dram_ctrl.cc revision 10394
1/* 2 * Copyright (c) 2010-2014 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2013 Amin Farmahini-Farahani 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Andreas Hansson 41 * Ani Udipi 42 * Neha Agarwal 43 */ 44 45#include "base/bitfield.hh" 46#include "base/trace.hh" 47#include "debug/DRAM.hh" 48#include "debug/DRAMPower.hh" 49#include "debug/DRAMState.hh" 50#include "debug/Drain.hh" 51#include "mem/dram_ctrl.hh" 52#include "sim/system.hh" 53 54using namespace std; 55 56DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) : 57 AbstractMemory(p), 58 port(name() + ".port", *this), 59 retryRdReq(false), retryWrReq(false), 60 busState(READ), 61 nextReqEvent(this), respondEvent(this), activateEvent(this), 62 prechargeEvent(this), refreshEvent(this), powerEvent(this), 63 drainManager(NULL), 64 deviceBusWidth(p->device_bus_width), burstLength(p->burst_length), 65 deviceRowBufferSize(p->device_rowbuffer_size), 66 devicesPerRank(p->devices_per_rank), 67 burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8), 68 rowBufferSize(devicesPerRank * deviceRowBufferSize), 69 columnsPerRowBuffer(rowBufferSize / burstSize), 70 columnsPerStripe(range.granularity() / burstSize), 71 ranksPerChannel(p->ranks_per_channel), 72 bankGroupsPerRank(p->bank_groups_per_rank), 73 bankGroupArch(p->bank_groups_per_rank > 0), 74 banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0), 75 readBufferSize(p->read_buffer_size), 76 writeBufferSize(p->write_buffer_size), 77 writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0), 78 writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0), 79 minWritesPerSwitch(p->min_writes_per_switch), 80 writesThisTime(0), readsThisTime(0), 81 tCK(p->tCK), tWTR(p->tWTR), tRTW(p->tRTW), tCS(p->tCS), tBURST(p->tBURST), 82 tCCD_L(p->tCCD_L), tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS), 83 tWR(p->tWR), tRTP(p->tRTP), tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD), 84 tRRD_L(p->tRRD_L), tXAW(p->tXAW), activationLimit(p->activation_limit), 85 memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping), 86 pageMgmt(p->page_policy), 87 maxAccessesPerRow(p->max_accesses_per_row), 88 frontendLatency(p->static_frontend_latency), 89 backendLatency(p->static_backend_latency), 90 busBusyUntil(0), refreshDueAt(0), refreshState(REF_IDLE), 91 pwrStateTrans(PWR_IDLE), pwrState(PWR_IDLE), prevArrival(0), 92 nextReqTime(0), pwrStateTick(0), numBanksActive(0), 93 activeRank(0) 94{ 95 // create the bank states based on the dimensions of the ranks and 96 // banks 97 banks.resize(ranksPerChannel); 98 actTicks.resize(ranksPerChannel); 99 for (size_t c = 0; c < ranksPerChannel; ++c) { 100 banks[c].resize(banksPerRank); 101 actTicks[c].resize(activationLimit, 0); 102 } 103 104 // set the bank indices 105 for (int r = 0; r < ranksPerChannel; r++) { 106 for (int b = 0; b < banksPerRank; b++) { 107 banks[r][b].rank = r; 108 banks[r][b].bank = b; 109 if (bankGroupArch) { 110 // Simply assign lower bits to bank group in order to 111 // rotate across bank groups as banks are incremented 112 // e.g. with 4 banks per bank group and 16 banks total: 113 // banks 0,4,8,12 are in bank group 0 114 // banks 1,5,9,13 are in bank group 1 115 // banks 2,6,10,14 are in bank group 2 116 // banks 3,7,11,15 are in bank group 3 117 banks[r][b].bankgr = b % bankGroupsPerRank; 118 } else { 119 // No bank groups; simply assign to bank number 120 banks[r][b].bankgr = b; 121 } 122 } 123 } 124 125 // perform a basic check of the write thresholds 126 if (p->write_low_thresh_perc >= p->write_high_thresh_perc) 127 fatal("Write buffer low threshold %d must be smaller than the " 128 "high threshold %d\n", p->write_low_thresh_perc, 129 p->write_high_thresh_perc); 130 131 // determine the rows per bank by looking at the total capacity 132 uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size()); 133 134 DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity, 135 AbstractMemory::size()); 136 137 DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n", 138 rowBufferSize, columnsPerRowBuffer); 139 140 rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel); 141 142 // a bit of sanity checks on the interleaving 143 if (range.interleaved()) { 144 if (channels != range.stripes()) 145 fatal("%s has %d interleaved address stripes but %d channel(s)\n", 146 name(), range.stripes(), channels); 147 148 if (addrMapping == Enums::RoRaBaChCo) { 149 if (rowBufferSize != range.granularity()) { 150 fatal("Channel interleaving of %s doesn't match RoRaBaChCo " 151 "address map\n", name()); 152 } 153 } else if (addrMapping == Enums::RoRaBaCoCh || 154 addrMapping == Enums::RoCoRaBaCh) { 155 // for the interleavings with channel bits in the bottom, 156 // if the system uses a channel striping granularity that 157 // is larger than the DRAM burst size, then map the 158 // sequential accesses within a stripe to a number of 159 // columns in the DRAM, effectively placing some of the 160 // lower-order column bits as the least-significant bits 161 // of the address (above the ones denoting the burst size) 162 assert(columnsPerStripe >= 1); 163 164 // channel striping has to be done at a granularity that 165 // is equal or larger to a cache line 166 if (system()->cacheLineSize() > range.granularity()) { 167 fatal("Channel interleaving of %s must be at least as large " 168 "as the cache line size\n", name()); 169 } 170 171 // ...and equal or smaller than the row-buffer size 172 if (rowBufferSize < range.granularity()) { 173 fatal("Channel interleaving of %s must be at most as large " 174 "as the row-buffer size\n", name()); 175 } 176 // this is essentially the check above, so just to be sure 177 assert(columnsPerStripe <= columnsPerRowBuffer); 178 } 179 } 180 181 // some basic sanity checks 182 if (tREFI <= tRP || tREFI <= tRFC) { 183 fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n", 184 tREFI, tRP, tRFC); 185 } 186 187 // basic bank group architecture checks -> 188 if (bankGroupArch) { 189 // must have at least one bank per bank group 190 if (bankGroupsPerRank > banksPerRank) { 191 fatal("banks per rank (%d) must be equal to or larger than " 192 "banks groups per rank (%d)\n", 193 banksPerRank, bankGroupsPerRank); 194 } 195 // must have same number of banks in each bank group 196 if ((banksPerRank % bankGroupsPerRank) != 0) { 197 fatal("Banks per rank (%d) must be evenly divisible by bank groups " 198 "per rank (%d) for equal banks per bank group\n", 199 banksPerRank, bankGroupsPerRank); 200 } 201 // tCCD_L should be greater than minimal, back-to-back burst delay 202 if (tCCD_L <= tBURST) { 203 fatal("tCCD_L (%d) should be larger than tBURST (%d) when " 204 "bank groups per rank (%d) is greater than 1\n", 205 tCCD_L, tBURST, bankGroupsPerRank); 206 } 207 // tRRD_L is greater than minimal, same bank group ACT-to-ACT delay 208 if (tRRD_L <= tRRD) { 209 fatal("tRRD_L (%d) should be larger than tRRD (%d) when " 210 "bank groups per rank (%d) is greater than 1\n", 211 tRRD_L, tRRD, bankGroupsPerRank); 212 } 213 } 214 215} 216 217void 218DRAMCtrl::init() 219{ 220 if (!port.isConnected()) { 221 fatal("DRAMCtrl %s is unconnected!