dram_ctrl.cc revision 10432:da98b90b5df0
1/* 2 * Copyright (c) 2010-2014 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2013 Amin Farmahini-Farahani 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Andreas Hansson 41 * Ani Udipi 42 * Neha Agarwal 43 */ 44 45#include "base/bitfield.hh" 46#include "base/trace.hh" 47#include "debug/DRAM.hh" 48#include "debug/DRAMPower.hh" 49#include "debug/DRAMState.hh" 50#include "debug/Drain.hh" 51#include "mem/dram_ctrl.hh" 52#include "sim/system.hh" 53 54using namespace std; 55using namespace Data; 56 57DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) : 58 AbstractMemory(p), 59 port(name() + ".port", *this), 60 retryRdReq(false), retryWrReq(false), 61 busState(READ), 62 nextReqEvent(this), respondEvent(this), activateEvent(this), 63 prechargeEvent(this), refreshEvent(this), powerEvent(this), 64 drainManager(NULL), 65 deviceBusWidth(p->device_bus_width), burstLength(p->burst_length), 66 deviceRowBufferSize(p->device_rowbuffer_size), 67 devicesPerRank(p->devices_per_rank), 68 burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8), 69 rowBufferSize(devicesPerRank * deviceRowBufferSize), 70 columnsPerRowBuffer(rowBufferSize / burstSize), 71 columnsPerStripe(range.granularity() / burstSize), 72 ranksPerChannel(p->ranks_per_channel), 73 bankGroupsPerRank(p->bank_groups_per_rank), 74 bankGroupArch(p->bank_groups_per_rank > 0), 75 banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0), 76 readBufferSize(p->read_buffer_size), 77 writeBufferSize(p->write_buffer_size), 78 writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0), 79 writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0), 80 minWritesPerSwitch(p->min_writes_per_switch), 81 writesThisTime(0), readsThisTime(0), 82 tCK(p->tCK), tWTR(p->tWTR), tRTW(p->tRTW), tCS(p->tCS), tBURST(p->tBURST), 83 tCCD_L(p->tCCD_L), tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS), 84 tWR(p->tWR), tRTP(p->tRTP), tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD), 85 tRRD_L(p->tRRD_L), tXAW(p->tXAW), activationLimit(p->activation_limit), 86 memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping), 87 pageMgmt(p->page_policy), 88 maxAccessesPerRow(p->max_accesses_per_row), 89 frontendLatency(p->static_frontend_latency), 90 backendLatency(p->static_backend_latency), 91 busBusyUntil(0), refreshDueAt(0), refreshState(REF_IDLE), 92 pwrStateTrans(PWR_IDLE), pwrState(PWR_IDLE), prevArrival(0), 93 nextReqTime(0), pwrStateTick(0), numBanksActive(0), 94 activeRank(0), timeStampOffset(0) 95{ 96 // create the bank states based on the dimensions of the ranks and 97 // banks 98 banks.resize(ranksPerChannel); 99 100 //create list of drampower objects. For each rank 1 drampower instance. 101 for (int i = 0; i < ranksPerChannel; i++) { 102 DRAMPower drampower = DRAMPower(p, false); 103 rankPower.emplace_back(drampower); 104 } 105 106 actTicks.resize(ranksPerChannel); 107 for (size_t c = 0; c < ranksPerChannel; ++c) { 108 banks[c].resize(banksPerRank); 109 actTicks[c].resize(activationLimit, 0); 110 } 111 112 // set the bank indices 113 for (int r = 0; r < ranksPerChannel; r++) { 114 for (int b = 0; b < banksPerRank; b++) { 115 banks[r][b].rank = r; 116 banks[r][b].bank = b; 117 if (bankGroupArch) { 118 // Simply assign lower bits to bank group in order to 119 // rotate across bank groups as banks are incremented 120 // e.g. with 4 banks per bank group and 16 banks total: 121 // banks 0,4,8,12 are in bank group 0 122 // banks 1,5,9,13 are in bank group 1 123 // banks 2,6,10,14 are in bank group 2 124 // banks 3,7,11,15 are in bank group 3 125 banks[r][b].bankgr = b % bankGroupsPerRank; 126 } else { 127 // No bank groups; simply assign to bank number 128 banks[r][b].bankgr = b; 129 } 130 } 131 } 132 133 // perform a basic check of the write thresholds 134 if (p->write_low_thresh_perc >= p->write_high_thresh_perc) 135 fatal("Write buffer low threshold %d must be smaller than the " 136 "high threshold %d\n", p->write_low_thresh_perc, 137 p->write_high_thresh_perc); 138 139 // determine the rows per bank by looking at the total capacity 140 uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size()); 141 142 DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity, 143 AbstractMemory::size()); 144 145 DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n", 146 rowBufferSize, columnsPerRowBuffer); 147 148 rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel); 149 150 // a bit of sanity checks on the interleaving 151 if (range.interleaved()) { 152 if (channels != range.stripes()) 153 fatal("%s has %d interleaved address stripes but %d channel(s)\n", 154 name(), range.stripes(), channels); 155 156 if (addrMapping == Enums::RoRaBaChCo) { 157 if (rowBufferSize != range.granularity()) { 158 fatal("Channel interleaving of %s doesn't match RoRaBaChCo " 159 "address map\n", name()); 160 } 161 } else if (addrMapping == Enums::RoRaBaCoCh || 162 addrMapping == Enums::RoCoRaBaCh) { 163 // for the interleavings with channel bits in the bottom, 164 // if the system uses a channel striping granularity that 165 // is larger than the DRAM burst size, then map the 166 // sequential accesses within a stripe to a number of 167 // columns in the DRAM, effectively placing some of the 168 // lower-order column bits as the least-significant bits 169 // of the address (above the ones denoting the burst size) 170 assert(columnsPerStripe >= 1); 171 172 // channel striping has to be done at a granularity that 173 // is equal or larger to a cache line 174 if (system()->cacheLineSize() > range.granularity()) { 175 fatal("Channel interleaving of %s must be at least as large " 176 "as the cache line size\n", name()); 177 } 178 179 // ...and equal or smaller than the row-buffer size 180 if (rowBufferSize < range.granularity()) { 181 fatal("Channel interleaving of %s must be at most as large " 182 "as the row-buffer size\n", name()); 183 } 184 // this is essentially the check above, so just to be sure 185 assert(columnsPerStripe <= columnsPerRowBuffer); 186 } 187 } 188 189 // some basic sanity checks 190 if (tREFI <= tRP || tREFI <= tRFC) { 191 fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n", 192 tREFI, tRP, tRFC); 193 } 194 195 // basic bank group architecture checks -> 196 if (bankGroupArch) { 197 // must have at least one bank per bank group 198 if (bankGroupsPerRank > banksPerRank) { 199 fatal("banks per rank (%d) must be equal to or larger than " 200 "banks groups per rank (%d)\n", 201 banksPerRank, bankGroupsPerRank); 202 } 203 // must have same number of banks in each bank group 204 if ((banksPerRank % bankGroupsPerRank) != 0) { 205 fatal("Banks per rank (%d) must be evenly divisible by bank groups " 206 "per rank (%d) for equal banks per bank group\n", 207 banksPerRank, bankGroupsPerRank); 208 } 209 // tCCD_L should be greater than minimal, back-to-back burst delay 210 if (tCCD_L <= tBURST) { 211 fatal("tCCD_L (%d) should be larger than tBURST (%d) when " 212 "bank groups per rank (%d) is greater than 1\n", 213 tCCD_L, tBURST, bankGroupsPerRank); 214 } 215 // tRRD_L is greater than minimal, same bank group ACT-to-ACT delay 216 if (tRRD_L <= tRRD) { 217 fatal("tRRD_L (%d) should be larger than tRRD (%d) when " 218 "bank groups per rank (%d) is greater than 1\n", 219 tRRD_L, tRRD, bankGroupsPerRank); 220 } 221 } 222 223} 224 225void 226DRAMCtrl::init() 227{ 228 if (!port.isConnected()) { 229 fatal("DRAMCtrl %s is unconnected!