dram_ctrl.cc revision 10492:59f9f18aae0c
1/* 2 * Copyright (c) 2010-2014 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2013 Amin Farmahini-Farahani 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Andreas Hansson 41 * Ani Udipi 42 * Neha Agarwal 43 */ 44 45#include "base/bitfield.hh" 46#include "base/trace.hh" 47#include "debug/DRAM.hh" 48#include "debug/DRAMPower.hh" 49#include "debug/DRAMState.hh" 50#include "debug/Drain.hh" 51#include "mem/dram_ctrl.hh" 52#include "sim/system.hh" 53 54using namespace std; 55using namespace Data; 56 57DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) : 58 AbstractMemory(p), 59 port(name() + ".port", *this), 60 retryRdReq(false), retryWrReq(false), 61 busState(READ), 62 nextReqEvent(this), respondEvent(this), activateEvent(this), 63 prechargeEvent(this), refreshEvent(this), powerEvent(this), 64 drainManager(NULL), 65 deviceSize(p->device_size), 66 deviceBusWidth(p->device_bus_width), burstLength(p->burst_length), 67 deviceRowBufferSize(p->device_rowbuffer_size), 68 devicesPerRank(p->devices_per_rank), 69 burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8), 70 rowBufferSize(devicesPerRank * deviceRowBufferSize), 71 columnsPerRowBuffer(rowBufferSize / burstSize), 72 columnsPerStripe(range.granularity() / burstSize), 73 ranksPerChannel(p->ranks_per_channel), 74 bankGroupsPerRank(p->bank_groups_per_rank), 75 bankGroupArch(p->bank_groups_per_rank > 0), 76 banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0), 77 readBufferSize(p->read_buffer_size), 78 writeBufferSize(p->write_buffer_size), 79 writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0), 80 writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0), 81 minWritesPerSwitch(p->min_writes_per_switch), 82 writesThisTime(0), readsThisTime(0), 83 tCK(p->tCK), tWTR(p->tWTR), tRTW(p->tRTW), tCS(p->tCS), tBURST(p->tBURST), 84 tCCD_L(p->tCCD_L), tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS), 85 tWR(p->tWR), tRTP(p->tRTP), tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD), 86 tRRD_L(p->tRRD_L), tXAW(p->tXAW), activationLimit(p->activation_limit), 87 memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping), 88 pageMgmt(p->page_policy), 89 maxAccessesPerRow(p->max_accesses_per_row), 90 frontendLatency(p->static_frontend_latency), 91 backendLatency(p->static_backend_latency), 92 busBusyUntil(0), refreshDueAt(0), refreshState(REF_IDLE), 93 pwrStateTrans(PWR_IDLE), pwrState(PWR_IDLE), prevArrival(0), 94 nextReqTime(0), pwrStateTick(0), numBanksActive(0), 95 activeRank(0), timeStampOffset(0) 96{ 97 // create the bank states based on the dimensions of the ranks and 98 // banks 99 banks.resize(ranksPerChannel); 100 101 //create list of drampower objects. For each rank 1 drampower instance. 102 for (int i = 0; i < ranksPerChannel; i++) { 103 DRAMPower drampower = DRAMPower(p, false); 104 rankPower.emplace_back(drampower); 105 } 106 107 actTicks.resize(ranksPerChannel); 108 for (size_t c = 0; c < ranksPerChannel; ++c) { 109 banks[c].resize(banksPerRank); 110 actTicks[c].resize(activationLimit, 0); 111 } 112 113 // set the bank indices 114 for (int r = 0; r < ranksPerChannel; r++) { 115 for (int b = 0; b < banksPerRank; b++) { 116 banks[r][b].rank = r; 117 banks[r][b].bank = b; 118 if (bankGroupArch) { 119 // Simply assign lower bits to bank group in order to 120 // rotate across bank groups as banks are incremented 121 // e.g. with 4 banks per bank group and 16 banks total: 122 // banks 0,4,8,12 are in bank group 0 123 // banks 1,5,9,13 are in bank group 1 124 // banks 2,6,10,14 are in bank group 2 125 // banks 3,7,11,15 are in bank group 3 126 banks[r][b].bankgr = b % bankGroupsPerRank; 127 } else { 128 // No bank groups; simply assign to bank number 129 banks[r][b].bankgr = b; 130 } 131 } 132 } 133 134 // perform a basic check of the write thresholds 135 if (p->write_low_thresh_perc >= p->write_high_thresh_perc) 136 fatal("Write buffer low threshold %d must be smaller than the " 137 "high threshold %d\n", p->write_low_thresh_perc, 138 p->write_high_thresh_perc); 139 140 // determine the rows per bank by looking at the total capacity 141 uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size()); 142 143 // determine the dram actual capacity from the DRAM config in Mbytes 144 uint64_t deviceCapacity = deviceSize / (1024 * 1024) * devicesPerRank * 145 ranksPerChannel; 146 147 // if actual DRAM size does not match memory capacity in system warn! 148 if (deviceCapacity != capacity / (1024 * 1024)) 149 warn("DRAM device capacity (%d Mbytes) does not match the " 150 "address range assigned (%d Mbytes)\n", deviceCapacity, 151 capacity / (1024 * 1024)); 152 153 DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity, 154 AbstractMemory::size()); 155 156 DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n", 157 rowBufferSize, columnsPerRowBuffer); 158 159 rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel); 160 161 // a bit of sanity checks on the interleaving 162 if (range.interleaved()) { 163 if (channels != range.stripes()) 164 fatal("%s has %d interleaved address stripes but %d channel(s)\n", 165 name(), range.stripes(), channels); 166 167 if (addrMapping == Enums::RoRaBaChCo) { 168 if (rowBufferSize != range.granularity()) { 169 fatal("Channel interleaving of %s doesn't match RoRaBaChCo " 170 "address map\n", name()); 171 } 172 } else if (addrMapping == Enums::RoRaBaCoCh || 173 addrMapping == Enums::RoCoRaBaCh) { 174 // for the interleavings with channel bits in the bottom, 175 // if the system uses a channel striping granularity that 176 // is larger than the DRAM burst size, then map the 177 // sequential accesses within a stripe to a number of 178 // columns in the DRAM, effectively placing some of the 179 // lower-order column bits as the least-significant bits 180 // of the address (above the ones denoting the burst size) 181 assert(columnsPerStripe >= 1); 182 183 // channel striping has to be done at a granularity that 184 // is equal or larger to a cache line 185 if (system()->cacheLineSize() > range.granularity()) { 186 fatal("Channel interleaving of %s must be at least as large " 187 "as the cache line size\n", name()); 188 } 189 190 // ...and equal or smaller than the row-buffer size 191 if (rowBufferSize < range.granularity()) { 192 fatal("Channel interleaving of %s must be at most as large " 193 "as the row-buffer size\n", name()); 194 } 195 // this is essentially the check above, so just to be sure 196 assert(columnsPerStripe <= columnsPerRowBuffer); 197 } 198 } 199 200 // some basic sanity checks 201 if (tREFI <= tRP || tREFI <= tRFC) { 202 fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n", 203 tREFI, tRP, tRFC); 204 } 205 206 // basic bank group architecture checks -> 207 if (bankGroupArch) { 208 // must have at least one bank per bank group 209 if (bankGroupsPerRank > banksPerRank) { 210 fatal("banks per rank (%d) must be equal to or larger than " 211 "banks groups per rank (%d)\n", 212 banksPerRank, bankGroupsPerRank); 213 } 214 // must have same number of banks in each bank group 215 if ((banksPerRank % bankGroupsPerRank) != 0) { 216 fatal("Banks per rank (%d) must be evenly divisible by bank groups " 217 "per rank (%d) for equal banks per bank group\n", 218 banksPerRank, bankGroupsPerRank); 219 } 220 // tCCD_L should be greater than minimal, back-to-back burst delay 221 if (tCCD_L <= tBURST) { 222 fatal("tCCD_L (%d) should be larger than tBURST (%d) when " 223 "bank groups per rank (%d) is greater than 1\n", 224 tCCD_L, tBURST, bankGroupsPerRank); 225 } 226 // tRRD_L is greater than minimal, same bank group ACT-to-ACT delay 227 if (tRRD_L <= tRRD) { 228 fatal("tRRD_L (%d) should be larger than tRRD (%d) when " 229 "bank groups per rank (%d) is greater than 1\n", 230 tRRD_L, tRRD, bankGroupsPerRank); 231 } 232 } 233 234} 235 236void 237DRAMCtrl::init() 238{ 239 AbstractMemory::init(); 240 241 if (!port.isConnected()) { 242 fatal("DRAMCtrl %s is unconnected!