dram_ctrl.cc revision 10561:e1a853349529
1/* 2 * Copyright (c) 2010-2014 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2013 Amin Farmahini-Farahani 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Andreas Hansson 41 * Ani Udipi 42 * Neha Agarwal 43 */ 44 45#include "base/bitfield.hh" 46#include "base/trace.hh" 47#include "debug/DRAM.hh" 48#include "debug/DRAMPower.hh" 49#include "debug/DRAMState.hh" 50#include "debug/Drain.hh" 51#include "mem/dram_ctrl.hh" 52#include "sim/system.hh" 53 54using namespace std; 55using namespace Data; 56 57DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) : 58 AbstractMemory(p), 59 port(name() + ".port", *this), 60 retryRdReq(false), retryWrReq(false), 61 busState(READ), 62 nextReqEvent(this), respondEvent(this), activateEvent(this), 63 prechargeEvent(this), refreshEvent(this), powerEvent(this), 64 drainManager(NULL), 65 deviceSize(p->device_size), 66 deviceBusWidth(p->device_bus_width), burstLength(p->burst_length), 67 deviceRowBufferSize(p->device_rowbuffer_size), 68 devicesPerRank(p->devices_per_rank), 69 burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8), 70 rowBufferSize(devicesPerRank * deviceRowBufferSize), 71 columnsPerRowBuffer(rowBufferSize / burstSize), 72 columnsPerStripe(range.granularity() / burstSize), 73 ranksPerChannel(p->ranks_per_channel), 74 bankGroupsPerRank(p->bank_groups_per_rank), 75 bankGroupArch(p->bank_groups_per_rank > 0), 76 banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0), 77 readBufferSize(p->read_buffer_size), 78 writeBufferSize(p->write_buffer_size), 79 writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0), 80 writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0), 81 minWritesPerSwitch(p->min_writes_per_switch), 82 writesThisTime(0), readsThisTime(0), 83 tCK(p->tCK), tWTR(p->tWTR), tRTW(p->tRTW), tCS(p->tCS), tBURST(p->tBURST), 84 tCCD_L(p->tCCD_L), tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS), 85 tWR(p->tWR), tRTP(p->tRTP), tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD), 86 tRRD_L(p->tRRD_L), tXAW(p->tXAW), activationLimit(p->activation_limit), 87 memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping), 88 pageMgmt(p->page_policy), 89 maxAccessesPerRow(p->max_accesses_per_row), 90 frontendLatency(p->static_frontend_latency), 91 backendLatency(p->static_backend_latency), 92 busBusyUntil(0), refreshDueAt(0), refreshState(REF_IDLE), 93 pwrStateTrans(PWR_IDLE), pwrState(PWR_IDLE), prevArrival(0), 94 nextReqTime(0), pwrStateTick(0), numBanksActive(0), 95 activeRank(0), timeStampOffset(0) 96{ 97 // create the bank states based on the dimensions of the ranks and 98 // banks 99 banks.resize(ranksPerChannel); 100 101 //create list of drampower objects. For each rank 1 drampower instance. 102 for (int i = 0; i < ranksPerChannel; i++) { 103 DRAMPower drampower = DRAMPower(p, false); 104 rankPower.emplace_back(drampower); 105 } 106 107 actTicks.resize(ranksPerChannel); 108 for (size_t c = 0; c < ranksPerChannel; ++c) { 109 banks[c].resize(banksPerRank); 110 actTicks[c].resize(activationLimit, 0); 111 } 112 113 // set the bank indices 114 for (int r = 0; r < ranksPerChannel; r++) { 115 for (int b = 0; b < banksPerRank; b++) { 116 banks[r][b].rank = r; 117 banks[r][b].bank = b; 118 // GDDR addressing of banks to BG is linear. 119 // Here we assume that all DRAM generations address bank groups as 120 // follows: 121 if (bankGroupArch) { 122 // Simply assign lower bits to bank group in order to 123 // rotate across bank groups as banks are incremented 124 // e.g. with 4 banks per bank group and 16 banks total: 125 // banks 0,4,8,12 are in bank group 0 126 // banks 1,5,9,13 are in bank group 1 127 // banks 2,6,10,14 are in bank group 2 128 // banks 3,7,11,15 are in bank group 3 129 banks[r][b].bankgr = b % bankGroupsPerRank; 130 } else { 131 // No bank groups; simply assign to bank number 132 banks[r][b].bankgr = b; 133 } 134 } 135 } 136 137 // perform a basic check of the write thresholds 138 if (p->write_low_thresh_perc >= p->write_high_thresh_perc) 139 fatal("Write buffer low threshold %d must be smaller than the " 140 "high threshold %d\n", p->write_low_thresh_perc, 141 p->write_high_thresh_perc); 142 143 // determine the rows per bank by looking at the total capacity 144 uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size()); 145 146 // determine the dram actual capacity from the DRAM config in Mbytes 147 uint64_t deviceCapacity = deviceSize / (1024 * 1024) * devicesPerRank * 148 ranksPerChannel; 149 150 // if actual DRAM size does not match memory capacity in system warn! 151 if (deviceCapacity != capacity / (1024 * 1024)) 152 warn("DRAM device capacity (%d Mbytes) does not match the " 153 "address range assigned (%d Mbytes)\n", deviceCapacity, 154 capacity / (1024 * 1024)); 155 156 DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity, 157 AbstractMemory::size()); 158 159 DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n", 160 rowBufferSize, columnsPerRowBuffer); 161 162 rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel); 163 164 // a bit of sanity checks on the interleaving 165 if (range.interleaved()) { 166 if (channels != range.stripes()) 167 fatal("%s has %d interleaved address stripes but %d channel(s)\n", 168 name(), range.stripes(), channels); 169 170 if (addrMapping == Enums::RoRaBaChCo) { 171 if (rowBufferSize != range.granularity()) { 172 fatal("Channel interleaving of %s doesn't match RoRaBaChCo " 173 "address map\n", name()); 174 } 175 } else if (addrMapping == Enums::RoRaBaCoCh || 176 addrMapping == Enums::RoCoRaBaCh) { 177 // for the interleavings with channel bits in the bottom, 178 // if the system uses a channel striping granularity that 179 // is larger than the DRAM burst size, then map the 180 // sequential accesses within a stripe to a number of 181 // columns in the DRAM, effectively placing some of the 182 // lower-order column bits as the least-significant bits 183 // of the address (above the ones denoting the burst size) 184 assert(columnsPerStripe >= 1); 185 186 // channel striping has to be done at a granularity that 187 // is equal or larger to a cache line 188 if (system()->cacheLineSize() > range.granularity()) { 189 fatal("Channel interleaving of %s must be at least as large " 190 "as the cache line size\n", name()); 191 } 192 193 // ...and equal or smaller than the row-buffer size 194 if (rowBufferSize < range.granularity()) { 195 fatal("Channel interleaving of %s must be at most as large " 196 "as the row-buffer size\n", name()); 197 } 198 // this is essentially the check above, so just to be sure 199 assert(columnsPerStripe <= columnsPerRowBuffer); 200 } 201 } 202 203 // some basic sanity checks 204 if (tREFI <= tRP || tREFI <= tRFC) { 205 fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n", 206 tREFI, tRP, tRFC); 207 } 208 209 // basic bank group architecture checks -> 210 if (bankGroupArch) { 211 // must have at least one bank per bank group 212 if (bankGroupsPerRank > banksPerRank) { 213 fatal("banks per rank (%d) must be equal to or larger than " 214 "banks groups per rank (%d)\n", 215 banksPerRank, bankGroupsPerRank); 216 } 217 // must have same number of banks in each bank group 218 if ((banksPerRank % bankGroupsPerRank) != 0) { 219 fatal("Banks per rank (%d) must be evenly divisible by bank groups " 220 "per rank (%d) for equal banks per bank group\n", 221 banksPerRank, bankGroupsPerRank); 222 } 223 // tCCD_L should be greater than minimal, back-to-back burst delay 224 if (tCCD_L <= tBURST) { 225 fatal("tCCD_L (%d) should be larger than tBURST (%d) when " 226 "bank groups per rank (%d) is greater than 1\n", 227 tCCD_L, tBURST, bankGroupsPerRank); 228 } 229 // tRRD_L is greater than minimal, same bank group ACT-to-ACT delay 230 // some datasheets might specify it equal to tRRD 231 if (tRRD_L < tRRD) { 232 fatal("tRRD_L (%d) should be larger than tRRD (%d) when " 233 "bank groups per rank (%d) is greater than 1\n", 234 tRRD_L, tRRD, bankGroupsPerRank); 235 } 236 } 237 238} 239 240void 241DRAMCtrl::init() 242{ 243 AbstractMemory::init(); 244 245 if (!port.isConnected()) { 246 fatal("DRAMCtrl %s is unconnected!