dram_ctrl.cc revision 10617:471d390943f0
1/*
2 * Copyright (c) 2010-2014 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2013 Amin Farmahini-Farahani
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Andreas Hansson
41 *          Ani Udipi
42 *          Neha Agarwal
43 */
44
45#include "base/bitfield.hh"
46#include "base/trace.hh"
47#include "debug/DRAM.hh"
48#include "debug/DRAMPower.hh"
49#include "debug/DRAMState.hh"
50#include "debug/Drain.hh"
51#include "mem/dram_ctrl.hh"
52#include "sim/system.hh"
53
54using namespace std;
55using namespace Data;
56
57DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
58    AbstractMemory(p),
59    port(name() + ".port", *this),
60    retryRdReq(false), retryWrReq(false),
61    busState(READ),
62    nextReqEvent(this), respondEvent(this), activateEvent(this),
63    prechargeEvent(this), refreshEvent(this), powerEvent(this),
64    drainManager(NULL),
65    deviceSize(p->device_size),
66    deviceBusWidth(p->device_bus_width), burstLength(p->burst_length),
67    deviceRowBufferSize(p->device_rowbuffer_size),
68    devicesPerRank(p->devices_per_rank),
69    burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8),
70    rowBufferSize(devicesPerRank * deviceRowBufferSize),
71    columnsPerRowBuffer(rowBufferSize / burstSize),
72    columnsPerStripe(range.granularity() / burstSize),
73    ranksPerChannel(p->ranks_per_channel),
74    bankGroupsPerRank(p->bank_groups_per_rank),
75    bankGroupArch(p->bank_groups_per_rank > 0),
76    banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0),
77    readBufferSize(p->read_buffer_size),
78    writeBufferSize(p->write_buffer_size),
79    writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0),
80    writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0),
81    minWritesPerSwitch(p->min_writes_per_switch),
82    writesThisTime(0), readsThisTime(0),
83    tCK(p->tCK), tWTR(p->tWTR), tRTW(p->tRTW), tCS(p->tCS), tBURST(p->tBURST),
84    tCCD_L(p->tCCD_L), tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS),
85    tWR(p->tWR), tRTP(p->tRTP), tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD),
86    tRRD_L(p->tRRD_L), tXAW(p->tXAW), activationLimit(p->activation_limit),
87    memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
88    pageMgmt(p->page_policy),
89    maxAccessesPerRow(p->max_accesses_per_row),
90    frontendLatency(p->static_frontend_latency),
91    backendLatency(p->static_backend_latency),
92    busBusyUntil(0), refreshDueAt(0), refreshState(REF_IDLE),
93    pwrStateTrans(PWR_IDLE), pwrState(PWR_IDLE), prevArrival(0),
94    nextReqTime(0), pwrStateTick(0), numBanksActive(0),
95    activeRank(0), timeStampOffset(0)
96{
97    // create the bank states based on the dimensions of the ranks and
98    // banks
99    banks.resize(ranksPerChannel);
100
101    //create list of drampower objects. For each rank 1 drampower instance.
102    for (int i = 0; i < ranksPerChannel; i++) {
103        DRAMPower drampower = DRAMPower(p, false);
104        rankPower.emplace_back(drampower);
105    }
106
107    actTicks.resize(ranksPerChannel);
108    for (size_t c = 0; c < ranksPerChannel; ++c) {
109        banks[c].resize(banksPerRank);
110        actTicks[c].resize(activationLimit, 0);
111    }
112
113    // set the bank indices
114    for (int r = 0; r < ranksPerChannel; r++) {
115        for (int b = 0; b < banksPerRank; b++) {
116            banks[r][b].rank = r;
117            banks[r][b].bank = b;
118            // GDDR addressing of banks to BG is linear.
119            // Here we assume that all DRAM generations address bank groups as
120            // follows:
121            if (bankGroupArch) {
122                // Simply assign lower bits to bank group in order to
123                // rotate across bank groups as banks are incremented
124                // e.g. with 4 banks per bank group and 16 banks total:
125                //    banks 0,4,8,12  are in bank group 0
126                //    banks 1,5,9,13  are in bank group 1
127                //    banks 2,6,10,14 are in bank group 2
128                //    banks 3,7,11,15 are in bank group 3
129                banks[r][b].bankgr = b % bankGroupsPerRank;
130            } else {
131                // No bank groups; simply assign to bank number
132                banks[r][b].bankgr = b;
133            }
134        }
135    }
136
137    // perform a basic check of the write thresholds
138    if (p->write_low_thresh_perc >= p->write_high_thresh_perc)
139        fatal("Write buffer low threshold %d must be smaller than the "
140              "high threshold %d\n", p->write_low_thresh_perc,
141              p->write_high_thresh_perc);
142
143    // determine the rows per bank by looking at the total capacity
144    uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size());
145
146    // determine the dram actual capacity from the DRAM config in Mbytes
147    uint64_t deviceCapacity = deviceSize / (1024 * 1024) * devicesPerRank *
148        ranksPerChannel;
149
150    // if actual DRAM size does not match memory capacity in system warn!
151    if (deviceCapacity != capacity / (1024 * 1024))
152        warn("DRAM device capacity (%d Mbytes) does not match the "
153             "address range assigned (%d Mbytes)\n", deviceCapacity,
154             capacity / (1024 * 1024));
155
156    DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
157            AbstractMemory::size());
158
159    DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n",
160            rowBufferSize, columnsPerRowBuffer);
161
162    rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel);
163
164    // a bit of sanity checks on the interleaving
165    if (range.interleaved()) {
166        if (channels != range.stripes())
167            fatal("%s has %d interleaved address stripes but %d channel(s)\n",
168                  name(), range.stripes(), channels);
169
170        if (addrMapping == Enums::RoRaBaChCo) {
171            if (rowBufferSize != range.granularity()) {
172                fatal("Channel interleaving of %s doesn't match RoRaBaChCo "
173                      "address map\n", name());
174            }
175        } else if (addrMapping == Enums::RoRaBaCoCh ||
176                   addrMapping == Enums::RoCoRaBaCh) {
177            // for the interleavings with channel bits in the bottom,
178            // if the system uses a channel striping granularity that
179            // is larger than the DRAM burst size, then map the
180            // sequential accesses within a stripe to a number of
181            // columns in the DRAM, effectively placing some of the
182            // lower-order column bits as the least-significant bits
183            // of the address (above the ones denoting the burst size)
184            assert(columnsPerStripe >= 1);
185
186            // channel striping has to be done at a granularity that
187            // is equal or larger to a cache line
188            if (system()->cacheLineSize() > range.granularity()) {
189                fatal("Channel interleaving of %s must be at least as large "
190                      "as the cache line size\n", name());
191            }
192
193            // ...and equal or smaller than the row-buffer size
194            if (rowBufferSize < range.granularity()) {
195                fatal("Channel interleaving of %s must be at most as large "
196                      "as the row-buffer size\n", name());
197            }
198            // this is essentially the check above, so just to be sure
199            assert(columnsPerStripe <= columnsPerRowBuffer);
200        }
201    }
202
203    // some basic sanity checks
204    if (tREFI <= tRP || tREFI <= tRFC) {
205        fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n",
206              tREFI, tRP, tRFC);
207    }
208
209    // basic bank group architecture checks ->
210    if (bankGroupArch) {
211        // must have at least one bank per bank group
212        if (bankGroupsPerRank > banksPerRank) {
213            fatal("banks per rank (%d) must be equal to or larger than "
214                  "banks groups per rank (%d)\n",
215                  banksPerRank, bankGroupsPerRank);
216        }
217        // must have same number of banks in each bank group
218        if ((banksPerRank % bankGroupsPerRank) != 0) {
219            fatal("Banks per rank (%d) must be evenly divisible by bank groups "
220                  "per rank (%d) for equal banks per bank group\n",
221                  banksPerRank, bankGroupsPerRank);
222        }
223        // tCCD_L should be greater than minimal, back-to-back burst delay
224        if (tCCD_L <= tBURST) {
225            fatal("tCCD_L (%d) should be larger than tBURST (%d) when "
226                  "bank groups per rank (%d) is greater than 1\n",
227                  tCCD_L, tBURST, bankGroupsPerRank);
228        }
229        // tRRD_L is greater than minimal, same bank group ACT-to-ACT delay
230        // some datasheets might specify it equal to tRRD
231        if (tRRD_L < tRRD) {
232            fatal("tRRD_L (%d) should be larger than tRRD (%d) when "
233                  "bank groups per rank (%d) is greater than 1\n",
234                  tRRD_L, tRRD, bankGroupsPerRank);
235        }
236    }
237
238}
239
240void
241DRAMCtrl::init()
242{
243    AbstractMemory::init();
244
245   if (!port.isConnected()) {
246        fatal("DRAMCtrl %s is unconnected!\n", name());
247    } else {
248        port.sendRangeChange();
249    }
250}
251
252void
253DRAMCtrl::startup()
254{
255    // timestamp offset should be in clock cycles for DRAMPower
256    timeStampOffset = divCeil(curTick(), tCK);
257    // update the start tick for the precharge accounting to the
258    // current tick
259    pwrStateTick = curTick();
260
261    // shift the bus busy time sufficiently far ahead that we never
262    // have to worry about negative values when computing the time for
263    // the next request, this will add an insignificant bubble at the
264    // start of simulation
265    busBusyUntil = curTick() + tRP + tRCD + tCL;
266
267    // kick off the refresh, and give ourselves enough time to
268    // precharge
269    schedule(refreshEvent, curTick() + tREFI - tRP);
270}
271
272Tick
273DRAMCtrl::recvAtomic(PacketPtr pkt)
274{
275    DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
276
277    // do the actual memory access and turn the packet into a response
278    access(pkt);
279
280    Tick latency = 0;
281    if (!pkt->memInhibitAsserted() && pkt->hasData()) {
282        // this value is not supposed to be accurate, just enough to
283        // keep things going, mimic a closed page
284        latency = tRP + tRCD + tCL;
285    }
286    return latency;
287}
288
289bool
290DRAMCtrl::readQueueFull(unsigned int neededEntries) const
