dram_ctrl.cc revision 10509
1/* 2 * Copyright (c) 2010-2014 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2013 Amin Farmahini-Farahani 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Andreas Hansson 41 * Ani Udipi 42 * Neha Agarwal 43 */ 44 45#include "base/bitfield.hh" 46#include "base/trace.hh" 47#include "debug/DRAM.hh" 48#include "debug/DRAMPower.hh" 49#include "debug/DRAMState.hh" 50#include "debug/Drain.hh" 51#include "mem/dram_ctrl.hh" 52#include "sim/system.hh" 53 54using namespace std; 55using namespace Data; 56 57DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) : 58 AbstractMemory(p), 59 port(name() + ".port", *this), 60 retryRdReq(false), retryWrReq(false), 61 busState(READ), 62 nextReqEvent(this), respondEvent(this), activateEvent(this), 63 prechargeEvent(this), refreshEvent(this), powerEvent(this), 64 drainManager(NULL), 65 deviceSize(p->device_size), 66 deviceBusWidth(p->device_bus_width), burstLength(p->burst_length), 67 deviceRowBufferSize(p->device_rowbuffer_size), 68 devicesPerRank(p->devices_per_rank), 69 burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8), 70 rowBufferSize(devicesPerRank * deviceRowBufferSize), 71 columnsPerRowBuffer(rowBufferSize / burstSize), 72 columnsPerStripe(range.granularity() / burstSize), 73 ranksPerChannel(p->ranks_per_channel), 74 bankGroupsPerRank(p->bank_groups_per_rank), 75 bankGroupArch(p->bank_groups_per_rank > 0), 76 banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0), 77 readBufferSize(p->read_buffer_size), 78 writeBufferSize(p->write_buffer_size), 79 writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0), 80 writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0), 81 minWritesPerSwitch(p->min_writes_per_switch), 82 writesThisTime(0), readsThisTime(0), 83 tCK(p->tCK), tWTR(p->tWTR), tRTW(p->tRTW), tCS(p->tCS), tBURST(p->tBURST), 84 tCCD_L(p->tCCD_L), tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS), 85 tWR(p->tWR), tRTP(p->tRTP), tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD), 86 tRRD_L(p->tRRD_L), tXAW(p->tXAW), activationLimit(p->activation_limit), 87 memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping), 88 pageMgmt(p->page_policy), 89 maxAccessesPerRow(p->max_accesses_per_row), 90 frontendLatency(p->static_frontend_latency), 91 backendLatency(p->static_backend_latency), 92 busBusyUntil(0), refreshDueAt(0), refreshState(REF_IDLE), 93 pwrStateTrans(PWR_IDLE), pwrState(PWR_IDLE), prevArrival(0), 94 nextReqTime(0), pwrStateTick(0), numBanksActive(0), 95 activeRank(0), timeStampOffset(0) 96{ 97 // create the bank states based on the dimensions of the ranks and 98 // banks 99 banks.resize(ranksPerChannel); 100 101 //create list of drampower objects. For each rank 1 drampower instance. 102 for (int i = 0; i < ranksPerChannel; i++) { 103 DRAMPower drampower = DRAMPower(p, false); 104 rankPower.emplace_back(drampower); 105 } 106 107 actTicks.resize(ranksPerChannel); 108 for (size_t c = 0; c < ranksPerChannel; ++c) { 109 banks[c].resize(banksPerRank); 110 actTicks[c].resize(activationLimit, 0); 111 } 112 113 // set the bank indices 114 for (int r = 0; r < ranksPerChannel; r++) { 115 for (int b = 0; b < banksPerRank; b++) { 116 banks[r][b].rank = r; 117 banks[r][b].bank = b; 118 if (bankGroupArch) { 119 // Simply assign lower bits to bank group in order to 120 // rotate across bank groups as banks are incremented 121 // e.g. with 4 banks per bank group and 16 banks total: 122 // banks 0,4,8,12 are in bank group 0 123 // banks 1,5,9,13 are in bank group 1 124 // banks 2,6,10,14 are in bank group 2 125 // banks 3,7,11,15 are in bank group 3 126 banks[r][b].bankgr = b % bankGroupsPerRank; 127 } else { 128 // No bank groups; simply assign to bank number 129 banks[r][b].bankgr = b; 130 } 131 } 132 } 133 134 // perform a basic check of the write thresholds 135 if (p->write_low_thresh_perc >= p->write_high_thresh_perc) 136 fatal("Write buffer low threshold %d must be smaller than the " 137 "high threshold %d\n", p->write_low_thresh_perc, 138 p->write_high_thresh_perc); 139 140 // determine the rows per bank by looking at the total capacity 141 uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size()); 142 143 // determine the dram actual capacity from the DRAM config in Mbytes 144 uint64_t deviceCapacity = deviceSize / (1024 * 1024) * devicesPerRank * 145 ranksPerChannel; 146 147 // if actual DRAM size does not match memory capacity in system warn! 148 if (deviceCapacity != capacity / (1024 * 1024)) 149 warn("DRAM device capacity (%d Mbytes) does not match the " 150 "address range assigned (%d Mbytes)\n", deviceCapacity, 151 capacity / (1024 * 1024)); 152 153 DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity, 154 AbstractMemory::size()); 155 156 DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n", 157 rowBufferSize, columnsPerRowBuffer); 158 159 rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel); 160 161 // a bit of sanity checks on the interleaving 162 if (range.interleaved()) { 163 if (channels != range.stripes()) 164 fatal("%s has %d interleaved address stripes but %d channel(s)\n", 165 name(), range.stripes(), channels); 166 167 if (addrMapping == Enums::RoRaBaChCo) { 168 if (rowBufferSize != range.granularity()) { 169 fatal("Channel interleaving of %s doesn't match RoRaBaChCo " 170 "address map\n", name()); 171 } 172 } else if (addrMapping == Enums::RoRaBaCoCh || 173 addrMapping == Enums::RoCoRaBaCh) { 174 // for the interleavings with channel bits in the bottom, 175 // if the system uses a channel striping granularity that 176 // is larger than the DRAM burst size, then map the 177 // sequential accesses within a stripe to a number of 178 // columns in the DRAM, effectively placing some of the 179 // lower-order column bits as the least-significant bits 180 // of the address (above the ones denoting the burst size) 181 assert(columnsPerStripe >= 1); 182 183 // channel striping has to be done at a granularity that 184 // is equal or larger to a cache line 185 if (system()->cacheLineSize() > range.granularity()) { 186 fatal("Channel interleaving of %s must be at least as large " 187 "as the cache line size\n", name()); 188 } 189 190 // ...and equal or smaller than the row-buffer size 191 if (rowBufferSize < range.granularity()) { 192 fatal("Channel interleaving of %s must be at most as large " 193 "as the row-buffer size\n", name()); 194 } 195 // this is essentially the check above, so just to be sure 196 assert(columnsPerStripe <= columnsPerRowBuffer); 197 } 198 } 199 200 // some basic sanity checks 201 if (tREFI <= tRP || tREFI <= tRFC) { 202 fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n", 203 tREFI, tRP, tRFC); 204 } 205 206 // basic bank group architecture checks -> 207 if (bankGroupArch) { 208 // must have at least one bank per bank group 209 if (bankGroupsPerRank > banksPerRank) { 210 fatal("banks per rank (%d) must be equal to or larger than " 211 "banks groups per rank (%d)\n", 212 banksPerRank, bankGroupsPerRank); 213 } 214 // must have same number of banks in each bank group 215 if ((banksPerRank % bankGroupsPerRank) != 0) { 216 fatal("Banks per rank (%d) must be evenly divisible by bank groups " 217 "per rank (%d) for equal banks per bank group\n", 218 banksPerRank, bankGroupsPerRank); 219 } 220 // tCCD_L should be greater than minimal, back-to-back burst delay 221 if (tCCD_L <= tBURST) { 222 fatal("tCCD_L (%d) should be larger than tBURST (%d) when " 223 "bank groups per rank (%d) is greater than 1\n", 224 tCCD_L, tBURST, bankGroupsPerRank); 225 } 226 // tRRD_L is greater than minimal, same bank group ACT-to-ACT delay 227 if (tRRD_L <= tRRD) { 228 fatal("tRRD_L (%d) should be larger than tRRD (%d) when " 229 "bank groups per rank (%d) is greater than 1\n", 230 tRRD_L, tRRD, bankGroupsPerRank); 231 } 232 } 233 234} 235 236void 237DRAMCtrl::init() 238{ 239 AbstractMemory::init(); 240 241 if (!port.isConnected()) { 242 fatal("DRAMCtrl %s is unconnected!