back()) < tXAW) {
955            panic("Got %d activates in window %d (%llu - %llu) which "
956                  "is smaller than %llu\n", activationLimit, act_tick -
957                  rank_ref.actTicks.back(), act_tick,
958                  rank_ref.actTicks.back(), tXAW);
959        }
960
961        // shift the times used for the book keeping, the last element
962        // (highest index) is the oldest one and hence the lowest value
963        rank_ref.actTicks.pop_back();
964
965        // record an new activation (in the future)
966        rank_ref.actTicks.push_front(act_tick);
967
968        // cannot activate more than X times in time window tXAW, push the
969        // next one (the X + 1'st activate) to be tXAW away from the
970        // oldest in our window of X
971        if (rank_ref.actTicks.back() &&
972           (act_tick - rank_ref.actTicks.back()) < tXAW) {
973            DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate "
974                    "no earlier than %llu\n", activationLimit,
975                    rank_ref.actTicks.back() + tXAW);
976            for(int j = 0; j < banksPerRank; j++)
977                // next activate must not happen before end of window
978                rank_ref.banks[j].actAllowedAt =
979                    std::max(rank_ref.actTicks.back() + tXAW,
980                             rank_ref.banks[j].actAllowedAt);
981        }
982    }
983
984    // at the point when this activate takes place, make sure we
985    // transition to the active power state
986    if (!rank_ref.activateEvent.scheduled())
987        schedule(rank_ref.activateEvent, act_tick);
988    else if (rank_ref.activateEvent.when() > act_tick)
989        // move it sooner in time
990        reschedule(rank_ref.activateEvent, act_tick);
991}
992
993void
994DRAMCtrl::prechargeBank(Rank& rank_ref, Bank& bank, Tick pre_at, bool trace)
995{
996    // make sure the bank has an open row
997    assert(bank.openRow != Bank::NO_ROW);
998
999    // sample the bytes per activate here since we are closing
1000    // the page
1001    bytesPerActivate.sample(bank.bytesAccessed);
1002
1003    bank.openRow = Bank::NO_ROW;
1004
1005    // no precharge allowed before this one
1006    bank.preAllowedAt = pre_at;
1007
1008    Tick pre_done_at = pre_at + tRP;
1009
1010    bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at);
1011
1012    assert(rank_ref.numBanksActive != 0);
1013    --rank_ref.numBanksActive;
1014
1015    DPRINTF(DRAM, "Precharging bank %d, rank %d at tick %lld, now got "
1016            "%d active\n", bank.bank, rank_ref.rank, pre_at,
1017            rank_ref.numBanksActive);
1018
1019    if (trace) {
1020
1021        rank_ref.power.powerlib.doCommand(MemCommand::PRE, bank.bank,
1022                                                divCeil(pre_at, tCK) -
1023                                                timeStampOffset);
1024        DPRINTF(DRAMPower, "%llu,PRE,%d,%d\n", divCeil(pre_at, tCK) -
1025                timeStampOffset, bank.bank, rank_ref.rank);
1026    }
1027    // if we look at the current number of active banks we might be
1028    // tempted to think the DRAM is now idle, however this can be
1029    // undone by an activate that is scheduled to happen before we
1030    // would have reached the idle state, so schedule an event and
1031    // rather check once we actually make it to the point in time when
1032    // the (last) precharge takes place
1033    if (!rank_ref.prechargeEvent.scheduled())
1034        schedule(rank_ref.prechargeEvent, pre_done_at);
1035    else if (rank_ref.prechargeEvent.when() < pre_done_at)
1036        reschedule(rank_ref.prechargeEvent, pre_done_at);
1037}
1038
1039void
1040DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
1041{
1042    DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
1043            dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
1044
1045    // get the rank
1046    Rank& rank = dram_pkt->rankRef;
1047
1048    // get the bank
1049    Bank& bank = dram_pkt->bankRef;
1050
1051    // for the state we need to track if it is a row hit or not
1052    bool row_hit = true;
1053
1054    // respect any constraints on the command (e.g. tRCD or tCCD)
1055    Tick cmd_at = std::max(bank.colAllowedAt, curTick());
1056
1057    // Determine the access latency and update the bank state
1058    if (bank.openRow == dram_pkt->row) {
1059        // nothing to do
1060    } else {
1061        row_hit = false;
1062
1063        // If there is a page open, precharge it.
1064        if (bank.openRow != Bank::NO_ROW) {
1065            prechargeBank(rank, bank, std::max(bank.preAllowedAt, curTick()));
1066        }
1067
1068        // next we need to account for the delay in activating the
1069        // page
1070        Tick act_tick = std::max(bank.actAllowedAt, curTick());
1071
1072        // Record the activation and deal with all the global timing
1073        // constraints caused be a new activation (tRRD and tXAW)
1074        activateBank(rank, bank, act_tick, dram_pkt->row);
1075
1076        // issue the command as early as possible
1077        cmd_at = bank.colAllowedAt;
1078    }
1079
1080    // we need to wait until the bus is available before we can issue
1081    // the command
1082    cmd_at = std::max(cmd_at, busBusyUntil - tCL);
1083
1084    // update the packet ready time
1085    dram_pkt->readyTime = cmd_at + tCL + tBURST;
1086
1087    // only one burst can use the bus at any one point in time
1088    assert(dram_pkt->readyTime - busBusyUntil >= tBURST);
1089
1090    // update the time for the next read/write burst for each
1091    // bank (add a max with tCCD/tCCD_L here)
1092    Tick cmd_dly;
1093    for(int j = 0; j < ranksPerChannel; j++) {
1094        for(int i = 0; i < banksPerRank; i++) {
1095            // next burst to same bank group in this rank must not happen
1096            // before tCCD_L.  Different bank group timing requirement is
1097            // tBURST; Add tCS for different ranks
1098            if (dram_pkt->rank == j) {
1099                if (bankGroupArch &&
1100                   (bank.bankgr == ranks[j]->banks[i].bankgr)) {
1101                    // bank group architecture requires longer delays between
1102                    // RD/WR burst commands to the same bank group.