291{
292    DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n",
293            readBufferSize, readQueue.size() + respQueue.size(),
294            neededEntries);
295
296    return
297        (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize;
298}
299
300bool
301DRAMCtrl::writeQueueFull(unsigned int neededEntries) const
302{
303    DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n",
304            writeBufferSize, writeQueue.size(), neededEntries);
305    return (writeQueue.size() + neededEntries) > writeBufferSize;
306}
307
308DRAMCtrl::DRAMPacket*
309DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size,
310                       bool isRead)
311{
312    // decode the address based on the address mapping scheme, with
313    // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and
314    // channel, respectively
315    uint8_t rank;
316    uint8_t bank;
317    // use a 64-bit unsigned during the computations as the row is
318    // always the top bits, and check before creating the DRAMPacket
319    uint64_t row;
320
321    // truncate the address to a DRAM burst, which makes it unique to
322    // a specific column, row, bank, rank and channel
323    Addr addr = dramPktAddr / burstSize;
324
325    // we have removed the lowest order address bits that denote the
326    // position within the column
327    if (addrMapping == Enums::RoRaBaChCo) {
328        // the lowest order bits denote the column to ensure that
329        // sequential cache lines occupy the same row
330        addr = addr / columnsPerRowBuffer;
331
332        // take out the channel part of the address
333        addr = addr / channels;
334
335        // after the channel bits, get the bank bits to interleave
336        // over the banks
337        bank = addr % banksPerRank;
338        addr = addr / banksPerRank;
339
340        // after the bank, we get the rank bits which thus interleaves
341        // over the ranks
342        rank = addr % ranksPerChannel;
343        addr = addr / ranksPerChannel;
344
345        // lastly, get the row bits
346        row = addr % rowsPerBank;
347        addr = addr / rowsPerBank;
348    } else if (addrMapping == Enums::RoRaBaCoCh) {
349        // take out the lower-order column bits
350        addr = addr / columnsPerStripe;
351
352        // take out the channel part of the address
353        addr = addr / channels;
354
355        // next, the higher-order column bites
356        addr = addr / (columnsPerRowBuffer / columnsPerStripe);
357
358        // after the column bits, we get the bank bits to interleave
359        // over the banks
360        bank = addr % banksPerRank;
361        addr = addr / banksPerRank;
362
363        // after the bank, we get the rank bits which thus interleaves
364        // over the ranks
365        rank = addr % ranksPerChannel;
366        addr = addr / ranksPerChannel;
367
368        // lastly, get the row bits
369        row = addr % rowsPerBank;
370        addr = addr / rowsPerBank;
371    } else if (addrMapping == Enums::RoCoRaBaCh) {
372        // optimise for closed page mode and utilise maximum
373        // parallelism of the DRAM (at the cost of power)
374
375        // take out the lower-order column bits
376        addr = addr / columnsPerStripe;
377
378        // take out the channel part of the address, not that this has
379        // to match with how accesses are interleaved between the
380        // controllers in the address mapping
381        addr = addr / channels;
382
383        // start with the bank bits, as this provides the maximum
384        // opportunity for parallelism between requests
385        bank = addr % banksPerRank;
386        addr = addr / banksPerRank;
387
388        // next get the rank bits
389        rank = addr % ranksPerChannel;
390        addr = addr / ranksPerChannel;
391
392        // next, the higher-order column bites
393        addr = addr / (columnsPerRowBuffer / columnsPerStripe);
394
395        // lastly, get the row bits
396        row = addr % rowsPerBank;
397        addr = addr / rowsPerBank;
398    } else
399        panic("Unknown address mapping policy chosen!");
400
401    assert(rank < ranksPerChannel);
402    assert(bank < banksPerRank);
403    assert(row < rowsPerBank);
404    assert(row < Bank::NO_ROW);
405
406    DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
407            dramPktAddr, rank, bank, row);
408
409    // create the corresponding DRAM packet with the entry time and
410    // ready time set to the current tick, the latter will be updated
411    // later
412    uint16_t bank_id = banksPerRank * rank + bank;
413    return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr,
414                          size, banks[rank][bank]);
415}
416
417void
418DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount)
419{
420    // only add to the read queue here. whenever the request is
421    // eventually done, set the readyTime, and call schedule()
422    assert(!pkt->isWrite());
423
424    assert(pktCount != 0);
425
426    // if the request size is larger than burst size, the pkt is split into
427    // multiple DRAM packets
428    // Note if the pkt starting address is not aligened to burst size, the
429    // address of first DRAM packet is kept unaliged. Subsequent DRAM packets
430    // are aligned to burst size boundaries. This is to ensure we accurately
431    // check read packets against packets in write queue.
432    Addr addr = pkt->getAddr();
433    unsigned pktsServicedByWrQ = 0;
434    BurstHelper* burst_helper = NULL;
435    for (int cnt = 0; cnt < pktCount; ++cnt) {
436        unsigned size = std::min((addr | (burstSize - 1)) + 1,
437                        pkt->getAddr() + pkt->getSize()) - addr;
438        readPktSize[ceilLog2(size)]++;
439        readBursts++;
440
441        // First check write buffer to see if the data is already at
442        // the controller
443        bool foundInWrQ = false;
444        for (auto i = writeQueue.begin(); i != writeQueue.end(); ++i) {
445            // check if the read is subsumed in the write entry we are
446            // looking at
447            if ((*i)->addr <= addr &&
448                (addr + size) <= ((*i)->addr + (*i)->size)) {
449                foundInWrQ = true;
450                servicedByWrQ++;
451                pktsServicedByWrQ++;
452                DPRINTF(DRAM, "Read to addr %lld with size %d serviced by "
453                        "write queue\n", addr, size);
454                bytesReadWrQ += burstSize;
455                break;
456            }
457        }
458
459        // If not found in the write q, make a DRAM packet and
460        // push it onto the read queue
461        if (!foundInWrQ) {
462
463            // Make the burst helper for split packets
464            if (pktCount > 1 && burst_helper == NULL) {
465                DPRINTF(DRAM, "Read to addr %lld translates to %d "
466                        "dram requests\n", pkt->getAddr(), pktCount);
467                burst_helper = new BurstHelper(pktCount);
468            }
469
470            DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true);
471            dram_pkt->burstHelper = burst_helper;
472
473            assert(!readQueueFull(1));
474            rdQLenPdf[readQueue.size() + respQueue.size()]++;
475
476            DPRINTF(DRAM, "Adding to read queue\n");
477
478            readQueue.push_back(dram_pkt);
479
480            // Update stats
481            avgRdQLen = readQueue.size() + respQueue.size();
482        }
483
484        // Starting address of next dram pkt (aligend to burstSize boundary)
485        addr = (addr | (burstSize - 1)) + 1;
486    }
487
488    // If all packets are serviced by write queue, we send the repsonse back
489    if (pktsServicedByWrQ == pktCount) {
490        accessAndRespond(pkt, frontendLatency);
491        return;
492    }
493
494    // Update how many split packets are serviced by write queue
495    if (burst_helper != NULL)
496        burst_helper->burstsServiced = pktsServicedByWrQ;
497
498    // If we are not already scheduled to get a request out of the
499    // queue, do so now
500    if (!nextReqEvent.scheduled()) {
501        DPRINTF(DRAM, "Request scheduled immediately\n");
502        schedule(nextReqEvent, curTick());
503    }
504}
505
506void
507DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount)
508{
509    // only add to the write queue here. whenever the request is
510    // eventually done, set the readyTime, and call schedule()
511    assert(pkt->isWrite());
512
513    // if the request size is larger than burst size, the pkt is split into
514    // multiple DRAM packets
515    Addr addr = pkt->getAddr();
516    for (int cnt = 0; cnt < pktCount; ++cnt) {
517        unsigned size = std::min((addr | (burstSize - 1)) + 1,
518                        pkt->getAddr() + pkt->getSize()) - addr;
519        writePktSize[ceilLog2(size)]++;
520        writeBursts++;
521
522        // see if we can merge with an existing item in the write
523        // queue and keep track of whether we have merged or not so we
524        // can stop at that point and also avoid enqueueing a new
525        // request
526        bool merged = false;
527        auto w = writeQueue.begin();
528
529        while(!merged && w != writeQueue.end()) {
530            // either of the two could be first, if they are the same
531            // it does not matter which way we go
532            if ((*w)->addr >= addr) {
533                // the existing one starts after the new one, figure
534                // out where the new one ends with respect to the
535                // existing one
536                if ((addr + size) >= ((*w)->addr + (*w)->size)) {
537                    // check if the existing one is completely
538                    // subsumed in the new one
539                    DPRINTF(DRAM, "Merging write covering existing burst\n");
540                    merged = true;
541                    // update both the address and the size
542                    (*w)->addr = addr;
543                    (*w)->size = size;
544                } else if ((addr + size) >= (*w)->addr &&
545                           ((*w)->addr + (*w)->size - addr) <= burstSize) {
546                    // the new one is just before or partially
547                    // overlapping with the existing one, and together
548                    // they fit within a burst
549                    DPRINTF(DRAM, "Merging write before existing burst\n");
550                    merged = true;
551                    // the existing queue item needs to be adjusted with
552                    // respect to both address and size
553                    (*w)->size = (*w)->addr + (*w)->size - addr;