\n", name()); 243 } else { 244 port.sendRangeChange(); 245 } 246} 247 248void 249DRAMCtrl::startup() 250{ 251 // timestamp offset should be in clock cycles for DRAMPower 252 timeStampOffset = divCeil(curTick(), tCK); 253 // update the start tick for the precharge accounting to the 254 // current tick 255 pwrStateTick = curTick(); 256 257 // shift the bus busy time sufficiently far ahead that we never 258 // have to worry about negative values when computing the time for 259 // the next request, this will add an insignificant bubble at the 260 // start of simulation 261 busBusyUntil = curTick() + tRP + tRCD + tCL; 262 263 // kick off the refresh, and give ourselves enough time to 264 // precharge 265 schedule(refreshEvent, curTick() + tREFI - tRP); 266} 267 268Tick 269DRAMCtrl::recvAtomic(PacketPtr pkt) 270{ 271 DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr()); 272 273 // do the actual memory access and turn the packet into a response 274 access(pkt); 275 276 Tick latency = 0; 277 if (!pkt->memInhibitAsserted() && pkt->hasData()) { 278 // this value is not supposed to be accurate, just enough to 279 // keep things going, mimic a closed page 280 latency = tRP + tRCD + tCL; 281 } 282 return latency; 283} 284 285bool 286DRAMCtrl::readQueueFull(unsigned int neededEntries) const 287{ 288 DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n", 289 readBufferSize, readQueue.size() + respQueue.size(), 290 neededEntries); 291 292 return 293 (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize; 294} 295 296bool 297DRAMCtrl::writeQueueFull(unsigned int neededEntries) const 298{ 299 DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n", 300 writeBufferSize, writeQueue.size(), neededEntries); 301 return (writeQueue.size() + neededEntries) > writeBufferSize; 302} 303 304DRAMCtrl::DRAMPacket* 305DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size, 306 bool isRead) 307{ 308 // decode the address based on the address mapping scheme, with 309 // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and 310 // channel, respectively 311 uint8_t rank; 312 uint8_t bank; 313 // use a 64-bit unsigned during the computations as the row is 314 // always the top bits, and check before creating the DRAMPacket 315 uint64_t row; 316 317 // truncate the address to a DRAM burst, which makes it unique to 318 // a specific column, row, bank, rank and channel 319 Addr addr = dramPktAddr / burstSize; 320 321 // we have removed the lowest order address bits that denote the 322 // position within the column 323 if (addrMapping == Enums::RoRaBaChCo) { 324 // the lowest order bits denote the column to ensure that 325 // sequential cache lines occupy the same row 326 addr = addr / columnsPerRowBuffer; 327 328 // take out the channel part of the address 329 addr = addr / channels; 330 331 // after the channel bits, get the bank bits to interleave 332 // over the banks 333 bank = addr % banksPerRank; 334 addr = addr / banksPerRank; 335 336 // after the bank, we get the rank bits which thus interleaves 337 // over the ranks 338 rank = addr % ranksPerChannel; 339 addr = addr / ranksPerChannel; 340 341 // lastly, get the row bits 342 row = addr % rowsPerBank; 343 addr = addr / rowsPerBank; 344 } else if (addrMapping == Enums::RoRaBaCoCh) { 345 // take out the lower-order column bits 346 addr = addr / columnsPerStripe; 347 348 // take out the channel part of the address 349 addr = addr / channels; 350 351 // next, the higher-order column bites 352 addr = addr / (columnsPerRowBuffer / columnsPerStripe); 353 354 // after the column bits, we get the bank bits to interleave 355 // over the banks 356 bank = addr % banksPerRank; 357 addr = addr / banksPerRank; 358 359 // after the bank, we get the rank bits which thus interleaves 360 // over the ranks 361 rank = addr % ranksPerChannel; 362 addr = addr / ranksPerChannel; 363 364 // lastly, get the row bits 365 row = addr % rowsPerBank; 366 addr = addr / rowsPerBank; 367 } else if (addrMapping == Enums::RoCoRaBaCh) { 368 // optimise for closed page mode and utilise maximum 369 // parallelism of the DRAM (at the cost of power) 370 371 // take out the lower-order column bits 372 addr = addr / columnsPerStripe; 373 374 // take out the channel part of the address, not that this has 375 // to match with how accesses are interleaved between the 376 // controllers in the address mapping 377 addr = addr / channels; 378 379 // start with the bank bits, as this provides the maximum 380 // opportunity for parallelism between requests 381 bank = addr % banksPerRank; 382 addr = addr / banksPerRank; 383 384 // next get the rank bits 385 rank = addr % ranksPerChannel; 386 addr = addr / ranksPerChannel; 387 388 // next, the higher-order column bites 389 addr = addr / (columnsPerRowBuffer / columnsPerStripe); 390 391 // lastly, get the row bits 392 row = addr % rowsPerBank; 393 addr = addr / rowsPerBank; 394 } else 395 panic("Unknown address mapping policy chosen!"); 396 397 assert(rank < ranksPerChannel); 398 assert(bank < banksPerRank); 399 assert(row < rowsPerBank); 400 assert(row < Bank::NO_ROW); 401 402 DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n", 403 dramPktAddr, rank, bank, row); 404 405 // create the corresponding DRAM packet with the entry time and 406 // ready time set to the current tick, the latter will be updated 407 // later 408 uint16_t bank_id = banksPerRank * rank + bank; 409 return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr, 410 size, banks[rank][bank]); 411} 412 413void 414DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount) 415{ 416 // only add to the read queue here. whenever the request is 417 // eventually done, set the readyTime, and call schedule() 418 assert(!pkt->isWrite()); 419 420 assert(pktCount != 0); 421 422 // if the request size is larger than burst size, the pkt is split into 423 // multiple DRAM packets 424 // Note if the pkt starting address is not aligened to burst size, the 425 // address of first DRAM packet is kept unaliged. Subsequent DRAM packets 426 // are aligned to burst size boundaries. This is to ensure we accurately 427 // check read packets against packets in write queue. 428 Addr addr = pkt->getAddr(); 429 unsigned pktsServicedByWrQ = 0; 430 BurstHelper* burst_helper = NULL; 431 for (int cnt = 0; cnt < pktCount; ++cnt) { 432 unsigned size = std::min((addr | (burstSize - 1)) + 1, 433 pkt->getAddr() + pkt->getSize()) - addr; 434 readPktSize[ceilLog2(size)]++; 435 readBursts++; 436 437 // First check write buffer to see if the data is already at 438 // the controller 439 bool foundInWrQ = false; 440 for (auto i = writeQueue.begin(); i != writeQueue.end(); ++i) { 441 // check if the read is subsumed in the write entry we are 442 // looking at 443 if ((*i)->addr <= addr && 444 (addr + size) <= ((*i)->addr + (*i)->size)) { 445 foundInWrQ = true; 446 servicedByWrQ++; 447 pktsServicedByWrQ++; 448 DPRINTF(DRAM, "Read to addr %lld with size %d serviced by " 449 "write queue\n", addr, size); 450 bytesReadWrQ += burstSize; 451 break; 452 } 453 } 454 455 // If not found in the write q, make a DRAM packet and 456 // push it onto the read queue 457 if (!foundInWrQ) { 458 459 // Make the burst helper for split packets 460 if (pktCount > 1 && burst_helper == NULL) { 461 DPRINTF(DRAM, "Read to addr %lld translates to %d " 462 "dram requests\n", pkt->getAddr(), pktCount); 463 burst_helper = new BurstHelper(pktCount); 464 } 465 466 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true); 467 dram_pkt->burstHelper = burst_helper; 468 469 assert(!readQueueFull(1)); 470 rdQLenPdf[readQueue.size() + respQueue.size()]++; 471 472 DPRINTF(DRAM, "Adding to read queue\n"); 473 474 readQueue.push_back(dram_pkt); 475 476 // Update stats 477 avgRdQLen = readQueue.size() + respQueue.size(); 478 } 479 480 // Starting address of next dram pkt (aligend to burstSize boundary) 481 addr = (addr | (burstSize - 1)) + 1; 482 } 483 484 // If all packets are serviced by write queue, we send the repsonse back 485 if (pktsServicedByWrQ == pktCount) { 486 accessAndRespond(pkt, frontendLatency); 487 return; 488 } 489 490 // Update how many split packets are serviced by write queue 491 if (burst_helper != NULL) 492 burst_helper->burstsServiced = pktsServicedByWrQ; 493 494 // If we are not already scheduled to get a request out of the 495 // queue, do so now 496 if (!nextReqEvent.scheduled()) { 497 DPRINTF(DRAM, "Request scheduled immediately\n"); 498 schedule(nextReqEvent, curTick()); 499 } 500} 501 502void 503DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount) 504{ 505 // only add to the write queue here. whenever the request is 506 // eventually done, set the readyTime, and call schedule() 507 assert(pkt->isWrite()); 508 509 // if the request size is larger than burst size, the pkt is split into 510 // multiple DRAM packets 511 Addr addr = pkt->getAddr(); 512 for (int cnt = 0; cnt < pktCount; ++cnt) { 513 unsigned size = std::min((addr | (burstSize - 1)) + 1, 514 pkt->getAddr() + pkt->getSize()) - addr; 515 writePktSize[ceilLog2(size)]++; 516 writeBursts++; 517 518 // see if we can merge with an existing item in the write 519 // queue and keep track of whether we have merged or not so we 520 // can stop at that point and also avoid enqueueing a new 521 // request 522 bool merged = false; 523 auto w = writeQueue.begin(); 524 525 while(!merged && w != writeQueue.end()) { 526 // either of the two could be first, if they are the same 527 // it does not matter which way we go 528 if ((*w)->addr >= addr) { 529 // the existing one starts after the new one, figure 530 // out where the new one ends with respect to the 531 // existing one 532 if ((addr + size) >= ((*w)->addr + (*w)->size)) { 533 // check if the existing one is completely 534 // subsumed in the new one 535 DPRINTF(DRAM, "Merging write covering existing burst\n"); 536 merged = true; 537 // update both the address and the size 538 (*w)->addr = addr; 539 (*w)->size = size; 540 } else if ((addr + size) >= (*w)->addr && 541 ((*w)->addr + (*w)->size - addr) <= burstSize) { 542 // the new one is just before or partially 543 // overlapping with the existing one, and together 544 // they fit within a burst 545 DPRINTF(DRAM, "Merging write before existing burst\n"); 546 merged = true; 547 // the existing queue item needs to be adjusted with 548 // respect to both address and size 549 (*w)->size = (*w)->addr + (*w)->size - addr; 550 (*w)->addr = addr; 551 } 552 } else { 553 // the new one starts after the current one, figure 554 // out where the existing one ends with respect to the 555 // new one 556 if (((*w)->addr + (*w)->size) >= (addr + size)) { 557 // check if the new one is completely subsumed in the 558 // existing one 559 DPRINTF(DRAM, "Merging write into existing burst\n"); 560 merged = true; 561 // no adjustments necessary 562 } else if (((*w)->addr + (*w)->size) >= addr && 563 (addr + size - (*w)->addr) <= burstSize) { 564 // the existing one is just before or partially 565 // overlapping with the new one, and together 566 // they fit within a burst 567 DPRINTF(DRAM, "Merging write after existing burst\n"); 568 merged = true; 569 // the address is right, and only the size has 570 // to be adjusted 571 (*w)->size = addr + size - (*w)->addr; 572 } 573 } 574 ++w; 575 } 576 577 // if the item was not merged we need to create a new write 578 // and enqueue it 579 if (!merged) { 580 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false); 581 582 assert(writeQueue.size() < writeBufferSize); 583 wrQLenPdf[writeQueue.size()]++; 584 585 DPRINTF(DRAM, "Adding to write queue\n"); 586 587 writeQueue.push_back(dram_pkt); 588 589 // Update stats 590 avgWrQLen = writeQueue.size(); 591 } else { 592 // keep track of the fact that this burst effectively 593 // disappeared as it was merged with an existing one 594 mergedWrBursts++; 595 } 596 597 // Starting address of next dram pkt (aligend to burstSize boundary) 598 addr = (addr | (burstSize - 1)) + 1; 599 } 600 601 // we do not wait for the writes to be send to the actual memory, 602 // but instead take responsibility for the consistency here and 603 // snoop the write queue for any upcoming reads 604 // @todo, if a pkt size is larger than burst size, we might need a 605 // different front end latency 606 accessAndRespond(pkt, frontendLatency); 607 608 // If we are not already scheduled to get a request out of the 609 // queue, do so now 610 if (!nextReqEvent.scheduled()) { 611 DPRINTF(DRAM, "Request scheduled immediately\n"); 612 schedule(nextReqEvent, curTick()); 613 } 614} 615 616void 617DRAMCtrl::printQs() const { 618 DPRINTF(DRAM, "===READ QUEUE===\n\n"); 619 for (auto i = readQueue.begin() ; i != readQueue.end() ; ++i) { 620 DPRINTF(DRAM, "Read %lu\n", (*i)->addr); 621 } 622 DPRINTF(DRAM, "\n===RESP QUEUE===\n\n"); 623 for (auto i = respQueue.begin() ; i != respQueue.end() ; ++i) { 624 DPRINTF(DRAM, "Response %lu\n", (*i)->addr); 625 } 626 DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n"); 627 for (auto i = writeQueue.begin() ; i != writeQueue.end() ; ++i) { 628 DPRINTF(DRAM, "Write %lu\n", (*i)->addr); 629 } 630} 631 632bool 633DRAMCtrl::recvTimingReq(PacketPtr pkt) 634{ 635 /// @todo temporary hack to deal with memory corruption issues until 636 /// 4-phase transactions are complete 637 for (int x = 0; x < pendingDelete.size(); x++) 638 delete pendingDelete[x]; 639 pendingDelete.clear(); 640 641 // This is where we enter from the outside world 642 DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n", 643 pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 644 645 // simply drop inhibited packets for now 646 if (pkt->memInhibitAsserted()) { 647 DPRINTF(DRAM, "Inhibited packet -- Dropping it now\n"); 648 pendingDelete.push_back(pkt); 649 return true; 650 } 651 652 // Calc avg gap between requests 653 if (prevArrival != 0) { 654 totGap += curTick() - prevArrival; 655 } 656 prevArrival = curTick(); 657 658 659 // Find out how many dram packets a pkt translates to 660 // If the burst size is equal or larger than the pkt size, then a pkt 661 // translates to only one dram packet. Otherwise, a pkt translates to 662 // multiple dram packets 663 unsigned size = pkt->getSize(); 664 unsigned offset = pkt->getAddr() & (burstSize - 1); 665 unsigned int dram_pkt_count = divCeil(offset + size, burstSize); 666 667 // check local buffers and do not accept if full 668 if (pkt->isRead()) { 669 assert(size != 0); 670 if (readQueueFull(dram_pkt_count)) { 671 DPRINTF(DRAM, "Read queue full, not accepting\n"); 672 // remember that we have to retry this port 673 retryRdReq = true; 674 numRdRetry++; 675 return false; 676 } else { 677 addToReadQueue(pkt, dram_pkt_count); 678 readReqs++; 679 bytesReadSys += size; 680 } 681 } else if (pkt->isWrite()) { 682 assert(size != 0); 683 if (writeQueueFull(dram_pkt_count)) { 684 DPRINTF(DRAM, "Write queue full, not accepting\n"); 685 // remember that we have to retry this port 686 retryWrReq = true; 687 numWrRetry++; 688 return false; 689 } else { 690 addToWriteQueue(pkt, dram_pkt_count); 691 writeReqs++; 692 bytesWrittenSys += size; 693 } 694 } else { 695 DPRINTF(DRAM,"Neither read nor write, ignore timing\n"); 696 neitherReadNorWrite++; 697 accessAndRespond(pkt, 1); 698 } 699 700 return true; 701} 702 703void 704DRAMCtrl::processRespondEvent() 705{ 706 DPRINTF(DRAM, 707 "processRespondEvent(): Some req has reached its readyTime\n"); 708 709 DRAMPacket* dram_pkt = respQueue.front(); 710 711 if (dram_pkt->burstHelper) { 712 // it is a split packet 713 dram_pkt->burstHelper->burstsServiced++; 714 if (dram_pkt->burstHelper->burstsServiced == 715 dram_pkt->burstHelper->burstCount) { 716 // we have now serviced all children packets of a system packet 717 // so we can now respond to the requester 718 // @todo we probably want to have a different front end and back 719 // end latency for split packets 720 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency); 721 delete dram_pkt->burstHelper; 722 dram_pkt->burstHelper = NULL; 723 } 724 } else { 725 // it is not a split packet 726 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency); 727 } 728 729 delete respQueue.front(); 730 respQueue.pop_front(); 731 732 if (!respQueue.empty()) { 733 assert(respQueue.front()->readyTime >= curTick()); 734 assert(!respondEvent.scheduled()); 735 schedule(respondEvent, respQueue.front()->readyTime); 736 } else { 737 // if there is nothing left in any queue, signal a drain 738 if (writeQueue.empty() && readQueue.empty() && 739 drainManager) { 740 DPRINTF(Drain, "DRAM controller done draining\n"); 741 drainManager->signalDrainDone(); 742 drainManager = NULL; 743 } 744 } 745 746 // We have made a location in the queue available at this point, 747 // so if there is a read that was forced to wait, retry now 748 if (retryRdReq) { 749 retryRdReq = false; 750 port.sendRetry(); 751 } 752} 753 754void 755DRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue, bool switched_cmd_type) 756{ 757 // This method does the arbitration between requests. The chosen 758 // packet is simply moved to the head of the queue. The other 759 // methods know that this is the place to look. For example, with 760 // FCFS, this method does nothing 761 assert(!queue.empty()); 762 763 if (queue.size() == 1) { 764 DPRINTF(DRAM, "Single request, nothing to do\n"); 765 return; 766 } 767 768 if (memSchedPolicy == Enums::fcfs) { 769 // Do nothing, since the correct request is already head 770 } else if (memSchedPolicy == Enums::frfcfs) { 771 reorderQueue(queue, switched_cmd_type); 772 } else 773 panic("No scheduling policy chosen\n"); 774} 775 776void 777DRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue, bool switched_cmd_type) 778{ 779 // Only determine this when needed 780 uint64_t earliest_banks = 0; 781 782 // Search for row hits first, if no row hit is found then schedule the 783 // packet to one of the earliest banks available 784 bool found_earliest_pkt = false; 785 bool found_prepped_diff_rank_pkt = false; 786 auto selected_pkt_it = queue.begin(); 787 788 for (auto i = queue.begin(); i != queue.end() ; ++i) { 789 DRAMPacket* dram_pkt = *i; 790 const Bank& bank = dram_pkt->bankRef; 791 // Check if it is a row hit 792 if (bank.openRow == dram_pkt->row) { 793 if (dram_pkt->rank == activeRank || switched_cmd_type) { 794 // FCFS within the hits, giving priority to commands 795 // that access the same rank as the previous burst 796 // to minimize bus