\n", name()); 243 } else { 244 port.sendRangeChange(); 245 } 246} 247 248void 249DRAMCtrl::startup() 250{ 251 // timestamp offset should be in clock cycles for DRAMPower 252 timeStampOffset = divCeil(curTick(), tCK); 253 // update the start tick for the precharge accounting to the 254 // current tick 255 pwrStateTick = curTick(); 256 257 // shift the bus busy time sufficiently far ahead that we never 258 // have to worry about negative values when computing the time for 259 // the next request, this will add an insignificant bubble at the 260 // start of simulation 261 busBusyUntil = curTick() + tRP + tRCD + tCL; 262 263 // kick off the refresh, and give ourselves enough time to 264 // precharge 265 schedule(refreshEvent, curTick() + tREFI - tRP); 266} 267 268Tick 269DRAMCtrl::recvAtomic(PacketPtr pkt) 270{ 271 DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr()); 272 273 // do the actual memory access and turn the packet into a response 274 access(pkt); 275 276 Tick latency = 0; 277 if (!pkt->memInhibitAsserted() && pkt->hasData()) { 278 // this value is not supposed to be accurate, just enough to 279 // keep things going, mimic a closed page 280 latency = tRP + tRCD + tCL; 281 } 282 return latency; 283} 284 285bool 286DRAMCtrl::readQueueFull(unsigned int neededEntries) const 287{ 288 DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n", 289 readBufferSize, readQueue.size() + respQueue.size(), 290 neededEntries); 291 292 return 293 (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize; 294} 295 296bool 297DRAMCtrl::writeQueueFull(unsigned int neededEntries) const 298{ 299 DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n", 300 writeBufferSize, writeQueue.size(), neededEntries); 301 return (writeQueue.size() + neededEntries) > writeBufferSize; 302} 303 304DRAMCtrl::DRAMPacket* 305DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size, 306 bool isRead) 307{ 308 // decode the address based on the address mapping scheme, with 309 // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and 310 // channel, respectively 311 uint8_t rank; 312 uint8_t bank; 313 // use a 64-bit unsigned during the computations as the row is 314 // always the top bits, and check before creating the DRAMPacket 315 uint64_t row; 316 317 // truncate the address to a DRAM burst, which makes it unique to 318 // a specific column, row, bank, rank and channel 319 Addr addr = dramPktAddr / burstSize; 320 321 // we have removed the lowest order address bits that denote the 322 // position within the column 323 if (addrMapping == Enums::RoRaBaChCo) { 324 // the lowest order bits denote the column to ensure that 325 // sequential cache lines occupy the same row 326 addr = addr / columnsPerRowBuffer; 327 328 // take out the channel part of the address 329 addr = addr / channels; 330 331 // after the channel bits, get the bank bits to interleave 332 // over the banks 333 bank = addr % banksPerRank; 334 addr = addr / banksPerRank; 335 336 // after the bank, we get the rank bits which thus interleaves 337 // over the ranks 338 rank = addr % ranksPerChannel; 339 addr = addr / ranksPerChannel; 340 341 // lastly, get the row bits 342 row = addr % rowsPerBank; 343 addr = addr / rowsPerBank; 344 } else if (addrMapping == Enums::RoRaBaCoCh) { 345 // take out the lower-order column bits 346 addr = addr / columnsPerStripe; 347 348 // take out the channel part of the address 349 addr = addr / channels; 350 351 // next, the higher-order column bites 352 addr = addr / (columnsPerRowBuffer / columnsPerStripe); 353 354 // after the column bits, we get the bank bits to interleave 355 // over the banks 356 bank = addr % banksPerRank; 357 addr = addr / banksPerRank; 358 359 // after the bank, we get the rank bits which thus interleaves 360 // over the ranks 361 rank = addr % ranksPerChannel; 362 addr = addr / ranksPerChannel; 363 364 // lastly, get the row bits 365 row = addr % rowsPerBank; 366 addr = addr / rowsPerBank; 367 } else if (addrMapping == Enums::RoCoRaBaCh) { 368 // optimise for closed page mode and utilise maximum 369 // parallelism of the DRAM (at the cost of power) 370 371 // take out the lower-order column bits 372 addr = addr / columnsPerStripe; 373 374 // take out the channel part of the address, not that this has 375 // to match with how accesses are interleaved between the 376 // controllers in the address mapping 377 addr = addr / channels; 378 379 // start with the bank bits, as this provides the maximum 380 // opportunity for parallelism between requests 381 bank = addr % banksPerRank; 382 addr = addr / banksPerRank; 383 384 // next get the rank bits 385 rank = addr % ranksPerChannel; 386 addr = addr / ranksPerChannel; 387 388 // next, the higher-order column bites 389 addr = addr / (columnsPerRowBuffer / columnsPerStripe); 390 391 // lastly, get the row bits 392 row = addr % rowsPerBank; 393 addr = addr / rowsPerBank; 394 } else 395 panic("Unknown address mapping policy chosen!"); 396 397 assert(rank < ranksPerChannel); 398 assert(bank < banksPerRank); 399 assert(row < rowsPerBank); 400 assert(row < Bank::NO_ROW); 401 402 DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n", 403 dramPktAddr, rank, bank, row); 404 405 // create the corresponding DRAM packet with the entry time and 406 // ready time set to the current tick, the latter will be updated 407 // later 408 uint16_t bank_id = banksPerRank * rank + bank; 409 return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr, 410 size, banks[rank][bank]); 411} 412 413void 414DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount) 415{ 416 // only add to the read queue here. whenever the request is 417 // eventually done, set the readyTime, and call schedule() 418 assert(!pkt->isWrite()); 419 420 assert(pktCount != 0); 421 422 // if the request size is larger than burst size, the pkt is split into 423 // multiple DRAM packets 424 // Note if the pkt starting address is not aligened to burst size, the 425 // address of first DRAM packet is kept unaliged. Subsequent DRAM packets 426 // are aligned to burst size boundaries. This is to ensure we accurately 427 // check read packets against packets in write queue. 428 Addr addr = pkt->getAddr(); 429 unsigned pktsServicedByWrQ = 0; 430 BurstHelper* burst_helper = NULL; 431 for (int cnt = 0; cnt < pktCount; ++cnt) { 432 unsigned size = std::min((addr | (burstSize - 1)) + 1, 433 pkt->getAddr() + pkt->getSize()) - addr; 434 readPktSize[ceilLog2(size)]++; 435 readBursts++; 436 437 // First check write buffer to see if the data is already at 438 // the controller 439 bool foundInWrQ = false; 440 for (auto i = writeQueue.begin(); i != writeQueue.end(); ++i) { 441 // check if the read is subsumed in the write entry we are 442 // looking at 443 if ((*i)->addr <= addr && 444 (addr + size) <= ((*i)->addr + (*i)->size)) { 445 foundInWrQ = true; 446 servicedByWrQ++; 447 pktsServicedByWrQ++; 448 DPRINTF(DRAM, "Read to addr %lld with size %d serviced by " 449 "write queue\n", addr, size); 450 bytesReadWrQ += burstSize; 451 break; 452 } 453 } 454 455 // If not found in the write q, make a DRAM packet and 456 // push it onto the read queue 457 if (!foundInWrQ) { 458 459 // Make the burst helper for split packets 460 if (pktCount > 1 && burst_helper == NULL) { 461 DPRINTF(DRAM, "Read to addr %lld translates to %d " 462 "dram requests\n", pkt->getAddr(), pktCount); 463 burst_helper = new BurstHelper(pktCount); 464 } 465 466 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true); 467 dram_pkt->burstHelper = burst_helper; 468 469 assert(!readQueueFull(1)); 470 rdQLenPdf[readQueue.size() + respQueue.size()]++; 471 472 DPRINTF(DRAM, "Adding to read queue\n"); 473 474 readQueue.push_back(dram_pkt); 475 476 // Update stats 477 avgRdQLen = readQueue.size() + respQueue.size(); 478 } 479 480 // Starting address of next dram pkt (aligend to burstSize boundary) 481 addr = (addr | (burstSize - 1)) + 1; 482 } 483 484 // If all packets are serviced by write queue, we send the repsonse back 485 if (pktsServicedByWrQ == pktCount) { 486 accessAndRespond(pkt, frontendLatency); 487 return; 488 } 489 490 // Update how many split packets are serviced by write queue 491 if (burst_helper != NULL) 492 burst_helper->burstsServiced = pktsServicedByWrQ; 493 494 // If we are not already scheduled to get a request out of the 495 // queue, do so now 496 if (!nextReqEvent.scheduled()) { 497 DPRINTF(DRAM, "Request scheduled immediately\n"); 498 schedule(nextReqEvent, curTick()); 499 } 500} 501 502void 503DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount) 504{ 505 // only add to the write queue here. whenever the request is 506 // eventually done, set the readyTime, and call schedule() 507 assert(pkt->isWrite()); 508 509 // if the request size is larger than burst size, the pkt is split into 510 // multiple DRAM packets 511 Addr addr = pkt->getAddr(); 512 for (int cnt = 0; cnt < pktCount; ++cnt) { 513 unsigned size = std::min((addr | (burstSize - 1)) + 1, 514 pkt->getAddr() + pkt->getSize()) - addr; 515 writePktSize[ceilLog2(size)]++; 516 writeBursts++; 517 518 // see if we can merge with an existing item in the write 519 // queue and keep track of whether we have merged or not so we 520 // can stop at that point and also avoid enqueueing a new 521 // request 522 bool merged = false; 523 auto w = writeQueue.begin(); 524 525 while(!merged && w != writeQueue.end()) { 526 // either of the two could be first, if they are the same 527 // it does not matter which way we go 528 if ((*w)->addr >= addr) { 529 // the existing one starts after the new one, figure 530 // out where the