\n", name()); 230 } else { 231 port.sendRangeChange(); 232 } 233} 234 235void 236DRAMCtrl::startup() 237{ 238 // timestamp offset should be in clock cycles for DRAMPower 239 timeStampOffset = divCeil(curTick(), tCK); 240 // update the start tick for the precharge accounting to the 241 // current tick 242 pwrStateTick = curTick(); 243 244 // shift the bus busy time sufficiently far ahead that we never 245 // have to worry about negative values when computing the time for 246 // the next request, this will add an insignificant bubble at the 247 // start of simulation 248 busBusyUntil = curTick() + tRP + tRCD + tCL; 249 250 // kick off the refresh, and give ourselves enough time to 251 // precharge 252 schedule(refreshEvent, curTick() + tREFI - tRP); 253} 254 255Tick 256DRAMCtrl::recvAtomic(PacketPtr pkt) 257{ 258 DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr()); 259 260 // do the actual memory access and turn the packet into a response 261 access(pkt); 262 263 Tick latency = 0; 264 if (!pkt->memInhibitAsserted() && pkt->hasData()) { 265 // this value is not supposed to be accurate, just enough to 266 // keep things going, mimic a closed page 267 latency = tRP + tRCD + tCL; 268 } 269 return latency; 270} 271 272bool 273DRAMCtrl::readQueueFull(unsigned int neededEntries) const 274{ 275 DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n", 276 readBufferSize, readQueue.size() + respQueue.size(), 277 neededEntries); 278 279 return 280 (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize; 281} 282 283bool 284DRAMCtrl::writeQueueFull(unsigned int neededEntries) const 285{ 286 DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n", 287 writeBufferSize, writeQueue.size(), neededEntries); 288 return (writeQueue.size() + neededEntries) > writeBufferSize; 289} 290 291DRAMCtrl::DRAMPacket* 292DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size, 293 bool isRead) 294{ 295 // decode the address based on the address mapping scheme, with 296 // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and 297 // channel, respectively 298 uint8_t rank; 299 uint8_t bank; 300 // use a 64-bit unsigned during the computations as the row is 301 // always the top bits, and check before creating the DRAMPacket 302 uint64_t row; 303 304 // truncate the address to a DRAM burst, which makes it unique to 305 // a specific column, row, bank, rank and channel 306 Addr addr = dramPktAddr / burstSize; 307 308 // we have removed the lowest order address bits that denote the 309 // position within the column 310 if (addrMapping == Enums::RoRaBaChCo) { 311 // the lowest order bits denote the column to ensure that 312 // sequential cache lines occupy the same row 313 addr = addr / columnsPerRowBuffer; 314 315 // take out the channel part of the address 316 addr = addr / channels; 317 318 // after the channel bits, get the bank bits to interleave 319 // over the banks 320 bank = addr % banksPerRank; 321 addr = addr / banksPerRank; 322 323 // after the bank, we get the rank bits which thus interleaves 324 // over the ranks 325 rank = addr % ranksPerChannel; 326 addr = addr / ranksPerChannel; 327 328 // lastly, get the row bits 329 row = addr % rowsPerBank; 330 addr = addr / rowsPerBank; 331 } else if (addrMapping == Enums::RoRaBaCoCh) { 332 // take out the lower-order column bits 333 addr = addr / columnsPerStripe; 334 335 // take out the channel part of the address 336 addr = addr / channels; 337 338 // next, the higher-order column bites 339 addr = addr / (columnsPerRowBuffer / columnsPerStripe); 340 341 // after the column bits, we get the bank bits to interleave 342 // over the banks 343 bank = addr % banksPerRank; 344 addr = addr / banksPerRank; 345 346 // after the bank, we get the rank bits which thus interleaves 347 // over the ranks 348 rank = addr % ranksPerChannel; 349 addr = addr / ranksPerChannel; 350 351 // lastly, get the row bits 352 row = addr % rowsPerBank; 353 addr = addr / rowsPerBank; 354 } else if (addrMapping == Enums::RoCoRaBaCh) { 355 // optimise for closed page mode and utilise maximum 356 // parallelism of the DRAM (at the cost of power) 357 358 // take out the lower-order column bits 359 addr = addr / columnsPerStripe; 360 361 // take out the channel part of the address, not that this has 362 // to match with how accesses are interleaved between the 363 // controllers in the address mapping 364 addr = addr / channels; 365 366 // start with the bank bits, as this provides the maximum 367 // opportunity for parallelism between requests 368 bank = addr % banksPerRank; 369 addr = addr / banksPerRank; 370 371 // next get the rank bits 372 rank = addr % ranksPerChannel; 373 addr = addr / ranksPerChannel; 374 375 // next, the higher-order column bites 376 addr = addr / (columnsPerRowBuffer / columnsPerStripe); 377 378 // lastly, get the row bits 379 row = addr % rowsPerBank; 380 addr = addr / rowsPerBank; 381 } else 382 panic("Unknown address mapping policy chosen!"); 383 384 assert(rank < ranksPerChannel); 385 assert(bank < banksPerRank); 386 assert(row < rowsPerBank); 387 assert(row < Bank::NO_ROW); 388 389 DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n", 390 dramPktAddr, rank, bank, row); 391 392 // create the corresponding DRAM packet with the entry time and 393 // ready time set to the current tick, the latter will be updated 394 // later 395 uint16_t bank_id = banksPerRank * rank + bank; 396 return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr, 397 size, banks[rank][bank]); 398} 399 400void 401DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount) 402{ 403 // only add to the read queue here. whenever the request is 404 // eventually done, set the readyTime, and call schedule() 405 assert(!pkt->isWrite()); 406 407 assert(pktCount != 0); 408 409 // if the request size is larger than burst size, the pkt is split into 410 // multiple DRAM packets 411 // Note if the pkt starting address is not aligened to burst size, the 412 // address of first DRAM packet is kept unaliged. Subsequent DRAM packets 413 // are aligned to burst size boundaries. This is to ensure we accurately 414 // check read packets against packets in write queue. 415 Addr addr = pkt->getAddr(); 416 unsigned pktsServicedByWrQ = 0; 417 BurstHelper* burst_helper = NULL; 418 for (int cnt = 0; cnt < pktCount; ++cnt) { 419 unsigned size = std::min((addr | (burstSize - 1)) + 1, 420 pkt->getAddr() + pkt->getSize()) - addr; 421 readPktSize[ceilLog2(size)]++; 422 readBursts++; 423 424 // First check write buffer to see if the data is already at 425 // the controller 426 bool foundInWrQ = false; 427 for (auto i = writeQueue.begin(); i != writeQueue.end(); ++i) { 428 // check if the read is subsumed in the write entry we are 429 // looking at 430 if ((*i)->addr <= addr && 431 (addr + size) <= ((*i)->addr + (*i)->size)) { 432 foundInWrQ = true; 433 servicedByWrQ++; 434 pktsServicedByWrQ++; 435 DPRINTF(DRAM, "Read to addr %lld with size %d serviced by " 436 "write queue\n", addr, size); 437 bytesReadWrQ += burstSize; 438 break; 439 } 440 } 441 442 // If not found in the write q, make a DRAM packet and 443 // push it onto the read queue 444 if (!foundInWrQ) { 445 446 // Make the burst helper for split packets 447 if (pktCount > 1 && burst_helper == NULL) { 448 DPRINTF(DRAM, "Read to addr %lld translates to %d " 449 "dram requests\n", pkt->getAddr(), pktCount); 450 burst_helper = new BurstHelper(pktCount); 451 } 452 453 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true); 454 dram_pkt->burstHelper = burst_helper; 455 456 assert(!readQueueFull(1)); 457 rdQLenPdf[readQueue.size() + respQueue.size()]++; 458 459 DPRINTF(DRAM, "Adding to read queue\n"); 460 461 readQueue.push_back(dram_pkt); 462 463 // Update stats 464 avgRdQLen = readQueue.size() + respQueue.size(); 465 } 466 467 // Starting address of next dram pkt (aligend to burstSize boundary) 468 addr = (addr | (burstSize - 1)) + 1; 469 } 470 471 // If all packets are serviced by write queue, we send the repsonse back 472 if (pktsServicedByWrQ == pktCount) { 473 accessAndRespond(pkt, frontendLatency); 474 return; 475 } 476 477 // Update how many split packets are serviced by write queue 478 if (burst_helper != NULL) 479 burst_helper->burstsServiced = pktsServicedByWrQ; 480 481 // If we are not already scheduled to get a request out of the 482 // queue, do so now 483 if (!nextReqEvent.scheduled()) { 484 DPRINTF(DRAM, "Request scheduled immediately\n"); 485 schedule(nextReqEvent, curTick()); 486 } 487} 488 489void 490DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount) 491{ 492 // only add to the write queue here. whenever the request is 493 // eventually done, set the readyTime, and call schedule() 494 assert(pkt->isWrite()); 495 496 // if the request size is larger than burst size, the pkt is split into 497 // multiple DRAM packets 498 Addr addr = pkt->getAddr(); 499 for (int cnt = 0; cnt < pktCount; ++cnt) { 500 unsigned size = std::min((addr | (burstSize - 1)) + 1, 501 pkt->getAddr() + pkt->getSize()) - addr; 502 writePktSize[ceilLog2(size)]++; 503 writeBursts++; 504 505 // see if we can merge with an existing item in the write 506 // queue and keep track of whether we have merged or not so we 507 // can stop at that point and also avoid enqueueing a new 508 // request 509 bool merged = false; 510 auto w = writeQueue.begin(); 511 512 while(!merged && w != writeQueue.end()) { 513 // either of the two could be first, if they are the same 514 // it does not matter which way we go 515 if ((*w)->addr >= addr) { 516 // the existing one starts after the new one, figure 517 // out where the new one ends with respect to the 518 // existing one 519 if ((addr + size) >= ((*w)->addr + (*w)->size)) { 520 // check if the existing one is completely 521 // subsumed in the new one 522 DPRINTF(DRAM, "Merging write covering existing burst\n"); 523 merged = true; 524 // update both the address and the size 525 (*w)->addr = addr; 526 (*w)->size = size; 527 } else if ((addr + size) >= (*w)->addr && 528 ((*w)->addr + (*w)->size - addr) <= burstSize) { 529 // the new one is just before or partially 530 // overlapping with the existing one, and together 531 // they fit within a burst 532 DPRINTF(DRAM, "Merging write before existing burst\n"); 533 merged = true; 534 // the existing queue item needs to be adjusted with 535 // respect to both address and size 536 (*w)->size = (*w)->addr + (*w)->size - addr; 537 (*w)->addr = addr; 538 } 539 } else { 540 // the new one starts after the current one, figure 541 // out where the existing one ends with respect to the 542 // new one 543 if (((*w)->addr + (*w)->size) >= (addr + size)) { 544 // check if the new one is completely subsumed in the 545 // existing one 546 DPRINTF(DRAM, "Merging write into existing burst\n"); 547 merged = true; 548 // no adjustments necessary 549 } else if (((*w)->addr + (*w)->size) >= addr && 550 (addr + size - (*w)->addr) <= burstSize) { 551 // the existing one is just before or partially 552 // overlapping with the new one, and together 553 // they fit within a burst 554 DPRINTF(DRAM, "Merging write after existing burst\n"); 555 merged = true; 556 // the address is right, and only the size has 557 // to be adjusted 558 (*w)->size = addr + size - (*w)->addr; 559 } 560 } 561 ++w; 562 } 563 564 // if the item was not merged we need to create a new write 565 // and enqueue it 566 if (!merged) { 567 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false); 568 569 assert(writeQueue.size() < writeBufferSize); 570 wrQLenPdf[writeQueue.size()]++; 571 572 DPRINTF(DRAM, "Adding to write queue\n"); 573 574 writeQueue.push_back(dram_pkt); 575 576 // Update stats 577 avgWrQLen = writeQueue.size(); 578 } else { 579 // keep track of the fact that this burst effectively 580 // disappeared as it was merged with an existing one 581 mergedWrBursts++; 582 } 583 584 // Starting address of next dram pkt (aligend to burstSize boundary) 585 addr = (addr | (burstSize - 1)) + 1; 586 } 587 588 // we do not wait for the writes to be send to the actual memory, 589 // but instead take responsibility for the consistency here and 590 // snoop the write queue for any upcoming reads 591 // @todo, if a pkt size is larger than burst size, we might need a 592 // different front end latency 593 accessAndRespond(pkt, frontendLatency); 594 595 // If we are not already scheduled to get a request out of the 596 // queue, do so now 597 if (!nextReqEvent.scheduled()) { 598 DPRINTF(DRAM, "Request scheduled immediately\n"); 599 schedule(nextReqEvent, curTick()); 600 } 601} 602 603void 604DRAMCtrl::printQs() const { 605 DPRINTF(DRAM, "===READ QUEUE===\n\n"); 606 for (auto i = readQueue.begin() ; i != readQueue.end() ; ++i) { 607 DPRINTF(DRAM, "Read %lu\n", (*i)->addr); 608 } 609 DPRINTF(DRAM, "\n===RESP QUEUE===\n\n"); 610 for (auto i = respQueue.begin() ; i != respQueue.end() ; ++i) { 611 DPRINTF(DRAM, "Response %lu\n", (*i)->addr); 612 } 613 DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n"); 614 for (auto i = writeQueue.begin() ; i != writeQueue.end() ; ++i) { 615 DPRINTF(DRAM, "Write %lu\n", (*i)->addr); 616 } 617} 618 619bool 620DRAMCtrl::recvTimingReq(PacketPtr pkt) 621{ 622 /// @todo temporary hack to deal with memory corruption issues until 623 /// 4-phase transactions are complete 624 for (int x = 0; x < pendingDelete.size(); x++) 625 delete pendingDelete[x]; 626 pendingDelete.clear(); 627 628 // This is where we enter from the outside world 629 DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n", 630 pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 631 632 // simply drop inhibited packets for now 633 if (pkt->memInhibitAsserted()) { 634 DPRINTF(DRAM, "Inhibited packet -- Dropping it now\n"); 635 pendingDelete.push_back(pkt); 636 return true; 637 } 638 639 // Calc avg gap between requests 640 if (prevArrival != 0) { 641 totGap += curTick() - prevArrival; 642 } 643 prevArrival = curTick(); 644 645 646 // Find out how many dram packets a pkt translates to 647 // If the burst size is equal or larger than the pkt size, then a pkt 648 // translates to only one dram packet. Otherwise, a pkt translates to 649 // multiple dram packets 650 unsigned size = pkt->getSize(); 651 unsigned offset = pkt->getAddr() & (burstSize - 1); 652 unsigned int dram_pkt_count = divCeil(offset + size, burstSize); 653 654 // check local buffers and do not accept if full 655 if (pkt->isRead()) { 656 assert(size != 0); 657 if (readQueueFull(dram_pkt_count)) { 658 DPRINTF(DRAM, "Read queue full, not accepting\n"); 659 // remember that we have to retry this port 660 retryRdReq = true; 661 numRdRetry++; 662 return false; 663 } else { 664 addToReadQueue(pkt, dram_pkt_count); 665 readReqs++; 666 bytesReadSys += size; 667 } 668 } else if (pkt->isWrite()) { 669 assert(size != 0); 670 if (writeQueueFull(dram_pkt_count)) { 671 DPRINTF(DRAM, "Write queue full, not accepting\n"); 672 // remember that we have to retry this port 673 retryWrReq = true; 674 numWrRetry++; 675 return false; 676 } else { 677 addToWriteQueue(pkt, dram_pkt_count); 678 writeReqs++; 679 bytesWrittenSys += size; 680 } 681 } else { 682 DPRINTF(DRAM,"Neither read nor write, ignore timing\n"); 683 neitherReadNorWrite++; 684 accessAndRespond(pkt, 1); 685 } 686 687 return true; 688} 689 690void 691DRAMCtrl::processRespondEvent() 692{ 693 DPRINTF(DRAM, 694 "processRespondEvent(): Some req has reached its readyTime\n"); 695 696 DRAMPacket* dram_pkt = respQueue.front(); 697 698 if (dram_pkt->burstHelper) { 699 // it is a split packet 700 dram_pkt->burstHelper->burstsServiced++; 701 if (dram_pkt->burstHelper->burstsServiced == 702 dram_pkt->burstHelper->burstCount) { 703 // we have now serviced all children packets of a system packet 704 // so we can now respond to the requester 705 // @todo we probably want to have a different front end and back 706 // end latency for split packets 707 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency); 708 delete dram_pkt->burstHelper; 709 dram_pkt->burstHelper = NULL; 710 } 711 } else { 712 // it is not a split packet 713 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency); 714 } 715 716 delete respQueue.front(); 717 respQueue.pop_front(); 718 719 if (!respQueue.empty()) { 720 assert(respQueue.front()->readyTime >= curTick()); 721 assert(!respondEvent.scheduled()); 722 schedule(respondEvent, respQueue.front()->readyTime); 723 } else { 724 // if there is nothing left in any queue, signal a drain 725 if (writeQueue.empty() && readQueue.empty() && 726 drainManager) { 727 drainManager->signalDrainDone(); 728 drainManager = NULL; 729 } 730 } 731 732 // We have made a location in the queue available at this point, 733 // so if there is a read that was forced to wait, retry now 734 if (retryRdReq) { 735 retryRdReq = false; 736 port.sendRetry(); 737 } 738} 739 740void 741DRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue, bool switched_cmd_type) 742{ 743 // This method does the arbitration between requests. The chosen 744 // packet is simply moved to the head of the queue. The other 745 // methods know that this is the place to look. For example, with 746 // FCFS, this method does nothing 747 assert(!queue.empty()); 748 749 if (queue.size() == 1) { 750 DPRINTF(DRAM, "Single request, nothing to do\n"); 751 return; 752 } 753 754 if (memSchedPolicy == Enums::fcfs) { 755 // Do nothing, since the correct request is already head 756 } else if (memSchedPolicy == Enums::frfcfs) { 757 reorderQueue(queue, switched_cmd_type); 758 } else 759 panic("No scheduling policy chosen\n"); 760} 761 762void 763DRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue, bool switched_cmd_type) 764{ 765 // Only determine this when needed 766 uint64_t earliest_banks = 0; 767 768 // Search for row hits first, if no row hit is found then schedule the 769 // packet to one of the earliest banks available 770 bool found_earliest_pkt = false; 771 bool found_prepped_diff_rank_pkt = false; 772 auto selected_pkt_it = queue.begin(); 773 774 for (auto i = queue.begin(); i != queue.end() ; ++i) { 775 DRAMPacket* dram_pkt = *i; 776 const Bank& bank = dram_pkt->bankRef; 777 // Check if it is a row hit 778 if (bank.openRow == dram_pkt->row) { 779 if (dram_pkt->rank == activeRank || switched_cmd_type) { 780 // FCFS within the hits, giving priority to commands 781 // that access the same rank as the previous burst 782 // to minimize bus turnaround delays 783 // Only give rank prioity when command type is not changing 784 DPRINTF(DRAM, "Row buffer hit\n"); 785 selected_pkt_it = i; 786 break; 787 } else if (!found_prepped_diff_rank_pkt) { 788 // found row hit for command on different rank than prev burst 789 selected_pkt_it = i; 790 