turnaround delays 797 // Only give rank prioity when command type is not changing 798 DPRINTF(DRAM, "Row buffer hit\n"); 799 selected_pkt_it = i; 800 break; 801 } else if (!found_prepped_diff_rank_pkt) { 802 // found row hit for command on different rank than prev burst 803 selected_pkt_it = i; 804 found_prepped_diff_rank_pkt = true; 805 } 806 } else if (!found_earliest_pkt & !found_prepped_diff_rank_pkt) { 807 // No row hit and 808 // haven't found an entry with a row hit to a new rank 809 if (earliest_banks == 0) 810 // Determine entries with earliest bank prep delay 811 // Function will give priority to commands that access the 812 // same rank as previous burst and can prep the bank seamlessly 813 earliest_banks = minBankPrep(queue, switched_cmd_type); 814 815 // FCFS - Bank is first available bank 816 if (bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) { 817 // Remember the packet to be scheduled to one of the earliest 818 // banks available, FCFS amongst the earliest banks 819 selected_pkt_it = i; 820 found_earliest_pkt = true; 821 } 822 } 823 } 824 825 DRAMPacket* selected_pkt = *selected_pkt_it; 826 queue.erase(selected_pkt_it); 827 queue.push_front(selected_pkt); 828} 829 830void 831DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency) 832{ 833 DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr()); 834 835 bool needsResponse = pkt->needsResponse(); 836 // do the actual memory access which also turns the packet into a 837 // response 838 access(pkt); 839 840 // turn packet around to go back to requester if response expected 841 if (needsResponse) { 842 // access already turned the packet into a response 843 assert(pkt->isResponse()); 844 845 // @todo someone should pay for this 846 pkt->firstWordDelay = pkt->lastWordDelay = 0; 847 848 // queue the packet in the response queue to be sent out after 849 // the static latency has passed 850 port.schedTimingResp(pkt, curTick() + static_latency); 851 } else { 852 // @todo the packet is going to be deleted, and the DRAMPacket 853 // is still having a pointer to it 854 pendingDelete.push_back(pkt); 855 } 856 857 DPRINTF(DRAM, "Done\n"); 858 859 return; 860} 861 862void 863DRAMCtrl::activateBank(Bank& bank, Tick act_tick, uint32_t row) 864{ 865 // get the rank index from the bank 866 uint8_t rank = bank.rank; 867 868 assert(actTicks[rank].size() == activationLimit); 869 870 DPRINTF(DRAM, "Activate at tick %d\n", act_tick); 871 872 // update the open row 873 assert(bank.openRow == Bank::NO_ROW); 874 bank.openRow = row; 875 876 // start counting anew, this covers both the case when we 877 // auto-precharged, and when this access is forced to 878 // precharge 879 bank.bytesAccessed = 0; 880 bank.rowAccesses = 0; 881 882 ++numBanksActive; 883 assert(numBanksActive <= banksPerRank * ranksPerChannel); 884 885 DPRINTF(DRAM, "Activate bank %d, rank %d at tick %lld, now got %d active\n", 886 bank.bank, bank.rank, act_tick, numBanksActive); 887 888 rankPower[bank.rank].powerlib.doCommand(MemCommand::ACT, bank.bank, 889 divCeil(act_tick, tCK) - 890 timeStampOffset); 891 892 DPRINTF(DRAMPower, "%llu,ACT,%d,%d\n", divCeil(act_tick, tCK) - 893 timeStampOffset, bank.bank, bank.rank); 894 895 // The next access has to respect tRAS for this bank 896 bank.preAllowedAt = act_tick + tRAS; 897 898 // Respect the row-to-column command delay 899 bank.colAllowedAt = std::max(act_tick + tRCD, bank.colAllowedAt); 900 901 // start by enforcing tRRD 902 for(int i = 0; i < banksPerRank; i++) { 903 // next activate to any bank in this rank must not happen 904 // before tRRD 905 if (bankGroupArch && (bank.bankgr == banks[rank][i].bankgr)) { 906 // bank group architecture requires longer delays between 907 // ACT commands within the same bank group. Use tRRD_L 908 // in this case 909 banks[rank][i].actAllowedAt = std::max(act_tick + tRRD_L, 910 banks[rank][i].actAllowedAt); 911 } else { 912 // use shorter tRRD value when either 913 // 1) bank group architecture is not supportted 914 // 2) bank is in a different bank group 915 banks[rank][i].actAllowedAt = std::max(act_tick + tRRD, 916 banks[rank][i].actAllowedAt); 917 } 918 } 919 920 // next, we deal with tXAW, if the activation limit is disabled 921 // then we directly schedule an activate power event 922 if (!actTicks[rank].empty()) { 923 // sanity check 924 if (actTicks[rank].back() && 925 (act_tick - actTicks[rank].back()) < tXAW) { 926 panic("Got %d activates in window %d (%llu - %llu) which " 927 "is smaller than %llu\n", activationLimit, act_tick - 928 actTicks[rank].back(), act_tick, actTicks[rank].back(), 929 tXAW); 930 } 931 932 // shift the times used for the book keeping, the last element 933 // (highest index) is the oldest one and hence the lowest value 934 actTicks[rank].pop_back(); 935 936 // record an new activation (in the future) 937 actTicks[rank].push_front(act_tick); 938 939 // cannot activate more than X times in time window tXAW, push the 940 // next one (the X + 1'st activate) to be tXAW away from the 941 // oldest in our window of X 942 if (actTicks[rank].back() && 943 (act_tick - actTicks[rank].back()) < tXAW) { 944 DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate " 945 "no earlier than %llu\n", activationLimit, 946 actTicks[rank].back() + tXAW); 947 for(int j = 0; j < banksPerRank; j++) 948 // next activate must not happen before end of window 949 banks[rank][j].actAllowedAt = 950 std::max(actTicks[rank].back() + tXAW, 951 banks[rank][j].actAllowedAt); 952 } 953 } 954 955 // at the point when this activate takes place, make sure we 956 // transition to the active power state 957 if (!activateEvent.scheduled()) 958 schedule(activateEvent, act_tick); 959 else if (activateEvent.when() > act_tick) 960 // move it sooner in time 961 reschedule(activateEvent, act_tick); 962} 963 964void 965DRAMCtrl::processActivateEvent() 966{ 967 // we should transition to the active state as soon as any bank is active 968 if (pwrState != PWR_ACT) 969 // note that at this point numBanksActive could be back at 970 // zero again due to a precharge scheduled in the future 971 schedulePowerEvent(PWR_ACT, curTick()); 972} 973 974void 975DRAMCtrl::prechargeBank(Bank& bank, Tick pre_at, bool trace) 976{ 977 // make sure the bank has an open row 978 assert(bank.openRow != Bank::NO_ROW); 979 980 // sample the bytes per activate here since we are closing 981 // the page 982 bytesPerActivate.sample(bank.bytesAccessed); 983 984 bank.openRow = Bank::NO_ROW; 985 986 // no precharge allowed before this one 987 bank.preAllowedAt = pre_at; 988 989 Tick pre_done_at = pre_at + tRP; 990 991 bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at); 992 993 assert(numBanksActive != 0); 994 --numBanksActive; 995 996 DPRINTF(DRAM, "Precharging bank %d, rank %d at tick %lld, now got " 997 "%d active\n", bank.bank, bank.rank, pre_at, numBanksActive); 998 999 if (trace) { 1000 1001 rankPower[bank.rank].powerlib.doCommand(MemCommand::PRE, bank.bank, 1002 divCeil(pre_at, tCK) - 1003 timeStampOffset); 1004 DPRINTF(DRAMPower, "%llu,PRE,%d,%d\n", divCeil(pre_at, tCK) - 1005 timeStampOffset, bank.bank, bank.rank); 1006 } 1007 // if we look at the current number of active banks we might be 1008 // tempted to think the DRAM is now idle, however this can be 1009 // undone by an activate that is scheduled to happen before we 1010 // would have reached the idle state, so schedule an event and 1011 // rather check once we actually make it to the point in time when 1012 // the (last) precharge takes place 1013 if (!prechargeEvent.scheduled()) 1014 schedule(prechargeEvent, pre_done_at); 1015 else if (prechargeEvent.when() < pre_done_at) 1016 reschedule(prechargeEvent, pre_done_at); 1017} 1018 1019void 1020DRAMCtrl::processPrechargeEvent() 1021{ 1022 // if we reached zero, then special conditions apply as we track 1023 // if all banks are precharged for the power models 1024 if (numBanksActive == 0) { 1025 // we should transition to the idle state when the last bank 1026 // is precharged 1027 schedulePowerEvent(PWR_IDLE, curTick()); 1028 } 1029} 1030 1031void 1032DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt) 1033{ 1034 DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n", 1035 dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row); 1036 1037 // get the bank 1038 Bank& bank = dram_pkt->bankRef; 1039 1040 // for the state we need to track if it is a row hit or not 1041 bool row_hit = true; 1042 1043 // respect any constraints on the command (e.g. tRCD or tCCD) 1044 Tick cmd_at = std::max(bank.colAllowedAt, curTick()); 1045 1046 // Determine the access latency and update the bank state 1047 if (bank.openRow == dram_pkt->row) { 1048 // nothing to do 1049 } else { 1050 row_hit = false; 1051 1052 // If there is a page open, precharge it. 1053 if (bank.openRow != Bank::NO_ROW) { 1054 prechargeBank(bank, std::max(bank.preAllowedAt, curTick())); 1055 } 1056 1057 // next we need to account for the delay in activating the 1058 // page 1059 Tick act_tick = std::max(bank.actAllowedAt, curTick()); 1060 1061 // Record the activation and deal with all the global timing 1062 // constraints caused be a new activation (tRRD and tXAW) 1063 activateBank(bank, act_tick, dram_pkt->row); 1064 1065 // issue the command as early as possible 1066 cmd_at = bank.colAllowedAt; 1067 } 1068 1069 // we need to wait until the bus is available before we can issue 1070 // the command 1071 cmd_at = std::max(cmd_at, busBusyUntil - tCL); 1072 1073 // update the packet ready time 1074 dram_pkt->readyTime = cmd_at + tCL + tBURST; 1075 1076 // only one burst can use the bus at any one point in time 1077 assert(dram_pkt->readyTime - busBusyUntil >= tBURST); 1078 1079 // update the time for the next read/write burst for each 1080 // bank (add a max with tCCD/tCCD_L here) 1081 Tick cmd_dly; 1082 for(int j = 0; j < ranksPerChannel; j++) { 1083 for(int i = 0; i < banksPerRank; i++) { 1084 // next burst to same bank group in this rank must not happen 1085 // before tCCD_L. Different bank group timing requirement is 1086 // tBURST; Add tCS for different ranks 1087 if (dram_pkt->rank == j) { 1088 if (bankGroupArch && (bank.bankgr == banks[j][i].bankgr)) { 1089 // bank group architecture requires longer delays between 1090 // RD/WR burst commands to the same bank group. 1091 // Use tCCD_L in this case 1092 cmd_dly = tCCD_L; 1093 } else { 1094 // use tBURST (equivalent to tCCD_S), the shorter 1095 // cas-to-cas delay value, when either: 1096 // 1) bank group architecture is not supportted 1097 // 2) bank is in a different bank group 1098 cmd_dly = tBURST; 1099 } 1100 } else { 1101 // different rank is by default in a different bank group 1102 // use tBURST (equivalent to tCCD_S), which is the shorter 1103 // cas-to-cas delay in this case 1104 // Add tCS to account for rank-to-rank bus delay requirements 1105 cmd_dly = tBURST + tCS; 1106 } 1107 banks[j][i].colAllowedAt = std::max(cmd_at + cmd_dly, 1108 banks[j][i].colAllowedAt); 1109 } 1110 } 1111 1112 // Save rank of current access 1113 activeRank = dram_pkt->rank; 1114 1115 // If this is a write, we also need to respect the write recovery 1116 // time before a precharge, in the case of a read, respect the 1117 // read to precharge constraint 1118 bank.preAllowedAt = std::max(bank.preAllowedAt, 1119 dram_pkt->isRead ? cmd_at + tRTP : 1120 dram_pkt->readyTime + tWR); 1121 1122 // increment the bytes accessed and the accesses per row 1123 bank.bytesAccessed += burstSize; 1124 ++bank.rowAccesses; 1125 1126 // if we reached the max, then issue with an auto-precharge 1127 bool auto_precharge = pageMgmt == Enums::close || 1128 bank.rowAccesses == maxAccessesPerRow; 1129 1130 // if we did not hit the limit, we might still want to 1131 // auto-precharge 1132 if (!auto_precharge && 1133 (pageMgmt == Enums::open_adaptive || 1134 pageMgmt == Enums::close_adaptive)) { 1135 // a twist on the open and close page policies: 1136 // 1) open_adaptive page policy does not blindly keep the 1137 // page open, but close it if there are no row hits, and there 1138 // are bank conflicts in the queue 1139 // 2) close_adaptive page policy does not blindly close the 1140 // page, but closes it only if there are no row hits in the queue. 1141 // In this case, only force an auto precharge when there 1142 // are no same page hits in the queue 1143 bool got_more_hits = false; 1144 bool got_bank_conflict = false; 1145 1146 // either look at the read queue or write queue 1147 const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue : 1148 writeQueue; 1149 auto p = queue.begin(); 1150 // make sure we are not considering the packet that we are 1151 // currently dealing with (which is the head of the queue) 1152 ++p; 1153 1154 // keep on looking until we have found required condition or 1155 // reached the end 1156 while (!(got_more_hits && 1157 (got_bank_conflict || pageMgmt == Enums::close_adaptive)) && 1158 p != queue.end()) { 1159 bool same_rank_bank = (dram_pkt->rank == (*p)->rank) && 1160 (dram_pkt->bank == (*p)->bank); 1161 bool same_row = dram_pkt->row == (*p)->row; 1162 got_more_hits |= same_rank_bank && same_row; 1163 got_bank_conflict |= same_rank_bank && !same_row; 1164 ++p; 1165 } 1166 1167 // auto pre-charge when either 1168 // 1) open_adaptive policy, we have not got any more hits, and 1169 // have a bank conflict 1170 // 2) close_adaptive policy and we have not got any more hits 1171 auto_precharge = !got_more_hits && 1172 (got_bank_conflict || pageMgmt == Enums::close_adaptive); 1173 } 1174 1175 // DRAMPower trace command to be written 1176 std::string mem_cmd = dram_pkt->isRead ? "RD" : "WR"; 1177 1178 // MemCommand required for DRAMPower library 1179 MemCommand::cmds command = (mem_cmd == "RD") ? MemCommand::RD : 1180 MemCommand::WR; 1181 1182 // if this access should use auto-precharge, then we are 1183 // closing the row 1184 if (auto_precharge) { 1185 // if auto-precharge push a PRE command at the correct tick to the 1186 // list used by DRAMPower library to calculate power 1187 prechargeBank(bank, std::max(curTick(), bank.preAllowedAt)); 1188 1189 DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId); 1190 } 1191 1192 // Update bus state 1193 busBusyUntil = dram_pkt->readyTime; 1194 1195 DPRINTF(DRAM, "Access to %lld, ready at %lld bus busy until %lld.\n", 1196 dram_pkt->addr, dram_pkt->readyTime, busBusyUntil); 1197 1198 rankPower[dram_pkt->rank].powerlib.doCommand(command, dram_pkt->bank, 1199 divCeil(cmd_at, tCK) - 1200 timeStampOffset); 1201 1202 DPRINTF(DRAMPower, "%llu,%s,%d,%d\n", divCeil(cmd_at, tCK) - 1203 timeStampOffset, mem_cmd, dram_pkt->bank, dram_pkt->rank); 1204 1205 // Update the minimum timing between the requests, this is a 1206 // conservative estimate of when we have to schedule the next 1207 // request to not introduce any unecessary bubbles. In most cases 1208 // we will wake up sooner than we have to. 1209 nextReqTime = busBusyUntil - (tRP + tRCD + tCL); 1210 1211 // Update the stats and schedule the next request 1212 if (dram_pkt->isRead) { 1213 ++readsThisTime; 1214 if (row_hit) 1215 readRowHits++; 1216 bytesReadDRAM += burstSize; 1217 perBankRdBursts[dram_pkt->bankId]++; 1218 1219 // Update latency stats 1220 totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime; 1221 totBusLat += tBURST; 1222 totQLat += cmd_at - dram_pkt->entryTime; 1223 } else { 1224 ++writesThisTime; 1225 if (row_hit) 1226 writeRowHits++; 1227 bytesWritten += burstSize; 1228 perBankWrBursts[dram_pkt->bankId]++; 1229 } 1230} 1231 1232void 1233DRAMCtrl::processNextReqEvent() 1234{ 1235 // pre-emptively set to false. Overwrite if in READ_TO_WRITE 1236 // or WRITE_TO_READ state 1237 bool switched_cmd_type = false; 1238 if (busState == READ_TO_WRITE) { 1239 DPRINTF(DRAM, "Switching to writes after %d reads with %d reads " 1240 "waiting\n", readsThisTime, readQueue.size()); 1241 1242 // sample and reset the read-related stats as we are now 1243 // transitioning to writes, and all reads are done 1244 rdPerTurnAround.sample(readsThisTime); 1245 readsThisTime = 0; 1246 1247 // now proceed to do the actual writes 1248 busState = WRITE; 1249 switched_cmd_type = true; 1250 } else if (busState == WRITE_TO_READ) { 1251 DPRINTF(DRAM, "Switching to reads after %d writes with %d writes " 1252 "waiting\n", writesThisTime, writeQueue.size()); 1253 1254 wrPerTurnAround.sample(writesThisTime); 1255 writesThisTime = 0; 1256 1257 busState = READ; 1258 switched_cmd_type = true; 1259 } 1260 1261 if (refreshState != REF_IDLE) { 1262 // if a refresh waiting for this event loop to finish, then hand 1263 // over now, and do not schedule a new nextReqEvent 1264 if (refreshState == REF_DRAIN) { 1265 DPRINTF(DRAM, "Refresh drain done, now precharging\n"); 1266 1267 refreshState = REF_PRE; 1268 1269 // hand control back to the refresh event loop 1270 schedule(refreshEvent, curTick()); 1271 } 1272 1273 // let the refresh finish before issuing any further requests 1274 return; 1275 } 1276 1277 // when we get here it is either a read or a write 1278 if (busState == READ) { 1279 1280 // track if we should switch or not 1281 bool switch_to_writes = false; 1282 1283 if (readQueue.empty()) { 1284 // In the case there is no read request to go next, 1285 // trigger writes if we have passed the low threshold (or 1286 // if we are draining) 1287 if (!writeQueue.empty() && 1288 (drainManager || writeQueue.size() > writeLowThreshold)) { 1289 1290 switch_to_writes = true; 1291 } else { 1292 // check if we are drained 1293 if (respQueue.empty () && drainManager) { 1294 DPRINTF(Drain, "DRAM controller done draining\n"); 1295 