new one ends with respect to the 531 // existing one 532 if ((addr + size) >= ((*w)->addr + (*w)->size)) { 533 // check if the existing one is completely 534 // subsumed in the new one 535 DPRINTF(DRAM, "Merging write covering existing burst\n"); 536 merged = true; 537 // update both the address and the size 538 (*w)->addr = addr; 539 (*w)->size = size; 540 } else if ((addr + size) >= (*w)->addr && 541 ((*w)->addr + (*w)->size - addr) <= burstSize) { 542 // the new one is just before or partially 543 // overlapping with the existing one, and together 544 // they fit within a burst 545 DPRINTF(DRAM, "Merging write before existing burst\n"); 546 merged = true; 547 // the existing queue item needs to be adjusted with 548 // respect to both address and size 549 (*w)->size = (*w)->addr + (*w)->size - addr; 550 (*w)->addr = addr; 551 } 552 } else { 553 // the new one starts after the current one, figure 554 // out where the existing one ends with respect to the 555 // new one 556 if (((*w)->addr + (*w)->size) >= (addr + size)) { 557 // check if the new one is completely subsumed in the 558 // existing one 559 DPRINTF(DRAM, "Merging write into existing burst\n"); 560 merged = true; 561 // no adjustments necessary 562 } else if (((*w)->addr + (*w)->size) >= addr && 563 (addr + size - (*w)->addr) <= burstSize) { 564 // the existing one is just before or partially 565 // overlapping with the new one, and together 566 // they fit within a burst 567 DPRINTF(DRAM, "Merging write after existing burst\n"); 568 merged = true; 569 // the address is right, and only the size has 570 // to be adjusted 571 (*w)->size = addr + size - (*w)->addr; 572 } 573 } 574 ++w; 575 } 576 577 // if the item was not merged we need to create a new write 578 // and enqueue it 579 if (!merged) { 580 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false); 581 582 assert(writeQueue.size() < writeBufferSize); 583 wrQLenPdf[writeQueue.size()]++; 584 585 DPRINTF(DRAM, "Adding to write queue\n"); 586 587 writeQueue.push_back(dram_pkt); 588 589 // Update stats 590 avgWrQLen = writeQueue.size(); 591 } else { 592 // keep track of the fact that this burst effectively 593 // disappeared as it was merged with an existing one 594 mergedWrBursts++; 595 } 596 597 // Starting address of next dram pkt (aligend to burstSize boundary) 598 addr = (addr | (burstSize - 1)) + 1; 599 } 600 601 // we do not wait for the writes to be send to the actual memory, 602 // but instead take responsibility for the consistency here and 603 // snoop the write queue for any upcoming reads 604 // @todo, if a pkt size is larger than burst size, we might need a 605 // different front end latency 606 accessAndRespond(pkt, frontendLatency); 607 608 // If we are not already scheduled to get a request out of the 609 // queue, do so now 610 if (!nextReqEvent.scheduled()) { 611 DPRINTF(DRAM, "Request scheduled immediately\n"); 612 schedule(nextReqEvent, curTick()); 613 } 614} 615 616void 617DRAMCtrl::printQs() const { 618 DPRINTF(DRAM, "===READ QUEUE===\n\n"); 619 for (auto i = readQueue.begin() ; i != readQueue.end() ; ++i) { 620 DPRINTF(DRAM, "Read %lu\n", (*i)->addr); 621 } 622 DPRINTF(DRAM, "\n===RESP QUEUE===\n\n"); 623 for (auto i = respQueue.begin() ; i != respQueue.end() ; ++i) { 624 DPRINTF(DRAM, "Response %lu\n", (*i)->addr); 625 } 626 DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n"); 627 for (auto i = writeQueue.begin() ; i != writeQueue.end() ; ++i) { 628 DPRINTF(DRAM, "Write %lu\n", (*i)->addr); 629 } 630} 631 632bool 633DRAMCtrl::recvTimingReq(PacketPtr pkt) 634{ 635 /// @todo temporary hack to deal with memory corruption issues until 636 /// 4-phase transactions are complete 637 for (int x = 0; x < pendingDelete.size(); x++) 638 delete pendingDelete[x]; 639 pendingDelete.clear(); 640 641 // This is where we enter from the outside world 642 DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n", 643 pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 644 645 // simply drop inhibited packets for now 646 if (pkt->memInhibitAsserted()) { 647 DPRINTF(DRAM, "Inhibited packet -- Dropping it now\n"); 648 pendingDelete.push_back(pkt); 649 return true; 650 } 651 652 // Calc avg gap between requests 653 if (prevArrival != 0) { 654 totGap += curTick() - prevArrival; 655 } 656 prevArrival = curTick(); 657 658 659 // Find out how many dram packets a pkt translates to 660 // If the burst size is equal or larger than the pkt size, then a pkt 661 // translates to only one dram packet. Otherwise, a pkt translates to 662 // multiple dram packets 663 unsigned size = pkt->getSize(); 664 unsigned offset = pkt->getAddr() & (burstSize - 1); 665 unsigned int dram_pkt_count = divCeil(offset + size, burstSize); 666 667 // check local buffers and do not accept if full 668 if (pkt->isRead()) { 669 assert(size != 0); 670 if (readQueueFull(dram_pkt_count)) { 671 DPRINTF(DRAM, "Read queue full, not accepting\n"); 672 // remember that we have to retry this port 673 retryRdReq = true; 674 numRdRetry++; 675 return false; 676 } else { 677 addToReadQueue(pkt, dram_pkt_count); 678 readReqs++; 679 bytesReadSys += size; 680 } 681 } else if (pkt->isWrite()) { 682 assert(size != 0); 683 if (writeQueueFull(dram_pkt_count)) { 684 DPRINTF(DRAM, "Write queue full, not accepting\n"); 685 // remember that we have to retry this port 686 retryWrReq = true; 687 numWrRetry++; 688 return false; 689 } else { 690 addToWriteQueue(pkt, dram_pkt_count); 691 writeReqs++; 692 bytesWrittenSys += size; 693 } 694 } else { 695 DPRINTF(DRAM,"Neither read nor write, ignore timing\n"); 696 neitherReadNorWrite++; 697 accessAndRespond(pkt, 1); 698 } 699 700 return true; 701} 702 703void 704DRAMCtrl::processRespondEvent() 705{ 706 DPRINTF(DRAM, 707 "processRespondEvent(): Some req has reached its readyTime\n"); 708 709 DRAMPacket* dram_pkt = respQueue.front(); 710 711 if (dram_pkt->burstHelper) { 712 // it is a split packet 713 dram_pkt->burstHelper->burstsServiced++; 714 if (dram_pkt->burstHelper->burstsServiced == 715 dram_pkt->burstHelper->burstCount) { 716 // we have now serviced all children packets of a system packet 717 // so we can now respond to the requester 718 // @todo we probably want to have a different front end and back 719 // end latency for split packets 720 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency); 721 delete dram_pkt->burstHelper; 722 dram_pkt->burstHelper = NULL; 723 } 724 } else { 725 // it is not a split packet 726 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency); 727 } 728 729 delete respQueue.front(); 730 respQueue.pop_front(); 731 732 if (!respQueue.empty()) { 733 assert(respQueue.front()->readyTime >= curTick()); 734 assert(!respondEvent.scheduled()); 735 schedule(respondEvent, respQueue.front()->readyTime); 736 } else { 737 // if there is nothing left in any queue, signal a drain 738 if (writeQueue.empty() && readQueue.empty() && 739 drainManager) { 740 drainManager->signalDrainDone(); 741 drainManager = NULL; 742 } 743 } 744 745 // We have made a location in the queue available at this point, 746 // so if there is a read that was forced to wait, retry now 747 if (retryRdReq) { 748 retryRdReq = false; 749 port.sendRetry(); 750 } 751} 752 753void 754DRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue, bool switched_cmd_type) 755{ 756 // This method does the arbitration between requests. The chosen 757 // packet is simply moved to the head of the queue. The other 758 // methods know that this is the place to look. For example, with 759 // FCFS, this method does nothing 760 assert(!queue.empty()); 761 762 if (queue.size() == 1) { 763 DPRINTF(DRAM, "Single request, nothing to do\n"); 764 return; 765 } 766 767 if (memSchedPolicy == Enums::fcfs) { 768 // Do nothing, since the correct request is already head 769 } else if (memSchedPolicy == Enums::frfcfs) { 770 reorderQueue(queue, switched_cmd_type); 771 } else 772 panic("No scheduling policy chosen\n"); 773} 774 775void 776DRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue, bool switched_cmd_type) 777{ 778 // Only determine this when needed 779 uint64_t earliest_banks = 0; 780 781 // Search for row hits first, if no row hit is found then schedule the 782 // packet to one of the earliest banks available 783 bool found_earliest_pkt = false; 784 bool found_prepped_diff_rank_pkt = false; 785 auto selected_pkt_it = queue.begin(); 786 787 for (auto i = queue.begin(); i != queue.end() ; ++i) { 788 DRAMPacket* dram_pkt = *i; 789 const Bank& bank = dram_pkt->bankRef; 790 // Check if it is a row hit 791 if (bank.openRow == dram_pkt->row) { 792 if (dram_pkt->rank == activeRank || switched_cmd_type) { 793 // FCFS within the hits, giving priority to commands 794 // that access the same rank as the previous burst 795 // to minimize bus turnaround