1103                    // Use tCCD_L in this case
1104                    cmd_dly = tCCD_L;
1105                } else {
1106                    // use tBURST (equivalent to tCCD_S), the shorter
1107                    // cas-to-cas delay value, when either:
1108                    // 1) bank group architecture is not supportted
1109                    // 2) bank is in a different bank group
1110                    cmd_dly = tBURST;
1111                }
1112            } else {
1113                // different rank is by default in a different bank group
1114                // use tBURST (equivalent to tCCD_S), which is the shorter
1115                // cas-to-cas delay in this case
1116                // Add tCS to account for rank-to-rank bus delay requirements
1117                cmd_dly = tBURST + tCS;
1118            }
1119            ranks[j]->banks[i].colAllowedAt = std::max(cmd_at + cmd_dly,
1120                                             ranks[j]->banks[i].colAllowedAt);
1121        }
1122    }
1123
1124    // Save rank of current access
1125    activeRank = dram_pkt->rank;
1126
1127    // If this is a write, we also need to respect the write recovery
1128    // time before a precharge, in the case of a read, respect the
1129    // read to precharge constraint
1130    bank.preAllowedAt = std::max(bank.preAllowedAt,
1131                                 dram_pkt->isRead ? cmd_at + tRTP :
1132                                 dram_pkt->readyTime + tWR);
1133
1134    // increment the bytes accessed and the accesses per row
1135    bank.bytesAccessed += burstSize;
1136    ++bank.rowAccesses;
1137
1138    // if we reached the max, then issue with an auto-precharge
1139    bool auto_precharge = pageMgmt == Enums::close ||
1140        bank.rowAccesses == maxAccessesPerRow;
1141
1142    // if we did not hit the limit, we might still want to
1143    // auto-precharge
1144    if (!auto_precharge &&
1145        (pageMgmt == Enums::open_adaptive ||
1146         pageMgmt == Enums::close_adaptive)) {
1147        // a twist on the open and close page policies:
1148        // 1) open_adaptive page policy does not blindly keep the
1149        // page open, but close it if there are no row hits, and there
1150        // are bank conflicts in the queue
1151        // 2) close_adaptive page policy does not blindly close the
1152        // page, but closes it only if there are no row hits in the queue.
1153        // In this case, only force an auto precharge when there
1154        // are no same page hits in the queue
1155        bool got_more_hits = false;
1156        bool got_bank_conflict = false;
1157
1158        // either look at the read queue or write queue
1159        const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue :
1160            writeQueue;
1161        auto p = queue.begin();
1162        // make sure we are not considering the packet that we are
1163        // currently dealing with (which is the head of the queue)
1164        ++p;
1165
1166        // keep on looking until we have found required condition or
1167        // reached the end
1168        while (!(got_more_hits &&
1169                 (got_bank_conflict || pageMgmt == Enums::close_adaptive)) &&
1170               p != queue.end()) {
1171            bool same_rank_bank = (dram_pkt->rank == (*p)->rank) &&
1172                (dram_pkt->bank == (*p)->bank);
1173            bool same_row = dram_pkt->row == (*p)->row;
1174            got_more_hits |= same_rank_bank && same_row;
1175            got_bank_conflict |= same_rank_bank && !same_row;
1176            ++p;
1177        }
1178
1179        // auto pre-charge when either
1180        // 1) open_adaptive policy, we have not got any more hits, and
1181        //    have a bank conflict
1182        // 2) close_adaptive policy and we have not got any more hits
1183        auto_precharge = !got_more_hits &&
1184            (got_bank_conflict || pageMgmt == Enums::close_adaptive);
1185    }
1186
1187    // DRAMPower trace command to be written
1188    std::string mem_cmd = dram_pkt->isRead ? "RD" : "WR";
1189
1190    // MemCommand required for DRAMPower library
1191    MemCommand::cmds command = (mem_cmd == "RD") ? MemCommand::RD :
1192                                                   MemCommand::WR;
1193
1194    // if this access should use auto-precharge, then we are
1195    // closing the row
1196    if (auto_precharge) {
1197        // if auto-precharge push a PRE command at the correct tick to the
1198        // list used by DRAMPower library to calculate power
1199        prechargeBank(rank, bank, std::max(curTick(), bank.preAllowedAt));
1200
1201        DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId);
1202    }
1203
1204    // Update bus state
1205    busBusyUntil = dram_pkt->readyTime;
1206
1207    DPRINTF(DRAM, "Access to %lld, ready at %lld bus busy until %lld.\n",
1208            dram_pkt->addr, dram_pkt->readyTime, busBusyUntil);
1209
1210    dram_pkt->rankRef.power.powerlib.doCommand(command, dram_pkt->bank,
1211                                                 divCeil(cmd_at, tCK) -
1212                                                 timeStampOffset);
1213
1214    DPRINTF(DRAMPower, "%llu,%s,%d,%d\n", divCeil(cmd_at, tCK) -
1215            timeStampOffset, mem_cmd, dram_pkt->bank, dram_pkt->rank);
1216
1217    // Update the minimum timing between the requests, this is a
1218    // conservative estimate of when we have to schedule the next
1219    // request to not introduce any unecessary bubbles. In most cases
1220    // we will wake up sooner than we have to.