drainManager->signalDrainDone(); 1296 drainManager = NULL; 1297 } 1298 1299 // nothing to do, not even any point in scheduling an 1300 // event for the next request 1301 return; 1302 } 1303 } else { 1304 // Figure out which read request goes next, and move it to the 1305 // front of the read queue 1306 chooseNext(readQueue, switched_cmd_type); 1307 1308 DRAMPacket* dram_pkt = readQueue.front(); 1309 1310 // here we get a bit creative and shift the bus busy time not 1311 // just the tWTR, but also a CAS latency to capture the fact 1312 // that we are allowed to prepare a new bank, but not issue a 1313 // read command until after tWTR, in essence we capture a 1314 // bubble on the data bus that is tWTR + tCL 1315 if (switched_cmd_type && dram_pkt->rank == activeRank) { 1316 busBusyUntil += tWTR + tCL; 1317 } 1318 1319 doDRAMAccess(dram_pkt); 1320 1321 // At this point we're done dealing with the request 1322 readQueue.pop_front(); 1323 1324 // sanity check 1325 assert(dram_pkt->size <= burstSize); 1326 assert(dram_pkt->readyTime >= curTick()); 1327 1328 // Insert into response queue. It will be sent back to the 1329 // requestor at its readyTime 1330 if (respQueue.empty()) { 1331 assert(!respondEvent.scheduled()); 1332 schedule(respondEvent, dram_pkt->readyTime); 1333 } else { 1334 assert(respQueue.back()->readyTime <= dram_pkt->readyTime); 1335 assert(respondEvent.scheduled()); 1336 } 1337 1338 respQueue.push_back(dram_pkt); 1339 1340 // we have so many writes that we have to transition 1341 if (writeQueue.size() > writeHighThreshold) { 1342 switch_to_writes = true; 1343 } 1344 } 1345 1346 // switching to writes, either because the read queue is empty 1347 // and the writes have passed the low threshold (or we are 1348 // draining), or because the writes hit the hight threshold 1349 if (switch_to_writes) { 1350 // transition to writing 1351 busState = READ_TO_WRITE; 1352 } 1353 } else { 1354 chooseNext(writeQueue, switched_cmd_type); 1355 DRAMPacket* dram_pkt = writeQueue.front(); 1356 // sanity check 1357 assert(dram_pkt->size <= burstSize); 1358 1359 // add a bubble to the data bus, as defined by the 1360 // tRTW when access is to the same rank as previous burst 1361 // Different rank timing is handled with tCS, which is 1362 // applied to colAllowedAt 1363 if (switched_cmd_type && dram_pkt->rank == activeRank) { 1364 busBusyUntil += tRTW; 1365 } 1366 1367 doDRAMAccess(dram_pkt); 1368 1369 writeQueue.pop_front(); 1370 delete dram_pkt; 1371 1372 // If we emptied the write queue, or got sufficiently below the 1373 // threshold (using the minWritesPerSwitch as the hysteresis) and 1374 // are not draining, or we have reads waiting and have done enough 1375 // writes, then switch to reads. 1376 if (writeQueue.empty() || 1377 (writeQueue.size() + minWritesPerSwitch < writeLowThreshold && 1378 !drainManager) || 1379 (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) { 1380 // turn the bus back around for reads again 1381 busState = WRITE_TO_READ; 1382 1383 // note that the we switch back to reads also in the idle 1384 // case, which eventually will check for any draining and 1385 // also pause any further scheduling if there is really 1386 // nothing to do 1387 } 1388 } 1389 1390 schedule(nextReqEvent, std::max(nextReqTime, curTick())); 1391 1392 // If there is space available and we have writes waiting then let 1393 // them retry. This is done here to ensure that the retry does not 1394 // cause a nextReqEvent to be scheduled before we do so as part of 1395 // the next request processing 1396 if (retryWrReq && writeQueue.size() < writeBufferSize) { 1397 retryWrReq = false; 1398 port.sendRetry(); 1399 } 1400} 1401 1402uint64_t 1403DRAMCtrl::minBankPrep(const deque<DRAMPacket*>& queue, 1404 bool switched_cmd_type) const 1405{ 1406 uint64_t bank_mask = 0; 1407 Tick min_act_at = MaxTick; 1408 1409 uint64_t bank_mask_same_rank = 0; 1410 Tick min_act_at_same_rank = MaxTick; 1411 1412 // Give precedence to commands that access same rank as previous command 1413 bool same_rank_match = false; 1414 1415 // determine if we have queued transactions targetting the 1416 // bank in question 1417 vector<bool> got_waiting(ranksPerChannel * banksPerRank, false); 1418 for (auto p = queue.begin(); p != queue.end(); ++p) { 1419 got_waiting[(*p)->bankId] = true; 1420 } 1421 1422 for (int i = 0; i < ranksPerChannel; i++) { 1423 for (int j = 0; j < banksPerRank; j++) { 1424 uint8_t bank_id = i * banksPerRank + j; 1425 1426 // if we have waiting requests for the bank, and it is 1427 // amongst the first available, update the mask 1428 if (got_waiting[bank_id]) { 1429 // simplistic approximation of when the bank can issue 1430 // an activate, ignoring any rank-to-rank switching 1431 // cost in this calculation 1432 Tick act_at = banks[i][j].openRow == Bank::NO_ROW ? 1433 banks[i][j].actAllowedAt : 1434 std::max(banks[i][j].preAllowedAt, curTick()) + tRP; 1435 1436 // prioritize commands that access the 1437 // same rank as previous burst 1438 // Calculate bank mask separately for the case and 1439 // evaluate after loop iterations complete 1440 if (i == activeRank && ranksPerChannel > 1) { 1441 if (act_at <= min_act_at_same_rank) { 1442 // reset same rank bank mask if new minimum is found 1443 // and previous minimum could not immediately send ACT 1444 if (act_at < min_act_at_same_rank && 1445 min_act_at_same_rank > curTick()) 1446 bank_mask_same_rank = 0; 1447 1448 // Set flag indicating that a same rank 1449 // opportunity was found 1450 same_rank_match = true; 1451 1452 // set the bit corresponding to the available bank 1453 replaceBits(bank_mask_same_rank, bank_id, bank_id, 1); 1454 min_act_at_same_rank = act_at; 1455 } 1456 } else { 1457 if (act_at <= min_act_at) { 1458 // reset bank mask if new minimum is found 1459 // and either previous minimum could not immediately send ACT 1460 if (act_at < min_act_at && min_act_at > curTick()) 1461 bank_mask = 0; 1462 // set the bit corresponding to the available bank 1463 replaceBits(bank_mask, bank_id, bank_id, 1); 1464 min_act_at = act_at; 1465 } 1466 } 1467 } 1468 } 1469 } 1470 1471 // Determine the earliest time when the next burst can issue based 1472 // on the current busBusyUntil delay. 1473 // Offset by tRCD to correlate with ACT timing variables 1474 Tick min_cmd_at = busBusyUntil - tCL - tRCD; 1475 1476 // Prioritize same rank accesses that can issue B2B 1477 // Only optimize for same ranks when the command type 1478 // does not change; do not want to unnecessarily incur tWTR 1479 // 1480 // Resulting FCFS prioritization Order is: 1481 // 1) Commands that access the same rank as previous burst 1482 // and can prep the bank seamlessly. 1483 // 2) Commands (any rank) with earliest bank prep 1484 if (!switched_cmd_type && same_rank_match && 1485 min_act_at_same_rank <= min_cmd_at) { 1486 bank_mask = bank_mask_same_rank; 1487 } 1488 1489 return bank_mask; 1490} 1491 1492void 1493DRAMCtrl::processRefreshEvent() 1494{ 1495 // when first preparing the refresh, remember when it was due 1496 if (refreshState == REF_IDLE) { 1497 // remember when the refresh is due 1498 refreshDueAt = curTick(); 1499 1500 // proceed to drain 1501 refreshState = REF_DRAIN; 1502 1503 DPRINTF(DRAM, "Refresh due\n"); 1504 } 1505 1506 // let any scheduled read or write go ahead, after which it will 1507 // hand control back to this event loop 1508 if (refreshState == REF_DRAIN) { 1509 if (nextReqEvent.scheduled()) { 1510 // hand control over to the request loop until it is 1511 // evaluated next 1512 DPRINTF(DRAM, "Refresh awaiting draining\n"); 1513 1514 return; 1515 } else { 1516 refreshState = REF_PRE; 1517 } 1518 } 1519 1520 // at this point, ensure that all banks are precharged 1521 if (refreshState == REF_PRE) { 1522 // precharge any active bank if we are not already in the idle 1523 // state 1524 if (pwrState != PWR_IDLE) { 1525 // at the moment, we use a precharge all even if there is 1526 // only a single bank open 1527 DPRINTF(DRAM, "Precharging all\n"); 1528 1529 // first determine when we can precharge 1530 Tick pre_at = curTick(); 1531 for (int i = 0; i < ranksPerChannel; i++) { 1532 for (int j = 0; j < banksPerRank; j++) { 1533 // respect both causality and any existing bank 1534 // constraints, some banks could already have a 1535 // (auto) precharge scheduled 1536 pre_at = std::max(banks[i][j].preAllowedAt, pre_at); 1537 } 1538 } 1539 1540 // make sure all banks are precharged, and for those that 1541 // already are, update their availability 1542 Tick act_allowed_at = pre_at + tRP; 1543 1544 for (int i = 0; i < ranksPerChannel; i++) { 1545 for (int j = 0; j < banksPerRank; j++) { 1546 if (banks[i][j].openRow != Bank::NO_ROW) { 1547 prechargeBank(banks[i][j], pre_at, false); 1548 } else { 1549 banks[i][j].actAllowedAt = 1550 