554                    (*w)->addr = addr;
555                }
556            } else {
557                // the new one starts after the current one, figure
558                // out where the existing one ends with respect to the
559                // new one
560                if (((*w)->addr + (*w)->size) >= (addr + size)) {
561                    // check if the new one is completely subsumed in the
562                    // existing one
563                    DPRINTF(DRAM, "Merging write into existing burst\n");
564                    merged = true;
565                    // no adjustments necessary
566                } else if (((*w)->addr + (*w)->size) >= addr &&
567                           (addr + size - (*w)->addr) <= burstSize) {
568                    // the existing one is just before or partially
569                    // overlapping with the new one, and together
570                    // they fit within a burst
571                    DPRINTF(DRAM, "Merging write after existing burst\n");
572                    merged = true;
573                    // the address is right, and only the size has
574                    // to be adjusted
575                    (*w)->size = addr + size - (*w)->addr;
576                }
577            }
578            ++w;
579        }
580
581        // if the item was not merged we need to create a new write
582        // and enqueue it
583        if (!merged) {
584            DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false);
585
586            assert(writeQueue.size() < writeBufferSize);
587            wrQLenPdf[writeQueue.size()]++;
588
589            DPRINTF(DRAM, "Adding to write queue\n");
590
591            writeQueue.push_back(dram_pkt);
592
593            // Update stats
594            avgWrQLen = writeQueue.size();
595        } else {
596            // keep track of the fact that this burst effectively
597            // disappeared as it was merged with an existing one
598            mergedWrBursts++;
599        }
600
601        // Starting address of next dram pkt (aligend to burstSize boundary)
602        addr = (addr | (burstSize - 1)) + 1;
603    }
604
605    // we do not wait for the writes to be send to the actual memory,
606    // but instead take responsibility for the consistency here and
607    // snoop the write queue for any upcoming reads
608    // @todo, if a pkt size is larger than burst size, we might need a
609    // different front end latency
610    accessAndRespond(pkt, frontendLatency);
611
612    // If we are not already scheduled to get a request out of the
613    // queue, do so now
614    if (!nextReqEvent.scheduled()) {
615        DPRINTF(DRAM, "Request scheduled immediately\n");
616        schedule(nextReqEvent, curTick());
617    }
618}
619
620void
621DRAMCtrl::printQs() const {
622    DPRINTF(DRAM, "===READ QUEUE===\n\n");
623    for (auto i = readQueue.begin() ;  i != readQueue.end() ; ++i) {
624        DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
625    }
626    DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
627    for (auto i = respQueue.begin() ;  i != respQueue.end() ; ++i) {
628        DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
629    }
630    DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
631    for (auto i = writeQueue.begin() ;  i != writeQueue.end() ; ++i) {
632        DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
633    }
634}
635
636bool
637DRAMCtrl::recvTimingReq(PacketPtr pkt)
638{
639    /// @todo temporary hack to deal with memory corruption issues until
640    /// 4-phase transactions are complete
641    for (int x = 0; x < pendingDelete.size(); x++)
642        delete pendingDelete[x];
643    pendingDelete.clear();
644
645    // This is where we enter from the outside world
646    DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n",
647            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
648
649    // simply drop inhibited packets for now
650    if (pkt->memInhibitAsserted()) {
651        DPRINTF(DRAM, "Inhibited packet -- Dropping it now\n");
652        pendingDelete.push_back(pkt);
653        return true;
654    }
655
656    // Calc avg gap between requests
657    if (prevArrival != 0) {
658        totGap += curTick() - prevArrival;
659    }
660    prevArrival = curTick();
661
662
663    // Find out how many dram packets a pkt translates to
664    // If the burst size is equal or larger than the pkt size, then a pkt
665    // translates to only one dram packet. Otherwise, a pkt translates to
666    // multiple dram packets
667    unsigned size = pkt->getSize();
668    unsigned offset = pkt->getAddr() & (burstSize - 1);
669    unsigned int dram_pkt_count = divCeil(offset + size, burstSize);
670
671    // check local buffers and do not accept if full
672    if (pkt->isRead()) {
673        assert(size != 0);
674        if (readQueueFull(dram_pkt_count)) {
675            DPRINTF(DRAM, "Read queue full, not accepting\n");
676            // remember that we have to retry this port
677            retryRdReq = true;
678            numRdRetry++;
679            return false;
680        } else {
681            addToReadQueue(pkt, dram_pkt_count);
682            readReqs++;
683            bytesReadSys += size;
684        }
685    } else if (pkt->isWrite()) {
686        assert(size != 0);
687        if (writeQueueFull(dram_pkt_count)) {
688            DPRINTF(DRAM, "Write queue full, not accepting\n");
689            // remember that we have to retry this port
690            retryWrReq = true;
691            numWrRetry++;
692            return false;
693        } else {
694            addToWriteQueue(pkt, dram_pkt_count);
695            writeReqs++;
696            bytesWrittenSys += size;
697        }
698    } else {
699        DPRINTF(DRAM,"Neither read nor write, ignore timing\n");
700        neitherReadNorWrite++;
701        accessAndRespond(pkt, 1);
702    }
703
704    return true;
705}
706
707void
708DRAMCtrl::processRespondEvent()
709{
710    DPRINTF(DRAM,
711            "processRespondEvent(): Some req has reached its readyTime\n");
712
713    DRAMPacket* dram_pkt = respQueue.front();
714
715    if (dram_pkt->burstHelper) {
716        // it is a split packet
717        dram_pkt->burstHelper->burstsServiced++;
718        if (dram_pkt->burstHelper->burstsServiced ==
719            dram_pkt->burstHelper->burstCount) {
720            // we have now serviced all children packets of a system packet
721            // so we can now respond to the requester
722            // @todo we probably want to have a different front end and back
723            // end latency for split packets
724            accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
725            delete dram_pkt->burstHelper;
726            dram_pkt->burstHelper = NULL;
727        }
728    } else {
729        // it is not a split packet
730        accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
731    }
732
733    delete respQueue.front();
734    respQueue.pop_front();
735
736    if (!respQueue.empty()) {
737        assert(respQueue.front()->readyTime >= curTick());
738        assert(!respondEvent.scheduled());
739        schedule(respondEvent, respQueue.front()->readyTime);
740    } else {
741        // if there is nothing left in any queue, signal a drain
742        if (writeQueue.empty() && readQueue.empty() &&
743            drainManager) {
744            DPRINTF(Drain, "DRAM controller done draining\n");
745            drainManager->signalDrainDone();
746            drainManager = NULL;
747        }
748    }
749
750    // We have made a location in the queue available at this point,
751    // so if there is a read that was forced to wait, retry now
752    if (retryRdReq) {
753        retryRdReq = false;
754        port.sendRetry();
755    }
756}
757
758void
759DRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue, bool switched_cmd_type)
760{
761    // This method does the arbitration between requests. The chosen
762    // packet is simply moved to the head of the queue. The other
763    // methods know that this is the place to look. For example, with
764    // FCFS, this method does nothing
765    assert(!queue.empty());
766
767    if (queue.size() == 1) {
768        DPRINTF(DRAM, "Single request, nothing to do\n");
769        return;
770    }
771
772    if (memSchedPolicy == Enums::fcfs) {
773        // Do nothing, since the correct request is already head
774    } else if (memSchedPolicy == Enums::frfcfs) {
775        reorderQueue(queue, switched_cmd_type);
776    } else
777        panic("No scheduling policy chosen\n");
778}
779
780void
781DRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue, bool switched_cmd_type)
782{
783    // Only determine this when needed
784    uint64_t earliest_banks = 0;
785
786    // Search for row hits first, if no row hit is found then schedule the
787    // packet to one of the earliest banks available
788    bool found_earliest_pkt = false;
789    bool found_prepped_diff_rank_pkt = false;
790    auto selected_pkt_it = queue.begin();
791
792    for (auto i = queue.begin(); i != queue.end() ; ++i) {
793        DRAMPacket* dram_pkt = *i;
794        const Bank& bank = dram_pkt->bankRef;
795        // Check if it is a row hit
796        if (bank.openRow == dram_pkt->row) {
797            if (dram_pkt->rank == activeRank || switched_cmd_type) {
798                // FCFS within the hits, giving priority to commands
799                // that access the same rank as the previous burst
800                // to minimize bus turnaround delays
801                // Only give rank prioity when command type is not changing
802                DPRINTF(DRAM, "Row buffer hit\n");
803                selected_pkt_it = i;
804                break;
805            } else if (!found_prepped_diff_rank_pkt) {
806                // found row hit for command on different rank than prev burst
807                selected_pkt_it = i;
808                found_prepped_diff_rank_pkt = true;
809            }
810        } else if (!found_earliest_pkt & !found_prepped_diff_rank_pkt) {
811            // No row hit and
812            // haven't found an entry with a row hit to a new rank
813            if (earliest_banks == 0)
814                // Determine entries with earliest bank prep delay
815                // Function will give priority to commands that access the
816                // same rank as previous burst and can prep the bank seamlessly
817                earliest_banks = minBankPrep(queue, switched_cmd_type);
818
819            // FCFS - Bank is first available bank
820            if (bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) {
821                // Remember the packet to be scheduled to one of the earliest