delays 796 // Only give rank prioity when command type is not changing 797 DPRINTF(DRAM, "Row buffer hit\n"); 798 selected_pkt_it = i; 799 break; 800 } else if (!found_prepped_diff_rank_pkt) { 801 // found row hit for command on different rank than prev burst 802 selected_pkt_it = i; 803 found_prepped_diff_rank_pkt = true; 804 } 805 } else if (!found_earliest_pkt & !found_prepped_diff_rank_pkt) { 806 // No row hit and 807 // haven't found an entry with a row hit to a new rank 808 if (earliest_banks == 0) 809 // Determine entries with earliest bank prep delay 810 // Function will give priority to commands that access the 811 // same rank as previous burst and can prep the bank seamlessly 812 earliest_banks = minBankPrep(queue, switched_cmd_type); 813 814 // FCFS - Bank is first available bank 815 if (bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) { 816 // Remember the packet to be scheduled to one of the earliest 817 // banks available, FCFS amongst the earliest banks 818 selected_pkt_it = i; 819 found_earliest_pkt = true; 820 } 821 } 822 } 823 824 DRAMPacket* selected_pkt = *selected_pkt_it; 825 queue.erase(selected_pkt_it); 826 queue.push_front(selected_pkt); 827} 828 829void 830DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency) 831{ 832 DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr()); 833 834 bool needsResponse = pkt->needsResponse(); 835 // do the actual memory access which also turns the packet into a 836 // response 837 access(pkt); 838 839 // turn packet around to go back to requester if response expected 840 if (needsResponse) { 841 // access already turned the packet into a response 842 assert(pkt->isResponse()); 843 844 // @todo someone should pay for this 845 pkt->firstWordDelay = pkt->lastWordDelay = 0; 846 847 // queue the packet in the response queue to be sent out after 848 // the static latency has passed 849 port.schedTimingResp(pkt, curTick() + static_latency); 850 } else { 851 // @todo the packet is going to be deleted, and the DRAMPacket 852 // is still having a pointer to it 853 pendingDelete.push_back(pkt); 854 } 855 856 DPRINTF(DRAM, "Done\n"); 857 858 return; 859} 860 861void 862DRAMCtrl::activateBank(Bank& bank, Tick act_tick, uint32_t row) 863{ 864 // get the rank index from the bank 865 uint8_t rank = bank.rank; 866 867 assert(actTicks[rank].size() == activationLimit); 868 869 DPRINTF(DRAM, "Activate at tick %d\n", act_tick); 870 871 // update the open row 872 assert(bank.openRow == Bank::NO_ROW); 873 bank.openRow = row; 874 875 // start counting anew, this covers both the case when we 876 // auto-precharged, and when this access is forced to 877 // precharge 878 bank.bytesAccessed = 0; 879 bank.rowAccesses = 0; 880 881 ++numBanksActive; 882 assert(numBanksActive <= banksPerRank * ranksPerChannel); 883 884 DPRINTF(DRAM, "Activate bank %d, rank %d at tick %lld, now got %d active\n", 885 bank.bank, bank.rank, act_tick, numBanksActive); 886 887 rankPower[bank.rank].powerlib.doCommand(MemCommand::ACT, bank.bank, 888 divCeil(act_tick, tCK) - 889 timeStampOffset); 890 891 DPRINTF(DRAMPower, "%llu,ACT,%d,%d\n", divCeil(act_tick, tCK) - 892 timeStampOffset, bank.bank, bank.rank); 893 894 // The next access has to respect tRAS for this bank 895 bank.preAllowedAt = act_tick + tRAS; 896 897 // Respect the row-to-column command delay 898 bank.colAllowedAt = std::max(act_tick + tRCD, bank.colAllowedAt); 899 900 // start by enforcing tRRD 901 for(int i = 0; i < banksPerRank; i++) { 902 // next activate to any bank in this rank must not happen 903 // before tRRD 904 if (bankGroupArch && (bank.bankgr == banks[rank][i].bankgr)) { 905 // bank group architecture requires longer delays between 906 // ACT commands within the same bank group. Use tRRD_L 907 // in this case 908 banks[rank][i].actAllowedAt = std::max(act_tick + tRRD_L, 909 banks[rank][i].actAllowedAt); 910 } else { 911 // use shorter tRRD value when either 912 // 1) bank group architecture is not supportted 913 // 2) bank is in a different bank group 914 banks[rank][i].actAllowedAt = std::max(act_tick + tRRD, 915 banks[rank][i].actAllowedAt); 916 } 917 } 918 919 // next, we deal with tXAW, if the activation limit is disabled 920 // then we directly schedule an activate power event 921 if (!actTicks[rank].empty()) { 922 // sanity check 923 if (actTicks[rank].back() && 924 (act_tick - actTicks[rank].back()) < tXAW) { 925 panic("Got %d activates in window %d (%llu - %llu) which " 926 "is smaller than %llu\n", activationLimit, act_tick - 927 actTicks[rank].back(), act_tick, actTicks[rank].back(), 928 tXAW); 929 } 930 931 // shift the times used for the book keeping, the last element 932 // (highest index) is the oldest one and hence the lowest value 933 actTicks[rank].pop_back(); 934 935 // record an new activation (in the future) 936 actTicks[rank].push_front(act_tick); 937 938 // cannot activate more than X times in time window tXAW, push the 939 // next one (the X + 1'st activate) to be tXAW away from the 940 // oldest in our window of X 941 if (actTicks[rank].back() && 942 (act_tick - actTicks[rank].back()) < tXAW) { 943 DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate " 944 "no earlier than %llu\n", activationLimit, 945 actTicks[rank].back() + tXAW); 946 for(int j = 0; j < banksPerRank; j++) 947 // next activate must not happen before end of window 948 banks[rank][j].actAllowedAt = 949 std::max(actTicks[rank].back() + tXAW, 950 banks[rank][j].actAllowedAt); 951 } 952 } 953 954 // at the point when this activate takes place, make sure we 955 // transition to the active power state 956 if (!activateEvent.scheduled()) 957 schedule(activateEvent, act_tick); 958 else if (activateEvent.when() > act_tick) 959 // move it sooner in time 960 reschedule(activateEvent, act_tick); 961} 962 963void 964DRAMCtrl::processActivateEvent() 965{ 966 // we should transition to the active state as soon as any bank is active 967 if (pwrState != PWR_ACT) 968 // note that at this point numBanksActive could be back at 969 // zero again due to a precharge scheduled in the future 970 schedulePowerEvent(PWR_ACT, curTick()); 971} 972 973void 974DRAMCtrl::prechargeBank(Bank& bank, Tick pre_at, bool trace) 975{ 976 // make sure the bank has an open row 977 assert(bank.openRow != Bank::NO_ROW); 978 979 // sample the bytes per activate here since we are closing 980 // the page 981 bytesPerActivate.sample(bank.bytesAccessed); 982 983 bank.openRow = Bank::NO_ROW; 984 985 // no precharge allowed before this one 986 bank.preAllowedAt = pre_at; 987 988 Tick pre_done_at = pre_at + tRP; 989 990 bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at); 991 992 assert(numBanksActive != 0); 993 --numBanksActive; 994 995 DPRINTF(DRAM, "Precharging bank %d, rank %d at tick %lld, now got " 996 "%d active\n", bank.bank, bank.rank, pre_at, numBanksActive); 997 998 if (trace) { 999 1000 rankPower[bank.rank].powerlib.doCommand(MemCommand::PRE, bank.bank, 1001 divCeil(pre_at, tCK) - 1002 timeStampOffset); 1003 DPRINTF(DRAMPower, "%llu,PRE,%d,%d\n", divCeil(pre_at, tCK) - 1004 timeStampOffset, bank.bank, bank.rank); 1005 } 1006 // if we look at the current number of active banks we might be 1007 // tempted to think the DRAM is now idle, however this can be 1008 // undone by an activate that is scheduled to happen before we 1009 // would have reached the idle state, so schedule an event and 1010 // rather check once we actually make it to the point in time when 1011 // the (last) precharge takes place 1012 if (!prechargeEvent.scheduled()) 1013 schedule(prechargeEvent, pre_done_at); 1014 else if (prechargeEvent.when() < pre_done_at) 1015 reschedule(prechargeEvent, pre_done_at); 1016} 1017 1018void 1019DRAMCtrl::processPrechargeEvent() 1020{ 1021 // if we reached zero, then special conditions apply as we track 1022 // if all banks are precharged for the power models 1023 if (numBanksActive == 0) { 1024 // we should transition to the idle state when the last bank 1025 // is precharged 1026 schedulePowerEvent(PWR_IDLE, curTick()); 1027 } 1028} 1029 1030void 1031DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt) 1032{ 1033 DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n", 1034 dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row); 1035 1036 // get the bank 1037 Bank& bank = dram_pkt->bankRef; 1038 1039 // for the state we need to track if it is a row hit or not 1040 bool row_hit = true; 1041 1042 // respect any constraints on the command (e.g. tRCD or tCCD) 1043 Tick cmd_at = std::max(bank.colAllowedAt, curTick()); 1044 1045 // Determine the access latency and update the bank state 1046 if (bank.openRow == dram_pkt->row) { 1047 // nothing to do 1048 } else { 1049 row_hit = false; 1050 1051 // If there is a page open, precharge it. 1052 if (bank.openRow != Bank::NO_ROW) { 1053 prechargeBank(bank, std::max(bank.preAllowedAt, curTick())); 1054 } 1055 1056 // next we need to account for the delay in activating the 1057 // page 1058 Tick act_tick = std::max(bank.actAllowedAt, curTick()); 1059 1060 // Record the activation and deal with all the global timing 1061 // constraints caused be a new activation (tRRD and tXAW) 1062 activateBank(bank, act_tick, dram_pkt->row); 1063 1064 // issue the command as early as possible 1065 cmd_at = bank.colAllowedAt; 1066 } 1067 1068 // we need to wait until the bus is available before we can issue 1069 // the command 1070 cmd_at = std::max(cmd_at, busBusyUntil - tCL); 1071 1072 // update the packet ready time 1073 dram_pkt->readyTime = cmd_at + tCL + tBURST; 1074 1075 // only one burst can use the bus at any one point in time 1076 assert(dram_pkt->readyTime - busBusyUntil >= tBURST); 1077 1078 // update the time for the next read/write burst for each 1079 // bank (add a max with tCCD/tCCD_L here) 1080 Tick cmd_dly; 1081 for(int j = 0; j < ranksPerChannel; j++) { 1082 for(int i = 0; i < banksPerRank; i++) { 1083 // next burst to same bank group in this rank must not happen 1084 // before tCCD_L. Different bank group timing requirement is 1085 // tBURST; Add tCS for different ranks 1086 if (dram_pkt->rank == j) { 1087 if (bankGroupArch && (bank.bankgr == banks[j][i].bankgr)) { 1088 // bank group architecture requires longer delays between 1089 // RD/WR burst commands to the same bank group. 1090 // Use tCCD_L in this case 1091 cmd_dly = tCCD_L; 1092 } else { 1093 // use tBURST (equivalent to tCCD_S), the shorter 1094 // cas-to-cas delay value, when either: 1095 // 1) bank group architecture is not supportted 1096 // 2) bank is in a different bank group 1097 cmd_dly = tBURST; 1098 } 1099 } else { 1100 // different rank is by default in a different bank group 1101 // use tBURST (equivalent to tCCD_S), which is the shorter 1102 // cas-to-cas delay in this case 1103 // Add tCS to account for rank-to-rank bus delay requirements 1104 cmd_dly = tBURST + tCS; 1105 } 1106 banks[j][i].colAllowedAt = std::max(cmd_at + cmd_dly, 1107 banks[j][i].colAllowedAt); 1108 } 1109 } 1110 1111 // Save rank of current access 1112 activeRank = dram_pkt->rank; 1113 1114 // If this is a write, we also need to respect the write recovery 1115 // time before a precharge, in the case of a read, respect the 1116 // read to precharge constraint 1117 bank.preAllowedAt = std::max(bank.preAllowedAt, 1118 dram_pkt->isRead ? cmd_at + tRTP : 1119 dram_pkt->readyTime + tWR); 1120 1121 // increment the bytes accessed and the accesses per row 1122 bank.bytesAccessed += burstSize; 1123 ++bank.rowAccesses; 1124 1125 // if we reached the max, then issue with an auto-precharge 1126 bool auto_precharge = pageMgmt == Enums::close || 1127 bank.rowAccesses == maxAccessesPerRow; 1128 1129 // if we did not hit the limit, we might still want to 1130 // auto-precharge 1131 if (!auto_precharge && 1132 (pageMgmt == Enums::open_adaptive || 1133 pageMgmt == Enums::close_adaptive)) { 1134 // a twist on the open and close page policies: 1135 // 1) open_adaptive page policy does not blindly keep the 1136 // page open, but close it if there are no row hits, and there 1137 // are bank conflicts in the queue 1138 // 2) close_adaptive page policy does not blindly close the 1139 // page, but closes it only if there are no row hits in the queue. 1140 // In this case, only force an auto precharge when there 1141 // are no same page hits in the queue 1142 bool got_more_hits = false; 1143 bool got_bank_conflict = false; 1144 1145 // either look at the read queue or write queue 1146 const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue : 1147 writeQueue; 1148 auto p = queue.begin(); 1149 // make sure we are not considering the packet that we are 1150 // currently dealing with (which is the head of the queue) 1151 ++p; 1152 1153 // keep on looking until we have found required condition or 1154 // reached the end 1155 while (!(got_more_hits && 1156 (got_bank_conflict || pageMgmt == Enums::close_adaptive)) && 1157 p != queue.end()) { 1158 bool same_rank_bank = (dram_pkt->rank == (*p)->rank) && 1159 (dram_pkt->bank == (*p)->bank); 1160 bool same_row = dram_pkt->row == (*p)->row; 1161 got_more_hits |= same_rank_bank && same_row; 1162 got_bank_conflict |= same_rank_bank && !same_row; 1163 ++p; 1164 } 1165 1166 // auto pre-charge when either 1167 // 1) open_adaptive policy, we have not got any more hits, and 1168 // have a bank conflict 1169 // 2) close_adaptive policy and we have not got any more hits 1170 auto_precharge = !got_more_hits && 1171 (got_bank_conflict || pageMgmt == Enums::close_adaptive); 1172 } 1173 1174 // DRAMPower trace command to be written 1175 std::string mem_cmd = dram_pkt->isRead ? "RD" : "WR"; 1176 1177 // MemCommand required for DRAMPower library 1178 MemCommand::cmds command = (mem_cmd == "RD") ? MemCommand::RD : 1179 MemCommand::WR; 1180 1181 // if this access should use auto-precharge, then we are 1182 // closing the row 1183 if (auto_precharge) { 1184 // if auto-precharge push a PRE command at the correct tick to the 1185 // list used by DRAMPower library to calculate power 1186 prechargeBank(bank, std::max(curTick(), bank.preAllowedAt)); 1187 1188 DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId); 1189 } 1190 1191 // Update bus state 1192 busBusyUntil = dram_pkt->readyTime; 1193 1194 DPRINTF(DRAM, "Access to %lld, ready at %lld bus busy until %lld.\n", 1195 dram_pkt->addr, dram_pkt->readyTime, busBusyUntil); 1196 1197 rankPower[dram_pkt->rank].powerlib.doCommand(command, dram_pkt->bank, 1198 divCeil(cmd_at, tCK) - 1199 timeStampOffset); 1200 1201 DPRINTF(DRAMPower, "%llu,%s,%d,%d\n", divCeil(cmd_at, tCK) - 1202 timeStampOffset, mem_cmd, dram_pkt->bank, dram_pkt->rank); 1203 1204 // Update the minimum timing between the requests, this is a 1205 // conservative estimate of when we have to schedule the next 1206 // request to not introduce any unecessary bubbles. In most cases 1207 // we will wake up sooner than we have to. 1208 nextReqTime = busBusyUntil - (tRP + tRCD + tCL); 1209 1210 // Update the stats and schedule the next request 1211 if (dram_pkt->isRead) { 1212 ++readsThisTime; 1213 if (row_hit) 1214 readRowHits++; 1215 bytesReadDRAM += burstSize; 1216 perBankRdBursts[dram_pkt->bankId]++; 1217 1218 // Update latency stats 1219 totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime; 1220 totBusLat += tBURST; 1221 totQLat += cmd_at - dram_pkt->entryTime; 1222 } else { 1223 ++writesThisTime; 1224 if (row_hit) 1225 writeRowHits++; 1226 bytesWritten += burstSize; 1227 perBankWrBursts[dram_pkt->bankId]++; 1228 } 1229} 1230 1231void 1232DRAMCtrl::processNextReqEvent() 1233{ 1234 // pre-emptively set to false. Overwrite if in READ_TO_WRITE 1235 // or WRITE_TO_READ state 1236 bool switched_cmd_type = false; 1237 if (busState == READ_TO_WRITE) { 1238 DPRINTF(DRAM, "Switching to writes after %d reads with %d reads " 1239 "waiting\n", readsThisTime, readQueue.size()); 1240 1241 // sample and reset the read-related stats as we are now 1242 // transitioning to writes, and all reads are done 1243 rdPerTurnAround.sample(readsThisTime); 1244 readsThisTime = 0; 1245 1246 // now proceed to do the actual writes 1247 busState = WRITE; 1248 switched_cmd_type = true; 1249 } else if (busState == WRITE_TO_READ) { 1250 DPRINTF(DRAM, "Switching to reads after %d writes with %d writes " 1251 "waiting\n", writesThisTime, writeQueue.size()); 1252 1253 wrPerTurnAround.sample(writesThisTime); 1254 writesThisTime = 0; 1255 1256 busState = READ; 1257 switched_cmd_type = true; 1258 } 1259 1260 if (refreshState != REF_IDLE) { 1261 // if a refresh waiting for this event loop to finish, then hand 1262 // over now, and do not schedule a new nextReqEvent 1263 if (refreshState == REF_DRAIN) { 1264 DPRINTF(DRAM, "Refresh drain done, now precharging\n"); 1265 1266 refreshState = REF_PRE; 1267 1268 // hand control back to the refresh event loop 1269 schedule(refreshEvent, curTick()); 1270 } 1271 1272 // let the refresh finish before issuing any further requests 1273 return; 1274 } 1275 1276 // when we get here it is either a read or a write 1277 if (busState == READ) { 1278 1279 // track if we should switch or not 1280 bool switch_to_writes = false; 1281 1282 if (readQueue.empty()) { 1283 // In the case there is no read request to go next, 1284 // trigger writes if we have passed the low threshold (or 1285 // if we are draining) 1286 if (!writeQueue.empty() && 1287 (drainManager || writeQueue.size() > writeLowThreshold)) { 1288 1289 switch_to_writes = true; 1290 } else { 1291 // check if we are drained 1292 if (respQueue.empty () && drainManager) { 1293 drainManager->signalDrainDone(); 1294 drainManager = NULL; 1295 } 1296 1297 // nothing to do, not even any point in scheduling an 1298 // event for the next request 1299 return; 1300 } 1301 } else { 1302 // Figure out which read request goes next, and move it to the 1303 // front of the read queue 1304 chooseNext(readQueue, switched_cmd_type); 1305 1306 DRAMPacket* dram_pkt = readQueue.front(); 1307 1308 // here we get a bit creative and shift the bus busy time not 1309 // just the tWTR, but also a CAS latency to capture the fact 1310 // that we are allowed to prepare a new bank, but not issue a 1311 // read command until after tWTR, in essence we capture a 1312 // bubble on the data bus that is tWTR + tCL 1313 if (switched_cmd_type && dram_pkt->rank == activeRank) { 1314 busBusyUntil += tWTR + tCL; 1315 } 1316 1317 doDRAMAccess(dram_pkt); 1318 1319 // At this point we're done dealing with the request 1320 readQueue.pop_front(); 1321 1322 // sanity check 1323 assert(dram_pkt->size <= burstSize); 1324 assert(dram_pkt->readyTime >= curTick()); 1325 1326 // Insert into response queue. It will be sent back to the 1327 // requestor at its readyTime 1328 if (respQueue.empty()) { 1329 assert(!respondEvent.scheduled()); 1330 schedule(respondEvent, dram_pkt->readyTime); 1331 } else { 1332 assert(respQueue.back()->readyTime <= dram_pkt->readyTime); 1333 assert(respondEvent.scheduled()); 1334 } 1335 1336 respQueue.push_back(dram_pkt); 1337 1338 // we have so many writes that we have to transition 1339 if (writeQueue.size() > writeHighThreshold) { 1340 switch_to_writes = true; 1341 } 1342 } 1343 1344 // switching to writes, either because the read queue is empty 1345 // and the writes have passed the low threshold (or we are 1346 // draining), or because the writes hit the hight threshold 1347 if (switch_to_writes) { 1348 // transition to writing 1349 busState = READ_TO_WRITE; 1350 } 1351 } else { 1352 chooseNext(writeQueue, switched_cmd_type); 1353 DRAMPacket* dram_pkt = writeQueue.front(); 1354 // sanity check 1355 assert(dram_pkt->size <= burstSize); 1356 1357 // add a bubble to the data bus, as defined by the 1358 // tRTW when access is to the same rank as previous burst 1359 // Different rank timing is handled with tCS, which is 1360 // applied to colAllowedAt 1361 if (switched_cmd_type && dram_pkt->rank == activeRank) { 1362 busBusyUntil += tRTW; 1363 } 1364 1365 doDRAMAccess(dram_pkt); 1366 1367 writeQueue.pop_front(); 1368 delete dram_pkt; 1369 1370 // If we emptied the write queue, or got sufficiently below the 1371 // threshold (using the minWritesPerSwitch as the hysteresis) and 1372 // are not draining, or we have reads waiting and have done enough 1373 // writes, then switch to reads. 1374 if (writeQueue.empty() || 1375 (writeQueue.size() + minWritesPerSwitch < writeLowThreshold && 1376 !drainManager) || 1377 (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) { 1378 // turn the bus back around for reads again 1379 busState = WRITE_TO_READ; 1380 1381 // note that the we switch back to reads also in the idle 1382 // case, which eventually will check for any draining and 1383 // also pause any further scheduling if there is really 1384 // nothing to do 1385 } 1386 } 1387 1388 schedule(nextReqEvent, std::max(nextReqTime, curTick())); 1389 1390 // If there is space available and we have writes waiting then let 1391 // them retry. This is done here to ensure that the retry does not 1392 // cause a nextReqEvent to be scheduled before we do so as part of 1393 // the next request processing 1394 if (retryWrReq && writeQueue.size() < writeBufferSize) { 1395 retryWrReq = false; 1396 port.sendRetry(); 1397 } 1398} 1399 1400uint64_t 1401DRAMCtrl::minBankPrep(const deque<DRAMPacket*>& queue, 1402 bool switched_cmd_type) const 1403{ 1404 uint64_t bank_mask = 0; 1405 Tick min_act_at = MaxTick; 1406 1407 uint64_t bank_mask_same_rank = 0; 1408 Tick min_act_at_same_rank = MaxTick; 1409 1410 // Give precedence to commands that access same rank as previous command 1411 bool same_rank_match = false; 1412 1413 // determine if we have queued transactions targetting the 1414 // bank in question 1415 vector<bool> got_waiting(ranksPerChannel * banksPerRank, false); 1416 for (auto p = queue.begin(); p != queue.end(); ++p) { 1417 got_waiting[(*p)->bankId] = true; 1418 } 1419 1420 for (int i = 0; i < ranksPerChannel; i++) { 1421 for (int j = 0; j < banksPerRank; j++) { 1422 uint8_t bank_id = i * banksPerRank + j; 1423 1424 // if we have waiting requests for the bank, and it is 1425 // amongst the first available, update the mask 1426 if (got_waiting[bank_id]) { 1427 // simplistic approximation of when the bank can issue 1428 // an activate, ignoring any rank-to-rank switching 1429 // cost in this calculation 1430 Tick act_at = banks[i][j].openRow == Bank::NO_ROW ? 1431 banks[i][j].actAllowedAt : 1432 std::max(banks[i][j].preAllowedAt, curTick()) + tRP; 1433 1434 // prioritize commands that access the 1435 // same rank as previous burst 1436 // Calculate bank mask separately for the case and 1437 // evaluate after loop iterations complete 1438 if (i == activeRank && ranksPerChannel > 1) { 1439 if (act_at <= min_act_at_same_rank) { 1440 // reset same rank bank mask if new minimum is found 1441 // and previous minimum could not immediately send ACT 1442 if (act_at < min_act_at_same_rank && 1443 min_act_at_same_rank > curTick()) 1444 bank_mask_same_rank = 0; 1445 1446 // Set flag indicating that a same rank 1447 // opportunity was found 1448 same_rank_match = true; 1449 1450 // set the bit corresponding to the available bank 1451 replaceBits(bank_mask_same_rank, bank_id, bank_id, 1); 1452 min_act_at_same_rank = act_at; 1453 } 1454 } else { 1455 if (act_at <= min_act_at) { 1456 // reset bank mask if new minimum is found 1457 // and either previous minimum could not immediately send ACT 1458 if (act_at < min_act_at && min_act_at > curTick()) 1459 bank_mask = 0; 1460 // set the bit corresponding to the available bank 1461 replaceBits(bank_mask, bank_id, bank_id, 1); 1462 min_act_at = act_at; 1463 } 1464 } 1465 } 1466 } 1467 } 1468 1469 // Determine the earliest time when the next burst can issue based 1470 // on the current busBusyUntil delay. 1471 // Offset by tRCD to correlate with ACT timing variables 1472 Tick min_cmd_at = busBusyUntil - tCL - tRCD; 1473 1474 // Prioritize same rank accesses that can issue B2B 1475 // Only optimize for same ranks when the command type 1476 // does not change; do not want to unnecessarily incur tWTR 1477 // 1478 // Resulting FCFS prioritization Order is: 1479 // 1) Commands that access the same rank as previous burst 1480 // and can prep the bank seamlessly. 1481 // 2) Commands (any rank) with earliest bank prep 1482 if (!switched_cmd_type && same_rank_match && 1483 min_act_at_same_rank <= min_cmd_at) { 1484 bank_mask = bank_mask_same_rank; 1485 } 1486 1487 return bank_mask; 1488} 1489 1490void 1491DRAMCtrl::processRefreshEvent() 1492{ 1493 // when first preparing the refresh, remember when it was due 1494 if (refreshState == REF_IDLE) { 1495 // remember when the refresh is due 1496 refreshDueAt = curTick(); 1497 1498 // proceed to drain 1499 refreshState = REF_DRAIN; 1500 1501 DPRINTF(DRAM, "Refresh due\n"); 1502 } 1503 1504 // let any scheduled read or write go ahead, after which it will 1505 // hand control back to this event loop 1506 if (refreshState == REF_DRAIN) { 1507 if (nextReqEvent.scheduled()) { 1508 // hand control over to the request loop until it is 1509 // evaluated next 1510 DPRINTF(DRAM, "Refresh awaiting draining\n"); 1511 1512 return; 1513 } else { 1514 refreshState = REF_PRE; 1515 } 1516 } 1517 1518 // at this point, ensure that all banks are precharged 1519 if (refreshState == REF_PRE) { 1520 // precharge any active bank if we are not already in the idle 1521 // state 1522 if (pwrState != PWR_IDLE) { 1523 // at the moment, we use a precharge all even if there is 1524 // only a single bank open 1525 DPRINTF(DRAM, "Precharging all\n"); 1526 1527 // first determine when we can precharge 1528 Tick pre_at = curTick(); 1529 for (int i = 0; i < ranksPerChannel; i++) { 1530 for (int j = 0; j < banksPerRank; j++) { 1531 // respect both causality and any existing bank 1532 // constraints, some banks could already have a 1533 // (auto) precharge scheduled 1534 pre_at = std::max(banks[i][j].preAllowedAt, pre_at); 1535 } 1536 } 1537 1538 // make sure all banks are precharged, and for those that 1539 // already are, update their availability 1540 Tick act_allowed_at = pre_at + tRP; 1541 1542 for (int i = 0; i < ranksPerChannel; i++) { 1543 for (int j = 0; j < banksPerRank; j++) { 1544 if (banks[i][j].openRow != Bank::NO_ROW) { 1545 prechargeBank(banks[i][j], pre_at, false); 1546 } else { 1547 banks[i][j].actAllowedAt = 1548 std::max(banks[i][j].actAllowedAt, act_allowed_at); 