found_prepped_diff_rank_pkt = true; 791 } 792 } else if (!found_earliest_pkt & !found_prepped_diff_rank_pkt) { 793 // No row hit and 794 // haven't found an entry with a row hit to a new rank 795 if (earliest_banks == 0) 796 // Determine entries with earliest bank prep delay 797 // Function will give priority to commands that access the 798 // same rank as previous burst and can prep the bank seamlessly 799 earliest_banks = minBankPrep(queue, switched_cmd_type); 800 801 // FCFS - Bank is first available bank 802 if (bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) { 803 // Remember the packet to be scheduled to one of the earliest 804 // banks available, FCFS amongst the earliest banks 805 selected_pkt_it = i; 806 found_earliest_pkt = true; 807 } 808 } 809 } 810 811 DRAMPacket* selected_pkt = *selected_pkt_it; 812 queue.erase(selected_pkt_it); 813 queue.push_front(selected_pkt); 814} 815 816void 817DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency) 818{ 819 DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr()); 820 821 bool needsResponse = pkt->needsResponse(); 822 // do the actual memory access which also turns the packet into a 823 // response 824 access(pkt); 825 826 // turn packet around to go back to requester if response expected 827 if (needsResponse) { 828 // access already turned the packet into a response 829 assert(pkt->isResponse()); 830 831 // @todo someone should pay for this 832 pkt->firstWordDelay = pkt->lastWordDelay = 0; 833 834 // queue the packet in the response queue to be sent out after 835 // the static latency has passed 836 port.schedTimingResp(pkt, curTick() + static_latency); 837 } else { 838 // @todo the packet is going to be deleted, and the DRAMPacket 839 // is still having a pointer to it 840 pendingDelete.push_back(pkt); 841 } 842 843 DPRINTF(DRAM, "Done\n"); 844 845 return; 846} 847 848void 849DRAMCtrl::activateBank(Bank& bank, Tick act_tick, uint32_t row) 850{ 851 // get the rank index from the bank 852 uint8_t rank = bank.rank; 853 854 assert(actTicks[rank].size() == activationLimit); 855 856 DPRINTF(DRAM, "Activate at tick %d\n", act_tick); 857 858 // update the open row 859 assert(bank.openRow == Bank::NO_ROW); 860 bank.openRow = row; 861 862 // start counting anew, this covers both the case when we 863 // auto-precharged, and when this access is forced to 864 // precharge 865 bank.bytesAccessed = 0; 866 bank.rowAccesses = 0; 867 868 ++numBanksActive; 869 assert(numBanksActive <= banksPerRank * ranksPerChannel); 870 871 DPRINTF(DRAM, "Activate bank %d, rank %d at tick %lld, now got %d active\n", 872 bank.bank, bank.rank, act_tick, numBanksActive); 873 874 rankPower[bank.rank].powerlib.doCommand(MemCommand::ACT, bank.bank, 875 divCeil(act_tick, tCK) - 876 timeStampOffset); 877 878 DPRINTF(DRAMPower, "%llu,ACT,%d,%d\n", divCeil(act_tick, tCK) - 879 timeStampOffset, bank.bank, bank.rank); 880 881 // The next access has to respect tRAS for this bank 882 bank.preAllowedAt = act_tick + tRAS; 883 884 // Respect the row-to-column command delay 885 bank.colAllowedAt = std::max(act_tick + tRCD, bank.colAllowedAt); 886 887 // start by enforcing tRRD 888 for(int i = 0; i < banksPerRank; i++) { 889 // next activate to any bank in this rank must not happen 890 // before tRRD 891 if (bankGroupArch && (bank.bankgr == banks[rank][i].bankgr)) { 892 // bank group architecture requires longer delays between 893 // ACT commands within the same bank group. Use tRRD_L 894 // in this case 895 banks[rank][i].actAllowedAt = std::max(act_tick + tRRD_L, 896 banks[rank][i].actAllowedAt); 897 } else { 898 // use shorter tRRD value when either 899 // 1) bank group architecture is not supportted 900 // 2) bank is in a different bank group 901 banks[rank][i].actAllowedAt = std::max(act_tick + tRRD, 902 banks[rank][i].actAllowedAt); 903 } 904 } 905 906 // next, we deal with tXAW, if the activation limit is disabled 907 // then we are done 908 if (actTicks[rank].empty()) 909 return; 910 911 // sanity check 912 if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) { 913 panic("Got %d activates in window %d (%llu - %llu) which is smaller " 914 "than %llu\n", activationLimit, act_tick - actTicks[rank].back(), 915 act_tick, actTicks[rank].back(), tXAW); 916 } 917 918 // shift the times used for the book keeping, the last element 919 // (highest index) is the oldest one and hence the lowest value 920 actTicks[rank].pop_back(); 921 922 // record an new activation (in the future) 923 actTicks[rank].push_front(act_tick); 924 925 // cannot activate more than X times in time window tXAW, push the 926 // next one (the X + 1'st activate) to be tXAW away from the 927 // oldest in our window of X 928 if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) { 929 DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate no earlier " 930 "than %llu\n", activationLimit, actTicks[rank].back() + tXAW); 931 for(int j = 0; j < banksPerRank; j++) 932 // next activate must not happen before end of window 933 banks[rank][j].actAllowedAt = 934 std::max(actTicks[rank].back() + tXAW, 935 banks[rank][j].actAllowedAt); 936 } 937 938 // at the point when this activate takes place, make sure we 939 // transition to the active power state 940 if (!activateEvent.scheduled()) 941 schedule(activateEvent, act_tick); 942 else if (activateEvent.when() > act_tick) 943 // move it sooner in time 944 reschedule(activateEvent, act_tick); 945} 946 947void 948DRAMCtrl::processActivateEvent() 949{ 950 // we should transition to the active state as soon as any bank is active 951 if (pwrState != PWR_ACT) 952 // note that at this point numBanksActive could be back at 953 // zero again due to a precharge scheduled in the future 954 schedulePowerEvent(PWR_ACT, curTick()); 955} 956 957void 958DRAMCtrl::prechargeBank(Bank& bank, Tick pre_at, bool trace) 959{ 960 // make sure the bank has an open row 961 assert(bank.openRow != Bank::NO_ROW); 962 963 // sample the bytes per activate here since we are closing 964 // the page 965 bytesPerActivate.sample(bank.bytesAccessed); 966 967 bank.openRow = Bank::NO_ROW; 968 969 // no precharge allowed before this one 970 bank.preAllowedAt = pre_at; 971 972 Tick pre_done_at = pre_at + tRP; 973 974 bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at); 975 976 assert(numBanksActive != 0); 977 --numBanksActive; 978 979 DPRINTF(DRAM, "Precharging bank %d, rank %d at tick %lld, now got " 980 "%d active\n", bank.bank, bank.rank, pre_at, numBanksActive); 981 982 if (trace) { 983 984 rankPower[bank.rank].powerlib.doCommand(MemCommand::PRE, bank.bank, 985 divCeil(pre_at, tCK) - 986 timeStampOffset); 987 DPRINTF(DRAMPower, "%llu,PRE,%d,%d\n", divCeil(pre_at, tCK) - 988 timeStampOffset, bank.bank, bank.rank); 989 } 990 // if we look at the current number of active banks we might be 991 // tempted to think the DRAM is now idle, however this can be 992 // undone by an activate that is scheduled to happen before we 993 // would have reached the idle state, so schedule an event and 994 // rather check once we actually make it to the point in time when 995 // the (last) precharge takes place 996 if (!prechargeEvent.scheduled()) 997 schedule(prechargeEvent, pre_done_at); 998 else if (prechargeEvent.when() < pre_done_at) 999 reschedule(prechargeEvent, pre_done_at); 1000} 1001 1002void 1003DRAMCtrl::processPrechargeEvent() 1004{ 1005 // if we reached zero, then special conditions apply as we track 1006 // if all banks are precharged for the power models 1007 if (numBanksActive == 0) { 1008 // we should transition to the idle state when the last bank 1009 // is precharged 1010 schedulePowerEvent(PWR_IDLE, curTick()); 1011 } 1012} 1013 1014void 1015DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt) 1016{ 1017 DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n", 1018 dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row); 1019 1020 // get the bank 1021 Bank& bank = dram_pkt->bankRef; 1022 1023 // for the state we need to track if it is a row hit or not 1024 bool row_hit = true; 1025 1026 // respect any constraints on the command (e.g. tRCD or tCCD) 1027 Tick cmd_at = std::max(bank.colAllowedAt, curTick()); 1028 1029 // Determine the access latency and update the bank state 1030 if (bank.openRow == dram_pkt->row) { 1031 // nothing to do 1032 } else { 1033 row_hit = false; 1034 1035 // If there is a page open, precharge it. 1036 if (bank.openRow != Bank::NO_ROW) { 1037 prechargeBank(bank, std::max(bank.preAllowedAt, curTick())); 1038 } 1039 1040 // next we need to account for the delay in activating the 1041 // page 1042 Tick act_tick = std::max(bank.actAllowedAt, curTick()); 1043 1044 // Record the activation and deal with all the global timing 1045 // constraints caused be a new activation (tRRD and tXAW) 1046 activateBank(bank, act_tick, dram_pkt->row); 1047 1048 // issue the command as early as possible 1049 cmd_at = bank.colAllowedAt; 1050 } 1051 1052 // we need to wait until the bus is available before we can issue 1053 // the command 1054 cmd_at = std::max(cmd_at, busBusyUntil - tCL); 1055 1056 // update the packet ready time 1057 dram_pkt->readyTime = cmd_at + tCL + tBURST; 1058 1059 // only one burst can use the bus at any one point in time 1060 assert(dram_pkt->readyTime - busBusyUntil >= tBURST); 1061 1062 // update the time for the next read/write burst for each 1063 // bank (add a max with tCCD/tCCD_L here) 1064 Tick cmd_dly; 1065 for(int j = 0; j < ranksPerChannel; j++) { 1066 for(int i = 0; i < banksPerRank; i++) { 1067 // next burst to same bank group in this rank must not happen 1068 // before tCCD_L. Different bank group timing requirement is 1069 // tBURST; Add tCS for different ranks 1070 if (dram_pkt->rank == j) { 1071 if (bankGroupArch && (bank.bankgr == banks[j][i].bankgr)) { 1072 // bank group architecture requires longer delays between 1073 // RD/WR burst commands to the same bank group. 