822                // banks available, FCFS amongst the earliest banks
823                selected_pkt_it = i;
824                found_earliest_pkt = true;
825            }
826        }
827    }
828
829    DRAMPacket* selected_pkt = *selected_pkt_it;
830    queue.erase(selected_pkt_it);
831    queue.push_front(selected_pkt);
832}
833
834void
835DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency)
836{
837    DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
838
839    bool needsResponse = pkt->needsResponse();
840    // do the actual memory access which also turns the packet into a
841    // response
842    access(pkt);
843
844    // turn packet around to go back to requester if response expected
845    if (needsResponse) {
846        // access already turned the packet into a response
847        assert(pkt->isResponse());
848
849        // @todo someone should pay for this
850        pkt->firstWordDelay = pkt->lastWordDelay = 0;
851
852        // queue the packet in the response queue to be sent out after
853        // the static latency has passed
854        port.schedTimingResp(pkt, curTick() + static_latency);
855    } else {
856        // @todo the packet is going to be deleted, and the DRAMPacket
857        // is still having a pointer to it
858        pendingDelete.push_back(pkt);
859    }
860
861    DPRINTF(DRAM, "Done\n");
862
863    return;
864}
865
866void
867DRAMCtrl::activateBank(Bank& bank, Tick act_tick, uint32_t row)
868{
869    // get the rank index from the bank
870    uint8_t rank = bank.rank;
871
872    assert(actTicks[rank].size() == activationLimit);
873
874    DPRINTF(DRAM, "Activate at tick %d\n", act_tick);
875
876    // update the open row
877    assert(bank.openRow == Bank::NO_ROW);
878    bank.openRow = row;
879
880    // start counting anew, this covers both the case when we
881    // auto-precharged, and when this access is forced to
882    // precharge
883    bank.bytesAccessed = 0;
884    bank.rowAccesses = 0;
885
886    ++numBanksActive;
887    assert(numBanksActive <= banksPerRank * ranksPerChannel);
888
889    DPRINTF(DRAM, "Activate bank %d, rank %d at tick %lld, now got %d active\n",
890            bank.bank, bank.rank, act_tick, numBanksActive);
891
892    rankPower[bank.rank].powerlib.doCommand(MemCommand::ACT, bank.bank,
893                                            divCeil(act_tick, tCK) -
894                                            timeStampOffset);
895
896    DPRINTF(DRAMPower, "%llu,ACT,%d,%d\n", divCeil(act_tick, tCK) -
897            timeStampOffset, bank.bank, bank.rank);
898
899    // The next access has to respect tRAS for this bank
900    bank.preAllowedAt = act_tick + tRAS;
901
902    // Respect the row-to-column command delay
903    bank.colAllowedAt = std::max(act_tick + tRCD, bank.colAllowedAt);
904
905    // start by enforcing tRRD
906    for(int i = 0; i < banksPerRank; i++) {
907        // next activate to any bank in this rank must not happen
908        // before tRRD
909        if (bankGroupArch && (bank.bankgr == banks[rank][i].bankgr)) {
910            // bank group architecture requires longer delays between
911            // ACT commands within the same bank group.  Use tRRD_L
912            // in this case
913            banks[rank][i].actAllowedAt = std::max(act_tick + tRRD_L,
914                                                   banks[rank][i].actAllowedAt);
915        } else {
916            // use shorter tRRD value when either
917            // 1) bank group architecture is not supportted
918            // 2) bank is in a different bank group
919            banks[rank][i].actAllowedAt = std::max(act_tick + tRRD,
920                                                   banks[rank][i].actAllowedAt);
921        }
922    }
923
924    // next, we deal with tXAW, if the activation limit is disabled
925    // then we directly schedule an activate power event
926    if (!actTicks[rank].empty()) {
927        // sanity check
928        if (actTicks[rank].back() &&
929           (act_tick - actTicks[rank].back()) < tXAW) {
930            panic("Got %d activates in window %d (%llu - %llu) which "
931                  "is smaller than %llu\n", activationLimit, act_tick -
932                  actTicks[rank].back(), act_tick, actTicks[rank].back(),
933                  tXAW);
934        }
935
936        // shift the times used for the book keeping, the last element
937        // (highest index) is the oldest one and hence the lowest value
938        actTicks[rank].pop_back();
939
940        // record an new activation (in the future)
941        actTicks[rank].push_front(act_tick);
942
943        // cannot activate more than X times in time window tXAW, push the
944        // next one (the X + 1'st activate) to be tXAW away from the
945        // oldest in our window of X
946        if (actTicks[rank].back() &&
947           (act_tick - actTicks[rank].back()) < tXAW) {
948            DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate "
949                    "no earlier than %llu\n", activationLimit,
950                    actTicks[rank].back() + tXAW);
951            for(int j = 0; j < banksPerRank; j++)
952                // next activate must not happen before end of window
953                banks[rank][j].actAllowedAt =
954                    std::max(actTicks[rank].back() + tXAW,
955                             banks[rank][j].actAllowedAt);
956        }
957    }
958
959    // at the point when this activate takes place, make sure we
960    // transition to the active power state
961    if (!activateEvent.scheduled())
962        schedule(activateEvent, act_tick);
963    else if (activateEvent.when() > act_tick)
964        // move it sooner in time
965        reschedule(activateEvent, act_tick);
966}
967
968void
969DRAMCtrl::processActivateEvent()
970{
971    // we should transition to the active state as soon as any bank is active
972    if (pwrState != PWR_ACT)
973        // note that at this point numBanksActive could be back at
974        // zero again due to a precharge scheduled in the future
975        schedulePowerEvent(PWR_ACT, curTick());
976}
977
978void
979DRAMCtrl::prechargeBank(Bank& bank, Tick pre_at, bool trace)
980{
981    // make sure the bank has an open row
982    assert(bank.openRow != Bank::NO_ROW);
983
984    // sample the bytes per activate here since we are closing
985    // the page
986    bytesPerActivate.sample(bank.bytesAccessed);
987
988    bank.openRow = Bank::NO_ROW;
989
990    // no precharge allowed before this one
991    bank.preAllowedAt = pre_at;
992
993    Tick pre_done_at = pre_at + tRP;
994
995    bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at);
996
997    assert(numBanksActive != 0);
998    --numBanksActive;
999
1000    DPRINTF(DRAM, "Precharging bank %d, rank %d at tick %lld, now got "
1001            "%d active\n", bank.bank, bank.rank, pre_at, numBanksActive);
1002
1003    if (trace) {
1004
1005        rankPower[bank.rank].powerlib.doCommand(MemCommand::PRE, bank.bank,
1006                                                divCeil(pre_at, tCK) -
1007                                                timeStampOffset);
1008        DPRINTF(DRAMPower, "%llu,PRE,%d,%d\n", divCeil(pre_at, tCK) -
1009                timeStampOffset, bank.bank, bank.rank);
1010    }
1011    // if we look at the current number of active banks we might be
1012    // tempted to think the DRAM is now idle, however this can be
1013    // undone by an activate that is scheduled to happen before we
1014    // would have reached the idle state, so schedule an event and
1015    // rather check once we actually make it to the point in time when
1016    // the (last) precharge takes place
1017    if (!prechargeEvent.scheduled())
1018        schedule(prechargeEvent, pre_done_at);
1019    else if (prechargeEvent.when() < pre_done_at)
1020        reschedule(prechargeEvent, pre_done_at);
1021}
1022
1023void
1024DRAMCtrl::processPrechargeEvent()
1025{
1026    // if we reached zero, then special conditions apply as we track
1027    // if all banks are precharged for the power models
1028    if (numBanksActive == 0) {
1029        // we should transition to the idle state when the last bank
1030        // is precharged
1031        schedulePowerEvent(PWR_IDLE, curTick());
1032    }
1033}
1034
1035void
1036DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
1037{
1038    DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
1039            dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
1040
1041    // get the bank
1042    Bank& bank = dram_pkt->bankRef;
1043
1044    // for the state we need to track if it is a row hit or not
1045    bool row_hit = true;
1046
1047    // respect any constraints on the command (e.g. tRCD or tCCD)
1048    Tick cmd_at = std::max(bank.colAllowedAt, curTick());
1049
1050    // Determine the access latency and update the bank state
1051    if (bank.openRow == dram_pkt->row) {
1052        // nothing to do
1053    } else {
1054        row_hit = false;
1055
1056        // If there is a page open, precharge it.
1057        if (bank.openRow != Bank::NO_ROW) {
1058            prechargeBank(bank, std::max(bank.preAllowedAt, curTick()));
1059        }
1060
1061        // next we need to account for the delay in activating the
1062        // page
1063        Tick act_tick = std::max(bank.actAllowedAt, curTick());
1064
1065        // Record the activation and deal with all the global timing
1066        // constraints caused be a new activation (tRRD and tXAW)
1067        activateBank(bank, act_tick, dram_pkt->row);
1068
1069        // issue the command as early as possible
1070        cmd_at = bank.colAllowedAt;
1071    }
1072
1073    // we need to wait until the bus is available before we can issue
1074    // the command
1075    cmd_at = std::max(cmd_at, busBusyUntil - tCL);
1076
1077    // update the packet ready time
1078    dram_pkt->readyTime = cmd_at + tCL + tBURST;
1079
1080    // only one burst can use the bus at any one point in time
1081    assert(dram_pkt->readyTime - busBusyUntil >= tBURST);
1082
1083    // update the time for the next read/write burst for each
1084    // bank (add a max with tCCD/tCCD_L here)
1085    Tick cmd_dly;
1086    for(int j = 0; j < ranksPerChannel; j++) {
1087        for(int i = 0; i < banksPerRank; i++) {
1088            // next burst to same bank group in this rank must not happen
1089            // before tCCD_L.  Different bank group timing requirement is
1090            // tBURST; Add tCS for different ranks
1091            if (dram_pkt->rank == j) {
1092                if (bankGroupArch && (bank.bankgr == banks[j][i].bankgr)) {
1093                    // bank group architecture requires longer delays between
1094                    // RD/WR burst commands to the same bank group.