1549 banks[i][j].preAllowedAt = 1550 std::max(banks[i][j].preAllowedAt, pre_at); 1551 } 1552 } 1553 1554 // at the moment this affects all ranks 1555 rankPower[i].powerlib.doCommand(MemCommand::PREA, 0, 1556 divCeil(pre_at, tCK) - 1557 timeStampOffset); 1558 1559 DPRINTF(DRAMPower, "%llu,PREA,0,%d\n", divCeil(pre_at, tCK) - 1560 timeStampOffset, i); 1561 } 1562 } else { 1563 DPRINTF(DRAM, "All banks already precharged, starting refresh\n"); 1564 1565 // go ahead and kick the power state machine into gear if 1566 // we are already idle 1567 schedulePowerEvent(PWR_REF, curTick()); 1568 } 1569 1570 refreshState = REF_RUN; 1571 assert(numBanksActive == 0); 1572 1573 // wait for all banks to be precharged, at which point the 1574 // power state machine will transition to the idle state, and 1575 // automatically move to a refresh, at that point it will also 1576 // call this method to get the refresh event loop going again 1577 return; 1578 } 1579 1580 // last but not least we perform the actual refresh 1581 if (refreshState == REF_RUN) { 1582 // should never get here with any banks active 1583 assert(numBanksActive == 0); 1584 assert(pwrState == PWR_REF); 1585 1586 Tick ref_done_at = curTick() + tRFC; 1587 1588 for (int i = 0; i < ranksPerChannel; i++) { 1589 for (int j = 0; j < banksPerRank; j++) { 1590 banks[i][j].actAllowedAt = ref_done_at; 1591 } 1592 1593 // at the moment this affects all ranks 1594 rankPower[i].powerlib.doCommand(MemCommand::REF, 0, 1595 divCeil(curTick(), tCK) - 1596 timeStampOffset); 1597 1598 // at the moment sort the list of commands and update the counters 1599 // for DRAMPower libray when doing a refresh 1600 sort(rankPower[i].powerlib.cmdList.begin(), 1601 rankPower[i].powerlib.cmdList.end(), DRAMCtrl::sortTime); 1602 1603 // update the counters for DRAMPower, passing false to 1604 // indicate that this is not the last command in the 1605 // list. DRAMPower requires this information for the 1606 // correct calculation of the background energy at the end 1607 // of the simulation. Ideally we would want to call this 1608 // function with true once at the end of the 1609 // simulation. However, the discarded energy is extremly 1610 // small and does not effect the final results. 1611 rankPower[i].powerlib.updateCounters(false); 1612 1613 // call the energy function 1614 rankPower[i].powerlib.calcEnergy(); 1615 1616 // Update the stats 1617 updatePowerStats(i); 1618 1619 DPRINTF(DRAMPower, "%llu,REF,0,%d\n", divCeil(curTick(), tCK) - 1620 timeStampOffset, i); 1621 } 1622 1623 // make sure we did not wait so long that we cannot make up 1624 // for it 1625 if (refreshDueAt + tREFI < ref_done_at) { 1626 fatal("Refresh was delayed so long we cannot catch up\n"); 1627 } 1628 1629 // compensate for the delay in actually performing the refresh 1630 // when scheduling the next one 1631 schedule(refreshEvent, refreshDueAt + tREFI - tRP); 1632 1633 assert(!powerEvent.scheduled()); 1634 1635 // move to the idle power state once the refresh is done, this 1636 // will also move the refresh state machine to the refresh 1637 // idle state 1638 schedulePowerEvent(PWR_IDLE, ref_done_at); 1639 1640 DPRINTF(DRAMState, "Refresh done at %llu and next refresh at %llu\n", 1641 ref_done_at, refreshDueAt + tREFI); 1642 } 1643} 1644 1645void 1646DRAMCtrl::schedulePowerEvent(PowerState pwr_state, Tick tick) 1647{ 1648 // respect causality 1649 assert(tick >= curTick()); 1650 1651 if (!powerEvent.scheduled()) { 1652 DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n", 1653 tick, pwr_state); 1654 1655 // insert the new transition 1656 pwrStateTrans = pwr_state; 1657 1658 schedule(powerEvent, tick); 1659 } else { 1660 panic("Scheduled power event at %llu to state %d, " 1661 "with scheduled event at %llu to %d\n", tick, pwr_state, 1662 powerEvent.when(), pwrStateTrans); 1663 } 1664} 1665 1666void 1667DRAMCtrl::processPowerEvent() 1668{ 1669 // remember where we were, and for how long 1670 Tick duration = curTick() - pwrStateTick; 1671 PowerState prev_state = pwrState; 1672 1673 // update the accounting 1674 pwrStateTime[prev_state] += duration; 1675 1676 pwrState = pwrStateTrans; 1677 pwrStateTick = curTick(); 1678 1679 if (pwrState == PWR_IDLE) { 1680 DPRINTF(DRAMState, "All banks precharged\n"); 1681 1682 // if we were refreshing, make sure we start scheduling requests again 1683 if (prev_state == PWR_REF) { 1684 DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration); 1685 assert(pwrState == PWR_IDLE); 1686 1687 // kick things into action again 1688 refreshState = REF_IDLE; 1689 assert(!nextReqEvent.scheduled()); 1690 schedule(nextReqEvent, curTick()); 1691 } else { 1692 assert(prev_state == PWR_ACT); 1693 1694 // if we have a pending refresh, and are now moving to 1695 // the idle state, direclty transition to a refresh 1696 if (refreshState == REF_RUN) { 1697 // there should be nothing waiting at this point 1698 assert(!powerEvent.scheduled()); 1699 1700 // update the state in zero time and proceed below 1701 pwrState = PWR_REF; 1702 } 1703 } 1704 } 1705 1706 // we transition to the refresh state, let the refresh state 1707 // machine know of this state update and let it deal with the 1708 // scheduling of the next power state transition as well as the 1709 // following refresh 1710 if (pwrState == PWR_REF) { 1711 DPRINTF(DRAMState, "Refreshing\n"); 1712 // kick the refresh event loop into action again, and that 1713 // in turn will schedule a transition to the idle power 1714 // state once the refresh is done 1715 assert(refreshState == REF_RUN); 1716 processRefreshEvent(); 1717 } 1718} 1719 1720void 1721DRAMCtrl::updatePowerStats(uint8_t rank) 1722{ 1723 // Get the energy and power from DRAMPower 1724 Data::MemoryPowerModel::Energy energy = 1725 rankPower[rank].powerlib.getEnergy(); 1726 Data::MemoryPowerModel::Power power = 1727 rankPower[rank].powerlib.getPower(); 1728 1729 actEnergy[rank] = energy.act_energy * devicesPerRank; 1730 preEnergy[rank] = energy.pre_energy * devicesPerRank; 1731 readEnergy[rank] = energy.read_energy * devicesPerRank; 1732 writeEnergy[rank] = energy.write_energy * devicesPerRank; 1733 refreshEnergy[rank] = energy.ref_energy * devicesPerRank; 1734 actBackEnergy[rank] = energy.act_stdby_energy * devicesPerRank; 1735 preBackEnergy[rank] = energy.pre_stdby_energy * devicesPerRank; 1736 totalEnergy[rank] = energy.total_energy * devicesPerRank; 1737 averagePower[rank] = power.average_power * devicesPerRank; 1738} 1739 1740void 1741DRAMCtrl::regStats() 1742{ 1743 using namespace Stats; 1744 1745 AbstractMemory::regStats(); 1746 1747 readReqs 1748 .name(name() + ".readReqs") 1749 .desc("Number of read requests accepted"); 1750 1751 writeReqs 1752 .name(name() + ".writeReqs") 1753 .desc("Number of write requests accepted"); 1754 1755 readBursts 1756 .name(name() + ".readBursts") 1757 .desc("Number of DRAM read bursts, " 1758 "including those serviced by the write queue"); 1759 1760 writeBursts 1761 .name(name() + ".writeBursts") 1762 .desc("Number of DRAM write bursts, " 1763 "including those merged in the write queue"); 1764 1765 servicedByWrQ 1766 .name(name() + ".servicedByWrQ") 1767 .desc("Number of DRAM read bursts serviced by the write queue"); 1768 1769 mergedWrBursts 1770 .name(name() + ".mergedWrBursts") 1771 .desc("Number of DRAM write bursts merged with an existing one"); 1772 1773 neitherReadNorWrite 1774 .name(name() + ".neitherReadNorWriteReqs") 1775 .desc("Number of requests that are neither read nor write"); 1776 1777 perBankRdBursts 1778 .init(banksPerRank * ranksPerChannel) 1779 .name(name() + ".perBankRdBursts") 1780 .desc("Per bank write bursts"); 1781 1782 perBankWrBursts 1783 .init(banksPerRank * ranksPerChannel) 1784 .name(name() + ".perBankWrBursts") 1785 .desc("Per bank write bursts"); 1786 1787 avgRdQLen 1788 .name(name() + ".avgRdQLen") 1789 .desc("Average read queue length when enqueuing") 1790 .precision(2); 1791 1792 avgWrQLen 1793 .name(name() + ".avgWrQLen") 1794 .desc("Average write queue length when enqueuing") 1795 .precision(2); 1796 1797 totQLat 1798 .name(name() + ".totQLat") 1799 .desc("Total ticks spent queuing"); 1800 1801 totBusLat 1802 .name(name() + ".totBusLat") 1803 .desc("Total ticks spent in databus transfers"); 1804 1805 totMemAccLat 1806 .name(name() + ".totMemAccLat") 1807 .desc("Total ticks spent from burst creation until serviced " 1808 "by the DRAM"); 1809 1810 avgQLat 1811 .name(name() + ".avgQLat") 1812 .desc("Average queueing delay per DRAM burst") 1813 .precision(2); 1814 1815 avgQLat = totQLat / (readBursts - servicedByWrQ); 1816 1817 avgBusLat 1818 .name(name() + ".avgBusLat") 1819 .desc("Average bus latency per DRAM burst") 1820 .precision(2); 1821 1822 avgBusLat = totBusLat / (readBursts - servicedByWrQ); 1823 1824 