\n", name()); 247 } else { 248 port.sendRangeChange(); 249 } 250} 251 252void 253DRAMCtrl::startup() 254{ 255 // timestamp offset should be in clock cycles for DRAMPower 256 timeStampOffset = divCeil(curTick(), tCK); 257 // update the start tick for the precharge accounting to the 258 // current tick 259 pwrStateTick = curTick(); 260 261 // shift the bus busy time sufficiently far ahead that we never 262 // have to worry about negative values when computing the time for 263 // the next request, this will add an insignificant bubble at the 264 // start of simulation 265 busBusyUntil = curTick() + tRP + tRCD + tCL; 266 267 // kick off the refresh, and give ourselves enough time to 268 // precharge 269 schedule(refreshEvent, curTick() + tREFI - tRP); 270} 271 272Tick 273DRAMCtrl::recvAtomic(PacketPtr pkt) 274{ 275 DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr()); 276 277 // do the actual memory access and turn the packet into a response 278 access(pkt); 279 280 Tick latency = 0; 281 if (!pkt->memInhibitAsserted() && pkt->hasData()) { 282 // this value is not supposed to be accurate, just enough to 283 // keep things going, mimic a closed page 284 latency = tRP + tRCD + tCL; 285 } 286 return latency; 287} 288 289bool 290DRAMCtrl::readQueueFull(unsigned int neededEntries) const 291{ 292 DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n", 293 readBufferSize, readQueue.size() + respQueue.size(), 294 neededEntries); 295 296 return 297 (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize; 298} 299 300bool 301DRAMCtrl::writeQueueFull(unsigned int neededEntries) const 302{ 303 DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n", 304 writeBufferSize, writeQueue.size(), neededEntries); 305 return (writeQueue.size() + neededEntries) > writeBufferSize; 306} 307 308DRAMCtrl::DRAMPacket* 309DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size, 310 bool isRead) 311{ 312 // decode the address based on the address mapping scheme, with 313 // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and 314 // channel, respectively 315 uint8_t rank; 316 uint8_t bank; 317 // use a 64-bit unsigned during the computations as the row is 318 // always the top bits, and check before creating the DRAMPacket 319 uint64_t row; 320 321 // truncate the address to a DRAM burst, which makes it unique to 322 // a specific column, row, bank, rank and channel 323 Addr addr = dramPktAddr / burstSize; 324 325 // we have removed the lowest order address bits that denote the 326 // position within the column 327 if (addrMapping == Enums::RoRaBaChCo) { 328 // the lowest order bits denote the column to ensure that 329 // sequential cache lines occupy the same row 330 addr = addr / columnsPerRowBuffer; 331 332 // take out the channel part of the address 333 addr = addr / channels; 334 335 // after the channel bits, get the bank bits to interleave 336 // over the banks 337 bank = addr % banksPerRank; 338 addr = addr / banksPerRank; 339 340 // after the bank, we get the rank bits which thus interleaves 341 // over the ranks 342 rank = addr % ranksPerChannel; 343 addr = addr / ranksPerChannel; 344 345 // lastly, get the row bits 346 row = addr % rowsPerBank; 347 addr = addr / rowsPerBank; 348 } else if (addrMapping == Enums::RoRaBaCoCh) { 349 // take out the lower-order column bits 350 addr = addr / columnsPerStripe; 351 352 // take out the channel part of the address 353 addr = addr / channels; 354 355 // next, the higher-order column bites 356 addr = addr / (columnsPerRowBuffer / columnsPerStripe); 357 358 // after the column bits, we get the bank bits to interleave 359 // over the banks 360 bank = addr % banksPerRank; 361 addr = addr / banksPerRank; 362 363 // after the bank, we get the rank bits which thus interleaves 364 // over the ranks 365 rank = addr % ranksPerChannel; 366 addr = addr / ranksPerChannel; 367 368 // lastly, get the row bits 369 row = addr % rowsPerBank; 370 addr = addr / rowsPerBank; 371 } else if (addrMapping == Enums::RoCoRaBaCh) { 372 // optimise for closed page mode and utilise maximum 373 // parallelism of the DRAM (at the cost of power) 374 375 // take out the lower-order column bits 376 addr = addr / columnsPerStripe; 377 378 // take out the channel part of the address, not that this has 379 // to match with how accesses are interleaved between the 380 // controllers in the address mapping 381 addr = addr / channels; 382 383 // start with the bank bits, as this provides the maximum 384 // opportunity for parallelism between requests 385 bank = addr % banksPerRank; 386 addr = addr / banksPerRank; 387 388 // next get the rank bits 389 rank = addr % ranksPerChannel; 390 addr = addr / ranksPerChannel; 391 392 // next, the higher-order column bites 393 addr = addr / (columnsPerRowBuffer / columnsPerStripe); 394 395 // lastly, get the row bits 396 row = addr % rowsPerBank; 397 addr = addr / rowsPerBank; 398 } else 399 panic("Unknown address mapping policy chosen!"); 400 401 assert(rank < ranksPerChannel); 402 assert(bank < banksPerRank); 403 assert(row < rowsPerBank); 404 assert(row < Bank::NO_ROW); 405 406 DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n", 407 dramPktAddr, rank, bank, row); 408 409 // create the corresponding DRAM packet with the entry time and 410 // ready time set to the current tick, the latter will be updated 411 // later 412 uint16_t bank_id = banksPerRank * rank + bank; 413 return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr, 414 size, banks[rank][bank]); 415} 416 417void 418DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount) 419{ 420 // only add to the read queue here. whenever the request is 421 // eventually done, set the readyTime, and call schedule() 422 assert(!pkt->isWrite()); 423 424 assert(pktCount != 0); 425 426 // if the request size is larger than burst size, the pkt is split into 427 // multiple DRAM packets 428 // Note if the pkt starting address is not aligened to burst size, the 429 // address of first DRAM packet is kept unaliged. Subsequent DRAM packets 430 // are aligned to burst size boundaries. This is to ensure we accurately 431 // check read packets against packets in write queue. 432 Addr addr = pkt->getAddr(); 433 unsigned pktsServicedByWrQ = 0; 434 BurstHelper* burst_helper = NULL; 435 for (int cnt = 0; cnt < pktCount; ++cnt) { 436 unsigned size = std::min((addr | (burstSize - 1)) + 1, 437 pkt->getAddr() + pkt->getSize()) - addr; 438 readPktSize[ceilLog2(size)]++; 439 readBursts++; 440 441 // First check write buffer to see if the data is already at 442 // the controller 443 bool foundInWrQ = false; 444 for (auto i = writeQueue.begin(); i != writeQueue.end(); ++i) { 445 // check if the read is subsumed in the write entry we are 446 // looking at 447 if ((*i)->addr <= addr && 448 (addr + size) <= ((*i)->addr + (*i)->size)) { 449 foundInWrQ = true; 450 servicedByWrQ++; 451 pktsServicedByWrQ++; 452 DPRINTF(DRAM, "Read to addr %lld with size %d serviced by " 453 "write queue\n", addr, size); 454 bytesReadWrQ += burstSize; 455 break; 456 } 457 } 458 459 // If not found in the write q, make a DRAM packet and 460 // push it onto the read queue 461 if (!foundInWrQ) { 462 463 // Make the burst helper for split packets 464 if (pktCount > 1 && burst_helper == NULL) { 465 DPRINTF(DRAM, "Read to addr %lld translates to %d " 466 "dram requests\n", pkt->getAddr(), pktCount); 467 burst_helper = new BurstHelper(pktCount); 468 } 469 470 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true); 471 dram_pkt->burstHelper = burst_helper; 472 473 assert(!readQueueFull(1)); 474 rdQLenPdf[readQueue.size() + respQueue.size()]++; 475 476 DPRINTF(DRAM, "Adding to read queue\n"); 477 478 readQueue.push_back(dram_pkt); 479 480 // Update stats 481 avgRdQLen = readQueue.size() + respQueue.size(); 482 } 483 484 // Starting address of next dram pkt (aligend to burstSize boundary) 485 addr = (addr | (burstSize - 1)) + 1; 486 } 487 488 // If all packets are serviced by write queue, we send the repsonse back 489 if (pktsServicedByWrQ == pktCount) { 490 accessAndRespond(pkt, frontendLatency); 491 return; 492 } 493 494 // Update how many split packets are serviced by write queue 495 if (burst_helper != NULL) 496 burst_helper->burstsServiced = pktsServicedByWrQ; 497 498 // If we are not already scheduled to get a request out of the 499 // queue, do so now 500 if (!nextReqEvent.scheduled()) { 501 DPRINTF(DRAM, "Request scheduled immediately\n"); 502 schedule(nextReqEvent, curTick()); 503 } 504} 505 506void 507DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount) 508{ 509 // only add to the write queue here. whenever the request is 510 // eventually done, set the readyTime, and call schedule() 511 assert(pkt->isWrite()); 512 513 // if the request size is larger than burst size, the pkt is split into 514 // multiple DRAM packets 515 Addr addr = pkt->getAddr(); 516 for (int cnt = 0; cnt < pktCount; ++cnt) { 517 unsigned size = std::min((addr | (burstSize - 1)) + 1, 518 pkt->getAddr() + pkt->getSize()) - addr; 519 writePktSize[ceilLog2(size)]++; 520 writeBursts++; 521 522 // see if we can merge with an existing item in the write 523 // queue and keep track of whether we have merged or not so we 524 // can stop at that point and also avoid enqueueing a new 525 // request 526 bool merged = false; 527 auto w = writeQueue.begin(); 528 529 while(!merged && w != writeQueue.end()) { 530 // either of the two could be first, if they are the same 531 // it does not matter which way