1095                    // Use tCCD_L in this case
1096                    cmd_dly = tCCD_L;
1097                } else {
1098                    // use tBURST (equivalent to tCCD_S), the shorter
1099                    // cas-to-cas delay value, when either:
1100                    // 1) bank group architecture is not supportted
1101                    // 2) bank is in a different bank group
1102                    cmd_dly = tBURST;
1103                }
1104            } else {
1105                // different rank is by default in a different bank group
1106                // use tBURST (equivalent to tCCD_S), which is the shorter
1107                // cas-to-cas delay in this case
1108                // Add tCS to account for rank-to-rank bus delay requirements
1109                cmd_dly = tBURST + tCS;
1110            }
1111            banks[j][i].colAllowedAt = std::max(cmd_at + cmd_dly,
1112                                                banks[j][i].colAllowedAt);
1113        }
1114    }
1115
1116    // Save rank of current access
1117    activeRank = dram_pkt->rank;
1118
1119    // If this is a write, we also need to respect the write recovery
1120    // time before a precharge, in the case of a read, respect the
1121    // read to precharge constraint
1122    bank.preAllowedAt = std::max(bank.preAllowedAt,
1123                                 dram_pkt->isRead ? cmd_at + tRTP :
1124                                 dram_pkt->readyTime + tWR);
1125
1126    // increment the bytes accessed and the accesses per row
1127    bank.bytesAccessed += burstSize;
1128    ++bank.rowAccesses;
1129
1130    // if we reached the max, then issue with an auto-precharge
1131    bool auto_precharge = pageMgmt == Enums::close ||
1132        bank.rowAccesses == maxAccessesPerRow;
1133
1134    // if we did not hit the limit, we might still want to
1135    // auto-precharge
1136    if (!auto_precharge &&
1137        (pageMgmt == Enums::open_adaptive ||
1138         pageMgmt == Enums::close_adaptive)) {
1139        // a twist on the open and close page policies:
1140        // 1) open_adaptive page policy does not blindly keep the
1141        // page open, but close it if there are no row hits, and there
1142        // are bank conflicts in the queue
1143        // 2) close_adaptive page policy does not blindly close the
1144        // page, but closes it only if there are no row hits in the queue.
1145        // In this case, only force an auto precharge when there
1146        // are no same page hits in the queue
1147        bool got_more_hits = false;
1148        bool got_bank_conflict = false;
1149
1150        // either look at the read queue or write queue
1151        const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue :
1152            writeQueue;
1153        auto p = queue.begin();
1154        // make sure we are not considering the packet that we are
1155        // currently dealing with (which is the head of the queue)
1156        ++p;
1157
1158        // keep on looking until we have found required condition or
1159        // reached the end
1160        while (!(got_more_hits &&
1161                 (got_bank_conflict || pageMgmt == Enums::close_adaptive)) &&
1162               p != queue.end()) {
1163            bool same_rank_bank = (dram_pkt->rank == (*p)->rank) &&
1164                (dram_pkt->bank == (*p)->bank);
1165            bool same_row = dram_pkt->row == (*p)->row;
1166            got_more_hits |= same_rank_bank && same_row;
1167            got_bank_conflict |= same_rank_bank && !same_row;
1168            ++p;
1169        }
1170
1171        // auto pre-charge when either
1172        // 1) open_adaptive policy, we have not got any more hits, and
1173        //    have a bank conflict
1174        // 2) close_adaptive policy and we have not got any more hits
1175        auto_precharge = !got_more_hits &&
1176            (got_bank_conflict || pageMgmt == Enums::close_adaptive);
1177    }
1178
1179    // DRAMPower trace command to be written
1180    std::string mem_cmd = dram_pkt->isRead ? "RD" : "WR";
1181
1182    // MemCommand required for DRAMPower library
1183    MemCommand::cmds command = (mem_cmd == "RD") ? MemCommand::RD :
1184                                                   MemCommand::WR;
1185
1186    // if this access should use auto-precharge, then we are
1187    // closing the row
1188    if (auto_precharge) {
1189        // if auto-precharge push a PRE command at the correct tick to the
1190        // list used by DRAMPower library to calculate power
1191        prechargeBank(bank, std::max(curTick(), bank.preAllowedAt));
1192
1193        DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId);
1194    }
1195
1196    // Update bus state
1197    busBusyUntil = dram_pkt->readyTime;
1198
1199    DPRINTF(DRAM, "Access to %lld, ready at %lld bus busy until %lld.\n",
1200            dram_pkt->addr, dram_pkt->readyTime, busBusyUntil);
1201
1202    rankPower[dram_pkt->rank].powerlib.doCommand(command, dram_pkt->bank,
1203                                                 divCeil(cmd_at, tCK) -
1204                                                 timeStampOffset);
1205
1206    DPRINTF(DRAMPower, "%llu,%s,%d,%d\n", divCeil(cmd_at, tCK) -
1207            timeStampOffset, mem_cmd, dram_pkt->bank, dram_pkt->rank);
1208
1209    // Update the minimum timing between the requests, this is a
1210    // conservative estimate of when we have to schedule the next
1211    // request to not introduce any unecessary bubbles. In most cases
1212    // we will wake up sooner than we have to.
1213    nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
1214
1215    // Update the stats and schedule the next request
1216    if (dram_pkt->isRead) {
1217        ++readsThisTime;
1218        if (row_hit)
1219            readRowHits++;
1220        bytesReadDRAM += burstSize;
1221        perBankRdBursts[dram_pkt->bankId]++;
1222
1223        // Update latency stats
1224        totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
1225        totBusLat += tBURST;
1226        totQLat += cmd_at - dram_pkt->entryTime;
1227    } else {
1228        ++writesThisTime;
1229        if (row_hit)
1230            writeRowHits++;
1231        bytesWritten += burstSize;
1232        perBankWrBursts[dram_pkt->bankId]++;
1233    }
1234}
1235
1236void
1237DRAMCtrl::processNextReqEvent()
1238{
1239    // pre-emptively set to false.  Overwrite if in READ_TO_WRITE
1240    // or WRITE_TO_READ state
1241    bool switched_cmd_type = false;
1242    if (busState == READ_TO_WRITE) {
1243        DPRINTF(DRAM, "Switching to writes after %d reads with %d reads "
1244                "waiting\n", readsThisTime, readQueue.size());
1245
1246        // sample and reset the read-related stats as we are now
1247        // transitioning to writes, and all reads are done
1248        rdPerTurnAround.sample(readsThisTime);
1249        readsThisTime = 0;
1250
1251        // now proceed to do the actual writes
1252        busState = WRITE;
1253        switched_cmd_type = true;
1254    } else if (busState == WRITE_TO_READ) {
1255        DPRINTF(DRAM, "Switching to reads after %d writes with %d writes "
1256                "waiting\n", writesThisTime, writeQueue.size());
1257
1258        wrPerTurnAround.sample(writesThisTime);
1259        writesThisTime = 0;
1260
1261        busState = READ;
1262        switched_cmd_type = true;
1263    }
1264
1265    if (refreshState != REF_IDLE) {
1266        // if a refresh waiting for this event loop to finish, then hand
1267        // over now, and do not schedule a new nextReqEvent
1268        if (refreshState == REF_DRAIN) {
1269            DPRINTF(DRAM, "Refresh drain done, now precharging\n");
1270
1271            refreshState = REF_PRE;
1272
1273            // hand control back to the refresh event loop
1274            schedule(refreshEvent, curTick());
1275        }
1276
1277        // let the refresh finish before issuing any further requests
1278        return;
1279    }
1280
1281    // when we get here it is either a read or a write
1282    if (busState == READ) {
1283
1284        // track if we should switch or not
1285        bool switch_to_writes = false;
1286
1287        if (readQueue.empty()) {
1288            // In the case there is no read request to go next,
1289            // trigger writes if we have passed the low threshold (or
1290            // if we are draining)
1291            if (!writeQueue.empty() &&
1292                (drainManager || writeQueue.size() > writeLowThreshold)) {
1293
1294                switch_to_writes = true;
1295            } else {
1296                // check if we are drained
1297                if (respQueue.empty () && drainManager) {
1298                    DPRINTF(Drain, "DRAM controller done draining\n");
1299                    drainManager->signalDrainDone();
1300                    drainManager = NULL;
1301                }
1302
1303                // nothing to do, not even any point in scheduling an
1304                // event for the next request
1305                return;
1306            }
1307        } else {
1308            // Figure out which read request goes next, and move it to the
1309            // front of the read queue
1310            chooseNext(readQueue, switched_cmd_type);
1311
1312            DRAMPacket* dram_pkt = readQueue.front();
1313
1314            // here we get a bit creative and shift the bus busy time not
1315            // just the tWTR, but also a CAS latency to capture the fact
1316            // that we are allowed to prepare a new bank, but not issue a
1317            // read command until after tWTR, in essence we capture a
1318            // bubble on the data bus that is tWTR + tCL
1319            if (switched_cmd_type && dram_pkt->rank == activeRank) {
1320                busBusyUntil += tWTR + tCL;
1321            }
1322
1323            doDRAMAccess(dram_pkt);
1324
1325            // At this point we're done dealing with the request
1326            readQueue.pop_front();
1327
1328            // sanity check
1329            assert(dram_pkt->size <= burstSize);
1330            assert(dram_pkt->readyTime >= curTick());
1331
1332            // Insert into response queue. It will be sent back to the
1333            // requestor at its readyTime
1334            if (respQueue.empty()) {
1335                assert(!respondEvent.scheduled());
1336                schedule(respondEvent, dram_pkt->readyTime);
1337            } else {
1338                assert(respQueue.back()->readyTime <= dram_pkt->readyTime);
1339                assert(respondEvent.scheduled());
1340            }
1341
1342            respQueue.push_back(dram_pkt);
1343
1344            // we have so many writes that we have to transition
1345            if (writeQueue.size() > writeHighThreshold) {
1346                switch_to_writes = true;
1347            }
1348        }
1349
1350        // switching to writes, either because the read queue is empty
1351        // and the writes have passed the low threshold (or we are
1352        // draining), or because the writes hit the hight threshold
1353        if (switch_to_writes) {
1354            // transition to writing
1355            busState = READ_TO_WRITE;
1356        }
1357    } else {
1358        chooseNext(writeQueue, switched_cmd_type);
1359        DRAMPacket* dram_pkt = writeQueue.front();
1360        // sanity check
1361        assert(dram_pkt->size <= burstSize);
1362
1363        // add a bubble to the data bus, as defined by the
1364        // tRTW when access is to the same rank as previous burst
1365        // Different rank timing is handled with tCS, which is
1366        // applied to colAllowedAt
1367        if (switched_cmd_type && dram_pkt->rank == activeRank) {
1368            busBusyUntil += tRTW;
1369        }
1370
1371        doDRAMAccess(dram_pkt);
1372
1373        writeQueue.pop_front();
1374        delete dram_pkt;
1375
1376        // If we emptied the write queue, or got sufficiently below the
1377        // threshold (using the minWritesPerSwitch as the hysteresis) and
1378        // are not draining, or we have reads waiting and have done enough
1379        // writes, then switch to reads.