1221    nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
1222
1223    // Update the stats and schedule the next request
1224    if (dram_pkt->isRead) {
1225        ++readsThisTime;
1226        if (row_hit)
1227            readRowHits++;
1228        bytesReadDRAM += burstSize;
1229        perBankRdBursts[dram_pkt->bankId]++;
1230
1231        // Update latency stats
1232        totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
1233        totBusLat += tBURST;
1234        totQLat += cmd_at - dram_pkt->entryTime;
1235    } else {
1236        ++writesThisTime;
1237        if (row_hit)
1238            writeRowHits++;
1239        bytesWritten += burstSize;
1240        perBankWrBursts[dram_pkt->bankId]++;
1241    }
1242}
1243
1244void
1245DRAMCtrl::processNextReqEvent()
1246{
1247    int busyRanks = 0;
1248    for (auto r : ranks) {
1249        if (!r->isAvailable()) {
1250            // rank is busy refreshing
1251            busyRanks++;
1252
1253            // let the rank know that if it was waiting to drain, it
1254            // is now done and ready to proceed
1255            r->checkDrainDone();
1256        }
1257    }
1258
1259    if (busyRanks == ranksPerChannel) {
1260        // if all ranks are refreshing wait for them to finish
1261        // and stall this state machine without taking any further
1262        // action, and do not schedule a new nextReqEvent
1263        return;
1264    }
1265
1266    // pre-emptively set to false.  Overwrite if in READ_TO_WRITE
1267    // or WRITE_TO_READ state
1268    bool switched_cmd_type = false;
1269    if (busState == READ_TO_WRITE) {
1270        DPRINTF(DRAM, "Switching to writes after %d reads with %d reads "
1271                "waiting\n", readsThisTime, readQueue.size());
1272
1273        // sample and reset the read-related stats as we are now
1274        // transitioning to writes, and all reads are done
1275        rdPerTurnAround.sample(readsThisTime);
1276        readsThisTime = 0;
1277
1278        // now proceed to do the actual writes
1279        busState = WRITE;
1280        switched_cmd_type = true;
1281    } else if (busState == WRITE_TO_READ) {
1282        DPRINTF(DRAM, "Switching to reads after %d writes with %d writes "
1283                "waiting\n", writesThisTime, writeQueue.size());
1284
1285        wrPerTurnAround.sample(writesThisTime);
1286        writesThisTime = 0;
1287
1288        busState = READ;
1289        switched_cmd_type = true;
1290    }
1291
1292    // when we get here it is either a read or a write
1293    if (busState == READ) {
1294
1295        // track if we should switch or not
1296        bool switch_to_writes = false;
1297
1298        if (readQueue.empty()) {
1299            // In the case there is no read request to go next,
1300            // trigger writes if we have passed the low threshold (or
1301            // if we are draining)
1302            if (!writeQueue.empty() &&
1303                (drainManager || writeQueue.size() > writeLowThreshold)) {
1304
1305                switch_to_writes = true;
1306            } else {
1307                // check if we are drained
1308                if (respQueue.empty () && drainManager) {
1309                    DPRINTF(Drain, "DRAM controller done draining\n");
1310                    drainManager->signalDrainDone();
1311                    drainManager = NULL;
1312                }
1313
1314                // nothing to do, not even any point in scheduling an
1315                // event for the next request
1316                return;
1317            }
1318        } else {
1319            // bool to check if there is a read to a free rank
1320            bool found_read = false;
1321
1322            // Figure out which read request goes next, and move it to the
1323            // front of the read queue
1324            found_read = chooseNext(readQueue, switched_cmd_type);
1325
1326            // if no read to an available rank is found then return
1327            // at this point. There could be writes to the available ranks
1328            // which are above the required threshold. However, to
1329            // avoid adding more complexity to the code, return and wait
1330            // for a refresh event to kick things into action again.
1331            if (!found_read)
1332                return;
1333
1334            DRAMPacket* dram_pkt = readQueue.front();
1335            assert(dram_pkt->rankRef.isAvailable());
1336            // here we get a bit creative and shift the bus busy time not
1337            // just the tWTR, but also a CAS latency to capture the fact
1338            // that we are allowed to prepare a new bank, but not issue a
1339            // read command until after tWTR, in essence we capture a
1340            // bubble on the data bus that is tWTR + tCL
1341            if (switched_cmd_type && dram_pkt->rank == activeRank) {
1342                busBusyUntil += tWTR + tCL;
1343            }
1344
1345            doDRAMAccess(dram_pkt);
1346
1347            // At this point we're done dealing with the request
1348            readQueue.pop_front();
1349
1350            // sanity check
1351            assert(dram_pkt->size <= burstSize);
1352            assert(dram_pkt->readyTime >= curTick());
1353
1354            // Insert into response queue. It will be sent back to the
1355            // requestor at its readyTime
1356            if (respQueue.empty()) {
1357                assert(!respondEvent.scheduled());
1358                schedule(respondEvent, dram_pkt->readyTime);
1359            } else {
1360                assert(respQueue.back()->readyTime <= dram_pkt->readyTime);
1361                assert(respondEvent.scheduled());
1362            }
1363
1364            respQueue.push_back(dram_pkt);
1365
1366            // we have so many writes that we have to transition
1367            if (writeQueue.size() > writeHighThreshold) {
1368                switch_to_writes = true;
1369            }
1370        }
1371
1372        // switching to writes, either because the read queue is empty
1373        // and the writes have passed the low threshold (or we are
1374        // draining), or because the writes hit the hight threshold
1375        if (switch_to_writes) {
1376            // transition to writing
1377            busState = READ_TO_WRITE;
1378        }
1379    } else {
1380        // bool to check if write to free rank is found
1381        bool found_write = false;
1382
1383        found_write = chooseNext(writeQueue, switched_cmd_type);
1384
1385        // if no writes to an available rank are found then return.
1386        // There could be reads to the available ranks. However, to avoid
1387        // adding more complexity to the code, return at this point and wait
1388        // for a refresh event to kick things into action again.
1389        if (!found_write)
1390            return;
1391
1392        DRAMPacket* dram_pkt = writeQueue.front();
1393        assert(dram_pkt->rankRef.isAvailable());
1394        // sanity check
1395        assert(dram_pkt->size <= burstSize);
1396
1397        // add a bubble to the data bus, as defined by the
1398        // tRTW when access is to the same rank as previous burst
1399        // Different rank timing is handled with tCS, which is
1400        // applied to colAllowedAt
1401        if (switched_cmd_type && dram_pkt->rank == activeRank) {
1402            busBusyUntil += tRTW;
1403        }
1404
1405        doDRAMAccess(dram_pkt);
1406
1407        writeQueue.pop_front();
1408        delete dram_pkt;
1409
1410        // If we emptied the write queue, or got sufficiently below the
1411        // threshold (using the minWritesPerSwitch as the hysteresis) and
1412        // are not draining, or we have reads waiting and have done enough
1413        // writes, then switch to reads.