\n", name()); 222 } else { 223 port.sendRangeChange(); 224 } 225} 226 227void 228DRAMCtrl::startup() 229{ 230 // update the start tick for the precharge accounting to the 231 // current tick 232 pwrStateTick = curTick(); 233 234 // shift the bus busy time sufficiently far ahead that we never 235 // have to worry about negative values when computing the time for 236 // the next request, this will add an insignificant bubble at the 237 // start of simulation 238 busBusyUntil = curTick() + tRP + tRCD + tCL; 239 240 // kick off the refresh, and give ourselves enough time to 241 // precharge 242 schedule(refreshEvent, curTick() + tREFI - tRP); 243} 244 245Tick 246DRAMCtrl::recvAtomic(PacketPtr pkt) 247{ 248 DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr()); 249 250 // do the actual memory access and turn the packet into a response 251 access(pkt); 252 253 Tick latency = 0; 254 if (!pkt->memInhibitAsserted() && pkt->hasData()) { 255 // this value is not supposed to be accurate, just enough to 256 // keep things going, mimic a closed page 257 latency = tRP + tRCD + tCL; 258 } 259 return latency; 260} 261 262bool 263DRAMCtrl::readQueueFull(unsigned int neededEntries) const 264{ 265 DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n", 266 readBufferSize, readQueue.size() + respQueue.size(), 267 neededEntries); 268 269 return 270 (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize; 271} 272 273bool 274DRAMCtrl::writeQueueFull(unsigned int neededEntries) const 275{ 276 DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n", 277 writeBufferSize, writeQueue.size(), neededEntries); 278 return (writeQueue.size() + neededEntries) > writeBufferSize; 279} 280 281DRAMCtrl::DRAMPacket* 282DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size, 283 bool isRead) 284{ 285 // decode the address based on the address mapping scheme, with 286 // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and 287 // channel, respectively 288 uint8_t rank; 289 uint8_t bank; 290 // use a 64-bit unsigned during the computations as the row is 291 // always the top bits, and check before creating the DRAMPacket 292 uint64_t row; 293 294 // truncate the address to a DRAM burst, which makes it unique to 295 // a specific column, row, bank, rank and channel 296 Addr addr = dramPktAddr / burstSize; 297 298 // we have removed the lowest order address bits that denote the 299 // position within the column 300 if (addrMapping == Enums::RoRaBaChCo) { 301 // the lowest order bits denote the column to ensure that 302 // sequential cache lines occupy the same row 303 addr = addr / columnsPerRowBuffer; 304 305 // take out the channel part of the address 306 addr = addr / channels; 307 308 // after the channel bits, get the bank bits to interleave 309 // over the banks 310 bank = addr % banksPerRank; 311 addr = addr / banksPerRank; 312 313 // after the bank, we get the rank bits which thus interleaves 314 // over the ranks 315 rank = addr % ranksPerChannel; 316 addr = addr / ranksPerChannel; 317 318 // lastly, get the row bits 319 row = addr % rowsPerBank; 320 addr = addr / rowsPerBank; 321 } else if (addrMapping == Enums::RoRaBaCoCh) { 322 // take out the lower-order column bits 323 addr = addr / columnsPerStripe; 324 325 // take out the channel part of the address 326 addr = addr / channels; 327 328 // next, the higher-order column bites 329 addr = addr / (columnsPerRowBuffer / columnsPerStripe); 330 331 // after the column bits, we get the bank bits to interleave 332 // over the banks 333 bank = addr % banksPerRank; 334 addr = addr / banksPerRank; 335 336 // after the bank, we get the rank bits which thus interleaves 337 // over the ranks 338 rank = addr % ranksPerChannel; 339 addr = addr / ranksPerChannel; 340 341 // lastly, get the row bits 342 row = addr % rowsPerBank; 343 addr = addr / rowsPerBank; 344 } else if (addrMapping == Enums::RoCoRaBaCh) { 345 // optimise for closed page mode and utilise maximum 346 // parallelism of the DRAM (at the cost of power) 347 348 // take out the lower-order column bits 349 addr = addr / columnsPerStripe; 350 351 // take out the channel part of the address, not that this has 352 // to match with how accesses are interleaved between the 353 // controllers in the address mapping 354 addr = addr / channels; 355 356 // start with the bank bits, as this provides the maximum 357 // opportunity for parallelism between requests 358 bank = addr % banksPerRank; 359 addr = addr / banksPerRank; 360 361 // next get the rank bits 362 rank = addr % ranksPerChannel; 363 addr = addr / ranksPerChannel; 364 365 // next, the higher-order column bites 366 addr = addr / (columnsPerRowBuffer / columnsPerStripe); 367 368 // lastly, get the row bits 369 row = addr % rowsPerBank; 370 addr = addr / rowsPerBank; 371 } else 372 panic("Unknown address mapping policy chosen!"); 373 374 assert(rank < ranksPerChannel); 375 assert(bank < banksPerRank); 376 assert(row < rowsPerBank); 377 assert(row < Bank::NO_ROW); 378 379 DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n", 380 dramPktAddr, rank, bank, row); 381 382 // create the corresponding DRAM packet with the entry time and 383 // ready time set to the current tick, the latter will be updated 384 // later 385 uint16_t bank_id = banksPerRank * rank + bank; 386 return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr, 387 size, banks[rank][bank]); 388} 389 390void 391DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount) 392{ 393 // only add to the read queue here. whenever the request is 394 // eventually done, set the readyTime, and call schedule() 395 assert(!pkt->isWrite()); 396 397 assert(pktCount != 0); 398 399 // if the request size is larger than burst size, the pkt is split into 400 // multiple DRAM packets 401 // Note if the pkt starting address is not aligened to burst size, the 402 // address of first DRAM packet is kept unaliged. Subsequent DRAM packets 403 // are aligned to burst size boundaries. This is to ensure we accurately 404 // check read packets against packets in write queue. 405 Addr addr = pkt->getAddr(); 406 unsigned pktsServicedByWrQ = 0; 407 BurstHelper* burst_helper = NULL; 408 for (int cnt = 0; cnt < pktCount; ++cnt) { 409 unsigned size = std::min((addr | (burstSize - 1)) + 1, 410 pkt->getAddr() + pkt->getSize()) - addr; 411 readPktSize[ceilLog2(size)]++; 412 readBursts++; 413 414 // First check write buffer to see if the data is already at 415 // the controller 416 bool foundInWrQ = false; 417 for (auto i = writeQueue.begin(); i != writeQueue.end(); ++i) { 418 // check if the read is subsumed in the write entry we are 419 // looking at 420 if ((*i)->addr <= addr && 421 (addr + size) <= ((*i)->addr + (*i)->size)) { 422 foundInWrQ = true; 423 servicedByWrQ++; 424 pktsServicedByWrQ++; 425 DPRINTF(DRAM, "Read to addr %lld with size %d serviced by " 426 "write queue\n", addr, size); 427 bytesReadWrQ += burstSize; 428 break; 429 } 430 } 431 432 // If not found in the write q, make a DRAM packet and 433 // push it onto the read queue 434 if (!foundInWrQ) { 435 436 // Make the burst helper for split packets 437 if (pktCount > 1 && burst_helper == NULL) { 438 DPRINTF(DRAM, "Read to addr %lld translates to %d " 439 "dram requests\n", pkt->getAddr(), pktCount); 