1380        if (writeQueue.empty() ||
1381            (writeQueue.size() + minWritesPerSwitch < writeLowThreshold &&
1382             !drainManager) ||
1383            (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) {
1384            // turn the bus back around for reads again
1385            busState = WRITE_TO_READ;
1386
1387            // note that the we switch back to reads also in the idle
1388            // case, which eventually will check for any draining and
1389            // also pause any further scheduling if there is really
1390            // nothing to do
1391        }
1392    }
1393
1394    schedule(nextReqEvent, std::max(nextReqTime, curTick()));
1395
1396    // If there is space available and we have writes waiting then let
1397    // them retry. This is done here to ensure that the retry does not
1398    // cause a nextReqEvent to be scheduled before we do so as part of
1399    // the next request processing
1400    if (retryWrReq && writeQueue.size() < writeBufferSize) {
1401        retryWrReq = false;
1402        port.sendRetry();
1403    }
1404}
1405
1406uint64_t
1407DRAMCtrl::minBankPrep(const deque<DRAMPacket*>& queue,
1408                      bool switched_cmd_type) const
1409{
1410    uint64_t bank_mask = 0;
1411    Tick min_act_at = MaxTick;
1412
1413    uint64_t bank_mask_same_rank = 0;
1414    Tick min_act_at_same_rank = MaxTick;
1415
1416    // Give precedence to commands that access same rank as previous command
1417    bool same_rank_match = false;
1418
1419    // determine if we have queued transactions targetting the
1420    // bank in question
1421    vector<bool> got_waiting(ranksPerChannel * banksPerRank, false);
1422    for (auto p = queue.begin(); p != queue.end(); ++p) {
1423        got_waiting[(*p)->bankId] = true;
1424    }
1425
1426    for (int i = 0; i < ranksPerChannel; i++) {
1427        for (int j = 0; j < banksPerRank; j++) {
1428            uint8_t bank_id = i * banksPerRank + j;
1429
1430            // if we have waiting requests for the bank, and it is
1431            // amongst the first available, update the mask
1432            if (got_waiting[bank_id]) {
1433                // simplistic approximation of when the bank can issue
1434                // an activate, ignoring any rank-to-rank switching
1435                // cost in this calculation
1436                Tick act_at = banks[i][j].openRow == Bank::NO_ROW ?
1437                    banks[i][j].actAllowedAt :
1438                    std::max(banks[i][j].preAllowedAt, curTick()) + tRP;
1439
1440                // prioritize commands that access the
1441                // same rank as previous burst
1442                // Calculate bank mask separately for the case and
1443                // evaluate after loop iterations complete
1444                if (i == activeRank && ranksPerChannel > 1) {
1445                    if (act_at <= min_act_at_same_rank) {
1446                        // reset same rank bank mask if new minimum is found
1447                        // and previous minimum could not immediately send ACT
1448                        if (act_at < min_act_at_same_rank &&
1449                            min_act_at_same_rank > curTick())
1450                            bank_mask_same_rank = 0;
1451
1452                        // Set flag indicating that a same rank
1453                        // opportunity was found
1454                        same_rank_match = true;
1455
1456                        // set the bit corresponding to the available bank
1457                        replaceBits(bank_mask_same_rank, bank_id, bank_id, 1);
1458                        min_act_at_same_rank = act_at;
1459                    }
1460                } else {
1461                    if (act_at <= min_act_at) {
1462                        // reset bank mask if new minimum is found
1463                        // and either previous minimum could not immediately send ACT
1464                        if (act_at < min_act_at && min_act_at > curTick())
1465                            bank_mask = 0;
1466                        // set the bit corresponding to the available bank
1467                        replaceBits(bank_mask, bank_id, bank_id, 1);
1468                        min_act_at = act_at;
1469                    }
1470                }
1471            }
1472        }
1473    }
1474
1475    // Determine the earliest time when the next burst can issue based
1476    // on the current busBusyUntil delay.
1477    // Offset by tRCD to correlate with ACT timing variables
1478    Tick min_cmd_at = busBusyUntil - tCL - tRCD;
1479
1480    // if we have multiple ranks and all
1481    // waiting packets are accessing a rank which was previously active
1482    // then bank_mask_same_rank will be set to a value while bank_mask will
1483    // remain 0. In this case, the function should return the value of
1484    // bank_mask_same_rank.
1485    // else if waiting packets access a rank which was previously active and
1486    // other ranks, prioritize same rank accesses that can issue B2B
1487    // Only optimize for same ranks when the command type
1488    // does not change; do not want to unnecessarily incur tWTR
1489    //
1490    // Resulting FCFS prioritization Order is:
1491    // 1) Commands that access the same rank as previous burst
1492    //    and can prep the bank seamlessly.
1493    // 2) Commands (any rank) with earliest bank prep
1494    if ((bank_mask == 0) || (!switched_cmd_type && same_rank_match &&
1495        min_act_at_same_rank <= min_cmd_at)) {
1496        bank_mask = bank_mask_same_rank;
1497    }
1498
1499    return bank_mask;
1500}
1501
1502void
1503DRAMCtrl::processRefreshEvent()
1504{
1505    // when first preparing the refresh, remember when it was due
1506    if (refreshState == REF_IDLE) {
1507        // remember when the refresh is due
1508        refreshDueAt = curTick();
1509
1510        // proceed to drain
1511        refreshState = REF_DRAIN;
1512
1513        DPRINTF(DRAM, "Refresh due\n");
1514    }
1515
1516    // let any scheduled read or write go ahead, after which it will
1517    // hand control back to this event loop
1518    if (refreshState == REF_DRAIN) {
1519        if (nextReqEvent.scheduled()) {
1520            // hand control over to the request loop until it is
1521            // evaluated next
1522            DPRINTF(DRAM, "Refresh awaiting draining\n");
1523
1524            return;
1525        } else {
1526            refreshState = REF_PRE;
1527        }
1528    }
1529
1530    // at this point, ensure that all banks are precharged
1531    if (refreshState == REF_PRE) {
1532        // precharge any active bank if we are not already in the idle
1533        // state
1534        if (pwrState != PWR_IDLE) {
1535            // at the moment, we use a precharge all even if there is
1536            // only a single bank open
1537            DPRINTF(DRAM, "Precharging all\n");
1538
1539            // first determine when we can precharge
1540            Tick pre_at = curTick();
1541            for (int i = 0; i < ranksPerChannel; i++) {
1542                for (int j = 0; j < banksPerRank; j++) {
1543                    // respect both causality and any existing bank
1544                    // constraints, some banks could already have a
1545                    // (auto) precharge scheduled
1546                    pre_at = std::max(banks[i][j].preAllowedAt, pre_at);
1547                }
1548            }
1549
1550            // make sure all banks are precharged, and for those that
1551            // already are, update their availability
1552            Tick act_allowed_at = pre_at + tRP;
1553
1554            for (int i = 0; i < ranksPerChannel; i++) {
1555                for (int j = 0; j < banksPerRank; j++) {
1556                    if (banks[i][j].openRow != Bank::NO_ROW) {
1557                        prechargeBank(banks[i][j], pre_at, false);
1558                    } else {
1559                        banks[i][j].actAllowedAt =
1560                            std::max(banks[i][j].actAllowedAt, act_allowed_at);
1561                        banks[i][j].preAllowedAt =
1562                            std::max(banks[i][j].preAllowedAt, pre_at);
1563                    }
1564                }
1565
1566                // at the moment this affects all ranks
1567                rankPower[i].powerlib.doCommand(MemCommand::PREA, 0,
1568                                                divCeil(pre_at, tCK) -
1569                                                timeStampOffset);
1570
1571                DPRINTF(DRAMPower, "%llu,PREA,0,%d\n", divCeil(pre_at, tCK) -
1572                        timeStampOffset, i);
1573            }
1574        } else {
1575            DPRINTF(DRAM, "All banks already precharged, starting refresh\n");
1576
1577            // go ahead and kick the power state machine into gear if
1578            // we are already idle
1579            schedulePowerEvent(PWR_REF, curTick());
1580        }
1581
1582        refreshState = REF_RUN;
1583        assert(numBanksActive == 0);
1584
1585        // wait for all banks to be precharged, at which point the
1586        // power state machine will transition to the idle state, and
1587        // automatically move to a refresh, at that point it will also
1588        // call this method to get the refresh event loop going again
1589        return;
1590    }
1591
1592    // last but not least we perform the actual refresh
1593    if (refreshState == REF_RUN) {
1594        // should never get here with any banks active
1595        assert(numBanksActive == 0);
1596        assert(pwrState == PWR_REF);
1597
1598        Tick ref_done_at = curTick() + tRFC;
1599
1600        for (int i = 0; i < ranksPerChannel; i++) {
1601            for (int j = 0; j < banksPerRank; j++) {
1602                banks[i][j].actAllowedAt = ref_done_at;
1603            }
1604
1605            // at the moment this affects all ranks
1606            rankPower[i].powerlib.doCommand(MemCommand::REF, 0,
1607                                            divCeil(curTick(), tCK) -
1608                                            timeStampOffset);
1609
1610            // at the moment sort the list of commands and update the counters
1611            // for DRAMPower libray when doing a refresh
1612            sort(rankPower[i].powerlib.cmdList.begin(),
1613                 rankPower[i].powerlib.cmdList.end(), DRAMCtrl::sortTime);
1614
1615            // update the counters for DRAMPower, passing false to
1616            // indicate that this is not the last command in the
1617            // list. DRAMPower requires this information for the
1618            // correct calculation of the background energy at the end
1619            // of the simulation. Ideally we would want to call this
1620            // function with true once at the end of the
1621            // simulation. However, the discarded energy is extremly
1622            // small and does not effect the final results.