1414        if (writeQueue.empty() ||
1415            (writeQueue.size() + minWritesPerSwitch < writeLowThreshold &&
1416             !drainManager) ||
1417            (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) {
1418            // turn the bus back around for reads again
1419            busState = WRITE_TO_READ;
1420
1421            // note that the we switch back to reads also in the idle
1422            // case, which eventually will check for any draining and
1423            // also pause any further scheduling if there is really
1424            // nothing to do
1425        }
1426    }
1427    // It is possible that a refresh to another rank kicks things back into
1428    // action before reaching this point.
1429    if (!nextReqEvent.scheduled())
1430        schedule(nextReqEvent, std::max(nextReqTime, curTick()));
1431
1432    // If there is space available and we have writes waiting then let
1433    // them retry. This is done here to ensure that the retry does not
1434    // cause a nextReqEvent to be scheduled before we do so as part of
1435    // the next request processing
1436    if (retryWrReq && writeQueue.size() < writeBufferSize) {
1437        retryWrReq = false;
1438        port.sendRetry();
1439    }
1440}
1441
1442uint64_t
1443DRAMCtrl::minBankPrep(const deque<DRAMPacket*>& queue,
1444                      bool switched_cmd_type) const
1445{
1446    uint64_t bank_mask = 0;
1447    Tick min_act_at = MaxTick;
1448
1449    uint64_t bank_mask_same_rank = 0;
1450    Tick min_act_at_same_rank = MaxTick;
1451
1452    // Give precedence to commands that access same rank as previous command
1453    bool same_rank_match = false;
1454
1455    // determine if we have queued transactions targetting the
1456    // bank in question
1457    vector<bool> got_waiting(ranksPerChannel * banksPerRank, false);
1458    for (const auto& p : queue) {
1459        if(p->rankRef.isAvailable())
1460            got_waiting[p->bankId] = true;
1461    }
1462
1463    for (int i = 0; i < ranksPerChannel; i++) {
1464        for (int j = 0; j < banksPerRank; j++) {
1465            uint16_t bank_id = i * banksPerRank + j;
1466
1467            // if we have waiting requests for the bank, and it is
1468            // amongst the first available, update the mask
1469            if (got_waiting[bank_id]) {
1470                // make sure this rank is not currently refreshing.
1471                assert(ranks[i]->isAvailable());
1472                // simplistic approximation of when the bank can issue
1473                // an activate, ignoring any rank-to-rank switching
1474                // cost in this calculation
1475                Tick act_at = ranks[i]->banks[j].openRow == Bank::NO_ROW ?
1476                    ranks[i]->banks[j].actAllowedAt :
1477                    std::max(ranks[i]->banks[j].preAllowedAt, curTick()) + tRP;
1478
1479                // prioritize commands that access the
1480                // same rank as previous burst
1481                // Calculate bank mask separately for the case and
1482                // evaluate after loop iterations complete
1483                if (i == activeRank && ranksPerChannel > 1) {
1484                    if (act_at <= min_act_at_same_rank) {
1485                        // reset same rank bank mask if new minimum is found
1486                        // and previous minimum could not immediately send ACT
1487                        if (act_at < min_act_at_same_rank &&
1488                            min_act_at_same_rank > curTick())
1489                            bank_mask_same_rank = 0;
1490
1491                        // Set flag indicating that a same rank
1492                        // opportunity was found
1493                        same_rank_match = true;
1494
1495                        // set the bit corresponding to the available bank
1496                        replaceBits(bank_mask_same_rank, bank_id, bank_id, 1);
1497                        min_act_at_same_rank = act_at;
1498                    }
1499                } else {
1500                    if (act_at <= min_act_at) {
1501                        // reset bank mask if new minimum is found
1502                        // and either previous minimum could not immediately send ACT
1503                        if (act_at < min_act_at && min_act_at > curTick())
1504                            bank_mask = 0;
1505                        // set the bit corresponding to the available bank
1506                        replaceBits(bank_mask, bank_id, bank_id, 1);
1507                        min_act_at = act_at;
1508                    }
1509                }
1510            }
1511        }
1512    }
1513
1514    // Determine the earliest time when the next burst can issue based
1515    // on the current busBusyUntil delay.
1516    // Offset by tRCD to correlate with ACT timing variables
1517    Tick min_cmd_at = busBusyUntil - tCL - tRCD;
1518
1519    // if we have multiple ranks and all
1520    // waiting packets are accessing a rank which was previously active
1521    // then bank_mask_same_rank will be set to a value while bank_mask will
1522    // remain 0. In this case, the function should return the value of
1523    // bank_mask_same_rank.
1524    // else if waiting packets access a rank which was previously active and
1525    // other ranks, prioritize same rank accesses that can issue B2B
1526    // Only optimize for same ranks when the command type
1527    // does not change; do not want to unnecessarily incur tWTR
1528    //
1529    // Resulting FCFS prioritization Order is:
1530    // 1) Commands that access the same rank as previous burst
1531    //    and can prep the bank seamlessly.