std::max(banks[i][j].actAllowedAt, act_allowed_at); 1551 banks[i][j].preAllowedAt = 1552 std::max(banks[i][j].preAllowedAt, pre_at); 1553 } 1554 } 1555 1556 // at the moment this affects all ranks 1557 rankPower[i].powerlib.doCommand(MemCommand::PREA, 0, 1558 divCeil(pre_at, tCK) - 1559 timeStampOffset); 1560 1561 DPRINTF(DRAMPower, "%llu,PREA,0,%d\n", divCeil(pre_at, tCK) - 1562 timeStampOffset, i); 1563 } 1564 } else { 1565 DPRINTF(DRAM, "All banks already precharged, starting refresh\n"); 1566 1567 // go ahead and kick the power state machine into gear if 1568 // we are already idle 1569 schedulePowerEvent(PWR_REF, curTick()); 1570 } 1571 1572 refreshState = REF_RUN; 1573 assert(numBanksActive == 0); 1574 1575 // wait for all banks to be precharged, at which point the 1576 // power state machine will transition to the idle state, and 1577 // automatically move to a refresh, at that point it will also 1578 // call this method to get the refresh event loop going again 1579 return; 1580 } 1581 1582 // last but not least we perform the actual refresh 1583 if (refreshState == REF_RUN) { 1584 // should never get here with any banks active 1585 assert(numBanksActive == 0); 1586 assert(pwrState == PWR_REF); 1587 1588 Tick ref_done_at = curTick() + tRFC; 1589 1590 for (int i = 0; i < ranksPerChannel; i++) { 1591 for (int j = 0; j < banksPerRank; j++) { 1592 banks[i][j].actAllowedAt = ref_done_at; 1593 } 1594 1595 // at the moment this affects all ranks 1596 rankPower[i].powerlib.doCommand(MemCommand::REF, 0, 1597 divCeil(curTick(), tCK) - 1598 timeStampOffset); 1599 1600 // at the moment sort the list of commands and update the counters 1601 // for DRAMPower libray when doing a refresh 1602 sort(rankPower[i].powerlib.cmdList.begin(), 1603 rankPower[i].powerlib.cmdList.end(), DRAMCtrl::sortTime); 1604 1605 // update the counters for DRAMPower, passing false to 1606 // indicate that this is not the last command in the 1607 // list. DRAMPower requires this information for the 1608 // correct calculation of the background energy at the end 1609 // of the simulation. Ideally we would want to call this 1610 // function with true once at the end of the 1611 // simulation. However, the discarded energy is extremly 1612 // small and does not effect the final results. 1613 rankPower[i].powerlib.updateCounters(false); 1614 1615 // call the energy function 1616 rankPower[i].powerlib.calcEnergy(); 1617 1618 // Update the stats 1619 updatePowerStats(i); 1620 1621 DPRINTF(DRAMPower, "%llu,REF,0,%d\n", divCeil(curTick(), tCK) - 1622 timeStampOffset, i); 1623 } 1624 1625 // make sure we did not wait so long that we cannot make up 1626 // for it 1627 if (refreshDueAt + tREFI < ref_done_at) { 1628 fatal("Refresh was delayed so long we cannot catch up\n"); 1629 } 1630 1631 // compensate for the delay in actually performing the refresh 1632 // when scheduling the next one 1633 schedule(refreshEvent, refreshDueAt + tREFI - tRP); 1634 1635 assert(!powerEvent.scheduled()); 1636 1637 // move to the idle power state once the refresh is done, this 1638 // will also move the refresh state machine to the refresh 1639 // idle state 1640 schedulePowerEvent(PWR_IDLE, ref_done_at); 1641 1642 DPRINTF(DRAMState, "Refresh done at %llu and next refresh at %llu\n", 1643 ref_done_at, refreshDueAt + tREFI); 1644 } 1645} 1646 1647void 1648DRAMCtrl::schedulePowerEvent(PowerState pwr_state, Tick tick) 1649{ 1650 // respect causality 1651 assert(tick >= curTick()); 1652 1653 if (!powerEvent.scheduled()) { 1654 DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n", 1655 tick, pwr_state); 1656 1657 // insert the new transition 1658 pwrStateTrans = pwr_state; 1659 1660 schedule(powerEvent, tick); 1661 } else { 1662 panic("Scheduled power event at %llu to state %d, " 1663 "with scheduled event at %llu to %d\n", tick, pwr_state, 1664 powerEvent.when(), pwrStateTrans); 1665 } 1666} 1667 1668void 1669DRAMCtrl::processPowerEvent() 1670{ 1671 // remember where we were, and for how long 1672 Tick duration = curTick() - pwrStateTick; 1673 PowerState prev_state = pwrState; 1674 1675 // update the accounting 1676 pwrStateTime[prev_state] += duration; 1677 1678 pwrState = pwrStateTrans; 1679 pwrStateTick = curTick(); 1680 1681 if (pwrState == PWR_IDLE) { 1682 DPRINTF(DRAMState, "All banks precharged\n"); 1683 1684 // if we were refreshing, make sure we start scheduling requests again 1685 if (prev_state == PWR_REF) { 1686 DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration); 1687 assert(pwrState == PWR_IDLE); 1688 1689 // kick things into action again 1690 refreshState = REF_IDLE; 1691 assert(!nextReqEvent.scheduled()); 1692 schedule(nextReqEvent, curTick()); 1693 } else { 1694 assert(prev_state == PWR_ACT); 1695 1696 // if we have a pending refresh, and are now moving to 1697 // the idle state, direclty transition to a refresh 1698 if (refreshState == REF_RUN) { 1699 // there should be nothing waiting at this point 1700 assert(!powerEvent.scheduled()); 1701 1702 // update the state in zero time and proceed below 1703 pwrState = PWR_REF; 1704 } 1705 } 1706 } 1707 1708 // we transition to the refresh state, let the refresh state 1709 // machine know of this state update and let it deal with the 1710 // scheduling of the next power state transition as well as the 1711 // following refresh 1712 if (pwrState == PWR_REF) { 1713 DPRINTF(DRAMState, "Refreshing\n"); 1714 // kick the refresh event loop into action again, and that 1715 // in turn will schedule a transition to the idle power 1716 // state once the refresh is done 1717 assert(refreshState == REF_RUN); 1718 processRefreshEvent(); 1719 } 1720} 1721 1722void 1723DRAMCtrl::updatePowerStats(uint8_t rank) 1724{ 1725 // Get the energy and power from DRAMPower 1726 Data::MemoryPowerModel::Energy energy = 1727 rankPower[rank].powerlib.getEnergy(); 1728 Data::MemoryPowerModel::Power power = 1729 rankPower[rank].powerlib.getPower(); 1730 1731 actEnergy[rank] = energy.act_energy * devicesPerRank; 1732 preEnergy[rank] = energy.pre_energy * devicesPerRank; 1733 readEnergy[rank] = energy.read_energy * devicesPerRank; 1734 writeEnergy[rank] = energy.write_energy * devicesPerRank; 1735 refreshEnergy[rank] = energy.ref_energy * devicesPerRank; 1736 actBackEnergy[rank] = energy.act_stdby_energy * devicesPerRank; 1737 preBackEnergy[rank] = energy.pre_stdby_energy * devicesPerRank; 1738 totalEnergy[rank] = energy.total_energy * devicesPerRank; 1739 averagePower[rank] = power.average_power * devicesPerRank; 1740} 1741 1742void 1743DRAMCtrl::regStats() 1744{ 1745 using namespace Stats; 1746 1747 AbstractMemory::regStats(); 1748 1749 readReqs 1750 .name(name() + ".readReqs") 1751 .desc("Number of read requests accepted"); 1752 1753 writeReqs 1754 .name(name() + ".writeReqs") 1755 .desc("Number of write requests accepted"); 1756 1757 readBursts 1758 .name(name() + ".readBursts") 1759 .desc("Number of DRAM read bursts, " 1760 "including those serviced by the write queue"); 1761 1762 writeBursts 1763 .name(name() + ".writeBursts") 1764 .desc("Number of DRAM write bursts, " 1765 "including those merged in the write queue"); 1766 1767 servicedByWrQ 1768 .name(name() + ".servicedByWrQ") 1769 .desc("Number of DRAM read bursts serviced by the write queue"); 1770 1771 mergedWrBursts 1772 .name(name() + ".mergedWrBursts") 1773 .desc("Number of DRAM write bursts merged with an existing one"); 1774 1775 neitherReadNorWrite 1776 .name(name() + ".neitherReadNorWriteReqs") 1777 .desc("Number of requests that are neither read nor write"); 1778 1779 perBankRdBursts 1780 .init(banksPerRank * ranksPerChannel) 1781 .name(name() + ".perBankRdBursts") 1782 .desc("Per bank write bursts"); 1783 1784 perBankWrBursts 1785 .init(banksPerRank * ranksPerChannel) 1786 .name(name() + ".perBankWrBursts") 1787 .desc("Per bank write bursts"); 1788 1789 avgRdQLen 1790 .name(name() + ".avgRdQLen") 1791 .desc("Average read queue length when enqueuing") 1792 .precision(2); 1793 1794 avgWrQLen 1795 .name(name() + ".avgWrQLen") 1796 .desc("Average write queue length when enqueuing") 1797 .precision(2); 1798 1799 totQLat 1800 .name(name() + ".totQLat") 1801 .desc("Total ticks spent queuing"); 1802 1803 totBusLat 1804 .name(name() + ".totBusLat") 1805 .desc("Total ticks spent in databus transfers"); 1806 1807 totMemAccLat 1808 .name(name() + ".totMemAccLat") 1809 .desc("Total ticks spent from burst creation until serviced " 1810 "by the DRAM"); 1811 1812 avgQLat 1813 .name(name() + ".avgQLat") 1814 .desc("Average queueing delay per DRAM burst") 1815 .precision(2); 1816 1817 avgQLat = totQLat / (readBursts - servicedByWrQ); 1818 1819 avgBusLat 1820 .name(name() + ".avgBusLat") 1821 .desc("Average bus latency per DRAM burst") 1822 .precision(2); 1823 1824 avgBusLat = totBusLat / (readBursts - servicedByWrQ); 