1074 // Use tCCD_L in this case 1075 cmd_dly = tCCD_L; 1076 } else { 1077 // use tBURST (equivalent to tCCD_S), the shorter 1078 // cas-to-cas delay value, when either: 1079 // 1) bank group architecture is not supportted 1080 // 2) bank is in a different bank group 1081 cmd_dly = tBURST; 1082 } 1083 } else { 1084 // different rank is by default in a different bank group 1085 // use tBURST (equivalent to tCCD_S), which is the shorter 1086 // cas-to-cas delay in this case 1087 // Add tCS to account for rank-to-rank bus delay requirements 1088 cmd_dly = tBURST + tCS; 1089 } 1090 banks[j][i].colAllowedAt = std::max(cmd_at + cmd_dly, 1091 banks[j][i].colAllowedAt); 1092 } 1093 } 1094 1095 // Save rank of current access 1096 activeRank = dram_pkt->rank; 1097 1098 // If this is a write, we also need to respect the write recovery 1099 // time before a precharge, in the case of a read, respect the 1100 // read to precharge constraint 1101 bank.preAllowedAt = std::max(bank.preAllowedAt, 1102 dram_pkt->isRead ? cmd_at + tRTP : 1103 dram_pkt->readyTime + tWR); 1104 1105 // increment the bytes accessed and the accesses per row 1106 bank.bytesAccessed += burstSize; 1107 ++bank.rowAccesses; 1108 1109 // if we reached the max, then issue with an auto-precharge 1110 bool auto_precharge = pageMgmt == Enums::close || 1111 bank.rowAccesses == maxAccessesPerRow; 1112 1113 // if we did not hit the limit, we might still want to 1114 // auto-precharge 1115 if (!auto_precharge && 1116 (pageMgmt == Enums::open_adaptive || 1117 pageMgmt == Enums::close_adaptive)) { 1118 // a twist on the open and close page policies: 1119 // 1) open_adaptive page policy does not blindly keep the 1120 // page open, but close it if there are no row hits, and there 1121 // are bank conflicts in the queue 1122 // 2) close_adaptive page policy does not blindly close the 1123 // page, but closes it only if there are no row hits in the queue. 1124 // In this case, only force an auto precharge when there 1125 // are no same page hits in the queue 1126 bool got_more_hits = false; 1127 bool got_bank_conflict = false; 1128 1129 // either look at the read queue or write queue 1130 const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue : 1131 writeQueue; 1132 auto p = queue.begin(); 1133 // make sure we are not considering the packet that we are 1134 // currently dealing with (which is the head of the queue) 1135 ++p; 1136 1137 // keep on looking until we have found required condition or 1138 // reached the end 1139 while (!(got_more_hits && 1140 (got_bank_conflict || pageMgmt == Enums::close_adaptive)) && 1141 p != queue.end()) { 1142 bool same_rank_bank = (dram_pkt->rank == (*p)->rank) && 1143 (dram_pkt->bank == (*p)->bank); 1144 bool same_row = dram_pkt->row == (*p)->row; 1145 got_more_hits |= same_rank_bank && same_row; 1146 got_bank_conflict |= same_rank_bank && !same_row; 1147 ++p; 1148 } 1149 1150 // auto pre-charge when either 1151 // 1) open_adaptive policy, we have not got any more hits, and 1152 // have a bank conflict 1153 // 2) close_adaptive policy and we have not got any more hits 1154 auto_precharge = !got_more_hits && 1155 (got_bank_conflict || pageMgmt == Enums::close_adaptive); 1156 } 1157 1158 // DRAMPower trace command to be written 1159 std::string mem_cmd = dram_pkt->isRead ? "RD" : "WR"; 1160 1161 // MemCommand required for DRAMPower library 1162 MemCommand::cmds command = (mem_cmd == "RD") ? MemCommand::RD : 1163 MemCommand::WR; 1164 1165 // if this access should use auto-precharge, then we are 1166 // closing the row 1167 if (auto_precharge) { 1168 // if auto-precharge push a PRE command at the correct tick to the 1169 // list used by DRAMPower library to calculate power 1170 prechargeBank(bank, std::max(curTick(), bank.preAllowedAt)); 1171 1172 DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId); 1173 } 1174 1175 // Update bus state 1176 busBusyUntil = dram_pkt->readyTime; 1177 1178 DPRINTF(DRAM, "Access to %lld, ready at %lld bus busy until %lld.\n", 1179 dram_pkt->addr, dram_pkt->readyTime, busBusyUntil); 1180 1181 rankPower[dram_pkt->rank].powerlib.doCommand(command, dram_pkt->bank, 1182 divCeil(cmd_at, tCK) - 1183 timeStampOffset); 1184 1185 DPRINTF(DRAMPower, "%llu,%s,%d,%d\n", divCeil(cmd_at, tCK) - 1186 timeStampOffset, mem_cmd, dram_pkt->bank, dram_pkt->rank); 1187 1188 // Update the minimum timing between the requests, this is a 1189 // conservative estimate of when we have to schedule the next 1190 // request to not introduce any unecessary bubbles. In most cases 1191 // we will wake up sooner than we have to. 1192 nextReqTime = busBusyUntil - (tRP + tRCD + tCL); 1193 1194 // Update the stats and schedule the next request 1195 if (dram_pkt->isRead) { 1196 ++readsThisTime; 1197 if (row_hit) 1198 readRowHits++; 1199 bytesReadDRAM += burstSize; 1200 perBankRdBursts[dram_pkt->bankId]++; 1201 1202 // Update latency stats 1203 totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime; 1204 totBusLat += tBURST; 1205 totQLat += cmd_at - dram_pkt->entryTime; 1206 } else { 1207 ++writesThisTime; 1208 if (row_hit) 1209 writeRowHits++; 1210 bytesWritten += burstSize; 1211 perBankWrBursts[dram_pkt->bankId]++; 1212 } 1213} 1214 1215void 1216DRAMCtrl::processNextReqEvent() 1217{ 1218 // pre-emptively set to false. Overwrite if in READ_TO_WRITE 1219 // or WRITE_TO_READ state 1220 bool switched_cmd_type = false; 1221 if (busState == READ_TO_WRITE) { 1222 DPRINTF(DRAM, "Switching to writes after %d reads with %d reads " 1223 "waiting\n", readsThisTime, readQueue.size()); 1224 1225 // sample and reset the read-related stats as we are now 1226 // transitioning to writes, and all reads are done 1227 rdPerTurnAround.sample(readsThisTime); 1228 readsThisTime = 0; 1229 1230 // now proceed to do the actual writes 1231 busState = WRITE; 1232 switched_cmd_type = true; 1233 } else if (busState == WRITE_TO_READ) { 1234 DPRINTF(DRAM, "Switching to reads after %d writes with %d writes " 1235 "waiting\n", writesThisTime, writeQueue.size()); 1236 1237 wrPerTurnAround.sample(writesThisTime); 1238 writesThisTime = 0; 1239 1240 busState = READ; 1241 switched_cmd_type = true; 1242 } 1243 1244 if (refreshState != REF_IDLE) { 1245 // if a refresh waiting for this event loop to finish, then hand 1246 // over now, and do not schedule a new nextReqEvent 1247 if (refreshState == REF_DRAIN) { 1248 DPRINTF(DRAM, "Refresh drain done, now precharging\n"); 1249 1250 refreshState = REF_PRE; 1251 1252 // hand control back to the refresh event loop 1253 schedule(refreshEvent, curTick()); 1254 } 1255 1256 // let the refresh finish before issuing any further requests 1257 return; 1258 } 1259 1260 // when we get here it is either a read or a write 1261 if (busState == READ) { 1262 1263 // track if we should switch or not 1264 bool switch_to_writes = false; 1265 1266 if (readQueue.empty()) { 1267 // In the case there is no read request to go next, 1268 // trigger writes if we have passed the low threshold (or 1269 // if we are draining) 1270 if (!writeQueue.empty() && 1271 (drainManager || writeQueue.size() > writeLowThreshold)) { 1272 1273 switch_to_writes = true; 1274 } else { 1275 // check if we are drained 1276 if (respQueue.empty () && drainManager) { 1277 drainManager->signalDrainDone(); 1278 drainManager = NULL; 1279 } 1280 1281 // nothing to do, not even any point in scheduling an 1282 // event for the next request 1283 return; 1284 } 1285 } else { 1286 // Figure out which read request goes next, and move it to the 1287 // front