1532    // 2) Commands (any rank) with earliest bank prep
1533    if ((bank_mask == 0) || (!switched_cmd_type && same_rank_match &&
1534        min_act_at_same_rank <= min_cmd_at)) {
1535        bank_mask = bank_mask_same_rank;
1536    }
1537
1538    return bank_mask;
1539}
1540
1541DRAMCtrl::Rank::Rank(DRAMCtrl& _memory, const DRAMCtrlParams* _p)
1542    : EventManager(&_memory), memory(_memory),
1543      pwrStateTrans(PWR_IDLE), pwrState(PWR_IDLE), pwrStateTick(0),
1544      refreshState(REF_IDLE), refreshDueAt(0),
1545      power(_p, false), numBanksActive(0),
1546      activateEvent(*this), prechargeEvent(*this),
1547      refreshEvent(*this), powerEvent(*this)
1548{ }
1549
1550void
1551DRAMCtrl::Rank::startup(Tick ref_tick)
1552{
1553    assert(ref_tick > curTick());
1554
1555    pwrStateTick = curTick();
1556
1557    // kick off the refresh, and give ourselves enough time to
1558    // precharge
1559    schedule(refreshEvent, ref_tick);
1560}
1561
1562void
1563DRAMCtrl::Rank::suspend()
1564{
1565    deschedule(refreshEvent);
1566}
1567
1568void
1569DRAMCtrl::Rank::checkDrainDone()
1570{
1571    // if this rank was waiting to drain it is now able to proceed to
1572    // precharge
1573    if (refreshState == REF_DRAIN) {
1574        DPRINTF(DRAM, "Refresh drain done, now precharging\n");
1575
1576        refreshState = REF_PRE;
1577
1578        // hand control back to the refresh event loop
1579        schedule(refreshEvent, curTick());
1580    }
1581}
1582
1583void
1584DRAMCtrl::Rank::processActivateEvent()
1585{
1586    // we should transition to the active state as soon as any bank is active
1587    if (pwrState != PWR_ACT)
1588        // note that at this point numBanksActive could be back at
1589        // zero again due to a precharge scheduled in the future
1590        schedulePowerEvent(PWR_ACT, curTick());
1591}
1592
1593void
1594DRAMCtrl::Rank::processPrechargeEvent()
1595{
1596    // if we reached zero, then special conditions apply as we track
1597    // if all banks are precharged for the power models
1598    if (numBanksActive == 0) {
1599        // we should transition to the idle state when the last bank
1600        // is precharged
1601        schedulePowerEvent(PWR_IDLE, curTick());
1602    }
1603}
1604
1605void
1606DRAMCtrl::Rank::processRefreshEvent()
1607{
1608    // when first preparing the refresh, remember when it was due
1609    if (refreshState == REF_IDLE) {
1610        // remember when the refresh is due
1611        refreshDueAt = curTick();
1612
1613        // proceed to drain
1614        refreshState = REF_DRAIN;
1615
1616        DPRINTF(DRAM, "Refresh due\n");
1617    }
1618
1619    // let any scheduled read or write to the same rank go ahead,
1620    // after which it will
1621    // hand control back to this event loop
1622    if (refreshState == REF_DRAIN) {
1623        // if a request is at the moment being handled and this request is
1624        // accessing the current rank then wait for it to finish
1625        if ((rank == memory.activeRank)
1626            && (memory.nextReqEvent.scheduled())) {
1627            // hand control over to the request loop until it is
1628            // evaluated next
1629            DPRINTF(DRAM, "Refresh awaiting draining\n");
1630
1631            return;
1632        } else {
1633            refreshState = REF_PRE;
1634        }
1635    }
1636
1637    // at this point, ensure that all banks are precharged
1638    if (refreshState == REF_PRE) {
1639        // precharge any active bank if we are not already in the idle
1640        // state
1641        if (pwrState != PWR_IDLE) {
1642            // at the moment, we use a precharge all even if there is
1643            // only a single bank open
1644            DPRINTF(DRAM, "Precharging all\n");
1645
1646            // first determine when we can precharge
1647            Tick pre_at = curTick();
1648
1649            for (auto &b : banks) {
1650                // respect both causality and any existing bank
1651                // constraints, some banks could already have a
1652                // (auto) precharge scheduled
1653                pre_at = std::max(b.preAllowedAt, pre_at);
1654            }
1655
1656            // make sure all banks per rank are precharged, and for those that
1657            // already are, update their availability
1658            Tick act_allowed_at = pre_at + memory.tRP;
1659
1660            for (auto &b : banks) {
1661                if (b.openRow != Bank::NO_ROW) {
1662                    memory.prechargeBank(*this, b, pre_at, false);
1663                } else {
1664                    b.actAllowedAt = std::max(b.actAllowedAt, act_allowed_at);
1665                    b.preAllowedAt = std::max(b.preAllowedAt, pre_at);
1666                }
1667            }
1668
1669            // precharge all banks in rank
1670            power.powerlib.doCommand(MemCommand::PREA, 0,
1671                                     divCeil(pre_at, memory.tCK) -
1672                                     memory.timeStampOffset);
1673
1674            DPRINTF(DRAMPower, "%llu,PREA,0,%d\n",
1675                    divCeil(pre_at, memory.tCK) -
1676                            memory.timeStampOffset, rank);
1677        } else {
1678            DPRINTF(DRAM, "All banks already precharged, starting refresh\n");
1679
1680            // go ahead and kick the power state machine into gear if
1681            // we are already idle
1682            schedulePowerEvent(PWR_REF, curTick());
1683        }
1684
1685        refreshState = REF_RUN;
1686        assert(numBanksActive == 0);
1687
1688        // wait for all banks to be precharged, at which point the
1689        // power state machine will transition to the idle state, and
1690        // automatically move to a refresh, at that point it will also
1691        // call this method to get the refresh event loop going again
1692        return;
1693    }
1694
1695    // last but not least we perform the actual refresh
1696    if (refreshState == REF_RUN) {
1697        // should never get here with any banks active
1698        assert(numBanksActive == 0);
1699        assert(pwrState == PWR_REF);
1700
1701        Tick ref_done_at = curTick() + memory.tRFC;
1702
1703        for (auto &b : banks) {
1704            b.actAllowedAt = ref_done_at;
1705        }
1706
1707        // at the moment this affects all ranks
1708        power.powerlib.doCommand(MemCommand::REF, 0,
1709                                 divCeil(curTick(), memory.tCK) -
1710                                 memory.timeStampOffset);
1711
1712        // at the moment sort the list of commands and update the counters
1713        // for DRAMPower libray when doing a refresh
1714        sort(power.powerlib.cmdList.begin(),
1715             power.powerlib.cmdList.end(), DRAMCtrl::sortTime);
1716
1717        // update the counters for DRAMPower, passing false to
1718        // indicate that this is not the last command in the
1719        // list. DRAMPower requires this information for the
1720        // correct calculation of the background energy at the end
1721        // of the simulation. Ideally we would want to call this
1722        // function with true once at the end of the
1723        // simulation. However, the discarded energy is extremly
1724        // small and does not effect the final results.