we go 532 if ((*w)->addr >= addr) { 533 // the existing one starts after the new one, figure 534 // out where the new one ends with respect to the 535 // existing one 536 if ((addr + size) >= ((*w)->addr + (*w)->size)) { 537 // check if the existing one is completely 538 // subsumed in the new one 539 DPRINTF(DRAM, "Merging write covering existing burst\n"); 540 merged = true; 541 // update both the address and the size 542 (*w)->addr = addr; 543 (*w)->size = size; 544 } else if ((addr + size) >= (*w)->addr && 545 ((*w)->addr + (*w)->size - addr) <= burstSize) { 546 // the new one is just before or partially 547 // overlapping with the existing one, and together 548 // they fit within a burst 549 DPRINTF(DRAM, "Merging write before existing burst\n"); 550 merged = true; 551 // the existing queue item needs to be adjusted with 552 // respect to both address and size 553 (*w)->size = (*w)->addr + (*w)->size - addr; 554 (*w)->addr = addr; 555 } 556 } else { 557 // the new one starts after the current one, figure 558 // out where the existing one ends with respect to the 559 // new one 560 if (((*w)->addr + (*w)->size) >= (addr + size)) { 561 // check if the new one is completely subsumed in the 562 // existing one 563 DPRINTF(DRAM, "Merging write into existing burst\n"); 564 merged = true; 565 // no adjustments necessary 566 } else if (((*w)->addr + (*w)->size) >= addr && 567 (addr + size - (*w)->addr) <= burstSize) { 568 // the existing one is just before or partially 569 // overlapping with the new one, and together 570 // they fit within a burst 571 DPRINTF(DRAM, "Merging write after existing burst\n"); 572 merged = true; 573 // the address is right, and only the size has 574 // to be adjusted 575 (*w)->size = addr + size - (*w)->addr; 576 } 577 } 578 ++w; 579 } 580 581 // if the item was not merged we need to create a new write 582 // and enqueue it 583 if (!merged) { 584 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false); 585 586 assert(writeQueue.size() < writeBufferSize); 587 wrQLenPdf[writeQueue.size()]++; 588 589 DPRINTF(DRAM, "Adding to write queue\n"); 590 591 writeQueue.push_back(dram_pkt); 592 593 // Update stats 594 avgWrQLen = writeQueue.size(); 595 } else { 596 // keep track of the fact that this burst effectively 597 // disappeared as it was merged with an existing one 598 mergedWrBursts++; 599 } 600 601 // Starting address of next dram pkt (aligend to burstSize boundary) 602 addr = (addr | (burstSize - 1)) + 1; 603 } 604 605 // we do not wait for the writes to be send to the actual memory, 606 // but instead take responsibility for the consistency here and 607 // snoop the write queue for any upcoming reads 608 // @todo, if a pkt size is larger than burst size, we might need a 609 // different front end latency 610 accessAndRespond(pkt, frontendLatency); 611 612 // If we are not already scheduled to get a request out of the 613 // queue, do so now 614 if (!nextReqEvent.scheduled()) { 615 DPRINTF(DRAM, "Request scheduled immediately\n"); 616 schedule(nextReqEvent, curTick()); 617 } 618} 619 620void 621DRAMCtrl::printQs() const { 622 DPRINTF(DRAM, "===READ QUEUE===\n\n"); 623 for (auto i = readQueue.begin() ; i != readQueue.end() ; ++i) { 624 DPRINTF(DRAM, "Read %lu\n", (*i)->addr); 625 } 626 DPRINTF(DRAM, "\n===RESP QUEUE===\n\n"); 627 for (auto i = respQueue.begin() ; i != respQueue.end() ; ++i) { 628 DPRINTF(DRAM, "Response %lu\n", (*i)->addr); 629 } 630 DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n"); 631 for (auto i = writeQueue.begin() ; i != writeQueue.end() ; ++i) { 632 DPRINTF(DRAM, "Write %lu\n", (*i)->addr); 633 } 634} 635 636bool 637DRAMCtrl::recvTimingReq(PacketPtr pkt) 638{ 639 /// @todo temporary hack to deal with memory corruption issues until 640 /// 4-phase transactions are complete 641 for (int x = 0; x < pendingDelete.size(); x++) 642 delete pendingDelete[x]; 643 pendingDelete.clear(); 644 645 // This is where we enter from the outside world 646 DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n", 647 pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 648 649 // simply drop inhibited packets for now 650 if (pkt->memInhibitAsserted()) { 651 DPRINTF(DRAM, "Inhibited packet -- Dropping it now\n"); 652 pendingDelete.push_back(pkt); 653 return true; 654 } 655 656 // Calc avg gap between requests 657 if (prevArrival != 0) { 658 totGap += curTick() - prevArrival; 659 } 660 prevArrival = curTick(); 661 662 663 // Find out how many dram packets a pkt translates to 664 // If the burst size is equal or larger than the pkt size, then a pkt 665 // translates to only one dram packet. Otherwise, a pkt translates to 666 // multiple dram packets 667 unsigned size = pkt->getSize(); 668 unsigned offset = pkt->getAddr() & (burstSize - 1); 669 unsigned int dram_pkt_count = divCeil(offset + size, burstSize); 670 671 // check local buffers and do not accept if full 672 if (pkt->isRead()) { 673 assert(size != 0); 674 if (readQueueFull(dram_pkt_count)) { 675 DPRINTF(DRAM, "Read queue full, not accepting\n"); 676 // remember that we have to retry this port 677 retryRdReq = true; 678 numRdRetry++; 679 return false; 680 } else { 681 addToReadQueue(pkt, dram_pkt_count); 682 readReqs++; 683 bytesReadSys += size; 684 } 685 } else if (pkt->isWrite()) { 686 assert(size != 0); 687 if (writeQueueFull(dram_pkt_count)) { 688 DPRINTF(DRAM, "Write queue full, not accepting\n"); 689 // remember that we have to retry this port 690 retryWrReq = true; 691 numWrRetry++; 692 return false; 693 } else { 694 addToWriteQueue(pkt, dram_pkt_count); 695 writeReqs++; 696 bytesWrittenSys += size; 697 } 698 } else { 699 DPRINTF(DRAM,"Neither read nor write, ignore timing\n"); 700 neitherReadNorWrite++; 701 accessAndRespond(pkt, 1); 702 } 703 704 return true; 705} 706 707void 708DRAMCtrl::processRespondEvent() 709{ 710 DPRINTF(DRAM, 711 "processRespondEvent(): Some req has reached its readyTime\n"); 712 713 DRAMPacket* dram_pkt = respQueue.front(); 714 715 if (dram_pkt->burstHelper) { 716 // it is a split packet 717 dram_pkt->burstHelper->burstsServiced++; 718 if (dram_pkt->burstHelper->burstsServiced == 719 dram_pkt->burstHelper->burstCount) { 720 // we have now serviced all children packets of a system packet 721 // so we can now respond to the requester 722 // @todo we probably want to have a different front end and back 723 // end latency for split packets 724 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency); 725 delete dram_pkt->burstHelper; 726 dram_pkt->burstHelper = NULL; 727 } 728 } else { 729 // it is not a split packet 730 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency); 731 } 732 733 delete respQueue.front(); 734 respQueue.pop_front(); 735 736 if (!respQueue.empty()) { 737 assert(respQueue.front()->readyTime >= curTick()); 738 assert(!respondEvent.scheduled()); 739 schedule(respondEvent, respQueue.front()->readyTime); 740 } else { 741 // if there is nothing left in any queue, signal a drain 742 if (writeQueue.empty() && readQueue.empty() && 743 drainManager) { 744 DPRINTF(Drain, "DRAM controller done draining\n"); 745 drainManager->signalDrainDone(); 746 drainManager = NULL; 747 } 748 } 749 750 // We have made a location in the queue available at this point, 751 // so if there is a read that was forced to wait, retry now 752 if (retryRdReq) { 753 retryRdReq = false; 754 port.sendRetry(); 755 } 756} 757 758void 759DRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue, bool switched_cmd_type) 760{ 761 // This method does the arbitration between requests. The chosen 762 // packet is simply moved to the head of the queue. The other 763 // methods know that this is the place to look. For example, with 764 // FCFS, this method does nothing 765 assert(!queue.empty()); 766 767 if (queue.size() == 1) { 768 DPRINTF(DRAM, "Single request, nothing to do\n"); 769 return; 770 } 771 772 if (memSchedPolicy == Enums::fcfs) { 773 // Do nothing, since the correct request is already head 774 } else if (memSchedPolicy == Enums::frfcfs) { 775 reorderQueue(queue, switched_cmd_type); 776 } else 777 panic("No scheduling policy chosen\n"); 778} 779 780void 781DRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue, bool switched_cmd_type) 782{ 783 // Only determine this when needed 784 uint64_t earliest_banks = 0; 785 786 // Search for row hits first, if no row hit is found then schedule the 787 // packet to one of the earliest banks available 788 bool found_earliest_pkt = false; 789 bool found_prepped_diff_rank_pkt = false; 790 auto selected_pkt_it = queue.begin(); 791 792 for (auto i = queue.begin(); i != queue.end() ; ++i) { 793 DRAMPacket* dram_pkt = *i; 794 const Bank& bank = dram_pkt->bankRef; 795 // Check if it is a row hit 796 if (bank.openRow == dram_pkt->row) { 797 if (dram_pkt->rank == activeRank || switched_cmd_type) { 798 // FCFS