of the read queue 1288 chooseNext(readQueue, switched_cmd_type); 1289 1290 DRAMPacket* dram_pkt = readQueue.front(); 1291 1292 // here we get a bit creative and shift the bus busy time not 1293 // just the tWTR, but also a CAS latency to capture the fact 1294 // that we are allowed to prepare a new bank, but not issue a 1295 // read command until after tWTR, in essence we capture a 1296 // bubble on the data bus that is tWTR + tCL 1297 if (switched_cmd_type && dram_pkt->rank == activeRank) { 1298 busBusyUntil += tWTR + tCL; 1299 } 1300 1301 doDRAMAccess(dram_pkt); 1302 1303 // At this point we're done dealing with the request 1304 readQueue.pop_front(); 1305 1306 // sanity check 1307 assert(dram_pkt->size <= burstSize); 1308 assert(dram_pkt->readyTime >= curTick()); 1309 1310 // Insert into response queue. It will be sent back to the 1311 // requestor at its readyTime 1312 if (respQueue.empty()) { 1313 assert(!respondEvent.scheduled()); 1314 schedule(respondEvent, dram_pkt->readyTime); 1315 } else { 1316 assert(respQueue.back()->readyTime <= dram_pkt->readyTime); 1317 assert(respondEvent.scheduled()); 1318 } 1319 1320 respQueue.push_back(dram_pkt); 1321 1322 // we have so many writes that we have to transition 1323 if (writeQueue.size() > writeHighThreshold) { 1324 switch_to_writes = true; 1325 } 1326 } 1327 1328 // switching to writes, either because the read queue is empty 1329 // and the writes have passed the low threshold (or we are 1330 // draining), or because the writes hit the hight threshold 1331 if (switch_to_writes) { 1332 // transition to writing 1333 busState = READ_TO_WRITE; 1334 } 1335 } else { 1336 chooseNext(writeQueue, switched_cmd_type); 1337 DRAMPacket* dram_pkt = writeQueue.front(); 1338 // sanity check 1339 assert(dram_pkt->size <= burstSize); 1340 1341 // add a bubble to the data bus, as defined by the 1342 // tRTW when access is to the same rank as previous burst 1343 // Different rank timing is handled with tCS, which is 1344 // applied to colAllowedAt 1345 if (switched_cmd_type && dram_pkt->rank == activeRank) { 1346 busBusyUntil += tRTW; 1347 } 1348 1349 doDRAMAccess(dram_pkt); 1350 1351 writeQueue.pop_front(); 1352 delete dram_pkt; 1353 1354 // If we emptied the write queue, or got sufficiently below the 1355 // threshold (using the minWritesPerSwitch as the hysteresis) and 1356 // are not draining, or we have reads waiting and have done enough 1357 // writes, then switch to reads. 1358 if (writeQueue.empty() || 1359 (writeQueue.size() + minWritesPerSwitch < writeLowThreshold && 1360 !drainManager) || 1361 (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) { 1362 // turn the bus back around for reads again 1363 busState = WRITE_TO_READ; 1364 1365 // note that the we switch back to reads also in the idle 1366 // case, which eventually will check for any draining and 1367 // also pause any further scheduling if there is really 1368 // nothing to do 1369 } 1370 } 1371 1372 schedule(nextReqEvent, std::max(nextReqTime, curTick())); 1373 1374 // If there is space available and we have writes waiting then let 1375 // them retry. This is done here to ensure that the retry does not 1376 // cause a nextReqEvent to be scheduled before we do so as part of 1377 // the next request processing 1378 if (retryWrReq && writeQueue.size() < writeBufferSize) { 1379 retryWrReq = false; 1380 port.sendRetry(); 1381 } 1382} 1383 1384uint64_t 1385DRAMCtrl::minBankPrep(const deque<DRAMPacket*>& queue, 1386 bool switched_cmd_type) const 1387{ 1388 uint64_t bank_mask = 0; 1389 Tick min_act_at = MaxTick; 1390 1391 uint64_t bank_mask_same_rank = 0; 1392 Tick min_act_at_same_rank = MaxTick; 1393 1394 // Give precedence to commands that access same rank as previous command 1395 bool same_rank_match = false; 1396 1397 // determine if we have queued transactions targetting the 1398 // bank in question 1399 vector<bool> got_waiting(ranksPerChannel * banksPerRank, false); 1400 for (auto p = queue.begin(); p != queue.end(); ++p) { 1401 got_waiting[(*p)->bankId] = true; 1402 } 1403 1404 for (int i = 0; i < ranksPerChannel; i++) { 1405 for (int j = 0; j < banksPerRank; j++) { 1406 uint8_t bank_id = i * banksPerRank + j; 1407 1408 // if we have waiting requests for the bank, and it is 1409 // amongst the first available, update the mask 1410 if (got_waiting[bank_id]) { 1411 // simplistic approximation of when the bank can issue 1412 // an activate, ignoring any rank-to-rank switching 1413 // cost in this calculation 1414 Tick act_at = banks[i][j].openRow == Bank::NO_ROW ? 1415 banks[i][j].actAllowedAt : 1416 std::max(banks[i][j].preAllowedAt, curTick()) + tRP; 1417 1418 // prioritize commands that access the 1419 // same rank as previous burst 1420 // Calculate bank mask separately for the case and 1421 // evaluate after loop iterations complete 1422 if (i == activeRank && ranksPerChannel > 1) { 1423 if (act_at <= min_act_at_same_rank) { 1424 // reset same rank bank mask if new minimum is found 1425 // and previous minimum could not immediately send ACT 1426 if (act_at < min_act_at_same_rank && 1427 min_act_at_same_rank > curTick()) 1428 bank_mask_same_rank = 0; 1429 1430 // Set flag indicating that a same rank 1431 // opportunity was found 1432 same_rank_match = true; 1433 1434 // set the bit corresponding to the available bank 1435 replaceBits(bank_mask_same_rank, bank_id, bank_id, 1); 1436 min_act_at_same_rank = act_at; 1437 } 1438 } else { 1439 if (act_at <= min_act_at) { 1440 // reset bank mask if new minimum is found 1441 // and either previous minimum could not immediately send ACT 1442 if (act_at < min_act_at && min_act_at > curTick()) 1443 bank_mask = 0; 1444 // set the bit corresponding to the available bank 1445 replaceBits(bank_mask, bank_id, bank_id, 1); 1446 min_act_at = act_at; 1447 } 1448 } 1449 } 1450 } 1451 } 1452 1453 // Determine the earliest time when the next burst can issue based 1454 // on the current busBusyUntil delay. 1455 // Offset by tRCD to correlate with ACT timing variables 1456 Tick min_cmd_at = busBusyUntil - tCL - tRCD; 1457 1458 // Prioritize same rank accesses that can issue B2B 1459 // Only optimize for same ranks when the command type 1460 // does not change; do not want to unnecessarily incur tWTR 1461 // 1462 // Resulting FCFS prioritization Order is: 1463 // 1) Commands that access the same rank as previous burst 1464 // and can prep the bank seamlessly. 1465 // 2) Commands (any rank) with earliest bank prep 1466 if (!switched_cmd_type && same_rank_match && 1467 min_act_at_same_rank <= min_cmd_at) { 1468 bank_mask = bank_mask_same_rank; 1469 } 1470 1471 return bank_mask; 1472} 1473 1474void 1475DRAMCtrl::processRefreshEvent() 1476{ 1477 // when first preparing the refresh, remember when it was due 1478 if (refreshState == REF_IDLE) { 1479 // remember when the refresh is due 1480 refreshDueAt = curTick(); 1481 1482 // proceed to drain 1483 refreshState = REF_DRAIN; 1484 1485 DPRINTF(DRAM, "Refresh due\n"); 1486 } 1487 1488 // let any scheduled read or write go ahead, after which it will 1489 // hand control back to this event loop 1490 if (refreshState == REF_DRAIN) { 1491 if (nextReqEvent.scheduled()) { 1492 // hand control over to the request loop until it is 1493 // evaluated next 1494 DPRINTF(DRAM, "Refresh awaiting draining\n"); 1495 1496 return; 1497 } else { 1498 refreshState = REF_PRE; 1499 } 1500 } 1501 1502 // at this point, ensure that all banks are precharged 1503 if (refreshState == REF_PRE) { 1504 // precharge any active bank if we are not already in the idle 1505 // state 1506 if (pwrState != PWR_IDLE) { 1507 // at the moment, we use a precharge all even if there is 1508 // only a single bank open 1509 DPRINTF(DRAM, "Precharging all\n"); 1510 1511 // first determine when we can precharge 1512 Tick pre_at = curTick(); 1513 for (int i = 0; i < ranksPerChannel; i++) { 1514 for (int j = 0; j < banksPerRank; j++) { 1515 // respect both causality and any existing bank 1516 // constraints, some banks could already have a 1517 // (auto) precharge scheduled 1518 pre_at = std::max(banks[i][j].preAllowedAt, pre_at); 1519 } 1520 } 1521 1522 // make sure all banks are precharged, and for those that 1523 // already are, update their availability 1524 Tick act_allowed_at = pre_at + tRP; 1525 1526 for (int i = 0; i < ranksPerChannel; i++) { 1527 for (int j = 0; j < banksPerRank; j++) { 1528 if (banks[i][j].openRow != Bank::NO_ROW) { 1529 prechargeBank(banks[i][j], pre_at, false); 1530 } else { 1531 banks[i][j].actAllowedAt = 1532 std::max(banks[i][j].actAllowedAt, act_allowed_at); 1533 banks[i][j].preAllowedAt = 1534 std::max(banks[i][j].preAllowedAt, pre_at); 1535 } 1536 } 1537 1538 // at the moment this affects