1725        power.powerlib.updateCounters(false);
1726
1727        // call the energy function
1728        power.powerlib.calcEnergy();
1729
1730        // Update the stats
1731        updatePowerStats();
1732
1733        DPRINTF(DRAMPower, "%llu,REF,0,%d\n", divCeil(curTick(), memory.tCK) -
1734                memory.timeStampOffset, rank);
1735
1736        // make sure we did not wait so long that we cannot make up
1737        // for it
1738        if (refreshDueAt + memory.tREFI < ref_done_at) {
1739            fatal("Refresh was delayed so long we cannot catch up\n");
1740        }
1741
1742        // compensate for the delay in actually performing the refresh
1743        // when scheduling the next one
1744        schedule(refreshEvent, refreshDueAt + memory.tREFI - memory.tRP);
1745
1746        assert(!powerEvent.scheduled());
1747
1748        // move to the idle power state once the refresh is done, this
1749        // will also move the refresh state machine to the refresh
1750        // idle state
1751        schedulePowerEvent(PWR_IDLE, ref_done_at);
1752
1753        DPRINTF(DRAMState, "Refresh done at %llu and next refresh at %llu\n",
1754                ref_done_at, refreshDueAt + memory.tREFI);
1755    }
1756}
1757
1758void
1759DRAMCtrl::Rank::schedulePowerEvent(PowerState pwr_state, Tick tick)
1760{
1761    // respect causality
1762    assert(tick >= curTick());
1763
1764    if (!powerEvent.scheduled()) {
1765        DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n",
1766                tick, pwr_state);
1767
1768        // insert the new transition
1769        pwrStateTrans = pwr_state;
1770
1771        schedule(powerEvent, tick);
1772    } else {
1773        panic("Scheduled power event at %llu to state %d, "
1774              "with scheduled event at %llu to %d\n", tick, pwr_state,
1775              powerEvent.when(), pwrStateTrans);
1776    }
1777}
1778
1779void
1780DRAMCtrl::Rank::processPowerEvent()
1781{
1782    // remember where we were, and for how long
1783    Tick duration = curTick() - pwrStateTick;
1784    PowerState prev_state = pwrState;
1785
1786    // update the accounting
1787    pwrStateTime[prev_state] += duration;
1788
1789    pwrState = pwrStateTrans;
1790    pwrStateTick = curTick();
1791
1792    if (pwrState == PWR_IDLE) {
1793        DPRINTF(DRAMState, "All banks precharged\n");
1794
1795        // if we were refreshing, make sure we start scheduling requests again
1796        if (prev_state == PWR_REF) {
1797            DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration);
1798            assert(pwrState == PWR_IDLE);
1799
1800            // kick things into action again
1801            refreshState = REF_IDLE;
1802            // a request event could be already scheduled by the state
1803            // machine of the other rank
1804            if (!memory.nextReqEvent.scheduled())
1805                schedule(memory.nextReqEvent, curTick());
1806        } else {
1807            assert(prev_state == PWR_ACT);
1808
1809            // if we have a pending refresh, and are now moving to
1810            // the idle state, direclty transition to a refresh
1811            if (refreshState == REF_RUN) {
1812                // there should be nothing waiting at this point
1813                assert(!powerEvent.scheduled());
1814
1815                // update the state in zero time and proceed below
1816                pwrState = PWR_REF;
1817            }
1818        }
1819    }
1820
1821    // we transition to the refresh state, let the refresh state
1822    // machine know of this state update and let it deal with the
1823    // scheduling of the next power state transition as well as the
1824    // following refresh
1825    if (pwrState == PWR_REF) {
1826        DPRINTF(DRAMState, "Refreshing\n");
1827        // kick the refresh event loop into action again, and that
1828        // in turn will schedule a transition to the idle power
1829        // state once the refresh is done
1830        assert(refreshState == REF_RUN);
1831        processRefreshEvent();
1832    }
1833}
1834
1835void
1836DRAMCtrl::Rank::updatePowerStats()
1837{
1838    // Get the energy and power from DRAMPower
1839    Data::MemoryPowerModel::Energy energy =
1840        power.powerlib.getEnergy();
1841    Data::MemoryPowerModel::Power rank_power =
1842        power.powerlib.getPower();
1843
1844    actEnergy = energy.act_energy * memory.devicesPerRank;
1845    preEnergy = energy.pre_energy * memory.devicesPerRank;
1846    readEnergy = energy.read_energy * memory.devicesPerRank;
1847    writeEnergy = energy.write_energy * memory.devicesPerRank;
1848    refreshEnergy = energy.ref_energy * memory.devicesPerRank;
1849    actBackEnergy = energy.act_stdby_energy * memory.devicesPerRank;
1850    preBackEnergy = energy.pre_stdby_energy * memory.devicesPerRank;
1851    totalEnergy = energy.total_energy * memory.devicesPerRank;
1852    averagePower = rank_power.average_power * memory.devicesPerRank;
1853}
1854
1855void
1856DRAMCtrl::Rank::regStats()
1857{
1858    using namespace Stats;
1859
1860    pwrStateTime
1861        .init(5)
1862        .name(name() + ".memoryStateTime")
1863        .desc("Time in different power states");
1864    pwrStateTime.subname(0, "IDLE");
1865    pwrStateTime.subname(1, "REF");
1866    pwrStateTime.subname(2, "PRE_PDN");
1867    pwrStateTime.subname(3, "ACT");
1868    pwrStateTime.subname(4, "ACT_PDN");
1869
1870    actEnergy
1871        .name(name() + ".actEnergy")
1872        .desc("Energy for activate commands per rank (pJ)");
1873
1874    preEnergy
1875        .name(name() + ".preEnergy")
1876        .desc("Energy for precharge commands per rank (pJ)");
1877
1878    readEnergy
1879        .name(name() + ".readEnergy")
1880        .desc("Energy for read commands per rank (pJ)");
1881
1882    writeEnergy
1883        .name(name() + ".writeEnergy")
1884        .desc("Energy for write commands per rank (pJ)");
1885
1886    refreshEnergy
1887        .name(name() + ".refreshEnergy")