avgMemAccLat 1825 .name(name() + ".avgMemAccLat") 1826 .desc("Average memory access latency per DRAM burst") 1827 .precision(2); 1828 1829 avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ); 1830 1831 numRdRetry 1832 .name(name() + ".numRdRetry") 1833 .desc("Number of times read queue was full causing retry"); 1834 1835 numWrRetry 1836 .name(name() + ".numWrRetry") 1837 .desc("Number of times write queue was full causing retry"); 1838 1839 readRowHits 1840 .name(name() + ".readRowHits") 1841 .desc("Number of row buffer hits during reads"); 1842 1843 writeRowHits 1844 .name(name() + ".writeRowHits") 1845 .desc("Number of row buffer hits during writes"); 1846 1847 readRowHitRate 1848 .name(name() + ".readRowHitRate") 1849 .desc("Row buffer hit rate for reads") 1850 .precision(2); 1851 1852 readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100; 1853 1854 writeRowHitRate 1855 .name(name() + ".writeRowHitRate") 1856 .desc("Row buffer hit rate for writes") 1857 .precision(2); 1858 1859 writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100; 1860 1861 readPktSize 1862 .init(ceilLog2(burstSize) + 1) 1863 .name(name() + ".readPktSize") 1864 .desc("Read request sizes (log2)"); 1865 1866 writePktSize 1867 .init(ceilLog2(burstSize) + 1) 1868 .name(name() + ".writePktSize") 1869 .desc("Write request sizes (log2)"); 1870 1871 rdQLenPdf 1872 .init(readBufferSize) 1873 .name(name() + ".rdQLenPdf") 1874 .desc("What read queue length does an incoming req see"); 1875 1876 wrQLenPdf 1877 .init(writeBufferSize) 1878 .name(name() + ".wrQLenPdf") 1879 .desc("What write queue length does an incoming req see"); 1880 1881 bytesPerActivate 1882 .init(maxAccessesPerRow) 1883 .name(name() + ".bytesPerActivate") 1884 .desc("Bytes accessed per row activation") 1885 .flags(nozero); 1886 1887 rdPerTurnAround 1888 .init(readBufferSize) 1889 .name(name() + ".rdPerTurnAround") 1890 .desc("Reads before turning the bus around for writes") 1891 .flags(nozero); 1892 1893 wrPerTurnAround 1894 .init(writeBufferSize) 1895 .name(name() + ".wrPerTurnAround") 1896 .desc("Writes before turning the bus around for reads") 1897 .flags(nozero); 1898 1899 bytesReadDRAM 1900 .name(name() + ".bytesReadDRAM") 1901 .desc("Total number of bytes read from DRAM"); 1902 1903 bytesReadWrQ 1904 .name(name() + ".bytesReadWrQ") 1905 .desc("Total number of bytes read from write queue"); 1906 1907 bytesWritten 1908 .name(name() + ".bytesWritten") 1909 .desc("Total number of bytes written to DRAM"); 1910 1911 bytesReadSys 1912 .name(name() + ".bytesReadSys") 1913 .desc("Total read bytes from the system interface side"); 1914 1915 bytesWrittenSys 1916 .name(name() + ".bytesWrittenSys") 1917 .desc("Total written bytes from the system interface side"); 1918 1919 avgRdBW 1920 .name(name() + ".avgRdBW") 1921 .desc("Average DRAM read bandwidth in MiByte/s") 1922 .precision(2); 1923 1924 avgRdBW = (bytesReadDRAM / 1000000) / simSeconds; 1925 1926 avgWrBW 1927 .name(name() + ".avgWrBW") 1928 .desc("Average achieved write bandwidth in MiByte/s") 1929 .precision(2); 1930 1931 avgWrBW = (bytesWritten / 1000000) / simSeconds; 1932 1933 avgRdBWSys 1934 .name(name() + ".avgRdBWSys") 1935 .desc("Average system read bandwidth in MiByte/s") 1936 .precision(2); 1937 1938 avgRdBWSys = (bytesReadSys / 1000000) / simSeconds; 1939 1940 avgWrBWSys 1941 .name(name() + ".avgWrBWSys") 1942 .desc("Average system write bandwidth in MiByte/s") 1943 .precision(2); 1944 1945 avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds; 1946 1947 peakBW 1948 .name(name() + ".peakBW") 1949 .desc("Theoretical peak bandwidth in MiByte/s") 1950 .precision(2); 1951 1952 peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000; 1953 1954 busUtil 1955 .name(name() + ".busUtil") 1956 .desc("Data bus utilization in percentage") 1957 .precision(2); 1958 1959 busUtil = (avgRdBW + avgWrBW) / peakBW * 100; 1960 1961 totGap 1962 .name(name() + ".totGap") 1963 .desc("Total gap between requests"); 1964 1965 avgGap 1966 .name(name() + ".avgGap") 1967 .desc("Average gap between requests") 1968 .precision(2); 1969 1970 avgGap = totGap / (readReqs + writeReqs); 1971 1972 // Stats for DRAM Power calculation based on Micron datasheet 1973 busUtilRead 1974 .name(name() + ".busUtilRead") 1975 .desc("Data bus utilization in percentage for reads") 1976 .precision(2); 1977 1978 busUtilRead = avgRdBW / peakBW * 100; 1979 1980 busUtilWrite 1981 .name(name() + ".busUtilWrite") 1982 .desc("Data bus utilization in percentage for writes") 1983 .precision(2); 1984 1985 busUtilWrite = avgWrBW / peakBW * 100; 1986 1987 pageHitRate 1988 .name(name() + ".pageHitRate") 1989 .desc("Row buffer hit rate, read and write combined") 1990 .precision(2); 1991 1992 pageHitRate = (writeRowHits + readRowHits) / 1993 (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100; 1994 1995 pwrStateTime 1996 .init(5) 1997 .name(name() + ".memoryStateTime") 1998 .desc("Time in different power states"); 1999 pwrStateTime.subname(0, "IDLE"); 2000 pwrStateTime.subname(1, "REF"); 2001 pwrStateTime.subname(2, "PRE_PDN"); 2002 pwrStateTime.subname(3, "ACT"); 2003 pwrStateTime.subname(4, "ACT_PDN"); 2004 2005 actEnergy 2006 .init(ranksPerChannel) 2007 .name(name() + ".actEnergy") 2008 .desc("Energy for activate commands per rank (pJ)"); 2009 2010 preEnergy 2011 .init(ranksPerChannel) 2012 .name(name() + ".preEnergy") 2013 .desc("Energy for precharge commands per rank (pJ)"); 2014 2015 readEnergy 2016 .init(ranksPerChannel) 2017 .name(name() + ".readEnergy") 2018 .desc("Energy for read commands per rank (pJ)"); 2019 2020 writeEnergy 2021 .init(ranksPerChannel) 2022 .name(name() + ".writeEnergy") 2023 .desc("Energy for write commands per rank (pJ)"); 2024 2025 refreshEnergy 2026 .init(ranksPerChannel) 2027 .name(name() + ".refreshEnergy") 2028 .desc("Energy for refresh commands per rank (pJ)"); 2029 2030 actBackEnergy 2031 .init(ranksPerChannel) 2032 .name(name() + ".actBackEnergy") 2033 .desc("Energy for active background per rank (pJ)"); 2034 2035 preBackEnergy 2036 .init(ranksPerChannel) 2037 .name(name() + ".preBackEnergy") 2038 .desc("Energy for precharge background per rank (pJ)"); 2039 2040 totalEnergy 2041 .init(ranksPerChannel) 2042 .name(name() + ".totalEnergy") 2043 .desc("Total energy per rank (pJ)"); 2044 2045 averagePower 2046 .init(ranksPerChannel) 2047 .name(name() + ".averagePower") 2048 .desc("Core power per rank (mW)"); 2049} 2050 2051void 2052DRAMCtrl::recvFunctional(PacketPtr pkt) 2053{ 2054 // rely on the abstract memory 2055 functionalAccess(pkt); 2056} 2057 2058BaseSlavePort& 2059DRAMCtrl::getSlavePort(const string &if_name, PortID idx) 2060{ 2061 if (if_name != "port") { 2062 return MemObject::getSlavePort(if_name, idx); 2063 } else { 2064 return port; 2065 } 2066} 2067 2068unsigned int 2069DRAMCtrl::drain(DrainManager *dm) 2070{ 2071 unsigned int count = port.drain(dm); 2072 2073 // if there is anything in any of our internal queues, keep track 2074 // of that as well 2075 if (!(writeQueue.empty() && readQueue.empty() && 2076 respQueue.empty())) { 2077 DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d," 2078 " resp: %d\n", writeQueue.size(), readQueue.size(), 2079 respQueue.size()); 2080 ++count; 2081 drainManager = dm; 2082 2083 // the only part that is not drained automatically over time 2084 // is the write queue, thus kick things into action if needed 2085 if (!writeQueue.empty() && !nextReqEvent.scheduled()) { 2086 schedule(nextReqEvent, curTick()); 2087 } 2088 } 2089 2090 if (count) 2091 setDrainState(Drainable::Draining); 2092 else 2093 setDrainState(Drainable::Drained); 2094 return count; 2095} 2096 2097DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory) 2098 : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this), 2099 memory(_memory) 2100{ } 2101 2102AddrRangeList 2103DRAMCtrl::MemoryPort::getAddrRanges() const 2104{ 2105 AddrRangeList ranges; 2106 ranges.push_back(memory.getAddrRange()); 2107 return ranges; 2108} 2109 2110void 2111DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt) 2112{ 2113 pkt->pushLabel(memory.name()); 2114 2115 if (!queue.checkFunctional(pkt)) { 2116 // Default implementation of SimpleTimingPort::recvFunctional() 2117 // calls recvAtomic() and throws away the latency; we can save a 2118 // little here by just not calculating the latency. 2119 memory.recvFunctional(pkt); 2120 } 2121 2122 pkt->popLabel(); 2123} 2124 2125Tick 2126DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt) 2127{ 2128 return memory.recvAtomic(pkt); 2129} 2130 2131bool 2132DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt) 2133{ 2134 // pass it to the memory controller 2135 return memory.recvTimingReq(pkt); 2136} 2137 2138DRAMCtrl* 2139DRAMCtrlParams::create() 2140{ 2141 return new DRAMCtrl(this); 2142} 2143