all ranks 1539 rankPower[i].powerlib.doCommand(MemCommand::PREA, 0, 1540 divCeil(pre_at, tCK) - 1541 timeStampOffset); 1542 1543 DPRINTF(DRAMPower, "%llu,PREA,0,%d\n", divCeil(pre_at, tCK) - 1544 timeStampOffset, i); 1545 } 1546 } else { 1547 DPRINTF(DRAM, "All banks already precharged, starting refresh\n"); 1548 1549 // go ahead and kick the power state machine into gear if 1550 // we are already idle 1551 schedulePowerEvent(PWR_REF, curTick()); 1552 } 1553 1554 refreshState = REF_RUN; 1555 assert(numBanksActive == 0); 1556 1557 // wait for all banks to be precharged, at which point the 1558 // power state machine will transition to the idle state, and 1559 // automatically move to a refresh, at that point it will also 1560 // call this method to get the refresh event loop going again 1561 return; 1562 } 1563 1564 // last but not least we perform the actual refresh 1565 if (refreshState == REF_RUN) { 1566 // should never get here with any banks active 1567 assert(numBanksActive == 0); 1568 assert(pwrState == PWR_REF); 1569 1570 Tick ref_done_at = curTick() + tRFC; 1571 1572 for (int i = 0; i < ranksPerChannel; i++) { 1573 for (int j = 0; j < banksPerRank; j++) { 1574 banks[i][j].actAllowedAt = ref_done_at; 1575 } 1576 1577 // at the moment this affects all ranks 1578 rankPower[i].powerlib.doCommand(MemCommand::REF, 0, 1579 divCeil(curTick(), tCK) - 1580 timeStampOffset); 1581 1582 // at the moment sort the list of commands and update the counters 1583 // for DRAMPower libray when doing a refresh 1584 sort(rankPower[i].powerlib.cmdList.begin(), 1585 rankPower[i].powerlib.cmdList.end(), DRAMCtrl::sortTime); 1586 1587 // update the counters for DRAMPower, passing false to 1588 // indicate that this is not the last command in the 1589 // list. DRAMPower requires this information for the 1590 // correct calculation of the background energy at the end 1591 // of the simulation. Ideally we would want to call this 1592 // function with true once at the end of the 1593 // simulation. However, the discarded energy is extremly 1594 // small and does not effect the final results. 1595 rankPower[i].powerlib.updateCounters(false); 1596 1597 // call the energy function 1598 rankPower[i].powerlib.calcEnergy(); 1599 1600 // Update the stats 1601 updatePowerStats(i); 1602 1603 DPRINTF(DRAMPower, "%llu,REF,0,%d\n", divCeil(curTick(), tCK) - 1604 timeStampOffset, i); 1605 } 1606 1607 // make sure we did not wait so long that we cannot make up 1608 // for it 1609 if (refreshDueAt + tREFI < ref_done_at) { 1610 fatal("Refresh was delayed so long we cannot catch up\n"); 1611 } 1612 1613 // compensate for the delay in actually performing the refresh 1614 // when scheduling the next one 1615 schedule(refreshEvent, refreshDueAt + tREFI - tRP); 1616 1617 assert(!powerEvent.scheduled()); 1618 1619 // move to the idle power state once the refresh is done, this 1620 // will also move the refresh state machine to the refresh 1621 // idle state 1622 schedulePowerEvent(PWR_IDLE, ref_done_at); 1623 1624 DPRINTF(DRAMState, "Refresh done at %llu and next refresh at %llu\n", 1625 ref_done_at, refreshDueAt + tREFI); 1626 } 1627} 1628 1629void 1630DRAMCtrl::schedulePowerEvent(PowerState pwr_state, Tick tick) 1631{ 1632 // respect causality 1633 assert(tick >= curTick()); 1634 1635 if (!powerEvent.scheduled()) { 1636 DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n", 1637 tick, pwr_state); 1638 1639 // insert the new transition 1640 pwrStateTrans = pwr_state; 1641 1642 schedule(powerEvent, tick); 1643 } else { 1644 panic("Scheduled power event at %llu to state %d, " 1645 "with scheduled event at %llu to %d\n", tick, pwr_state, 1646 powerEvent.when(), pwrStateTrans); 1647 } 1648} 1649 1650void 1651DRAMCtrl::processPowerEvent() 1652{ 1653 // remember where we were, and for how long 1654 Tick duration = curTick() - pwrStateTick; 1655 PowerState prev_state = pwrState; 1656 1657 // update the accounting 1658 pwrStateTime[prev_state] += duration; 1659 1660 pwrState = pwrStateTrans; 1661 pwrStateTick = curTick(); 1662 1663 if (pwrState == PWR_IDLE) { 1664 DPRINTF(DRAMState, "All banks precharged\n"); 1665 1666 // if we were refreshing, make sure we start scheduling requests again 1667 if (prev_state == PWR_REF) { 1668 DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration); 1669 assert(pwrState == PWR_IDLE); 1670 1671 // kick things into action again 1672 refreshState = REF_IDLE; 1673 assert(!nextReqEvent.scheduled()); 1674 schedule(nextReqEvent, curTick()); 1675 } else { 1676 assert(prev_state == PWR_ACT); 1677 1678 // if we have a pending refresh, and are now moving to 1679 // the idle state, direclty transition to a refresh 1680 if (refreshState == REF_RUN) { 1681 // there should be nothing waiting at this point 1682 assert(!powerEvent.scheduled()); 1683 1684 // update the state in zero time and proceed below 1685 pwrState = PWR_REF; 1686 } 1687 } 1688 } 1689 1690 // we transition to the refresh state, let the refresh state 1691 // machine know of this state update and let it deal with the 1692 // scheduling of the next power state transition as well as the 1693 // following refresh 1694 if (pwrState == PWR_REF) { 1695 DPRINTF(DRAMState, "Refreshing\n"); 1696 // kick the refresh event loop into action again, and that 1697 // in turn will schedule a transition to the idle power 1698 // state once the refresh is done 1699 assert(refreshState == REF_RUN); 1700 processRefreshEvent(); 1701 } 1702} 1703 1704void 1705DRAMCtrl::updatePowerStats(uint8_t rank) 1706{ 1707 // Get the energy and power from DRAMPower 1708 Data::MemoryPowerModel::Energy energy = 1709 rankPower[rank].powerlib.getEnergy(); 1710 Data::MemoryPowerModel::Power power = 1711 rankPower[rank].powerlib.getPower(); 1712 1713 actEnergy[rank] = energy.act_energy * devicesPerRank; 1714 preEnergy[rank] = energy.pre_energy * devicesPerRank; 1715 readEnergy[rank] = energy.read_energy * devicesPerRank; 1716 writeEnergy[rank] = energy.write_energy * devicesPerRank; 1717 refreshEnergy[rank] = energy.ref_energy * devicesPerRank; 1718 actBackEnergy[rank] = energy.act_stdby_energy * devicesPerRank; 1719 preBackEnergy[rank] = energy.pre_stdby_energy * devicesPerRank; 1720 totalEnergy[rank] = energy.total_energy * devicesPerRank; 1721 averagePower[rank] = power.average_power * devicesPerRank; 1722} 1723 1724void 1725DRAMCtrl::regStats() 1726{ 1727 using namespace Stats; 1728 1729 AbstractMemory::regStats(); 1730 1731 readReqs 1732 .name(name() + ".readReqs") 1733 .desc("Number of read requests accepted"); 1734 1735 writeReqs 1736 .name(name() + ".writeReqs") 1737 .desc("Number of write requests accepted"); 1738 1739 readBursts 1740 .name(name() + ".readBursts") 1741 .desc("Number of DRAM read bursts, " 1742 "including those serviced by the write queue"); 1743 1744 writeBursts 1745 .name(name() + ".writeBursts") 1746 .desc("Number of DRAM write bursts, " 1747 "including those merged in the write queue"); 1748 1749 servicedByWrQ 1750 .name(name() + ".servicedByWrQ") 1751 .desc("Number of DRAM read bursts serviced by the write queue"); 1752 1753 mergedWrBursts 1754 .name(name() + ".mergedWrBursts") 1755 .desc("Number of DRAM write bursts merged with an existing one"); 1756 1757 neitherReadNorWrite 1758 .name(name() + ".neitherReadNorWriteReqs") 1759 .desc("Number of requests that are neither read nor write"); 1760 1761 perBankRdBursts 1762 .init(banksPerRank * ranksPerChannel) 1763 .name(name() + ".perBankRdBursts") 1764 .desc("Per bank write bursts"); 1765 1766 perBankWrBursts 1767 .init(banksPerRank * ranksPerChannel) 1768 .name(name() + ".perBankWrBursts") 1769 .desc("Per bank write bursts"); 1770 1771 avgRdQLen 1772 .name(name() + ".avgRdQLen") 1773 .desc("Average read queue length when enqueuing") 1774 .precision(2); 1775 1776 avgWrQLen 1777 .name(name() + ".avgWrQLen") 1778 .desc("Average write queue length when enqueuing") 1779 .precision(2); 1780 1781 totQLat 1782 .name(name() + ".totQLat") 1783 .desc("Total ticks spent queuing"); 1784 1785 totBusLat 1786 .name(name() + ".totBusLat") 1787 .desc("Total ticks spent in databus transfers"); 1788 1789 totMemAccLat 1790 .name(name() + ".totMemAccLat") 1791 .desc("Total ticks spent from burst creation until serviced " 1792 "by the DRAM"); 1793 1794 avgQLat 1795 .name(name() + ".avgQLat") 1796 .desc("Average queueing delay per DRAM burst") 1797 .precision(2); 1798 1799 avgQLat = totQLat / (readBursts - servicedByWrQ); 1800 1801 avgBusLat 1802 .name(name() + ".avgBusLat") 1803 .desc("Average bus latency per DRAM burst") 1804 .precision(2); 1805 1806 avgBusLat = totBusLat / (readBursts - servicedByWrQ); 1807 1808 avgMemAccLat 1809 .name(name() + ".avgMemAccLat") 1810 .desc("Average memory