440 burst_helper = new BurstHelper(pktCount); 441 } 442 443 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true); 444 dram_pkt->burstHelper = burst_helper; 445 446 assert(!readQueueFull(1)); 447 rdQLenPdf[readQueue.size() + respQueue.size()]++; 448 449 DPRINTF(DRAM, "Adding to read queue\n"); 450 451 readQueue.push_back(dram_pkt); 452 453 // Update stats 454 avgRdQLen = readQueue.size() + respQueue.size(); 455 } 456 457 // Starting address of next dram pkt (aligend to burstSize boundary) 458 addr = (addr | (burstSize - 1)) + 1; 459 } 460 461 // If all packets are serviced by write queue, we send the repsonse back 462 if (pktsServicedByWrQ == pktCount) { 463 accessAndRespond(pkt, frontendLatency); 464 return; 465 } 466 467 // Update how many split packets are serviced by write queue 468 if (burst_helper != NULL) 469 burst_helper->burstsServiced = pktsServicedByWrQ; 470 471 // If we are not already scheduled to get a request out of the 472 // queue, do so now 473 if (!nextReqEvent.scheduled()) { 474 DPRINTF(DRAM, "Request scheduled immediately\n"); 475 schedule(nextReqEvent, curTick()); 476 } 477} 478 479void 480DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount) 481{ 482 // only add to the write queue here. whenever the request is 483 // eventually done, set the readyTime, and call schedule() 484 assert(pkt->isWrite()); 485 486 // if the request size is larger than burst size, the pkt is split into 487 // multiple DRAM packets 488 Addr addr = pkt->getAddr(); 489 for (int cnt = 0; cnt < pktCount; ++cnt) { 490 unsigned size = std::min((addr | (burstSize - 1)) + 1, 491 pkt->getAddr() + pkt->getSize()) - addr; 492 writePktSize[ceilLog2(size)]++; 493 writeBursts++; 494 495 // see if we can merge with an existing item in the write 496 // queue and keep track of whether we have merged or not so we 497 // can stop at that point and also avoid enqueueing a new 498 // request 499 bool merged = false; 500 auto w = writeQueue.begin(); 501 502 while(!merged && w != writeQueue.end()) { 503 // either of the two could be first, if they are the same 504 // it does not matter which way we go 505 if ((*w)->addr >= addr) { 506 // the existing one starts after the new one, figure 507 // out where the new one ends with respect to the 508 // existing one 509 if ((addr + size) >= ((*w)->addr + (*w)->size)) { 510 // check if the existing one is completely 511 // subsumed in the new one 512 DPRINTF(DRAM, "Merging write covering existing burst\n"); 513 merged = true; 514 // update both the address and the size 515 (*w)->addr = addr; 516 (*w)->size = size; 517 } else if ((addr + size) >= (*w)->addr && 518 ((*w)->addr + (*w)->size - addr) <= burstSize) { 519 // the new one is just before or partially 520 // overlapping with the existing one, and together 521 // they fit within a burst 522 DPRINTF(DRAM, "Merging write before existing burst\n"); 523 merged = true; 524 // the existing queue item needs to be adjusted with 525 // respect to both address and size 526 (*w)->size = (*w)->addr + (*w)->size - addr; 527 (*w)->addr = addr; 528 } 529 } else { 530 // the new one starts after the current one, figure 531 // out where the existing one ends with respect to the 532 // new one 533 if (((*w)->addr + (*w)->size) >= (addr + size)) { 534 // check if the new one is completely subsumed in the 535 // existing one 536 DPRINTF(DRAM, "Merging write into existing burst\n"); 537 merged = true; 538 // no adjustments necessary 539 } else if (((*w)->addr + (*w)->size) >= addr && 540 (addr + size - (*w)->addr) <= burstSize) { 541 // the existing one is just before or partially 542 // overlapping with the new one, and together 543 // they fit within a burst 544 DPRINTF(DRAM, "Merging write after existing burst\n"); 545 merged = true; 546 // the address is right, and only the size has 547 // to be adjusted 548 (*w)->size = addr + size - (*w)->addr; 549 } 550 } 551 ++w; 552 } 553 554 // if the item was not merged we need to create a new write 555 // and enqueue it 556 if (!merged) { 557 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false); 558 559 assert(writeQueue.size() < writeBufferSize); 560 wrQLenPdf[writeQueue.size()]++; 561 562 DPRINTF(DRAM, "Adding to write queue\n"); 563 564 writeQueue.push_back(dram_pkt); 565 566 // Update stats 567 avgWrQLen = writeQueue.size(); 568 } else { 569 // keep track of the fact that this burst effectively 570 // disappeared as it was merged with an existing one 571 mergedWrBursts++; 572 } 573 574 // Starting address of next dram pkt (aligend to burstSize boundary) 575 addr = (addr | (burstSize - 1)) + 1; 576 } 577 578 // we do not wait for the writes to be send to the actual memory, 579 // but instead take responsibility for the consistency here and 580 // snoop the write queue for any upcoming reads 581 // @todo, if a pkt size is larger than burst size, we might need a 582 // different front end latency 583 accessAndRespond(pkt, frontendLatency); 584 585 // If we are not already scheduled to get a request out of the 586 // queue, do so now 587 if (!nextReqEvent.scheduled()) { 588 DPRINTF(DRAM, "Request scheduled immediately\n"); 589 schedule(nextReqEvent, curTick()); 590 } 591} 592 593void 594DRAMCtrl::printQs() const { 595 DPRINTF(DRAM, "===READ QUEUE===\n\n"); 596 for (auto i = readQueue.begin() ; i != readQueue.end() ; ++i) { 597 DPRINTF(DRAM, "Read %lu\n", (*i)->addr); 598 } 599 DPRINTF(DRAM, "\n===RESP QUEUE===\n\n"); 600 for (auto i = respQueue.begin() ; i != respQueue.end() ; ++i) { 601 DPRINTF(DRAM, "Response %lu\n", (*i)->addr); 602 } 603 DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n"); 604 for (auto i = writeQueue.begin() ; i != writeQueue.end() ; ++i) { 605 DPRINTF(DRAM, "Write %lu\n", (*i)->addr); 606 } 607} 608 609bool 610DRAMCtrl::recvTimingReq(PacketPtr pkt) 611{ 612 /// @todo temporary hack to deal with memory corruption issues until 613 /// 4-phase transactions are complete 614 for (int x = 0; x < pendingDelete.size(); x++) 615 delete pendingDelete[x]; 616 pendingDelete.clear(); 617 618 // This is where we enter from the outside world 619 DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n", 620 pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 621 622 // simply drop inhibited packets for now 623 if (pkt->memInhibitAsserted()) { 624 DPRINTF(DRAM, "Inhibited packet -- Dropping it now\n"); 625 pendingDelete.push_back(pkt); 626 return true; 627 } 628 629 // Calc avg gap between requests 630 if (prevArrival != 0) { 631 totGap += curTick() - prevArrival; 632 } 633 prevArrival = curTick(); 634 635 636 // Find out how many dram packets a pkt translates to 637 // If the burst size is equal or larger than the pkt size, then a pkt 638 // translates to only one dram packet. Otherwise, a pkt translates to 639 // multiple dram packets 640 unsigned size = pkt->getSize(); 641 unsigned offset = pkt->getAddr() & (burstSize - 1); 642 unsigned int dram_pkt_count = divCeil(offset + size, burstSize); 643 644 // check local buffers and do not accept if full 645 if (pkt->isRead()) { 646 assert(size != 0); 647 if (readQueueFull(dram_pkt_count)) { 648 DPRINTF(DRAM, "Read queue full, not accepting\n"); 649 // remember that we have to