1623            rankPower[i].powerlib.updateCounters(false);
1624
1625            // call the energy function
1626            rankPower[i].powerlib.calcEnergy();
1627
1628            // Update the stats
1629            updatePowerStats(i);
1630
1631            DPRINTF(DRAMPower, "%llu,REF,0,%d\n", divCeil(curTick(), tCK) -
1632                    timeStampOffset, i);
1633        }
1634
1635        // make sure we did not wait so long that we cannot make up
1636        // for it
1637        if (refreshDueAt + tREFI < ref_done_at) {
1638            fatal("Refresh was delayed so long we cannot catch up\n");
1639        }
1640
1641        // compensate for the delay in actually performing the refresh
1642        // when scheduling the next one
1643        schedule(refreshEvent, refreshDueAt + tREFI - tRP);
1644
1645        assert(!powerEvent.scheduled());
1646
1647        // move to the idle power state once the refresh is done, this
1648        // will also move the refresh state machine to the refresh
1649        // idle state
1650        schedulePowerEvent(PWR_IDLE, ref_done_at);
1651
1652        DPRINTF(DRAMState, "Refresh done at %llu and next refresh at %llu\n",
1653                ref_done_at, refreshDueAt + tREFI);
1654    }
1655}
1656
1657void
1658DRAMCtrl::schedulePowerEvent(PowerState pwr_state, Tick tick)
1659{
1660    // respect causality
1661    assert(tick >= curTick());
1662
1663    if (!powerEvent.scheduled()) {
1664        DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n",
1665                tick, pwr_state);
1666
1667        // insert the new transition
1668        pwrStateTrans = pwr_state;
1669
1670        schedule(powerEvent, tick);
1671    } else {
1672        panic("Scheduled power event at %llu to state %d, "
1673              "with scheduled event at %llu to %d\n", tick, pwr_state,
1674              powerEvent.when(), pwrStateTrans);
1675    }
1676}
1677
1678void
1679DRAMCtrl::processPowerEvent()
1680{
1681    // remember where we were, and for how long
1682    Tick duration = curTick() - pwrStateTick;
1683    PowerState prev_state = pwrState;
1684
1685    // update the accounting
1686    pwrStateTime[prev_state] += duration;
1687
1688    pwrState = pwrStateTrans;
1689    pwrStateTick = curTick();
1690
1691    if (pwrState == PWR_IDLE) {
1692        DPRINTF(DRAMState, "All banks precharged\n");
1693
1694        // if we were refreshing, make sure we start scheduling requests again
1695        if (prev_state == PWR_REF) {
1696            DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration);
1697            assert(pwrState == PWR_IDLE);
1698
1699            // kick things into action again
1700            refreshState = REF_IDLE;
1701            assert(!nextReqEvent.scheduled());
1702            schedule(nextReqEvent, curTick());
1703        } else {
1704            assert(prev_state == PWR_ACT);
1705
1706            // if we have a pending refresh, and are now moving to
1707            // the idle state, direclty transition to a refresh
1708            if (refreshState == REF_RUN) {
1709                // there should be nothing waiting at this point
1710                assert(!powerEvent.scheduled());
1711
1712                // update the state in zero time and proceed below
1713                pwrState = PWR_REF;
1714            }
1715        }
1716    }
1717
1718    // we transition to the refresh state, let the refresh state
1719    // machine know of this state update and let it deal with the
1720    // scheduling of the next power state transition as well as the
1721    // following refresh
1722    if (pwrState == PWR_REF) {
1723        DPRINTF(DRAMState, "Refreshing\n");
1724        // kick the refresh event loop into action again, and that
1725        // in turn will schedule a transition to the idle power
1726        // state once the refresh is done
1727        assert(refreshState == REF_RUN);
1728        processRefreshEvent();
1729    }
1730}
1731
1732void
1733DRAMCtrl::updatePowerStats(uint8_t rank)
1734{
1735    // Get the energy and power from DRAMPower
1736    Data::MemoryPowerModel::Energy energy =
1737        rankPower[rank].powerlib.getEnergy();
1738    Data::MemoryPowerModel::Power power =
1739        rankPower[rank].powerlib.getPower();
1740
1741    actEnergy[rank] = energy.act_energy * devicesPerRank;
1742    preEnergy[rank] = energy.pre_energy * devicesPerRank;
1743    readEnergy[rank] = energy.read_energy * devicesPerRank;
1744    writeEnergy[rank] = energy.write_energy * devicesPerRank;
1745    refreshEnergy[rank] = energy.ref_energy * devicesPerRank;
1746    actBackEnergy[rank] = energy.act_stdby_energy * devicesPerRank;
1747    preBackEnergy[rank] = energy.pre_stdby_energy * devicesPerRank;
1748    totalEnergy[rank] = energy.total_energy * devicesPerRank;
1749    averagePower[rank] = power.average_power * devicesPerRank;
1750}
1751
1752void
1753DRAMCtrl::regStats()
1754{
1755    using namespace Stats;
1756
1757    AbstractMemory::regStats();
1758
1759    readReqs
1760        .name(name() + ".readReqs")
1761        .desc("Number of read requests accepted");
1762
1763    writeReqs
1764        .name(name() + ".writeReqs")
1765        .desc("Number of write requests accepted");
1766
1767    readBursts
1768        .name(name() + ".readBursts")
1769        .desc("Number of DRAM read bursts, "
1770              "including those serviced by the write queue");
1771
1772    writeBursts
1773        .name(name() + ".writeBursts")
1774        .desc("Number of DRAM write bursts, "
1775              "including those merged in the write queue");
1776
1777    servicedByWrQ
1778        .name(name() + ".servicedByWrQ")
1779        .desc("Number of DRAM read bursts serviced by the write queue");
1780
1781    mergedWrBursts
1782        .name(name() + ".mergedWrBursts")
1783        .desc("Number of DRAM write bursts merged with an existing one");
1784
1785    neitherReadNorWrite
1786        .name(name() + ".neitherReadNorWriteReqs")
1787        .desc("Number of requests that are neither read nor write");
1788
1789    perBankRdBursts
1790        .init(banksPerRank * ranksPerChannel)
1791        .name(name() + ".perBankRdBursts")
1792        .desc("Per bank write bursts");
1793
1794    perBankWrBursts
1795        .init(banksPerRank * ranksPerChannel)
1796        .name(name() + ".perBankWrBursts")
1797        .desc("Per bank write bursts");
1798
1799    avgRdQLen
1800        .name(name() + ".avgRdQLen")
1801        .desc("Average read queue length when enqueuing")
1802        .precision(2);
1803
1804    avgWrQLen
1805        .name(name() + ".avgWrQLen")
1806        .desc("Average write queue length when enqueuing")
1807        .precision(2);
1808
1809    totQLat
1810        .name(name() + ".totQLat")
1811        .desc("Total ticks spent queuing");
1812
1813    totBusLat
1814        .name(name() + ".totBusLat")
1815        .desc("Total ticks spent in databus transfers");
1816
1817    totMemAccLat
1818        .name(name() + ".totMemAccLat")
1819        .desc("Total ticks spent from burst creation until serviced "
1820              "by the DRAM");
1821
1822    avgQLat
1823        .name(name() + ".avgQLat")
1824        .desc("Average queueing delay per DRAM burst")
1825        .precision(2);
1826
1827    avgQLat = totQLat / (readBursts - servicedByWrQ);
1828
1829    avgBusLat
1830        .name(name() + ".avgBusLat")
1831        .desc("Average bus latency per DRAM burst")
1832        .precision(2);
1833
1834    avgBusLat = totBusLat / (readBursts - servicedByWrQ);
1835
1836    avgMemAccLat
1837        .name(name() + ".avgMemAccLat")
1838        .desc("Average memory access latency per DRAM burst")
1839        .precision(2);
1840
1841    avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ);
1842
1843    numRdRetry
1844        .name(name() + ".numRdRetry")
1845        .desc("Number of times read queue was full causing retry");
1846
1847    numWrRetry
1848        .name(name() + ".numWrRetry")
1849        .desc("Number of times write queue was full causing retry");
1850
1851    readRowHits
1852        .name(name() + ".readRowHits")
1853        .desc("Number of row buffer hits during reads");
1854
1855    writeRowHits
1856        .name(name() + ".writeRowHits")
1857        .desc("Number of row buffer hits during writes");
1858
1859    readRowHitRate
1860        .name(name() + ".readRowHitRate")
1861        .desc("Row buffer hit rate for reads")
1862        .precision(2);
1863
1864    readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100;
1865
1866    writeRowHitRate
1867        .name(name() + ".writeRowHitRate")
1868        .desc("Row buffer hit rate for writes")
1869        .precision(2);
1870
1871    writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100;
1872