within the hits, giving priority to commands 799 // that access the same rank as the previous burst 800 // to minimize bus turnaround delays 801 // Only give rank prioity when command type is not changing 802 DPRINTF(DRAM, "Row buffer hit\n"); 803 selected_pkt_it = i; 804 break; 805 } else if (!found_prepped_diff_rank_pkt) { 806 // found row hit for command on different rank than prev burst 807 selected_pkt_it = i; 808 found_prepped_diff_rank_pkt = true; 809 } 810 } else if (!found_earliest_pkt & !found_prepped_diff_rank_pkt) { 811 // No row hit and 812 // haven't found an entry with a row hit to a new rank 813 if (earliest_banks == 0) 814 // Determine entries with earliest bank prep delay 815 // Function will give priority to commands that access the 816 // same rank as previous burst and can prep the bank seamlessly 817 earliest_banks = minBankPrep(queue, switched_cmd_type); 818 819 // FCFS - Bank is first available bank 820 if (bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) { 821 // Remember the packet to be scheduled to one of the earliest 822 // banks available, FCFS amongst the earliest banks 823 selected_pkt_it = i; 824 found_earliest_pkt = true; 825 } 826 } 827 } 828 829 DRAMPacket* selected_pkt = *selected_pkt_it; 830 queue.erase(selected_pkt_it); 831 queue.push_front(selected_pkt); 832} 833 834void 835DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency) 836{ 837 DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr()); 838 839 bool needsResponse = pkt->needsResponse(); 840 // do the actual memory access which also turns the packet into a 841 // response 842 access(pkt); 843 844 // turn packet around to go back to requester if response expected 845 if (needsResponse) { 846 // access already turned the packet into a response 847 assert(pkt->isResponse()); 848 849 // @todo someone should pay for this 850 pkt->firstWordDelay = pkt->lastWordDelay = 0; 851 852 // queue the packet in the response queue to be sent out after 853 // the static latency has passed 854 port.schedTimingResp(pkt, curTick() + static_latency); 855 } else { 856 // @todo the packet is going to be deleted, and the DRAMPacket 857 // is still having a pointer to it 858 pendingDelete.push_back(pkt); 859 } 860 861 DPRINTF(DRAM, "Done\n"); 862 863 return; 864} 865 866void 867DRAMCtrl::activateBank(Bank& bank, Tick act_tick, uint32_t row) 868{ 869 // get the rank index from the bank 870 uint8_t rank = bank.rank; 871 872 assert(actTicks[rank].size() == activationLimit); 873 874 DPRINTF(DRAM, "Activate at tick %d\n", act_tick); 875 876 // update the open row 877 assert(bank.openRow == Bank::NO_ROW); 878 bank.openRow = row; 879 880 // start counting anew, this covers both the case when we 881 // auto-precharged, and when this access is forced to 882 // precharge 883 bank.bytesAccessed = 0; 884 bank.rowAccesses = 0; 885 886 ++numBanksActive; 887 assert(numBanksActive <= banksPerRank * ranksPerChannel); 888 889 DPRINTF(DRAM, "Activate bank %d, rank %d at tick %lld, now got %d active\n", 890 bank.bank, bank.rank, act_tick, numBanksActive); 891 892 rankPower[bank.rank].powerlib.doCommand(MemCommand::ACT, bank.bank, 893 divCeil(act_tick, tCK) - 894 timeStampOffset); 895 896 DPRINTF(DRAMPower, "%llu,ACT,%d,%d\n", divCeil(act_tick, tCK) - 897 timeStampOffset, bank.bank, bank.rank); 898 899 // The next access has to respect tRAS for this bank 900 bank.preAllowedAt = act_tick + tRAS; 901 902 // Respect the row-to-column command delay 903 bank.colAllowedAt = std::max(act_tick + tRCD, bank.colAllowedAt); 904 905 // start by enforcing tRRD 906 for(int i = 0; i < banksPerRank; i++) { 907 // next activate to any bank in this rank must not happen 908 // before tRRD 909 if (bankGroupArch && (bank.bankgr == banks[rank][i].bankgr)) { 910 // bank group architecture requires longer delays between 911 // ACT commands within the same bank group. Use tRRD_L 912 // in this case 913 banks[rank][i].actAllowedAt = std::max(act_tick + tRRD_L, 914 banks[rank][i].actAllowedAt); 915 } else { 916 // use shorter tRRD value when either 917 // 1) bank group architecture is not supportted 918 // 2) bank is in a different bank group 919 banks[rank][i].actAllowedAt = std::max(act_tick + tRRD, 920 banks[rank][i].actAllowedAt); 921 } 922 } 923 924 // next, we deal with tXAW, if the activation limit is disabled 925 // then we directly schedule an activate power event 926 if (!actTicks[rank].empty()) { 927 // sanity check 928 if (actTicks[rank].back() && 929 (act_tick - actTicks[rank].back()) < tXAW) { 930 panic("Got %d activates in window %d (%llu - %llu) which " 931 "is smaller than %llu\n", activationLimit, act_tick - 932 actTicks[rank].back(), act_tick, actTicks[rank].back(), 933 tXAW); 934 } 935 936 // shift the times used for the book keeping, the last element 937 // (highest index) is the oldest one and hence the lowest value 938 actTicks[rank].pop_back(); 939 940 // record an new activation (in the future) 941 actTicks[rank].push_front(act_tick); 942 943 // cannot activate more than X times in time window tXAW, push the 944 // next one (the X + 1'st activate) to be tXAW away from the 945 // oldest in our window of X 946 if (actTicks[rank].back() && 947 (act_tick - actTicks[rank].back()) < tXAW) { 948 DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate " 949 "no earlier than %llu\n", activationLimit, 950 actTicks[rank].back() + tXAW); 951 for(int j = 0; j < banksPerRank; j++) 952 // next activate must not happen before end of window 953 banks[rank][j].actAllowedAt = 954 std::max(actTicks[rank].back() + tXAW, 955 banks[rank][j].actAllowedAt); 956 } 957 } 958 959 // at the point when this activate takes place, make sure we 960 // transition to the active power state 961 if (!activateEvent.scheduled()) 962 schedule(activateEvent, act_tick); 963 else if (activateEvent.when() > act_tick) 964 // move it sooner in time 965 reschedule(activateEvent, act_tick); 966} 967 968void 969DRAMCtrl::processActivateEvent() 970{ 971 // we should transition to the active state as soon as any bank is active 972 if (pwrState != PWR_ACT) 973 // note that at this point numBanksActive could be back at 974 // zero again due to a precharge scheduled in the future 975 schedulePowerEvent(PWR_ACT, curTick()); 976} 977 978void 979DRAMCtrl::prechargeBank(Bank& bank, Tick pre_at, bool trace) 980{ 981 // make sure the bank has an open row 982 assert(bank.openRow != Bank::NO_ROW); 983 984 // sample the bytes per activate here since we are closing 985 // the page 986 bytesPerActivate.sample(bank.bytesAccessed); 987 988 bank.openRow = Bank::NO_ROW; 989 990 // no precharge allowed before this one 991 bank.preAllowedAt = pre_at; 992 993 Tick pre_done_at = pre_at + tRP; 994 995 bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at); 996 997 assert(numBanksActive != 0); 998 --numBanksActive; 999 1000 DPRINTF(DRAM, "Precharging bank %d, rank %d at tick %lld, now got " 1001 "%d active\n", bank.bank, bank.rank, pre_at, numBanksActive); 1002 1003 if (trace) { 1004 1005 rankPower[bank.rank].powerlib.doCommand(MemCommand::PRE, bank.bank, 1006 divCeil(pre_at, tCK) - 1007 timeStampOffset); 1008 DPRINTF(DRAMPower, "%llu,PRE,%d,%d\n", divCeil(pre_at, tCK) - 1009 timeStampOffset, bank.bank, bank.rank); 1010 } 1011 // if we look at the current number of active banks we might be 1012 // tempted to think the DRAM is now idle, however this can be 1013 // undone by an activate that is scheduled to happen before we 1014 // would have reached the idle state, so schedule an event and 1015 // rather check once we actually make it to the point in time when 1016 // the (last) precharge takes place 1017 if (!prechargeEvent.scheduled()) 1018 schedule(prechargeEvent, pre_done_at); 1019 else if (prechargeEvent.when() < pre_done_at) 1020 reschedule(prechargeEvent, pre_done_at); 1021} 1022 1023void 1024DRAMCtrl::processPrechargeEvent() 1025{ 1026 // if we reached zero, then special conditions apply as we track 1027 // if all banks are precharged for the power models 1028 if (numBanksActive == 0) { 1029 // we should transition to the idle state when the last bank 1030 // is precharged 1031 schedulePowerEvent(PWR_IDLE, curTick()); 1032 } 1033} 1034 1035void 1036DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt) 1037{ 1038 DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n", 1039 dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row); 1040 1041 // get the bank 1042 Bank& bank = dram_pkt->bankRef; 1043 1044 // for the state we need to track if it is a row hit or not 1045 bool row_hit = true; 1046 1047 // respect any constraints on the command (e.g. tRCD or tCCD) 1048 Tick cmd_at = std::max(bank.colAllowedAt, curTick()); 1049 1050 // Determine the access latency and update the bank state 1051 if (bank.openRow == dram_pkt->row) { 1052 // nothing to do 1053 } else { 1054 row_hit = false; 1055 1056 // If there is a page open, precharge it. 1057 if (bank.openRow != Bank::NO_ROW) { 1058 prechargeBank(bank, std::max(bank.preAllowedAt, curTick())); 1059 } 1060 1061 // next we need to account for the delay in activating the 1062 // page 1063 Tick act_tick = std::max(bank.actAllowedAt, curTick()); 1064 1065 // Record the activation and deal with all the global timing 1066 // constraints caused be a new activation (tRRD and tXAW) 1067 activateBank(bank, act_tick, dram_pkt->row); 1068 1069 // issue the command as early as possible 1070 cmd_at = bank.colAllowedAt; 1071 } 1072 1073 // we need to wait until the bus is available before we can issue 1074 // the command 1075 cmd_at = std::max(cmd_at, busBusyUntil - tCL); 1076 1077 // update the packet ready time 1078 dram_pkt->readyTime = cmd_at + tCL + tBURST; 1079 1080 // only one burst can use the bus at any one point in time 1081 assert(dram_pkt->readyTime - busBusyUntil >= tBURST); 1082 1083 // update the time for the next read/write burst for each 1084 // bank (add a max with tCCD/tCCD_L here) 1085 Tick cmd_dly; 1086 for(int j = 0; j < ranksPerChannel; j++) { 1087 for(int i = 0; i < banksPerRank; i++) { 1088 // next burst to same bank group in this rank must not happen 1089 // before tCCD_L. Different bank group timing requirement is 1090 // tBURST; Add tCS for different ranks 1091 if (dram_pkt->rank == j) { 1092 if (bankGroupArch && (bank.bankgr == banks[j][i].bankgr)) { 1093 // bank group architecture requires longer delays between 1094 // RD/WR burst commands to the same bank group. 1095 // Use tCCD_L in this case 1096 cmd_dly = tCCD_L; 1097 } else { 1098 // use tBURST (equivalent to tCCD_S), the shorter 1099 // cas-to-cas delay value, when either: 1100 // 1) bank group architecture is not supportted 1101 // 2) bank is in a different bank group 1102 cmd_dly = tBURST; 1103 } 1104 } else { 1105 // different rank is by default in a different bank group 1106 // use tBURST (equivalent to tCCD_S), which is the shorter 1107 // cas-to-cas delay in this case 1108 // Add tCS to account for rank-to-rank bus delay requirements 1109 cmd_dly = tBURST + tCS; 1110 } 1111 banks[j][i].colAllowedAt = std::max(cmd_at + cmd_dly, 1112 banks[j][i].colAllowedAt); 1113 } 1114 } 1115 1116 // Save rank of current access 1117 activeRank = dram_pkt->rank; 1118 1119 // If this is a write, we also need to respect the write recovery 1120 // time before a precharge, in the case of a read, respect the 1121 // read to precharge constraint 1122 bank.preAllowedAt = std::max(bank.preAllowedAt, 1123 dram_pkt->isRead ? cmd_at + tRTP : 1124 dram_pkt->readyTime + tWR); 1125 1126 // increment the bytes accessed and the accesses per row 1127 bank.bytesAccessed += burstSize; 1128 ++bank.rowAccesses; 1129 1130 // if we reached the max, then issue with an auto-precharge 1131 bool auto_precharge = pageMgmt == Enums::close || 1132 bank.rowAccesses == maxAccessesPerRow; 1133 1134 // if we did not hit the limit, we might still want to 1135 // auto-precharge 1136 if (!auto_precharge && 1137 (pageMgmt == Enums::open_adaptive || 1138 pageMgmt == Enums::close_adaptive)) { 1139 // a twist on the open and close page policies: 1140 // 1) open_adaptive page policy does not blindly keep the 1141 // page open, but close it if there are no row hits, and there 1142 // are bank conflicts in the queue 1143 // 2) close_adaptive page policy does not blindly close the 1144 // page, but closes it only if there are no row hits in the queue. 1145 // In this case, only force an auto precharge when there 1146 // are no same page hits in the queue 1147 bool got_more_hits = false; 1148 bool got_bank_conflict = false; 1149 1150 // either look at the read queue or write queue 1151 const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue : 1152 writeQueue; 1153 auto p = queue.begin(); 1154 // make sure we are not considering the packet that we are 1155 // currently dealing with (which is the head of the queue) 1156 ++p; 1157 1158 // keep on looking until we have found required condition or 1159 // reached the end 1160 while (!(got_more_hits && 1161 (got_bank_conflict || pageMgmt == Enums::close_adaptive)) && 1162 p != queue.end()) { 1163 bool same_rank_bank = (dram_pkt->rank == (*p)->rank) && 1164 (dram_pkt->bank == (*p)->bank); 1165 bool same_row = dram_pkt->row == (*p)->row; 1166 got_more_hits |= same_rank_bank && same_row; 1167 got_bank_conflict |= same_rank_bank && !same_row; 1168 ++p; 1169 } 1170 1171 // auto pre-charge when either 1172 // 1) open_adaptive policy, we have not got any more hits, and 1173 // have a bank conflict 1174 // 2) close_adaptive policy and we have not got any more hits 1175 auto_precharge = !got_more_hits && 1176 (got_bank_conflict || pageMgmt == Enums::close_adaptive); 1177 } 1178 1179 // DRAMPower trace command to be written 1180 std::string mem_cmd = dram_pkt->isRead ? "RD" : "WR"; 1181 1182 // MemCommand required for DRAMPower library 1183 MemCommand::cmds command = (mem_cmd == "RD") ? MemCommand::RD : 1184 MemCommand::WR; 1185 1186 // if this access should use auto-precharge, then we are 1187 // closing the row 1188 if (auto_precharge) { 1189 // if auto-precharge push a PRE command at the correct tick to the 1190 // list used by DRAMPower library to calculate power 1191 prechargeBank(bank, std::max(curTick(), bank.preAllowedAt)); 1192 1193 DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId); 1194 } 1195 1196 // Update bus state 1197 busBusyUntil = dram_pkt->readyTime; 1198 1199 DPRINTF(DRAM, "Access to %lld, ready at %lld bus busy until %lld.\n", 1200 dram_pkt->addr, dram_pkt->readyTime, busBusyUntil); 1201 1202 rankPower[dram_pkt->rank].powerlib.doCommand(command, dram_pkt->bank, 1203 divCeil(cmd_at, tCK) - 1204 timeStampOffset); 1205 1206 DPRINTF(DRAMPower, "%llu,%s,%d,%d\n", divCeil(cmd_at, tCK) - 1207 timeStampOffset, mem_cmd, dram_pkt->bank, dram_pkt->rank); 1208 1209 // Update the minimum timing between the requests, this is a 1210 // conservative estimate of when we have to schedule the next 1211 // request to not introduce any unecessary bubbles. In most cases 1212 // we will wake up sooner than we have to. 1213 nextReqTime = busBusyUntil - (tRP + tRCD + tCL); 1214 1215 // Update the stats and schedule the next request 1216 if (dram_pkt->isRead) { 1217 ++readsThisTime; 1218 if (row_hit) 1219 readRowHits++; 1220 bytesReadDRAM += burstSize; 1221 perBankRdBursts[dram_pkt->bankId]++; 1222 1223 // Update latency stats 1224 totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime; 1225 totBusLat += tBURST; 1226 totQLat += cmd_at - dram_pkt->entryTime; 1227 } else { 1228 ++writesThisTime; 1229 if (row_hit) 1230 writeRowHits++; 1231 bytesWritten += burstSize; 1232 perBankWrBursts[dram_pkt->bankId]++; 1233 } 1234} 1235 1236void 1237DRAMCtrl::processNextReqEvent() 1238{ 1239 // pre-emptively set to false. Overwrite if in READ_TO_WRITE 1240 // or WRITE_TO_READ state 1241 bool switched_cmd_type = false; 1242 if (busState == READ_TO_WRITE) { 1243 DPRINTF(DRAM, "Switching to writes after %d reads with %d reads " 1244 "waiting\n", readsThisTime, readQueue.size()); 1245 1246 // sample and reset the read-related stats as we are now 1247 // transitioning to writes, and all reads are done 1248 rdPerTurnAround.sample(readsThisTime); 1249 readsThisTime = 0; 1250 1251 // now proceed to do the actual writes 1252 busState = WRITE; 1253 switched_cmd_type = true; 1254 } else if (busState == WRITE_TO_READ) { 1255 DPRINTF(DRAM, "Switching to reads after %d writes with %d writes " 1256 "waiting\n", writesThisTime, writeQueue.size()); 1257 1258 wrPerTurnAround.sample(writesThisTime); 1259 writesThisTime = 0; 1260 1261 busState = READ; 1262 switched_cmd_type = true; 1263 } 1264 1265 if (refreshState != REF_IDLE) { 1266 // if a refresh waiting for this event loop to finish, then hand 1267 // over now, and do not schedule a new nextReqEvent 1268 if (refreshState == REF_DRAIN) { 1269 DPRINTF(DRAM, "Refresh drain done, now precharging\n"); 1270 1271 refreshState = REF_PRE; 1272 1273 // hand control back to the refresh event loop 1274 schedule(refreshEvent, curTick()); 1275 } 1276 1277 // let the refresh finish before issuing any further requests 1278 return; 1279 } 1280 1281 // when we get here it is either a read or a write 1282 if (busState == READ) { 1283 1284 // track if we should switch or not 1285 bool switch_to_writes = false; 1286 1287 if (readQueue.empty()) { 1288 // In the case there is no read request to go next, 1289 // trigger writes if we have passed the low threshold (or 1290 // if we are draining) 1291 if (!writeQueue.empty() && 1292 (drainManager || writeQueue.size() > writeLowThreshold)) { 1293 1294 switch_to_writes = true; 1295 } else { 1296 // check if we are drained 1297 if (respQueue.empty () && drainManager) { 