1888        .desc("Energy for refresh commands per rank (pJ)");
1889
1890    actBackEnergy
1891        .name(name() + ".actBackEnergy")
1892        .desc("Energy for active background per rank (pJ)");
1893
1894    preBackEnergy
1895        .name(name() + ".preBackEnergy")
1896        .desc("Energy for precharge background per rank (pJ)");
1897
1898    totalEnergy
1899        .name(name() + ".totalEnergy")
1900        .desc("Total energy per rank (pJ)");
1901
1902    averagePower
1903        .name(name() + ".averagePower")
1904        .desc("Core power per rank (mW)");
1905}
1906void
1907DRAMCtrl::regStats()
1908{
1909    using namespace Stats;
1910
1911    AbstractMemory::regStats();
1912
1913    for (auto r : ranks) {
1914        r->regStats();
1915    }
1916
1917    readReqs
1918        .name(name() + ".readReqs")
1919        .desc("Number of read requests accepted");
1920
1921    writeReqs
1922        .name(name() + ".writeReqs")
1923        .desc("Number of write requests accepted");
1924
1925    readBursts
1926        .name(name() + ".readBursts")
1927        .desc("Number of DRAM read bursts, "
1928              "including those serviced by the write queue");
1929
1930    writeBursts
1931        .name(name() + ".writeBursts")
1932        .desc("Number of DRAM write bursts, "
1933              "including those merged in the write queue");
1934
1935    servicedByWrQ
1936        .name(name() + ".servicedByWrQ")
1937        .desc("Number of DRAM read bursts serviced by the write queue");
1938
1939    mergedWrBursts
1940        .name(name() + ".mergedWrBursts")
1941        .desc("Number of DRAM write bursts merged with an existing one");
1942
1943    neitherReadNorWrite
1944        .name(name() + ".neitherReadNorWriteReqs")
1945        .desc("Number of requests that are neither read nor write");
1946
1947    perBankRdBursts
1948        .init(banksPerRank * ranksPerChannel)
1949        .name(name() + ".perBankRdBursts")
1950        .desc("Per bank write bursts");
1951
1952    perBankWrBursts
1953        .init(banksPerRank * ranksPerChannel)
1954        .name(name() + ".perBankWrBursts")
1955        .desc("Per bank write bursts");
1956
1957    avgRdQLen
1958        .name(name() + ".avgRdQLen")
1959        .desc("Average read queue length when enqueuing")
1960        .precision(2);
1961
1962    avgWrQLen
1963        .name(name() + ".avgWrQLen")
1964        .desc("Average write queue length when enqueuing")
1965        .precision(2);
1966
1967    totQLat
1968        .name(name() + ".totQLat")
1969        .desc("Total ticks spent queuing");
1970
1971    totBusLat
1972        .name(name() + ".totBusLat")
1973        .desc("Total ticks spent in databus transfers");
1974
1975    totMemAccLat
1976        .name(name() + ".totMemAccLat")
1977        .desc("Total ticks spent from burst creation until serviced "
1978              "by the DRAM");
1979
1980    avgQLat
1981        .name(name() + ".avgQLat")
1982        .desc("Average queueing delay per DRAM burst")
1983        .precision(2);
1984
1985    avgQLat = totQLat / (readBursts - servicedByWrQ);
1986
1987    avgBusLat
1988        .name(name() + ".avgBusLat")
1989        .desc("Average bus latency per DRAM burst")
1990        .precision(2);
1991
1992    avgBusLat = totBusLat / (readBursts - servicedByWrQ);
1993
1994    avgMemAccLat
1995        .name(name() + ".avgMemAccLat")
1996        .desc("Average memory access latency per DRAM burst")
1997        .precision(2);
1998
1999    avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ);
2000
2001    numRdRetry
2002        .name(name() + ".numRdRetry")
2003        .desc("Number of times read queue was full causing retry");
2004
2005    numWrRetry
2006        .name(name() + ".numWrRetry")
2007        .desc("Number of times write queue was full causing retry");
2008
2009    readRowHits
2010        .name(name() + ".readRowHits")
2011        .desc("Number of row buffer hits during reads");
2012
2013    writeRowHits
2014        .name(name() + ".writeRowHits")
2015        .desc("Number of row buffer hits during writes");
2016
2017    readRowHitRate
2018        .name(name() + ".readRowHitRate")
2019        .desc("Row buffer hit rate for reads")
2020        .precision(2);
2021
2022    readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100;
2023
2024    writeRowHitRate
2025        .name(name() + ".writeRowHitRate")
2026        .desc("Row buffer hit rate for writes")
2027        .precision(2);
2028
2029    writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100;
2030
2031    readPktSize
2032        .init(ceilLog2(burstSize) + 1)
2033        .name(name() + ".readPktSize")
2034        .desc("Read request sizes (log2)");
2035
2036     writePktSize
2037        .init(ceilLog2(burstSize) + 1)
2038        .name(name() + ".writePktSize")
2039        .desc("Write request sizes (log2)");
2040
2041     rdQLenPdf
2042        .init(readBufferSize)
2043        .name(name() + ".rdQLenPdf")
2044        .desc("What read queue length does an incoming req see");
2045
2046     wrQLenPdf
2047        .init(writeBufferSize)
2048        .name(name() + ".wrQLenPdf")
2049        .desc("What write queue length does an incoming req see");
2050
2051     bytesPerActivate
2052         .init(maxAccessesPerRow)
2053         .name(name() + ".bytesPerActivate")
2054         .desc("Bytes accessed per row activation")
2055         .flags(nozero);
2056
2057     rdPerTurnAround
2058         .init(readBufferSize)
2059         .name(name() + ".rdPerTurnAround")
2060         .desc("Reads before turning the bus around for writes")
2061         .flags(nozero);
2062
2063     wrPerTurnAround
2064         .init(writeBufferSize)
2065         .name(name() + ".wrPerTurnAround")
2066         .desc("Writes before turning the bus around for reads")
2067         .flags(nozero);
2068
2069    bytesReadDRAM
2070        .name(name() + ".bytesReadDRAM")
2071        .desc("Total number of bytes read from DRAM");
2072
2073    bytesReadWrQ
2074        .name(name() + ".bytesReadWrQ")
2075        .desc("Total number of bytes read from write queue");