retry this port 650 retryRdReq = true; 651 numRdRetry++; 652 return false; 653 } else { 654 addToReadQueue(pkt, dram_pkt_count); 655 readReqs++; 656 bytesReadSys += size; 657 } 658 } else if (pkt->isWrite()) { 659 assert(size != 0); 660 if (writeQueueFull(dram_pkt_count)) { 661 DPRINTF(DRAM, "Write queue full, not accepting\n"); 662 // remember that we have to retry this port 663 retryWrReq = true; 664 numWrRetry++; 665 return false; 666 } else { 667 addToWriteQueue(pkt, dram_pkt_count); 668 writeReqs++; 669 bytesWrittenSys += size; 670 } 671 } else { 672 DPRINTF(DRAM,"Neither read nor write, ignore timing\n"); 673 neitherReadNorWrite++; 674 accessAndRespond(pkt, 1); 675 } 676 677 return true; 678} 679 680void 681DRAMCtrl::processRespondEvent() 682{ 683 DPRINTF(DRAM, 684 "processRespondEvent(): Some req has reached its readyTime\n"); 685 686 DRAMPacket* dram_pkt = respQueue.front(); 687 688 if (dram_pkt->burstHelper) { 689 // it is a split packet 690 dram_pkt->burstHelper->burstsServiced++; 691 if (dram_pkt->burstHelper->burstsServiced == 692 dram_pkt->burstHelper->burstCount) { 693 // we have now serviced all children packets of a system packet 694 // so we can now respond to the requester 695 // @todo we probably want to have a different front end and back 696 // end latency for split packets 697 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency); 698 delete dram_pkt->burstHelper; 699 dram_pkt->burstHelper = NULL; 700 } 701 } else { 702 // it is not a split packet 703 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency); 704 } 705 706 delete respQueue.front(); 707 respQueue.pop_front(); 708 709 if (!respQueue.empty()) { 710 assert(respQueue.front()->readyTime >= curTick()); 711 assert(!respondEvent.scheduled()); 712 schedule(respondEvent, respQueue.front()->readyTime); 713 } else { 714 // if there is nothing left in any queue, signal a drain 715 if (writeQueue.empty() && readQueue.empty() && 716 drainManager) { 717 drainManager->signalDrainDone(); 718 drainManager = NULL; 719 } 720 } 721 722 // We have made a location in the queue available at this point, 723 // so if there is a read that was forced to wait, retry now 724 if (retryRdReq) { 725 retryRdReq = false; 726 port.sendRetry(); 727 } 728} 729 730void 731DRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue, bool switched_cmd_type) 732{ 733 // This method does the arbitration between requests. The chosen 734 // packet is simply moved to the head of the queue. The other 735 // methods know that this is the place to look. For example, with 736 // FCFS, this method does nothing 737 assert(!queue.empty()); 738 739 if (queue.size() == 1) { 740 DPRINTF(DRAM, "Single request, nothing to do\n"); 741 return; 742 } 743 744 if (memSchedPolicy == Enums::fcfs) { 745 // Do nothing, since the correct request is already head 746 } else if (memSchedPolicy == Enums::frfcfs) { 747 reorderQueue(queue, switched_cmd_type); 748 } else 749 panic("No scheduling policy chosen\n"); 750} 751 752void 753DRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue, bool switched_cmd_type) 754{ 755 // Only determine this when needed 756 uint64_t earliest_banks = 0; 757 758 // Search for row hits first, if no row hit is found then schedule the 759 // packet to one of the earliest banks available 760 bool found_earliest_pkt = false; 761 bool found_prepped_diff_rank_pkt = false; 762 auto selected_pkt_it = queue.begin(); 763 764 for (auto i = queue.begin(); i != queue.end() ; ++i) { 765 DRAMPacket* dram_pkt = *i; 766 const Bank& bank = dram_pkt->bankRef; 767 // Check if it is a row hit 768 if (bank.openRow == dram_pkt->row) { 769 if (dram_pkt->rank == activeRank || switched_cmd_type) { 770 // FCFS within the hits, giving priority to commands 771 // that access the same rank as the previous burst 772 // to minimize bus turnaround delays 773 // Only give rank prioity when command type is not changing 774 DPRINTF(DRAM, "Row buffer hit\n"); 775 selected_pkt_it = i; 776 break; 777 } else if (!found_prepped_diff_rank_pkt) { 778 // found row hit for command on different rank than prev burst 779 selected_pkt_it = i; 780 found_prepped_diff_rank_pkt = true; 781 } 782 } else if (!found_earliest_pkt & !found_prepped_diff_rank_pkt) { 783 // No row hit and 784 // haven't found an entry with a row hit to a new rank 785 if (earliest_banks == 0) 786 // Determine entries with earliest bank prep delay 787 // Function will give priority to commands that access the 788 // same rank as previous burst and can prep the bank seamlessly 789 earliest_banks = minBankPrep(queue, switched_cmd_type); 790 791 // FCFS - Bank is first available bank 792 if (bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) { 793 // Remember the packet to be scheduled to one of the earliest 794 // banks available, FCFS amongst the earliest banks 795 selected_pkt_it = i; 796 found_earliest_pkt = true; 797 } 798 } 799 } 800 801 DRAMPacket* selected_pkt = *selected_pkt_it; 802 queue.erase(selected_pkt_it); 803 queue.push_front(selected_pkt); 804} 805 806void 807DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency) 808{ 809 DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr()); 810 811 bool needsResponse = pkt->needsResponse(); 812 // do the actual memory access which also turns the packet into a 813 // response 814 access(pkt); 815 816 // turn packet around to go back to requester if response expected 817 if (needsResponse) { 818 // access already turned the packet into a response 819 assert(pkt->isResponse()); 820 821 // @todo someone should pay for this 822 pkt->busFirstWordDelay = pkt->busLastWordDelay = 0; 823 824 // queue the packet in the response queue to be sent out after 825 // the static latency has passed 826 port.schedTimingResp(pkt, curTick() + static_latency); 827 } else { 828 // @todo the packet is going to be deleted, and the DRAMPacket 829 // is still having a pointer to it 830 pendingDelete.push_back(pkt); 831 } 832 833 DPRINTF(DRAM, "Done\n"); 834 835 return; 836} 837 838void 839DRAMCtrl::activateBank(Bank& bank, Tick act_tick, uint32_t row) 840{ 841 // get the rank index from the bank 842 uint8_t rank = bank.rank; 843 844 assert(actTicks[rank].size() == activationLimit); 845 846 DPRINTF(DRAM, "Activate at tick %d\n", act_tick); 847 848 // update the open row 849 assert(bank.openRow == Bank::NO_ROW); 850 bank.openRow = row; 851 852 // start counting anew, this covers both the case when we 853 // auto-precharged, and when this access is forced to 854 // precharge 855 bank.bytesAccessed = 0; 856 bank.rowAccesses = 0; 857 858 ++numBanksActive; 859 assert(numBanksActive <= banksPerRank * ranksPerChannel); 860 861 DPRINTF(DRAM, "Activate bank %d, rank %d at tick %lld, now got %d active\n", 862 bank.bank, bank.rank, act_tick, numBanksActive); 863 864 DPRINTF(DRAMPower, "%llu,ACT,%d,%d\n", divCeil(act_tick, tCK), bank.bank, 865 bank.rank); 866 867 // The next access has to respect tRAS for this bank 868 bank.preAllowedAt = act_tick + tRAS; 869 870 // Respect the row-to-column command delay 871 bank.colAllowedAt = std::max(act_tick + tRCD, bank.colAllowedAt); 872 873 // start by enforcing tRRD 874 for(int i = 0; i < banksPerRank; i++) { 875 // next activate