access latency per DRAM burst") 1811 .precision(2); 1812 1813 avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ); 1814 1815 numRdRetry 1816 .name(name() + ".numRdRetry") 1817 .desc("Number of times read queue was full causing retry"); 1818 1819 numWrRetry 1820 .name(name() + ".numWrRetry") 1821 .desc("Number of times write queue was full causing retry"); 1822 1823 readRowHits 1824 .name(name() + ".readRowHits") 1825 .desc("Number of row buffer hits during reads"); 1826 1827 writeRowHits 1828 .name(name() + ".writeRowHits") 1829 .desc("Number of row buffer hits during writes"); 1830 1831 readRowHitRate 1832 .name(name() + ".readRowHitRate") 1833 .desc("Row buffer hit rate for reads") 1834 .precision(2); 1835 1836 readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100; 1837 1838 writeRowHitRate 1839 .name(name() + ".writeRowHitRate") 1840 .desc("Row buffer hit rate for writes") 1841 .precision(2); 1842 1843 writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100; 1844 1845 readPktSize 1846 .init(ceilLog2(burstSize) + 1) 1847 .name(name() + ".readPktSize") 1848 .desc("Read request sizes (log2)"); 1849 1850 writePktSize 1851 .init(ceilLog2(burstSize) + 1) 1852 .name(name() + ".writePktSize") 1853 .desc("Write request sizes (log2)"); 1854 1855 rdQLenPdf 1856 .init(readBufferSize) 1857 .name(name() + ".rdQLenPdf") 1858 .desc("What read queue length does an incoming req see"); 1859 1860 wrQLenPdf 1861 .init(writeBufferSize) 1862 .name(name() + ".wrQLenPdf") 1863 .desc("What write queue length does an incoming req see"); 1864 1865 bytesPerActivate 1866 .init(maxAccessesPerRow) 1867 .name(name() + ".bytesPerActivate") 1868 .desc("Bytes accessed per row activation") 1869 .flags(nozero); 1870 1871 rdPerTurnAround 1872 .init(readBufferSize) 1873 .name(name() + ".rdPerTurnAround") 1874 .desc("Reads before turning the bus around for writes") 1875 .flags(nozero); 1876 1877 wrPerTurnAround 1878 .init(writeBufferSize) 1879 .name(name() + ".wrPerTurnAround") 1880 .desc("Writes before turning the bus around for reads") 1881 .flags(nozero); 1882 1883 bytesReadDRAM 1884 .name(name() + ".bytesReadDRAM") 1885 .desc("Total number of bytes read from DRAM"); 1886 1887 bytesReadWrQ 1888 .name(name() + ".bytesReadWrQ") 1889 .desc("Total number of bytes read from write queue"); 1890 1891 bytesWritten 1892 .name(name() + ".bytesWritten") 1893 .desc("Total number of bytes written to DRAM"); 1894 1895 bytesReadSys 1896 .name(name() + ".bytesReadSys") 1897 .desc("Total read bytes from the system interface side"); 1898 1899 bytesWrittenSys 1900 .name(name() + ".bytesWrittenSys") 1901 .desc("Total written bytes from the system interface side"); 1902 1903 avgRdBW 1904 .name(name() + ".avgRdBW") 1905 .desc("Average DRAM read bandwidth in MiByte/s") 1906 .precision(2); 1907 1908 avgRdBW = (bytesReadDRAM / 1000000) / simSeconds; 1909 1910 avgWrBW 1911 .name(name() + ".avgWrBW") 1912 .desc("Average achieved write bandwidth in MiByte/s") 1913 .precision(2); 1914 1915 avgWrBW = (bytesWritten / 1000000) / simSeconds; 1916 1917 avgRdBWSys 1918 .name(name() + ".avgRdBWSys") 1919 .desc("Average system read bandwidth in MiByte/s") 1920 .precision(2); 1921 1922 avgRdBWSys = (bytesReadSys / 1000000) / simSeconds; 1923 1924 avgWrBWSys 1925 .name(name() + ".avgWrBWSys") 1926 .desc("Average system write bandwidth in MiByte/s") 1927 .precision(2); 1928 1929 avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds; 1930 1931 peakBW 1932 .name(name() + ".peakBW") 1933 .desc("Theoretical peak bandwidth in MiByte/s") 1934 .precision(2); 1935 1936 peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000; 1937 1938 busUtil 1939 .name(name() + ".busUtil") 1940 .desc("Data bus utilization in percentage") 1941 .precision(2); 1942 1943 busUtil = (avgRdBW + avgWrBW) / peakBW * 100; 1944 1945 totGap 1946 .name(name() + ".totGap") 1947 .desc("Total gap between requests"); 1948 1949 avgGap 1950 .name(name() + ".avgGap") 1951 .desc("Average gap between requests") 1952 .precision(2); 1953 1954 avgGap = totGap / (readReqs + writeReqs); 1955 1956 // Stats for DRAM Power calculation based on Micron datasheet 1957 busUtilRead 1958 .name(name() + ".busUtilRead") 1959 .desc("Data bus utilization in percentage for reads") 1960 .precision(2); 1961 1962 busUtilRead = avgRdBW / peakBW * 100; 1963 1964 busUtilWrite 1965 .name(name() + ".busUtilWrite") 1966 .desc("Data bus utilization in percentage for writes") 1967 .precision(2); 1968 1969 busUtilWrite = avgWrBW / peakBW * 100; 1970 1971 pageHitRate 1972 .name(name() + ".pageHitRate") 1973 .desc("Row buffer hit rate, read and write combined") 1974 .precision(2); 1975 1976 pageHitRate = (writeRowHits + readRowHits) / 1977 (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100; 1978 1979 pwrStateTime 1980 .init(5) 1981 .name(name() + ".memoryStateTime") 1982 .desc("Time in different power states"); 1983 pwrStateTime.subname(0, "IDLE"); 1984 pwrStateTime.subname(1, "REF"); 1985 pwrStateTime.subname(2, "PRE_PDN"); 1986 pwrStateTime.subname(3, "ACT"); 1987 pwrStateTime.subname(4, "ACT_PDN"); 1988 1989 actEnergy 1990 .init(ranksPerChannel) 1991 .name(name() + ".actEnergy") 1992 .desc("Energy for activate commands per rank (pJ)"); 1993 1994 preEnergy 1995 .init(ranksPerChannel) 1996 .name(name() + ".preEnergy") 1997 .desc("Energy for precharge commands per rank (pJ)"); 1998 1999 readEnergy 2000 .init(ranksPerChannel) 2001 .name(name() + ".readEnergy") 2002 .desc("Energy for read commands per rank (pJ)"); 2003 2004 writeEnergy 2005 .init(ranksPerChannel) 2006 .name(name() + ".writeEnergy") 2007 .desc("Energy for write commands per rank (pJ)"); 2008 2009 refreshEnergy 2010 .init(ranksPerChannel) 2011 .name(name() + ".refreshEnergy") 2012 .desc("Energy for refresh commands per rank (pJ)"); 2013 2014 actBackEnergy 2015 .init(ranksPerChannel) 2016 .name(name() + ".actBackEnergy") 2017 .desc("Energy for active background per rank (pJ)"); 2018 2019 preBackEnergy 2020 .init(ranksPerChannel) 2021 .name(name() + ".preBackEnergy") 2022 .desc("Energy for precharge background per rank (pJ)"); 2023 2024 totalEnergy 2025 .init(ranksPerChannel) 2026 .name(name() + ".totalEnergy") 2027 .desc("Total energy per rank (pJ)"); 2028 2029 averagePower 2030 .init(ranksPerChannel) 2031 .name(name() + ".averagePower") 2032 .desc("Core power per rank (mW)"); 2033} 2034 2035void 2036DRAMCtrl::recvFunctional(PacketPtr pkt) 2037{ 2038 // rely on the abstract memory 2039 functionalAccess(pkt); 2040} 2041 2042BaseSlavePort& 2043DRAMCtrl::getSlavePort(const string &if_name, PortID idx) 2044{ 2045 if (if_name != "port") { 2046 return MemObject::getSlavePort(if_name, idx); 2047 } else { 2048 return port; 2049 } 2050} 2051 2052unsigned int 2053DRAMCtrl::drain(DrainManager *dm) 2054{ 2055 unsigned int count = port.drain(dm); 2056 2057 // if there is anything in any of our internal queues, keep track 2058 // of that as well 2059 if (!(writeQueue.empty() && readQueue.empty() && 2060 respQueue.empty())) { 2061 DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d," 2062 " resp: %d\n", writeQueue.size(), readQueue.size(), 2063 respQueue.size()); 2064 ++count; 2065 drainManager = dm; 2066 2067 // the only part that is not drained automatically over time 2068 // is the write queue, thus kick things into action if needed 2069 if (!writeQueue.empty() && !nextReqEvent.scheduled()) { 2070 schedule(nextReqEvent, curTick()); 2071 } 2072 } 2073 2074 if (count) 2075 setDrainState(Drainable::Draining); 2076 else 2077 setDrainState(Drainable::Drained); 2078 return count; 2079} 2080 2081DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory) 2082 : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this), 2083 memory(_memory) 2084{ } 2085 2086AddrRangeList 2087DRAMCtrl::MemoryPort::getAddrRanges() const 2088{ 2089 AddrRangeList ranges; 2090 ranges.push_back(memory.getAddrRange()); 2091 return ranges; 2092} 2093 2094void 2095DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt) 2096{ 2097 pkt->pushLabel(memory.name()); 2098 2099 if (!queue.checkFunctional(pkt)) { 2100 // Default implementation of SimpleTimingPort::recvFunctional() 2101 // calls recvAtomic() and throws away the latency; we can save a 2102 // little here by just not calculating the latency. 2103 memory.recvFunctional(pkt); 2104 } 2105 2106 pkt->popLabel(); 2107} 2108 2109Tick 2110DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt) 2111{ 2112 return memory.recvAtomic(pkt); 2113} 2114 2115bool 2116DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt) 2117{ 2118 // pass it to the memory controller 2119 return memory.recvTimingReq(pkt); 2120} 2121 2122DRAMCtrl* 2123DRAMCtrlParams::create() 2124{ 2125 return new DRAMCtrl(this); 2126} 2127