2076
2077    bytesWritten
2078        .name(name() + ".bytesWritten")
2079        .desc("Total number of bytes written to DRAM");
2080
2081    bytesReadSys
2082        .name(name() + ".bytesReadSys")
2083        .desc("Total read bytes from the system interface side");
2084
2085    bytesWrittenSys
2086        .name(name() + ".bytesWrittenSys")
2087        .desc("Total written bytes from the system interface side");
2088
2089    avgRdBW
2090        .name(name() + ".avgRdBW")
2091        .desc("Average DRAM read bandwidth in MiByte/s")
2092        .precision(2);
2093
2094    avgRdBW = (bytesReadDRAM / 1000000) / simSeconds;
2095
2096    avgWrBW
2097        .name(name() + ".avgWrBW")
2098        .desc("Average achieved write bandwidth in MiByte/s")
2099        .precision(2);
2100
2101    avgWrBW = (bytesWritten / 1000000) / simSeconds;
2102
2103    avgRdBWSys
2104        .name(name() + ".avgRdBWSys")
2105        .desc("Average system read bandwidth in MiByte/s")
2106        .precision(2);
2107
2108    avgRdBWSys = (bytesReadSys / 1000000) / simSeconds;
2109
2110    avgWrBWSys
2111        .name(name() + ".avgWrBWSys")
2112        .desc("Average system write bandwidth in MiByte/s")
2113        .precision(2);
2114
2115    avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds;
2116
2117    peakBW
2118        .name(name() + ".peakBW")
2119        .desc("Theoretical peak bandwidth in MiByte/s")
2120        .precision(2);
2121
2122    peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000;
2123
2124    busUtil
2125        .name(name() + ".busUtil")
2126        .desc("Data bus utilization in percentage")
2127        .precision(2);
2128    busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
2129
2130    totGap
2131        .name(name() + ".totGap")
2132        .desc("Total gap between requests");
2133
2134    avgGap
2135        .name(name() + ".avgGap")
2136        .desc("Average gap between requests")
2137        .precision(2);
2138
2139    avgGap = totGap / (readReqs + writeReqs);
2140
2141    // Stats for DRAM Power calculation based on Micron datasheet
2142    busUtilRead
2143        .name(name() + ".busUtilRead")
2144        .desc("Data bus utilization in percentage for reads")
2145        .precision(2);
2146
2147    busUtilRead = avgRdBW / peakBW * 100;
2148
2149    busUtilWrite
2150        .name(name() + ".busUtilWrite")
2151        .desc("Data bus utilization in percentage for writes")
2152        .precision(2);
2153
2154    busUtilWrite = avgWrBW / peakBW * 100;
2155
2156    pageHitRate
2157        .name(name() + ".pageHitRate")
2158        .desc("Row buffer hit rate, read and write combined")
2159        .precision(2);
2160
2161    pageHitRate = (writeRowHits + readRowHits) /
2162        (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100;
2163}
2164
2165void
2166DRAMCtrl::recvFunctional(PacketPtr pkt)
2167{
2168    // rely on the abstract memory
2169    functionalAccess(pkt);
2170}
2171
2172BaseSlavePort&
2173DRAMCtrl::getSlavePort(const string &if_name, PortID idx)
2174{
2175    if (if_name != "port") {
2176        return MemObject::getSlavePort(if_name, idx);
2177    } else {
2178        return port;
2179    }
2180}
2181
2182unsigned int
2183DRAMCtrl::drain(DrainManager *dm)
2184{
2185    unsigned int count = port.drain(dm);
2186
2187    // if there is anything in any of our internal queues, keep track
2188    // of that as well
2189    if (!(writeQueue.empty() && readQueue.empty() &&
2190          respQueue.empty())) {
2191        DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
2192                " resp: %d\n", writeQueue.size(), readQueue.size(),
2193                respQueue.size());
2194        ++count;
2195        drainManager = dm;
2196
2197        // the only part that is not drained automatically over time
2198        // is the write queue, thus kick things into action if needed
2199        if (!writeQueue.empty() && !nextReqEvent.scheduled()) {
2200            schedule(nextReqEvent, curTick());
2201        }
2202    }
2203
2204    if (count)
2205        setDrainState(Drainable::Draining);
2206    else
2207        setDrainState(Drainable::Drained);
2208    return count;
2209}
2210
2211void
2212DRAMCtrl::drainResume()
2213{
2214    if (!isTimingMode && system()->isTimingMode()) {
2215        // if we switched to timing mode, kick things into action,
2216        // and behave as if we restored from a checkpoint
2217        startup();
2218    } else if (isTimingMode && !system()->isTimingMode()) {
2219        // if we switch from timing mode, stop the refresh events to
2220        // not cause issues with KVM
2221        for (auto r : ranks) {
2222            r->suspend();
2223        }
2224    }
2225
2226    // update the mode
2227    isTimingMode = system()->isTimingMode();
2228}
2229
2230DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory)
2231    : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
2232      memory(_memory)
2233{ }
2234
2235AddrRangeList
2236DRAMCtrl::MemoryPort::getAddrRanges() const
2237{
2238    AddrRangeList ranges;
2239    ranges.push_back(memory.getAddrRange());
2240    return ranges;
2241}
2242
2243void
2244DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt)
2245{
2246    pkt->pushLabel(memory.name());
2247
2248    if (!queue.checkFunctional(pkt)) {
2249        // Default implementation of SimpleTimingPort::recvFunctional()
2250        // calls recvAtomic() and throws away the latency; we can save a
2251        // little here by just not calculating the latency.
2252        memory.recvFunctional(pkt);
2253    }
2254
2255    pkt->popLabel();
2256}
2257
2258Tick
2259DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt)
2260{
2261    return memory.recvAtomic(pkt);
2262}
2263
2264bool
2265DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt)
2266{
2267    // pass it to the memory controller
2268    return memory.recvTimingReq(pkt);
2269}
2270
2271DRAMCtrl*
2272DRAMCtrlParams::create()
2273{
2274    return new DRAMCtrl(this);
2275}
2276