to any bank in this rank must not happen 876 // before tRRD 877 if (bankGroupArch && (bank.bankgr == banks[rank][i].bankgr)) { 878 // bank group architecture requires longer delays between 879 // ACT commands within the same bank group. Use tRRD_L 880 // in this case 881 banks[rank][i].actAllowedAt = std::max(act_tick + tRRD_L, 882 banks[rank][i].actAllowedAt); 883 } else { 884 // use shorter tRRD value when either 885 // 1) bank group architecture is not supportted 886 // 2) bank is in a different bank group 887 banks[rank][i].actAllowedAt = std::max(act_tick + tRRD, 888 banks[rank][i].actAllowedAt); 889 } 890 } 891 892 // next, we deal with tXAW, if the activation limit is disabled 893 // then we are done 894 if (actTicks[rank].empty()) 895 return; 896 897 // sanity check 898 if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) { 899 panic("Got %d activates in window %d (%llu - %llu) which is smaller " 900 "than %llu\n", activationLimit, act_tick - actTicks[rank].back(), 901 act_tick, actTicks[rank].back(), tXAW); 902 } 903 904 // shift the times used for the book keeping, the last element 905 // (highest index) is the oldest one and hence the lowest value 906 actTicks[rank].pop_back(); 907 908 // record an new activation (in the future) 909 actTicks[rank].push_front(act_tick); 910 911 // cannot activate more than X times in time window tXAW, push the 912 // next one (the X + 1'st activate) to be tXAW away from the 913 // oldest in our window of X 914 if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) { 915 DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate no earlier " 916 "than %llu\n", activationLimit, actTicks[rank].back() + tXAW); 917 for(int j = 0; j < banksPerRank; j++) 918 // next activate must not happen before end of window 919 banks[rank][j].actAllowedAt = 920 std::max(actTicks[rank].back() + tXAW, 921 banks[rank][j].actAllowedAt); 922 } 923 924 // at the point when this activate takes place, make sure we 925 // transition to the active power state 926 if (!activateEvent.scheduled()) 927 schedule(activateEvent, act_tick); 928 else if (activateEvent.when() > act_tick) 929 // move it sooner in time 930 reschedule(activateEvent, act_tick); 931} 932 933void 934DRAMCtrl::processActivateEvent() 935{ 936 // we should transition to the active state as soon as any bank is active 937 if (pwrState != PWR_ACT) 938 // note that at this point numBanksActive could be back at 939 // zero again due to a precharge scheduled in the future 940 schedulePowerEvent(PWR_ACT, curTick()); 941} 942 943void 944DRAMCtrl::prechargeBank(Bank& bank, Tick pre_at, bool trace) 945{ 946 // make sure the bank has an open row 947 assert(bank.openRow != Bank::NO_ROW); 948 949 // sample the bytes per activate here since we are closing 950 // the page 951 bytesPerActivate.sample(bank.bytesAccessed); 952 953 bank.openRow = Bank::NO_ROW; 954 955 // no precharge allowed before this one 956 bank.preAllowedAt = pre_at; 957 958 Tick pre_done_at = pre_at + tRP; 959 960 bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at); 961 962 assert(numBanksActive != 0); 963 --numBanksActive; 964 965 DPRINTF(DRAM, "Precharging bank %d, rank %d at tick %lld, now got " 966 "%d active\n", bank.bank, bank.rank, pre_at, numBanksActive); 967 968 if (trace) 969 DPRINTF(DRAMPower, "%llu,PRE,%d,%d\n", divCeil(pre_at, tCK), 970 bank.bank, bank.rank); 971 972 // if we look at the current number of active banks we might be 973 // tempted to think the DRAM is now idle, however this can be 974 // undone by an activate that is scheduled to happen before we 975 // would have reached the idle state, so schedule an event and 976 // rather check once we actually make it to the point in time when 977 // the (last) precharge takes place 978 if (!prechargeEvent.scheduled()) 979 schedule(prechargeEvent, pre_done_at); 980 else if (prechargeEvent.when() < pre_done_at) 981 reschedule(prechargeEvent, pre_done_at); 982} 983 984void 985DRAMCtrl::processPrechargeEvent() 986{ 987 // if we reached zero, then special conditions apply as we track 988 // if all banks are precharged for the power models 989 if (numBanksActive == 0) { 990 // we should transition to the idle state when the last bank 991 // is precharged 992 schedulePowerEvent(PWR_IDLE, curTick()); 993 } 994} 995 996void 997DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt) 998{ 999 DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n", 1000 dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row); 1001 1002 // get the bank 1003 Bank& bank = dram_pkt->bankRef; 1004 1005 // for the state we need to track if it is a row hit or not 1006 bool row_hit = true; 1007 1008 // respect any constraints on the command (e.g. tRCD or tCCD) 1009 Tick cmd_at = std::max(bank.colAllowedAt, curTick()); 1010 1011 // Determine the access latency and update the bank state 1012 if (bank.openRow == dram_pkt->row) { 1013 // nothing to do 1014 } else { 1015 row_hit = false; 1016 1017 // If there is a page open, precharge it. 1018 if (bank.openRow != Bank::NO_ROW) { 1019 prechargeBank(bank, std::max(bank.preAllowedAt, curTick())); 1020 } 1021 1022 // next we need to account for the delay in activating the 1023 // page 1024 Tick act_tick = std::max(bank.actAllowedAt, curTick()); 1025 1026 // Record the activation and deal with all the global timing 1027 // constraints caused be a new activation (tRRD and tXAW) 1028 activateBank(bank, act_tick, dram_pkt->row); 1029 1030 // issue the command as early as possible 1031 cmd_at = bank.colAllowedAt; 1032 } 1033 1034 // we need to wait until the bus is available before we can issue 1035 // the command 1036 cmd_at = std::max(cmd_at, busBusyUntil - tCL); 1037 1038 // update the packet ready time 1039 dram_pkt->readyTime = cmd_at + tCL + tBURST; 1040 1041 // only one burst can use the bus at any one point in time 1042 assert(dram_pkt->readyTime - busBusyUntil >= tBURST); 1043 1044 // update the time for the next read/write burst for each 1045 // bank (add a max with tCCD/tCCD_L here) 1046 Tick cmd_dly; 1047 for(int j = 0; j < ranksPerChannel; j++) { 1048 for(int i = 0; i < banksPerRank; i++) { 1049 // next burst to same bank group in this rank must not happen 1050 // before tCCD_L. Different bank group timing requirement is 1051 // tBURST; Add tCS for different ranks 1052 if (dram_pkt->rank == j) { 1053 if (bankGroupArch && (bank.bankgr == banks[j][i].bankgr)) { 1054 // bank group architecture requires longer delays between 1055 // RD/WR burst commands to the same bank group. 