1825 1826 avgMemAccLat 1827 .name(name() + ".avgMemAccLat") 1828 .desc("Average memory access latency per DRAM burst") 1829 .precision(2); 1830 1831 avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ); 1832 1833 numRdRetry 1834 .name(name() + ".numRdRetry") 1835 .desc("Number of times read queue was full causing retry"); 1836 1837 numWrRetry 1838 .name(name() + ".numWrRetry") 1839 .desc("Number of times write queue was full causing retry"); 1840 1841 readRowHits 1842 .name(name() + ".readRowHits") 1843 .desc("Number of row buffer hits during reads"); 1844 1845 writeRowHits 1846 .name(name() + ".writeRowHits") 1847 .desc("Number of row buffer hits during writes"); 1848 1849 readRowHitRate 1850 .name(name() + ".readRowHitRate") 1851 .desc("Row buffer hit rate for reads") 1852 .precision(2); 1853 1854 readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100; 1855 1856 writeRowHitRate 1857 .name(name() + ".writeRowHitRate") 1858 .desc("Row buffer hit rate for writes") 1859 .precision(2); 1860 1861 writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100; 1862 1863 readPktSize 1864 .init(ceilLog2(burstSize) + 1) 1865 .name(name() + ".readPktSize") 1866 .desc("Read request sizes (log2)"); 1867 1868 writePktSize 1869 .init(ceilLog2(burstSize) + 1) 1870 .name(name() + ".writePktSize") 1871 .desc("Write request sizes (log2)"); 1872 1873 rdQLenPdf 1874 .init(readBufferSize) 1875 .name(name() + ".rdQLenPdf") 1876 .desc("What read queue length does an incoming req see"); 1877 1878 wrQLenPdf 1879 .init(writeBufferSize) 1880 .name(name() + ".wrQLenPdf") 1881 .desc("What write queue length does an incoming req see"); 1882 1883 bytesPerActivate 1884 .init(maxAccessesPerRow) 1885 .name(name() + ".bytesPerActivate") 1886 .desc("Bytes accessed per row activation") 1887 .flags(nozero); 1888 1889 rdPerTurnAround 1890 .init(readBufferSize) 1891 .name(name() + ".rdPerTurnAround") 1892 .desc("Reads before turning the bus around for writes") 1893 .flags(nozero); 1894 1895 wrPerTurnAround 1896 .init(writeBufferSize) 1897 .name(name() + ".wrPerTurnAround") 1898 .desc("Writes before turning the bus around for reads") 1899 .flags(nozero); 1900 1901 bytesReadDRAM 1902 .name(name() + ".bytesReadDRAM") 1903 .desc("Total number of bytes read from DRAM"); 1904 1905 bytesReadWrQ 1906 .name(name() + ".bytesReadWrQ") 1907 .desc("Total number of bytes read from write queue"); 1908 1909 bytesWritten 1910 .name(name() + ".bytesWritten") 1911 .desc("Total number of bytes written to DRAM"); 1912 1913 bytesReadSys 1914 .name(name() + ".bytesReadSys") 1915 .desc("Total read bytes from the system interface side"); 1916 1917 bytesWrittenSys 1918 .name(name() + ".bytesWrittenSys") 1919 .desc("Total written bytes from the system interface side"); 1920 1921 avgRdBW 1922 .name(name() + ".avgRdBW") 1923 .desc("Average DRAM read bandwidth in MiByte/s") 1924 .precision(2); 1925 1926 avgRdBW = (bytesReadDRAM / 1000000) / simSeconds; 1927 1928 avgWrBW 1929 .name(name() + ".avgWrBW") 1930 .desc("Average achieved write bandwidth in MiByte/s") 1931 .precision(2); 1932 1933 avgWrBW = (bytesWritten / 1000000) / simSeconds; 1934 1935 avgRdBWSys 1936 .name(name() + ".avgRdBWSys") 1937 .desc("Average system read bandwidth in MiByte/s") 1938 .precision(2); 1939 1940 avgRdBWSys = (bytesReadSys / 1000000) / simSeconds; 1941 1942 avgWrBWSys 1943 .name(name() + ".avgWrBWSys") 1944 .desc("Average system write bandwidth in MiByte/s") 1945 .precision(2); 1946 1947 avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds; 1948 1949 peakBW 1950 .name(name() + ".peakBW") 1951 .desc("Theoretical peak bandwidth in MiByte/s") 1952 .precision(2); 1953 1954 peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000; 1955 1956 busUtil 1957 .name(name() + ".busUtil") 1958 .desc("Data bus utilization in percentage") 1959 .precision(2); 1960 1961 busUtil = (avgRdBW + avgWrBW) / peakBW * 100; 1962 1963 totGap 1964 .name(name() + ".totGap") 1965 .desc("Total gap between requests"); 1966 1967 avgGap 1968 .name(name() + ".avgGap") 1969 .desc("Average gap between requests") 1970 .precision(2); 1971 1972 avgGap = totGap / (readReqs + writeReqs); 1973 1974 // Stats for DRAM Power calculation based on Micron datasheet 1975 busUtilRead 1976 .name(name() + ".busUtilRead") 1977 .desc("Data bus utilization in percentage for reads") 1978 .precision(2); 1979 1980 busUtilRead = avgRdBW / peakBW * 100; 1981 1982 busUtilWrite 1983 .name(name() + ".busUtilWrite") 1984 .desc("Data bus utilization in percentage for writes") 1985 .precision(2); 1986 1987 busUtilWrite = avgWrBW / peakBW * 100; 1988 1989 pageHitRate 1990 .name(name() + ".pageHitRate") 1991 .desc("Row buffer hit rate, read and write combined") 1992 .precision(2); 1993 1994 pageHitRate = (writeRowHits + readRowHits) / 1995 (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100; 1996 1997 pwrStateTime 1998 .init(5) 1999 .name(name() + ".memoryStateTime") 2000 .desc("Time in different power states"); 2001 pwrStateTime.subname(0, "IDLE"); 2002 pwrStateTime.subname(1, "REF"); 2003 pwrStateTime.subname(2, "PRE_PDN"); 2004 pwrStateTime.subname(3, "ACT"); 2005 pwrStateTime.subname(4, "ACT_PDN"); 2006 2007 actEnergy 2008 .init(ranksPerChannel) 2009 .name(name() + ".actEnergy") 2010 .desc("Energy for activate commands per rank (pJ)"); 2011 2012 preEnergy 2013 .init(ranksPerChannel) 2014 .name(name() + ".preEnergy") 2015 .desc("Energy for precharge commands per rank (pJ)"); 2016 2017 readEnergy 2018 .init(ranksPerChannel) 2019 .name(name() + ".readEnergy") 2020 .desc("Energy for read commands per rank (pJ)"); 2021 2022 writeEnergy 2023 .init(ranksPerChannel) 2024 .name(name() + ".writeEnergy") 2025 .desc("Energy for write commands per rank (pJ)"); 2026 2027 refreshEnergy 2028 .init(ranksPerChannel) 2029 .name(name() + ".refreshEnergy") 2030 .desc("Energy for refresh commands per rank (pJ)"); 2031 2032 actBackEnergy 2033 .init(ranksPerChannel) 2034 .name(name() + ".actBackEnergy") 2035 .desc("Energy for active background per rank (pJ)"); 2036 2037 preBackEnergy 2038 .init(ranksPerChannel) 2039 .name(name() + ".preBackEnergy") 2040 .desc("Energy for precharge background per rank (pJ)"); 2041 2042 totalEnergy 2043 .init(ranksPerChannel) 2044 .name(name() + ".totalEnergy") 2045 .desc("Total energy per rank (pJ)"); 2046 2047 averagePower 2048 .init(ranksPerChannel) 2049 .name(name() + ".averagePower") 2050 .desc("Core power per rank (mW)"); 2051} 2052 2053void 2054DRAMCtrl::recvFunctional(PacketPtr pkt) 2055{ 2056 // rely on the abstract memory 2057 functionalAccess(pkt); 2058} 2059 2060BaseSlavePort& 2061DRAMCtrl::getSlavePort(const string &if_name, PortID idx) 2062{ 2063 if (if_name != "port") { 2064 return MemObject::getSlavePort(if_name, idx); 2065 } else { 2066 return port; 2067 } 2068} 2069 2070unsigned int 2071DRAMCtrl::drain(DrainManager *dm) 2072{ 2073 unsigned int count = port.drain(dm); 2074 2075 // if there is anything in any of our internal queues, keep track 2076 // of that as well 2077 if (!(writeQueue.empty() && readQueue.empty() && 2078 respQueue.empty())) { 2079 DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d," 2080 " resp: %d\n", writeQueue.size(), readQueue.size(), 2081 respQueue.size()); 2082 ++count; 2083 drainManager = dm; 2084 2085 // the only part that is not drained automatically over time 2086 // is the write queue, thus kick things into action if needed 2087 if (!writeQueue.empty() && !nextReqEvent.scheduled()) { 2088 schedule(nextReqEvent, curTick()); 2089 } 2090 } 2091 2092 if (count) 2093 setDrainState(Drainable::Draining); 2094 else 2095 setDrainState(Drainable::Drained); 2096 return count; 2097} 2098 2099DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory) 2100 : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this), 2101 memory(_memory) 2102{ } 2103 2104AddrRangeList 2105DRAMCtrl::MemoryPort::getAddrRanges() const 2106{ 2107 AddrRangeList ranges; 2108 ranges.push_back(memory.getAddrRange()); 2109 return ranges; 2110} 2111 2112void 2113DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt) 2114{ 2115 pkt->pushLabel(memory.name()); 2116 2117 if (!queue.checkFunctional(pkt)) { 2118 // Default implementation of SimpleTimingPort::recvFunctional() 2119 // calls recvAtomic() and throws away the latency; we can save a 2120 // little here by just not calculating the latency. 2121 memory.recvFunctional(pkt); 2122 } 2123 2124 pkt->popLabel(); 2125} 2126 2127Tick 2128DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt) 2129{ 2130 return memory.recvAtomic(pkt); 2131} 2132 2133bool 2134DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt) 2135{ 2136 // pass it to the memory controller 2137 return memory.recvTimingReq(pkt); 2138} 2139 2140DRAMCtrl* 2141DRAMCtrlParams::create() 2142{ 2143 return new DRAMCtrl(this); 2144} 2145