1873    readPktSize
1874        .init(ceilLog2(burstSize) + 1)
1875        .name(name() + ".readPktSize")
1876        .desc("Read request sizes (log2)");
1877
1878     writePktSize
1879        .init(ceilLog2(burstSize) + 1)
1880        .name(name() + ".writePktSize")
1881        .desc("Write request sizes (log2)");
1882
1883     rdQLenPdf
1884        .init(readBufferSize)
1885        .name(name() + ".rdQLenPdf")
1886        .desc("What read queue length does an incoming req see");
1887
1888     wrQLenPdf
1889        .init(writeBufferSize)
1890        .name(name() + ".wrQLenPdf")
1891        .desc("What write queue length does an incoming req see");
1892
1893     bytesPerActivate
1894         .init(maxAccessesPerRow)
1895         .name(name() + ".bytesPerActivate")
1896         .desc("Bytes accessed per row activation")
1897         .flags(nozero);
1898
1899     rdPerTurnAround
1900         .init(readBufferSize)
1901         .name(name() + ".rdPerTurnAround")
1902         .desc("Reads before turning the bus around for writes")
1903         .flags(nozero);
1904
1905     wrPerTurnAround
1906         .init(writeBufferSize)
1907         .name(name() + ".wrPerTurnAround")
1908         .desc("Writes before turning the bus around for reads")
1909         .flags(nozero);
1910
1911    bytesReadDRAM
1912        .name(name() + ".bytesReadDRAM")
1913        .desc("Total number of bytes read from DRAM");
1914
1915    bytesReadWrQ
1916        .name(name() + ".bytesReadWrQ")
1917        .desc("Total number of bytes read from write queue");
1918
1919    bytesWritten
1920        .name(name() + ".bytesWritten")
1921        .desc("Total number of bytes written to DRAM");
1922
1923    bytesReadSys
1924        .name(name() + ".bytesReadSys")
1925        .desc("Total read bytes from the system interface side");
1926
1927    bytesWrittenSys
1928        .name(name() + ".bytesWrittenSys")
1929        .desc("Total written bytes from the system interface side");
1930
1931    avgRdBW
1932        .name(name() + ".avgRdBW")
1933        .desc("Average DRAM read bandwidth in MiByte/s")
1934        .precision(2);
1935
1936    avgRdBW = (bytesReadDRAM / 1000000) / simSeconds;
1937
1938    avgWrBW
1939        .name(name() + ".avgWrBW")
1940        .desc("Average achieved write bandwidth in MiByte/s")
1941        .precision(2);
1942
1943    avgWrBW = (bytesWritten / 1000000) / simSeconds;
1944
1945    avgRdBWSys
1946        .name(name() + ".avgRdBWSys")
1947        .desc("Average system read bandwidth in MiByte/s")
1948        .precision(2);
1949
1950    avgRdBWSys = (bytesReadSys / 1000000) / simSeconds;
1951
1952    avgWrBWSys
1953        .name(name() + ".avgWrBWSys")
1954        .desc("Average system write bandwidth in MiByte/s")
1955        .precision(2);
1956
1957    avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds;
1958
1959    peakBW
1960        .name(name() + ".peakBW")
1961        .desc("Theoretical peak bandwidth in MiByte/s")
1962        .precision(2);
1963
1964    peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000;
1965
1966    busUtil
1967        .name(name() + ".busUtil")
1968        .desc("Data bus utilization in percentage")
1969        .precision(2);
1970
1971    busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
1972
1973    totGap
1974        .name(name() + ".totGap")
1975        .desc("Total gap between requests");
1976
1977    avgGap
1978        .name(name() + ".avgGap")
1979        .desc("Average gap between requests")
1980        .precision(2);
1981
1982    avgGap = totGap / (readReqs + writeReqs);
1983
1984    // Stats for DRAM Power calculation based on Micron datasheet
1985    busUtilRead
1986        .name(name() + ".busUtilRead")
1987        .desc("Data bus utilization in percentage for reads")
1988        .precision(2);
1989
1990    busUtilRead = avgRdBW / peakBW * 100;
1991
1992    busUtilWrite
1993        .name(name() + ".busUtilWrite")
1994        .desc("Data bus utilization in percentage for writes")
1995        .precision(2);
1996
1997    busUtilWrite = avgWrBW / peakBW * 100;
1998
1999    pageHitRate
2000        .name(name() + ".pageHitRate")
2001        .desc("Row buffer hit rate, read and write combined")
2002        .precision(2);
2003
2004    pageHitRate = (writeRowHits + readRowHits) /
2005        (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100;
2006
2007    pwrStateTime
2008        .init(5)
2009        .name(name() + ".memoryStateTime")
2010        .desc("Time in different power states");
2011    pwrStateTime.subname(0, "IDLE");
2012    pwrStateTime.subname(1, "REF");
2013    pwrStateTime.subname(2, "PRE_PDN");
2014    pwrStateTime.subname(3, "ACT");
2015    pwrStateTime.subname(4, "ACT_PDN");
2016
2017    actEnergy
2018        .init(ranksPerChannel)
2019        .name(name() + ".actEnergy")
2020        .desc("Energy for activate commands per rank (pJ)");
2021
2022    preEnergy
2023        .init(ranksPerChannel)
2024        .name(name() + ".preEnergy")
2025        .desc("Energy for precharge commands per rank (pJ)");
2026
2027    readEnergy
2028        .init(ranksPerChannel)
2029        .name(name() + ".readEnergy")
2030        .desc("Energy for read commands per rank (pJ)");
2031
2032    writeEnergy
2033        .init(ranksPerChannel)
2034        .name(name() + ".writeEnergy")
2035        .desc("Energy for write commands per rank (pJ)");
2036
2037    refreshEnergy
2038        .init(ranksPerChannel)
2039        .name(name() + ".refreshEnergy")
2040        .desc("Energy for refresh commands per rank (pJ)");
2041
2042    actBackEnergy
2043        .init(ranksPerChannel)
2044        .name(name() + ".actBackEnergy")
2045        .desc("Energy for active background per rank (pJ)");
2046
2047    preBackEnergy
2048        .init(ranksPerChannel)
2049        .name(name() + ".preBackEnergy")
2050        .desc("Energy for precharge background per rank (pJ)");
2051
2052    totalEnergy
2053        .init(ranksPerChannel)
2054        .name(name() + ".totalEnergy")
2055        .desc("Total energy per rank (pJ)");
2056
2057    averagePower
2058        .init(ranksPerChannel)
2059        .name(name() + ".averagePower")
2060        .desc("Core power per rank (mW)");
2061}
2062
2063void
2064DRAMCtrl::recvFunctional(PacketPtr pkt)
2065{
2066    // rely on the abstract memory
2067    functionalAccess(pkt);
2068}
2069
2070BaseSlavePort&
2071DRAMCtrl::getSlavePort(const string &if_name, PortID idx)
2072{
2073    if (if_name != "port") {
2074        return MemObject::getSlavePort(if_name, idx);
2075    } else {
2076        return port;
2077    }
2078}
2079
2080unsigned int
2081DRAMCtrl::drain(DrainManager *dm)
2082{
2083    unsigned int count = port.drain(dm);
2084
2085    // if there is anything in any of our internal queues, keep track
2086    // of that as well
2087    if (!(writeQueue.empty() && readQueue.empty() &&
2088          respQueue.empty())) {
2089        DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
2090                " resp: %d\n", writeQueue.size(), readQueue.size(),
2091                respQueue.size());
2092        ++count;
2093        drainManager = dm;
2094
2095        // the only part that is not drained automatically over time
2096        // is the write queue, thus kick things into action if needed
2097        if (!writeQueue.empty() && !nextReqEvent.scheduled()) {
2098            schedule(nextReqEvent, curTick());
2099        }
2100    }
2101
2102    if (count)
2103        setDrainState(Drainable::Draining);
2104    else
2105        setDrainState(Drainable::Drained);
2106    return count;
2107}
2108
2109DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory)
2110    : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
2111      memory(_memory)
2112{ }
2113
2114AddrRangeList
2115DRAMCtrl::MemoryPort::getAddrRanges() const
2116{
2117    AddrRangeList ranges;
2118    ranges.push_back(memory.getAddrRange());
2119    return ranges;
2120}
2121
2122void
2123DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt)
2124{
2125    pkt->pushLabel(memory.name());
2126
2127    if (!queue.checkFunctional(pkt)) {
2128        // Default implementation of SimpleTimingPort::recvFunctional()
2129        // calls recvAtomic() and throws away the latency; we can save a
2130        // little here by just not calculating the latency.
2131        memory.recvFunctional(pkt);
2132    }
2133
2134    pkt->popLabel();
2135}
2136
2137Tick
2138DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt)
2139{
2140    return memory.recvAtomic(pkt);
2141}
2142
2143bool
2144DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt)
2145{
2146    // pass it to the memory controller
2147    return memory.recvTimingReq(pkt);
2148}
2149
2150DRAMCtrl*
2151DRAMCtrlParams::create()
2152{
2153    return new DRAMCtrl(this);
2154}
2155