1056 // Use tCCD_L in this case 1057 cmd_dly = tCCD_L; 1058 } else { 1059 // use tBURST (equivalent to tCCD_S), the shorter 1060 // cas-to-cas delay value, when either: 1061 // 1) bank group architecture is not supportted 1062 // 2) bank is in a different bank group 1063 cmd_dly = tBURST; 1064 } 1065 } else { 1066 // different rank is by default in a different bank group 1067 // use tBURST (equivalent to tCCD_S), which is the shorter 1068 // cas-to-cas delay in this case 1069 // Add tCS to account for rank-to-rank bus delay requirements 1070 cmd_dly = tBURST + tCS; 1071 } 1072 banks[j][i].colAllowedAt = std::max(cmd_at + cmd_dly, 1073 banks[j][i].colAllowedAt); 1074 } 1075 } 1076 1077 // Save rank of current access 1078 activeRank = dram_pkt->rank; 1079 1080 // If this is a write, we also need to respect the write recovery 1081 // time before a precharge, in the case of a read, respect the 1082 // read to precharge constraint 1083 bank.preAllowedAt = std::max(bank.preAllowedAt, 1084 dram_pkt->isRead ? cmd_at + tRTP : 1085 dram_pkt->readyTime + tWR); 1086 1087 // increment the bytes accessed and the accesses per row 1088 bank.bytesAccessed += burstSize; 1089 ++bank.rowAccesses; 1090 1091 // if we reached the max, then issue with an auto-precharge 1092 bool auto_precharge = pageMgmt == Enums::close || 1093 bank.rowAccesses == maxAccessesPerRow; 1094 1095 // if we did not hit the limit, we might still want to 1096 // auto-precharge 1097 if (!auto_precharge && 1098 (pageMgmt == Enums::open_adaptive || 1099 pageMgmt == Enums::close_adaptive)) { 1100 // a twist on the open and close page policies: 1101 // 1) open_adaptive page policy does not blindly keep the 1102 // page open, but close it if there are no row hits, and there 1103 // are bank conflicts in the queue 1104 // 2) close_adaptive page policy does not blindly close the 1105 // page, but closes it only if there are no row hits in the queue. 1106 // In this case, only force an auto precharge when there 1107 // are no same page hits in the queue 1108 bool got_more_hits = false; 1109 bool got_bank_conflict = false; 1110 1111 // either look at the read queue or write queue 1112 const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue : 1113 writeQueue; 1114 auto p = queue.begin(); 1115 // make sure we are not considering the packet that we are 1116 // currently dealing with (which is the head of the queue) 1117 ++p; 1118 1119 // keep on looking until we have found required condition or 1120 // reached the end 1121 while (!(got_more_hits && 1122 (got_bank_conflict || pageMgmt == Enums::close_adaptive)) && 1123 p != queue.end()) { 1124 bool same_rank_bank = (dram_pkt->rank == (*p)->rank) && 1125 (dram_pkt->bank == (*p)->bank); 1126 bool same_row = dram_pkt->row == (*p)->row; 1127 got_more_hits |= same_rank_bank && same_row; 1128 got_bank_conflict |= same_rank_bank && !same_row; 1129 ++p; 1130 } 1131 1132 // auto pre-charge when either 1133 // 1) open_adaptive policy, we have not got any more hits, and 1134 // have a bank conflict 1135 // 2) close_adaptive policy and we have not got any more hits 1136 auto_precharge = !got_more_hits && 1137 (got_bank_conflict || pageMgmt == Enums::close_adaptive); 1138 } 1139 1140 // DRAMPower trace command to be written 1141 std::string mem_cmd = dram_pkt->isRead ? "RD" : "WR"; 1142 1143 // if this access should use auto-precharge, then we are 1144 // closing the row 1145 if (auto_precharge) { 1146 prechargeBank(bank, std::max(curTick(), bank.preAllowedAt), false); 1147 1148 mem_cmd.append("A"); 1149 1150 DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId); 1151 } 1152 1153 // Update bus state 1154 busBusyUntil = dram_pkt->readyTime; 1155 1156 DPRINTF(DRAM, "Access to %lld, ready at %lld bus busy until %lld.\n", 1157 dram_pkt->addr, dram_pkt->readyTime, busBusyUntil); 1158 1159 DPRINTF(DRAMPower, "%llu,%s,%d,%d\n", divCeil(cmd_at, tCK), mem_cmd, 1160 dram_pkt->bank, dram_pkt->rank); 1161 1162 // Update the minimum timing between the requests, this is a 1163 // conservative estimate of when we have to schedule the next 1164 // request to not introduce any unecessary bubbles. In most cases 1165 // we will wake up sooner than we have to. 1166 nextReqTime = busBusyUntil - (tRP + tRCD + tCL); 1167 1168 // Update the stats and schedule the next request 1169 if (dram_pkt->isRead) { 1170 ++readsThisTime; 1171 if (row_hit) 1172 readRowHits++; 1173 bytesReadDRAM += burstSize; 1174 perBankRdBursts[dram_pkt->bankId]++; 1175 1176 // Update latency stats 1177 totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime; 1178 totBusLat += tBURST; 1179 totQLat += cmd_at - dram_pkt->entryTime; 1180 } else { 1181 ++writesThisTime; 1182 if (row_hit) 1183 writeRowHits++; 1184 bytesWritten += burstSize; 1185 perBankWrBursts[dram_pkt->bankId]++; 1186 } 1187} 1188 1189void 1190DRAMCtrl::processNextReqEvent() 1191{ 1192 // pre-emptively set to false. Overwrite if in READ_TO_WRITE 1193 // or WRITE_TO_READ state 1194 bool switched_cmd_type = false; 1195 if (busState == READ_TO_WRITE) { 1196 DPRINTF(DRAM, "Switching to writes after %d reads with %d reads " 1197 "waiting\n", readsThisTime, readQueue.size()); 1198 1199 // sample and reset the read-related stats as we are now 1200 // transitioning to writes, and all reads are done 1201 rdPerTurnAround.sample(readsThisTime); 1202 readsThisTime = 0; 1203 1204 // now proceed to do the actual writes 1205 busState = WRITE; 1206 switched_cmd_type = true; 1207 } else if (busState == WRITE_TO_READ) { 1208 DPRINTF(DRAM, "Switching to reads after %d writes with %d writes " 1209 "waiting\n", writesThisTime, writeQueue.size()); 1210 1211 wrPerTurnAround.sample(writesThisTime); 1212 writesThisTime = 0; 1213 1214 busState = READ; 1215 switched_cmd_type = true; 1216 } 1217 1218 if (refreshState != REF_IDLE) { 1219 // if a refresh waiting for this event loop to finish, then hand 1220 // over now, and do not schedule a new nextReqEvent 1221 if (refreshState == REF_DRAIN) { 1222 DPRINTF(DRAM, "Refresh drain done, now precharging\n"); 1223 1224 refreshState = REF_PRE; 1225 1226 // hand control back to the refresh event loop 1227 schedule(refreshEvent, curTick()); 1228 } 1229 1230 // let the refresh finish before issuing any further requests 1231 return; 1232 } 1233 1234 // when we get here it is either a read or a write 1235 if (busState == READ) { 1236 1237 // track if we should switch or not 1238 bool switch_to_writes = false; 1239 1240 if (readQueue.empty()) { 1241 // In the case there is no read request to go next, 1242 // trigger writes if we have passed the low threshold (or 1243 // if we are draining) 1244 if (!writeQueue.empty() && 1245 (drainManager || writeQueue.size() > writeLowThreshold)) { 1246 1247 switch_to_writes = true; 1248 } else { 1249 // check if we are drained 1250 if (respQueue.empty () && drainManager) { 1251 drainManager->signalDrainDone(); 1252 drainManager = NULL; 1253 } 1254 1255 // nothing to do, not even any point in scheduling an 1256 // event for the next request 1257 return; 1258 } 1259 } else { 1260 // Figure out which read request goes next, and move it to the 1261 // front of the read queue 1262 chooseNext(readQueue, switched_cmd_type); 1263 1264 DRAMPacket* dram_pkt = readQueue.front(); 1265 1266 // here we get a bit creative and shift the bus busy time not 1267 // just the tWTR, but also a CAS latency to capture the fact 1268 // that we are allowed to prepare a new bank, but not issue a 1269 // read command until after tWTR, in essence we capture a 1270 // bubble on the data bus that is tWTR + tCL 1271 if (switched_cmd_type && dram_pkt->rank == activeRank) { 1272 busBusyUntil += tWTR + tCL; 1273 } 1274 1275 doDRAMAccess(dram_pkt); 1276 1277 // At this point we're done dealing with the request 1278 readQueue.pop_front(); 1279 1280 // sanity check 1281 assert(dram_pkt->size <= burstSize); 1282 assert(dram_pkt->readyTime >= curTick()); 1283 1284 // Insert into response queue. It will be sent back to the 1285 // requestor at its readyTime 1286 if (respQueue.empty()) { 1287 assert(!respondEvent.scheduled()); 1288 schedule(respondEvent, dram_pkt->readyTime); 1289 } else { 1290 assert(respQueue.back()->readyTime <= dram_pkt->readyTime); 1291 assert(respondEvent.scheduled()); 1292 } 1293 1294 respQueue.push_back(dram_pkt); 1295 1296 // we have so many writes that we have to transition 1297 if (writeQueue.size() > writeHighThreshold) { 1298 switch_to_writes = true; 1299 } 1300 } 1301 1302 // switching to writes, either because the read queue is empty 1303 // and the writes have passed the low threshold (or we are 1304 // draining), or because the writes hit the hight threshold 1305 if (switch_to_writes) { 1306 // transition to writing 1307 busState = READ_TO_WRITE; 1308 } 1309 } else { 1310 chooseNext(writeQueue, switched_cmd_type); 1311 DRAMPacket* dram_pkt = writeQueue.front(); 1312 // sanity check 1313 assert(dram_pkt->size <= burstSize); 1314 1315 // add a bubble to the data bus, as defined by the 1316 // tRTW when access is to the same rank as previous burst 1317 // Different rank timing is handled with tCS, which is 1318 // applied to colAllowedAt 1319 if (switched_cmd_type && dram_pkt->rank == activeRank) { 1320 busBusyUntil += tRTW; 1321 } 1322 1323 doDRAMAccess(dram_pkt); 1324 1325 writeQueue.pop_front(); 1326 delete dram_pkt; 1327 1328 // If we emptied the write queue, or got sufficiently below the 1329 // threshold (using the minWritesPerSwitch as the hysteresis) and 1330 // are not draining, or we have reads waiting and have done enough 1331 // writes, then switch to reads. 1332 if (writeQueue.empty() || 1333 (writeQueue.size() + minWritesPerSwitch < writeLowThreshold && 1334 !drainManager) || 1335 (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) { 1336 // turn the bus back around for reads again 1337 busState = WRITE_TO_READ; 1338 1339 // note that the we switch back to reads also in the idle 1340 // case, which eventually will check for any draining and 1341 // also pause any further scheduling if there is really 1342 // nothing to do 1343 } 1344 } 1345 1346 schedule(nextReqEvent, std::max(nextReqTime, curTick())); 1347 1348 // If there is space available and we have writes waiting then let 1349 // them retry. This is done here to ensure that the retry does not 1350 // cause a nextReqEvent to be scheduled before we do so as part of 1351 // the next request processing 1352 if (retryWrReq && writeQueue.size() < writeBufferSize) { 1353 retryWrReq = false; 1354 port.sendRetry(); 1355 } 1356} 1357 1358uint64_t 1359DRAMCtrl::minBankPrep(const deque<DRAMPacket*>& queue, 1360 bool switched_cmd_type) const 1361{ 1362 uint64_t bank_mask = 0; 1363 Tick min_act_at = MaxTick; 1364 1365 uint64_t bank_mask_same_rank = 0; 1366 Tick min_act_at_same_rank = MaxTick; 1367 1368 // Give precedence to commands that access same rank as previous command 1369 bool same_rank_match = false; 1370 1371 // determine if we have queued transactions targetting the 1372 // bank in question 1373 vector<bool> got_waiting(ranksPerChannel * banksPerRank, false); 1374 for (auto p = queue.begin(); p != queue.end(); ++p) { 1375 got_waiting[(*p)->bankId] = true; 1376 } 1377 1378 for (int i = 0; i < ranksPerChannel; i++) { 1379 for (int j = 0; j < banksPerRank; j++) { 1380 uint8_t bank_id = i * banksPerRank + j; 1381 1382 // if we have waiting requests for the bank, and it is 1383 // amongst the first available, update the mask 1384 if (got_waiting[bank_id]) { 1385 // simplistic approximation of when the bank can issue 1386 // an activate, ignoring any rank-to-rank switching 1387 // cost in this calculation 1388 Tick act_at = banks[i][j].openRow == Bank::NO_ROW ? 1389 banks[i][j].actAllowedAt : 1390 std::max(banks[i][j].preAllowedAt, curTick()) + tRP; 1391 1392 // prioritize commands that access the 1393 // same rank as previous burst 1394 // Calculate bank mask separately for the case and 1395 // evaluate after loop iterations complete 1396 if (i == activeRank && ranksPerChannel > 1) { 1397 if (act_at <= min_act_at_same_rank) { 1398 // reset same rank bank mask if new minimum is found 1399 // and previous minimum could not immediately send ACT 1400 if (act_at < min_act_at_same_rank && 1401 min_act_at_same_rank > curTick()) 1402 bank_mask_same_rank = 0; 1403 1404 // Set flag indicating that a same rank 1405 // opportunity was found 1406 same_rank_match = true; 1407 1408 // set the bit corresponding to the available bank 1409 replaceBits(bank_mask_same_rank, bank_id, bank_id, 1); 1410 min_act_at_same_rank = act_at; 1411 } 1412 } else { 1413 if (act_at <= min_act_at) { 1414 // reset bank mask if new minimum is found 1415 // and either previous minimum could not immediately send ACT 1416 if (act_at < min_act_at && min_act_at > curTick()) 1417 bank_mask = 0; 1418 // set the bit corresponding to the available bank 1419 replaceBits(bank_mask, bank_id, bank_id, 1); 1420 min_act_at = act_at; 1421 } 1422 } 1423 } 1424 } 1425 } 1426 1427 // Determine the earliest time when the next burst can issue based 1428 // on the current busBusyUntil delay. 1429 // Offset by tRCD to correlate with ACT timing variables 1430 Tick min_cmd_at = busBusyUntil - tCL - tRCD; 1431 1432 // Prioritize same rank accesses that can issue B2B 1433 // Only optimize for same ranks when the command type 1434 // does not change; do not want to unnecessarily incur tWTR 1435 // 1436 // Resulting FCFS prioritization Order is: 1437 // 1) Commands that access the same rank as previous burst 1438 // and can prep the bank seamlessly. 1439 // 2) Commands (any rank) with earliest bank prep 1440 if (!switched_cmd_type && same_rank_match && 1441 min_act_at_same_rank <= min_cmd_at) { 1442 bank_mask = bank_mask_same_rank; 1443 } 1444 1445 return bank_mask; 1446} 1447 1448void 1449DRAMCtrl::processRefreshEvent() 1450{ 1451 // when first preparing the refresh, remember when it was due 1452 if (refreshState == REF_IDLE) { 1453 // remember when the refresh is due 1454 refreshDueAt = curTick(); 1455 1456 // proceed to drain 1457 refreshState = REF_DRAIN; 1458 1459 DPRINTF(DRAM, "Refresh due\n"); 1460 } 1461 1462 // let any scheduled read or write go ahead, after which it will 1463 // hand control back to this event loop 1464 if (refreshState == REF_DRAIN) { 1465 if (nextReqEvent.scheduled()) { 1466 // hand control over to the request loop until it is 1467 // evaluated next 1468 DPRINTF(DRAM, "Refresh awaiting draining\n"); 1469 1470 return; 1471 } else { 1472 refreshState = REF_PRE; 1473 } 1474 } 1475 1476 // at this point, ensure that all banks are precharged 1477 if (refreshState == REF_PRE) { 1478 // precharge any active bank if we are not already in the idle 1479 // state 1480 if (pwrState != PWR_IDLE) { 1481 // at the moment, we use a precharge all even if there is 1482 // only a single bank open 1483 DPRINTF(DRAM, "Precharging all\n"); 1484 1485 // first determine when we can precharge 1486 Tick pre_at = curTick(); 1487 for (int i = 0; i < ranksPerChannel; i++) { 1488 for (int j = 0; j < banksPerRank; j++) { 1489 // respect both causality and any existing bank 