1298 DPRINTF(Drain, "DRAM controller done draining\n"); 1299 drainManager->signalDrainDone(); 1300 drainManager = NULL; 1301 } 1302 1303 // nothing to do, not even any point in scheduling an 1304 // event for the next request 1305 return; 1306 } 1307 } else { 1308 // Figure out which read request goes next, and move it to the 1309 // front of the read queue 1310 chooseNext(readQueue, switched_cmd_type); 1311 1312 DRAMPacket* dram_pkt = readQueue.front(); 1313 1314 // here we get a bit creative and shift the bus busy time not 1315 // just the tWTR, but also a CAS latency to capture the fact 1316 // that we are allowed to prepare a new bank, but not issue a 1317 // read command until after tWTR, in essence we capture a 1318 // bubble on the data bus that is tWTR + tCL 1319 if (switched_cmd_type && dram_pkt->rank == activeRank) { 1320 busBusyUntil += tWTR + tCL; 1321 } 1322 1323 doDRAMAccess(dram_pkt); 1324 1325 // At this point we're done dealing with the request 1326 readQueue.pop_front(); 1327 1328 // sanity check 1329 assert(dram_pkt->size <= burstSize); 1330 assert(dram_pkt->readyTime >= curTick()); 1331 1332 // Insert into response queue. It will be sent back to the 1333 // requestor at its readyTime 1334 if (respQueue.empty()) { 1335 assert(!respondEvent.scheduled()); 1336 schedule(respondEvent, dram_pkt->readyTime); 1337 } else { 1338 assert(respQueue.back()->readyTime <= dram_pkt->readyTime); 1339 assert(respondEvent.scheduled()); 1340 } 1341 1342 respQueue.push_back(dram_pkt); 1343 1344 // we have so many writes that we have to transition 1345 if (writeQueue.size() > writeHighThreshold) { 1346 switch_to_writes = true; 1347 } 1348 } 1349 1350 // switching to writes, either because the read queue is empty 1351 // and the writes have passed the low threshold (or we are 1352 // draining), or because the writes hit the hight threshold 1353 if (switch_to_writes) { 1354 // transition to writing 1355 busState = READ_TO_WRITE; 1356 } 1357 } else { 1358 chooseNext(writeQueue, switched_cmd_type); 1359 DRAMPacket* dram_pkt = writeQueue.front(); 1360 // sanity check 1361 assert(dram_pkt->size <= burstSize); 1362 1363 // add a bubble to the data bus, as defined by the 1364 // tRTW when access is to the same rank as previous burst 1365 // Different rank timing is handled with tCS, which is 1366 // applied to colAllowedAt 1367 if (switched_cmd_type && dram_pkt->rank == activeRank) { 1368 busBusyUntil += tRTW; 1369 } 1370 1371 doDRAMAccess(dram_pkt); 1372 1373 writeQueue.pop_front(); 1374 delete dram_pkt; 1375 1376 // If we emptied the write queue, or got sufficiently below the 1377 // threshold (using the minWritesPerSwitch as the hysteresis) and 1378 // are not draining, or we have reads waiting and have done enough 1379 // writes, then switch to reads. 1380 if (writeQueue.empty() || 1381 (writeQueue.size() + minWritesPerSwitch < writeLowThreshold && 1382 !drainManager) || 1383 (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) { 1384 // turn the bus back around for reads again 1385 busState = WRITE_TO_READ; 1386 1387 // note that the we switch back to reads also in the idle 1388 // case, which eventually will check for any draining and 1389 // also pause any further scheduling if there is really 1390 // nothing to do 1391 } 1392 } 1393 1394 schedule(nextReqEvent, std::max(nextReqTime, curTick())); 1395 1396 // If there is space available and we have writes waiting then let 1397 // them retry. This is done here to ensure that the retry does not 1398 // cause a nextReqEvent to be scheduled before we do so as part of 1399 // the next request processing 1400 if (retryWrReq && writeQueue.size() < writeBufferSize) { 1401 retryWrReq = false; 1402 port.sendRetry(); 1403 } 1404} 1405 1406uint64_t 1407DRAMCtrl::minBankPrep(const deque<DRAMPacket*>& queue, 1408 bool switched_cmd_type) const 1409{ 1410 uint64_t bank_mask = 0; 1411 Tick min_act_at = MaxTick; 1412 1413 uint64_t bank_mask_same_rank = 0; 1414 Tick min_act_at_same_rank = MaxTick; 1415 1416 // Give precedence to commands that access same rank as previous command 1417 bool same_rank_match = false; 1418 1419 // determine if we have queued transactions targetting the 1420 // bank in question 1421 vector<bool> got_waiting(ranksPerChannel * banksPerRank, false); 1422 for (auto p = queue.begin(); p != queue.end(); ++p) { 1423 got_waiting[(*p)->bankId] = true; 1424 } 1425 1426 for (int i = 0; i < ranksPerChannel; i++) { 1427 for (int j = 0; j < banksPerRank; j++) { 1428 uint8_t bank_id = i * banksPerRank + j; 1429 1430 // if we have waiting requests for the bank, and it is 1431 // amongst the first available, update the mask 1432 if (got_waiting[bank_id]) { 1433 // simplistic approximation of when the bank can issue 1434 // an activate, ignoring any rank-to-rank switching 1435 // cost in this calculation 1436 Tick act_at = banks[i][j].openRow == Bank::NO_ROW ? 1437 banks[i][j].actAllowedAt : 1438 std::max(banks[i][j].preAllowedAt, curTick()) + tRP; 1439 1440 // prioritize commands that access the 1441 // same rank as previous burst 1442 // Calculate bank mask separately for the case and 1443 // evaluate after loop iterations complete 1444 if (i == activeRank && ranksPerChannel > 1) { 1445 if (act_at <= min_act_at_same_rank) { 1446 // reset same rank bank mask if new minimum is found 1447 // and previous minimum could not immediately send ACT 1448 if (act_at < min_act_at_same_rank && 1449 min_act_at_same_rank > curTick()) 1450 bank_mask_same_rank = 0; 1451 1452 // Set flag indicating that a same rank 1453 // opportunity was found 1454 same_rank_match = true; 1455 1456 // set the bit corresponding to the available bank 1457 replaceBits(bank_mask_same_rank, bank_id, bank_id, 1); 1458 min_act_at_same_rank = act_at; 1459 } 1460 } else { 1461 if (act_at <= min_act_at) { 1462 // reset bank mask if new minimum is found 1463 // and either previous minimum could not immediately send ACT 1464 if (act_at < min_act_at && min_act_at > curTick()) 1465 bank_mask = 0; 1466 // set the bit corresponding to the available bank 1467 replaceBits(bank_mask, bank_id, bank_id, 1); 1468 min_act_at = act_at; 1469 } 1470 } 1471 } 1472 } 1473 } 1474 1475 // Determine the earliest time when the next burst can issue based 1476 // on the current busBusyUntil delay. 1477 // Offset by tRCD to correlate with ACT timing variables 1478 Tick min_cmd_at = busBusyUntil - tCL - tRCD; 1479 1480 // Prioritize same rank accesses that can issue B2B 1481 // Only optimize for same ranks when the command type 1482 // does not change; do not want to unnecessarily incur tWTR 1483 // 1484 // Resulting FCFS prioritization Order is: 1485 // 1) Commands that access the same rank as previous burst 1486 // and can prep the bank seamlessly. 1487 // 2) Commands (any rank) with earliest bank prep 1488 if (!switched_cmd_type && same_rank_match && 1489 min_act_at_same_rank <= min_cmd_at) { 1490 bank_mask = bank_mask_same_rank; 1491 } 1492 1493 return bank_mask; 1494} 1495 1496void 1497DRAMCtrl::processRefreshEvent() 1498{ 1499 // when first preparing the refresh, remember when it was due 1500 if (refreshState == REF_IDLE) { 1501 // remember when the refresh is due 1502 refreshDueAt = curTick(); 1503 1504 // proceed to drain 1505 refreshState = REF_DRAIN; 1506 1507 DPRINTF(DRAM, "Refresh due\n"); 1508 } 1509 1510 // let any scheduled read or write go ahead, after which it will 1511 // hand control back to this event loop 1512 if (refreshState == REF_DRAIN) { 1513 if (nextReqEvent.scheduled()) { 1514 // hand control over to the request loop until it is 1515 // evaluated next 1516 DPRINTF(DRAM, "Refresh awaiting draining\n"); 1517 1518 return; 1519 } else { 1520 refreshState = REF_PRE; 1521 } 1522 } 1523 1524 // at this point, ensure that all banks are precharged 1525 if (refreshState == REF_PRE) { 1526 // precharge any active bank if we are not already in the idle 1527 // state 1528 if (pwrState != PWR_IDLE) { 1529 // at the moment, we use a precharge all even if there is 1530 // only a single bank open 1531 DPRINTF(DRAM, "Precharging all\n"); 1532 1533 // first determine when we can precharge 1534 Tick pre_at = curTick(); 1535 for (int i = 0; i < ranksPerChannel; i++) { 1536 for (int j = 0; j < banksPerRank; j++) { 1537 // respect both causality and any existing bank 1538 // constraints, some banks could already have a 1539 // (auto) precharge scheduled 1540 pre_at = std::max(banks[i][j].preAllowedAt, pre_at); 1541 } 1542 } 1543 1544 // make sure all banks are precharged, and for those that 1545 // already are, update their availability 1546 Tick act_allowed_at = pre_at + tRP; 1547 1548 for (int i = 0; i < ranksPerChannel; i++) { 1549 for (int j = 0; j < banksPerRank; j++) { 1550 if (banks[i][j].openRow != Bank::NO_ROW) { 1551 prechargeBank(banks[i][j], pre_at, false); 1552 } else { 1553 banks[i][j].actAllowedAt = 1554 std::max(banks[i][j].actAllowedAt, act_allowed_at); 1555 banks[i][j].preAllowedAt = 1556 std::max(banks[i][j].preAllowedAt, pre_at); 1557 } 1558 } 1559 1560 // at the moment this affects all ranks 1561 rankPower[i].powerlib.doCommand(MemCommand::PREA, 0, 1562 divCeil(pre_at, tCK) - 1563 timeStampOffset); 1564 1565 DPRINTF(DRAMPower, "%llu,PREA,0,%d\n", divCeil(pre_at, tCK) - 1566 timeStampOffset, i); 1567 } 1568 } else { 1569 DPRINTF(DRAM, "All banks already precharged, starting refresh\n"); 1570 1571 // go ahead and kick the power state machine into gear if 1572 // we are already idle 1573 schedulePowerEvent(PWR_REF, curTick()); 1574 } 1575 1576 refreshState = REF_RUN; 1577 assert(numBanksActive == 0); 1578 1579 // wait for all banks to be precharged, at which point the 1580 // power state machine will transition to the idle state, and 1581 // automatically move to a refresh, at that point it will also 1582 // call this method to get the refresh event loop going again 1583 return; 1584 } 1585 1586 // last but not least we perform the actual refresh 1587 if (refreshState == REF_RUN) { 1588 // should never get here with any banks active 1589 assert(numBanksActive == 0); 1590 assert(pwrState == PWR_REF); 1591 1592 Tick ref_done_at = curTick() + tRFC; 1593 1594 for (int i = 0; i < ranksPerChannel; i++) { 1595 for (int j = 0; j < banksPerRank; j++) { 1596 banks[i][j].actAllowedAt = ref_done_at; 1597 } 1598 1599 // at the moment this affects all ranks 1600 rankPower[i].powerlib.doCommand(MemCommand::REF, 0, 1601 divCeil(curTick(), tCK) - 1602 timeStampOffset); 1603 1604 // at the moment sort the list of commands and update the counters 1605 // for DRAMPower libray when doing a refresh 1606 sort(rankPower[i].powerlib.cmdList.begin(), 1607 rankPower[i].powerlib.cmdList.end(), DRAMCtrl::sortTime); 1608 1609 // update the counters for DRAMPower, passing false to 1610 // indicate that this is not the last command in the 1611 // list. DRAMPower requires this information for the 1612 // correct calculation of the background energy at the end 1613 // of the simulation. Ideally we would want to call this 1614 // function with true once at the end of the 1615 // simulation. However, the discarded energy is extremly 1616 // small and does not effect the final results. 1617 rankPower[i].powerlib.updateCounters(false); 1618 1619 // call the energy function 1620 rankPower[i].powerlib.calcEnergy(); 1621 1622 // Update the stats 1623 updatePowerStats(i); 1624 1625 DPRINTF(DRAMPower, "%llu,REF,0,%d\n", divCeil(curTick(), tCK) - 1626 timeStampOffset, i); 1627 } 1628 1629 // make sure we did not wait so long that we cannot make up 1630 // for it 1631 if (refreshDueAt + tREFI < ref_done_at) { 1632 fatal("Refresh was delayed so long we cannot catch up\n"); 1633 } 1634 1635 // compensate for the delay in actually performing the refresh 1636 // when scheduling the next one 1637 schedule(refreshEvent, refreshDueAt + tREFI - tRP); 1638 1639 assert(!powerEvent.scheduled()); 1640 1641 // move to the idle power state once the refresh is done, this 1642 // will also move the refresh state machine to the refresh 1643 // idle state 1644 schedulePowerEvent(PWR_IDLE, ref_done_at); 1645 1646 DPRINTF(DRAMState, "Refresh done at %llu and next refresh at %llu\n", 1647 ref_done_at, refreshDueAt + tREFI); 1648 } 1649} 1650 1651void 1652DRAMCtrl::schedulePowerEvent(PowerState pwr_state, Tick tick) 1653{ 1654 // respect causality 1655 assert(tick >= curTick()); 1656 1657 if (!powerEvent.scheduled()) { 1658 DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n", 1659 tick, pwr_state); 1660 1661 // insert the new transition 1662 pwrStateTrans = pwr_state; 1663 1664 schedule(powerEvent, tick); 1665 } else { 1666 panic("Scheduled power event at %llu to state %d, " 1667 "with scheduled event at %llu to %d\n", tick, pwr_state, 1668 powerEvent.when(), pwrStateTrans); 1669 } 1670} 1671 1672void 1673DRAMCtrl::processPowerEvent() 1674{ 1675 // remember where we were, and for how long 1676 Tick duration = curTick() - pwrStateTick; 1677 PowerState prev_state = pwrState; 1678 1679 // update the accounting 1680 pwrStateTime[prev_state] += duration; 1681 1682 pwrState = pwrStateTrans; 1683 pwrStateTick = curTick(); 1684 1685 if (pwrState == PWR_IDLE) { 1686 DPRINTF(DRAMState, "All banks precharged\n"); 1687 1688 // if we were refreshing, make sure we start scheduling requests again 1689 if (prev_state == PWR_REF) { 1690 DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration); 1691 assert(pwrState == PWR_IDLE); 1692 1693 // kick things into action again 1694 refreshState = REF_IDLE; 1695 assert(!nextReqEvent.scheduled()); 1696 schedule(nextReqEvent, curTick()); 1697 } else { 1698 assert(prev_state == PWR_ACT); 1699 1700 // if we have a pending refresh, and are now moving to 1701 // the idle state, direclty transition to a refresh 1702 if (refreshState == REF_RUN) { 1703 // there should be nothing waiting at this point 1704 assert(!powerEvent.scheduled()); 1705 1706 // update the state in zero time and proceed below 1707 pwrState = PWR_REF; 1708 } 1709 } 1710 } 1711 1712 // we transition to the refresh state, let the refresh state 1713 // machine know of this state update and let it deal with the 1714 // scheduling of the next power state transition as well as the 1715 // following refresh 1716 if (pwrState == PWR_REF) { 1717 DPRINTF(DRAMState, "Refreshing\n"); 1718 // kick the refresh event loop into action again, and that 1719 // in turn will schedule a transition to the idle power 1720 // state once the refresh is done 1721 assert(refreshState == REF_RUN); 1722 processRefreshEvent(); 1723 } 1724} 1725 1726void 1727DRAMCtrl::updatePowerStats(uint8_t rank) 1728{ 1729 // Get the energy and power from DRAMPower 1730 Data::MemoryPowerModel::Energy energy = 1731 rankPower[rank].powerlib.getEnergy(); 1732 Data::MemoryPowerModel::Power power = 1733 rankPower[rank].powerlib.getPower(); 1734 1735 actEnergy[rank] = energy.act_energy * devicesPerRank; 1736 preEnergy[rank] = energy.pre_energy * devicesPerRank; 1737 readEnergy[rank] = energy.read_energy * devicesPerRank; 1738 writeEnergy[rank] = energy.write_energy * devicesPerRank; 1739 refreshEnergy[rank] = energy.ref_energy * devicesPerRank; 1740 actBackEnergy[rank] = energy.act_stdby_energy * devicesPerRank; 1741 preBackEnergy[rank] = energy.pre_stdby_energy * devicesPerRank; 1742 totalEnergy[rank] = energy.total_energy * devicesPerRank; 1743 averagePower[rank] = power.average_power * devicesPerRank; 1744} 1745 1746void 1747DRAMCtrl::regStats() 1748{ 1749 using namespace Stats; 1750 1751 AbstractMemory::regStats(); 1752 1753 readReqs 1754 .name(name() + ".readReqs") 1755 .desc("Number of read requests accepted"); 1756 1757 writeReqs 1758 .name(name() + ".writeReqs") 1759 .desc("Number of write requests accepted"); 1760 1761 readBursts 1762 .name(name() + ".readBursts") 1763 .desc("Number of DRAM read bursts, " 1764 "including those serviced by the write queue"); 1765 1766 writeBursts 1767 .name(name() + ".writeBursts") 1768 .desc("Number of DRAM write bursts, " 1769 "including those merged in the write queue"); 1770 1771 servicedByWrQ 1772 .name(name() + ".servicedByWrQ") 1773 .desc("Number of DRAM read bursts serviced by the write queue"); 1774 1775 mergedWrBursts 1776 .name(name() + ".mergedWrBursts") 1777 .desc("Number of DRAM write bursts merged with an existing one"); 1778 1779 neitherReadNorWrite 1780 .name(name() + ".neitherReadNorWriteReqs") 1781 .desc("Number of requests that are neither read nor write"); 1782 1783 perBankRdBursts 1784 .init(banksPerRank * ranksPerChannel) 1785 .name(name() + ".perBankRdBursts") 1786 .desc("Per bank write bursts"); 1787 1788 perBankWrBursts 1789 .init(banksPerRank * ranksPerChannel) 1790 .name(name() + ".perBankWrBursts") 1791 .desc("Per bank write bursts"); 1792 1793 avgRdQLen 1794 .name(name() + ".avgRdQLen") 1795 .desc("Average read queue length when enqueuing") 1796 .precision(2); 1797 1798 avgWrQLen 1799 .name(name() + ".avgWrQLen") 1800 .desc("Average write queue length when enqueuing") 1801 .precision(2); 1802 1803 totQLat 1804 .name(name() + ".totQLat") 1805 .desc("Total ticks spent queuing"); 1806 1807 totBusLat 1808 .name(name() + ".totBusLat") 1809 .desc("Total ticks spent in databus transfers"); 1810 1811 totMemAccLat 1812 .name(name() + ".totMemAccLat") 1813 .desc("Total ticks spent from burst creation until serviced " 1814 "by the DRAM"); 1815 1816 avgQLat 1817 .name(name() + ".avgQLat") 1818 .desc("Average queueing delay per DRAM burst") 1819 .precision(2); 1820 1821 avgQLat = totQLat / (readBursts - servicedByWrQ); 1822 1823 avgBusLat 1824 .name(name() + ".avgBusLat") 1825 .desc("Average bus latency per DRAM burst") 1826 .precision(2); 1827 1828 avgBusLat = totBusLat / (readBursts - servicedByWrQ); 1829 1830 avgMemAccLat 1831 .name(name() + ".avgMemAccLat") 1832 .desc("Average memory access latency per DRAM burst") 1833 .precision(2); 1834 1835 avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ); 1836 1837 numRdRetry 1838 .name(name() + ".numRdRetry") 1839 .desc("Number of times read queue was full causing retry"); 1840 1841 numWrRetry 1842 .name(name() + ".numWrRetry") 1843 .desc("Number of times write queue was full causing retry"); 1844 1845 readRowHits 1846 .name(name() + ".readRowHits") 1847 .desc("Number of row buffer hits during reads"); 1848 1849 writeRowHits 1850 .name(name() + ".writeRowHits") 1851 .desc("Number of row buffer hits during writes"); 1852 1853 readRowHitRate 1854 .name(name() + ".readRowHitRate") 1855 .desc("Row buffer hit rate for reads") 1856 .precision(2); 1857 1858 readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100; 1859 1860 writeRowHitRate 1861 .name(name() + ".writeRowHitRate") 1862 .desc("Row buffer hit rate for writes") 1863 .precision(2); 1864 1865 writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100; 1866 1867 readPktSize 1868 .init(ceilLog2(burstSize) + 1) 1869 .name(name() + ".readPktSize") 1870 .desc("Read request sizes (log2)"); 1871 1872 writePktSize 1873 .init(ceilLog2(burstSize) + 1) 1874 .name(name() + ".writePktSize") 1875 .desc("Write request sizes (log2)"); 1876 1877 rdQLenPdf 1878 .init(readBufferSize) 1879 .name(name() + ".rdQLenPdf") 1880 .desc("What read queue length does an incoming req see"); 1881 1882 wrQLenPdf 1883 .init(writeBufferSize) 1884 .name(name() + ".wrQLenPdf") 1885 .desc("What write queue length does an incoming req see"); 1886 1887 bytesPerActivate 1888 .init(maxAccessesPerRow) 1889 .name(name() + ".bytesPerActivate") 1890 .desc("Bytes accessed per row activation") 1891 .flags(nozero); 1892 1893 rdPerTurnAround 1894 .init(readBufferSize) 1895 .name(name() + ".rdPerTurnAround") 1896 .desc("Reads before turning the bus around for writes") 1897 .flags(nozero); 1898 1899 wrPerTurnAround 1900 .init(writeBufferSize) 1901 .name(name() + ".wrPerTurnAround") 1902 .desc("Writes before turning the bus around for reads") 1903 .flags(nozero); 1904 1905 bytesReadDRAM 1906 .name(name() + ".bytesReadDRAM") 1907 .desc("Total number of bytes read from DRAM"); 1908 1909 bytesReadWrQ 1910 .name(name() + ".bytesReadWrQ") 1911 .desc("Total number of bytes read from write queue"); 1912 1913 bytesWritten 1914 .name(name() + ".bytesWritten") 1915 .desc("Total number of bytes written to DRAM"); 1916 1917 bytesReadSys 1918 .name(name() + ".bytesReadSys") 1919 .desc("Total read bytes from the system interface side"); 1920 1921 bytesWrittenSys 1922 .name(name() + ".bytesWrittenSys") 1923 .desc("Total written bytes from the system interface side"); 1924 1925 avgRdBW 1926 .name(name() + ".avgRdBW") 1927 .desc("Average DRAM read bandwidth in MiByte/s") 1928 .precision(2); 1929 1930 avgRdBW = (bytesReadDRAM / 1000000) / simSeconds; 1931 1932 avgWrBW 1933 .name(name() + ".avgWrBW") 1934 .desc("Average achieved write bandwidth in MiByte/s") 1935 .precision(2); 1936 1937 avgWrBW = (bytesWritten / 1000000) / simSeconds; 1938 1939 avgRdBWSys 1940 .name(name() + ".avgRdBWSys") 1941 .desc("Average system read bandwidth in MiByte/s") 1942 .precision(2); 1943 1944 avgRdBWSys = (bytesReadSys / 1000000) / simSeconds; 1945 1946 avgWrBWSys 1947 .name(name() + ".avgWrBWSys") 1948 .desc("Average system write bandwidth in MiByte/s") 1949 .precision(2); 1950 1951 avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds; 1952 1953 peakBW 1954 .name(name() + ".peakBW") 1955 .desc("Theoretical peak bandwidth in MiByte/s") 1956 .precision(2); 1957 1958 peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000; 1959 1960 busUtil 1961 .name(name() + ".busUtil") 1962 .desc("Data bus utilization in percentage") 1963 .precision(2); 1964 1965 busUtil = (avgRdBW + avgWrBW) / peakBW * 100; 1966 1967 totGap 1968 .name(name() + ".totGap") 1969 .desc("Total gap between requests"); 1970 1971 avgGap 1972 .name(name() + ".avgGap") 1973 .desc("Average gap between requests") 1974 .precision(2); 1975 1976 avgGap = totGap / (readReqs + writeReqs); 1977 1978 // Stats for DRAM Power calculation based on Micron datasheet 1979 busUtilRead 1980 .name(name() + ".busUtilRead") 1981 .desc("Data bus utilization in percentage for reads") 1982 .precision(2); 1983 1984 busUtilRead = avgRdBW / peakBW * 100; 1985 1986 busUtilWrite 1987 .name(name() + ".busUtilWrite") 1988 .desc("Data bus utilization in percentage for writes") 1989 .precision(2); 1990 1991 busUtilWrite = avgWrBW / peakBW * 100; 1992 1993 pageHitRate 1994 .name(name() + ".pageHitRate") 1995 .desc("Row buffer hit rate, read and write combined") 1996 .precision(2); 1997 1998 pageHitRate = (writeRowHits + readRowHits) / 1999 (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100; 2000 2001 pwrStateTime 2002 .init(5) 2003 .name(name() + ".memoryStateTime") 2004 .desc("Time in different power states"); 2005 pwrStateTime.subname(0, "IDLE"); 2006 pwrStateTime.subname(1, "REF"); 2007 pwrStateTime.subname(2, "PRE_PDN"); 2008 pwrStateTime.subname(3, "ACT"); 2009 pwrStateTime.subname(4, "ACT_PDN"); 2010 2011 actEnergy 2012 .init(ranksPerChannel) 2013 .name(name() + ".actEnergy") 2014 .desc("Energy for activate commands per rank (pJ)"); 2015 2016 preEnergy 2017 .init(ranksPerChannel) 2018 .name(name() + ".preEnergy") 2019 .desc("Energy for precharge commands per rank (pJ)"); 2020 2021 readEnergy 2022 .init(ranksPerChannel) 2023 .name(name() + ".readEnergy") 2024 .desc("Energy for read commands per rank (pJ)"); 2025 2026 writeEnergy 2027 .init(ranksPerChannel) 2028 .name(name() + ".writeEnergy") 2029 .desc("Energy for write commands per rank (pJ)"); 2030 2031 refreshEnergy 2032 .init(ranksPerChannel) 2033 .name(name() + ".refreshEnergy") 2034 .desc("Energy for refresh commands per rank (pJ)"); 2035 2036 actBackEnergy 2037 .init(ranksPerChannel) 2038 .name(name() + ".actBackEnergy") 2039 .desc("Energy for active background per rank (pJ)"); 2040 2041 preBackEnergy 2042 .init(ranksPerChannel) 2043 .name(name() + ".preBackEnergy") 2044 .desc("Energy for precharge background per rank (pJ)"); 2045 2046 totalEnergy 2047 .init(ranksPerChannel) 2048 .name(name() + ".totalEnergy") 2049 .desc("Total energy per rank (pJ)"); 2050 2051 averagePower 2052 .init(ranksPerChannel) 2053 .name(name() + ".averagePower") 2054 .desc("Core power per rank (mW)"); 2055} 2056 2057void 2058DRAMCtrl::recvFunctional(PacketPtr pkt) 2059{ 2060 // rely on the abstract memory 2061 functionalAccess(pkt); 2062} 2063 2064BaseSlavePort& 2065DRAMCtrl::getSlavePort(const string &if_name, PortID idx) 2066{ 2067 if (if_name != "port") { 2068 return MemObject::getSlavePort(if_name, idx); 2069 } else { 2070 return port; 2071 } 2072} 2073 2074unsigned int 2075DRAMCtrl::drain(DrainManager *dm) 2076{ 2077 unsigned int count = port.drain(dm); 2078 2079 // if there is anything in any of our internal queues, keep track 2080 // of that as well 2081 if (!(writeQueue.empty() && readQueue.empty() && 2082 respQueue.empty())) { 2083 DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d," 2084 " resp: %d\n", writeQueue.size(), readQueue.size(), 2085 respQueue.size()); 2086 ++count; 2087 drainManager = dm; 2088 2089 // the only part that is not drained automatically over time 2090 // is the write queue, thus kick things into action if needed 2091 if (!writeQueue.empty() && !nextReqEvent.scheduled()) { 2092 schedule(nextReqEvent, curTick()); 2093 } 2094 } 2095 2096 if (count) 2097 setDrainState(Drainable::Draining); 2098 else 2099 setDrainState(Drainable::Drained); 2100 return count; 2101} 2102 2103DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory) 2104 : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this), 2105 memory(_memory) 2106{ } 2107 2108AddrRangeList 2109DRAMCtrl::MemoryPort::getAddrRanges() const 2110{ 2111 AddrRangeList ranges; 2112 ranges.push_back(memory.getAddrRange()); 2113 return ranges; 2114} 2115 2116void 2117DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt) 2118{ 2119 pkt->pushLabel(memory.name()); 2120 2121 if (!queue.checkFunctional(pkt)) { 2122 // Default implementation of SimpleTimingPort::recvFunctional() 2123 // calls recvAtomic() and throws away the latency; we can save a 2124 // little here by just not calculating the latency. 2125 memory.recvFunctional(pkt); 2126 } 2127 2128 pkt->popLabel(); 2129} 2130 2131Tick 2132DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt) 2133{ 2134 return memory.recvAtomic(pkt); 2135} 2136 2137bool 2138DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt) 2139{ 2140 // pass it to the memory controller 2141 return memory.recvTimingReq(pkt); 2142} 2143 2144DRAMCtrl* 2145DRAMCtrlParams::create() 2146{ 2147 return new DRAMCtrl(this); 2148} 2149