1490 // constraints, some banks could already have a 1491 // (auto) precharge scheduled 1492 pre_at = std::max(banks[i][j].preAllowedAt, pre_at); 1493 } 1494 } 1495 1496 // make sure all banks are precharged, and for those that 1497 // already are, update their availability 1498 Tick act_allowed_at = pre_at + tRP; 1499 1500 for (int i = 0; i < ranksPerChannel; i++) { 1501 for (int j = 0; j < banksPerRank; j++) { 1502 if (banks[i][j].openRow != Bank::NO_ROW) { 1503 prechargeBank(banks[i][j], pre_at, false); 1504 } else { 1505 banks[i][j].actAllowedAt = 1506 std::max(banks[i][j].actAllowedAt, act_allowed_at); 1507 banks[i][j].preAllowedAt = 1508 std::max(banks[i][j].preAllowedAt, pre_at); 1509 } 1510 } 1511 1512 // at the moment this affects all ranks 1513 DPRINTF(DRAMPower, "%llu,PREA,0,%d\n", divCeil(pre_at, tCK), 1514 i); 1515 } 1516 } else { 1517 DPRINTF(DRAM, "All banks already precharged, starting refresh\n"); 1518 1519 // go ahead and kick the power state machine into gear if 1520 // we are already idle 1521 schedulePowerEvent(PWR_REF, curTick()); 1522 } 1523 1524 refreshState = REF_RUN; 1525 assert(numBanksActive == 0); 1526 1527 // wait for all banks to be precharged, at which point the 1528 // power state machine will transition to the idle state, and 1529 // automatically move to a refresh, at that point it will also 1530 // call this method to get the refresh event loop going again 1531 return; 1532 } 1533 1534 // last but not least we perform the actual refresh 1535 if (refreshState == REF_RUN) { 1536 // should never get here with any banks active 1537 assert(numBanksActive == 0); 1538 assert(pwrState == PWR_REF); 1539 1540 Tick ref_done_at = curTick() + tRFC; 1541 1542 for (int i = 0; i < ranksPerChannel; i++) { 1543 for (int j = 0; j < banksPerRank; j++) { 1544 banks[i][j].actAllowedAt = ref_done_at; 1545 } 1546 1547 // at the moment this affects all ranks 1548 DPRINTF(DRAMPower, "%llu,REF,0,%d\n", divCeil(curTick(), tCK), i); 1549 } 1550 1551 // make sure we did not wait so long that we cannot make up 1552 // for it 1553 if (refreshDueAt + tREFI < ref_done_at) { 1554 fatal("Refresh was delayed so long we cannot catch up\n"); 1555 } 1556 1557 // compensate for the delay in actually performing the refresh 1558 // when scheduling the next one 1559 schedule(refreshEvent, refreshDueAt + tREFI - tRP); 1560 1561 assert(!powerEvent.scheduled()); 1562 1563 // move to the idle power state once the refresh is done, this 1564 // will also move the refresh state machine to the refresh 1565 // idle state 1566 schedulePowerEvent(PWR_IDLE, ref_done_at); 1567 1568 DPRINTF(DRAMState, "Refresh done at %llu and next refresh at %llu\n", 1569 ref_done_at, refreshDueAt + tREFI); 1570 } 1571} 1572 1573void 1574DRAMCtrl::schedulePowerEvent(PowerState pwr_state, Tick tick) 1575{ 1576 // respect causality 1577 assert(tick >= curTick()); 1578 1579 if (!powerEvent.scheduled()) { 1580 DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n", 1581 tick, pwr_state); 1582 1583 // insert the new transition 1584 pwrStateTrans = pwr_state; 1585 1586 schedule(powerEvent, tick); 1587 } else { 1588 panic("Scheduled power event at %llu to state %d, " 1589 "with scheduled event at %llu to %d\n", tick, pwr_state, 1590 powerEvent.when(), pwrStateTrans); 1591 } 1592} 1593 1594void 1595DRAMCtrl::processPowerEvent() 1596{ 1597 // remember where we were, and for how long 1598 Tick duration = curTick() - pwrStateTick; 1599 PowerState prev_state = pwrState; 1600 1601 // update the accounting 1602 pwrStateTime[prev_state] += duration; 1603 1604 pwrState = pwrStateTrans; 1605 pwrStateTick = curTick(); 1606 1607 if (pwrState == PWR_IDLE) { 1608 DPRINTF(DRAMState, "All banks precharged\n"); 1609 1610 // if we were refreshing, make sure we start scheduling requests again 1611 if (prev_state == PWR_REF) { 1612 DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration); 1613 assert(pwrState == PWR_IDLE); 1614 1615 // kick things into action again 1616 refreshState = REF_IDLE; 1617 assert(!nextReqEvent.scheduled()); 1618 schedule(nextReqEvent, curTick()); 1619 } else { 1620 assert(prev_state == PWR_ACT); 1621 1622 // if we have a pending refresh, and are now moving to 1623 // the idle state, direclty transition to a refresh 1624 if (refreshState == REF_RUN) { 1625 // there should be nothing waiting at this point 1626 assert(!powerEvent.scheduled()); 1627 1628 // update the state in zero time and proceed below 1629 pwrState = PWR_REF; 1630 } 1631 } 1632 } 1633 1634 // we transition to the refresh state, let the refresh state 1635 // machine know of this state update and let it deal with the 1636 // scheduling of the next power state transition as well as the 1637 // following refresh 1638 if (pwrState == PWR_REF) { 1639 DPRINTF(DRAMState, "Refreshing\n"); 1640 // kick the refresh event loop into action again, and that 1641 // in turn will schedule a transition to the idle power 1642 // state once the refresh is done 1643 assert(refreshState == REF_RUN); 1644 processRefreshEvent(); 1645 } 1646} 1647 1648void 1649DRAMCtrl::regStats() 1650{ 1651 using namespace Stats; 1652 1653 AbstractMemory::regStats(); 1654 1655 readReqs 1656 .name(name() + ".readReqs") 1657 .desc("Number of read requests accepted"); 1658 1659 writeReqs 1660 .name(name() + ".writeReqs") 1661 .desc("Number of write requests accepted"); 1662 1663 readBursts 1664 .name(name() + ".readBursts") 1665 .desc("Number of DRAM read bursts, " 1666 "including those serviced by the write queue"); 1667 1668 writeBursts 1669 .name(name() + ".writeBursts") 1670 .desc("Number of DRAM write bursts, " 1671 "including those merged in the write queue"); 1672 1673 servicedByWrQ 1674 .name(name() + ".servicedByWrQ") 1675 .desc("Number of DRAM read bursts serviced by the write queue"); 1676 1677 mergedWrBursts 1678 .name(name() + ".mergedWrBursts") 1679 .desc("Number of DRAM write bursts merged with an existing one"); 1680 1681 neitherReadNorWrite 1682 .name(name() + ".neitherReadNorWriteReqs") 1683 .desc("Number of requests that are neither read nor write"); 1684 1685 perBankRdBursts 1686 .init(banksPerRank * ranksPerChannel) 1687 .name(name() + ".perBankRdBursts") 1688 .desc("Per bank write bursts"); 1689 1690 perBankWrBursts 1691 .init(banksPerRank * ranksPerChannel) 1692 .name(name() + ".perBankWrBursts") 1693 .desc("Per bank write bursts"); 1694 1695 avgRdQLen 1696 .name(name() + ".avgRdQLen") 1697 .desc("Average read queue length when enqueuing") 1698 .precision(2); 1699 1700 avgWrQLen 1701 .name(name() + ".avgWrQLen") 1702 .desc("Average write queue length when enqueuing") 1703 .precision(2); 1704 1705 totQLat 1706 .name(name() + ".totQLat") 1707 .desc("Total ticks spent queuing"); 1708 1709 totBusLat 1710 .name(name() + ".totBusLat") 1711 .desc("Total ticks spent in databus transfers"); 1712 1713 totMemAccLat 1714 .name(name() + ".totMemAccLat") 1715 .desc("Total ticks spent from burst creation until serviced " 1716 "by the DRAM"); 1717 1718 avgQLat 1719 .name(name() + ".avgQLat") 1720 .desc("Average queueing delay per DRAM burst") 1721 .precision(2); 1722 1723 avgQLat = totQLat / (readBursts - servicedByWrQ); 1724 1725 avgBusLat 1726 .name(name() + ".avgBusLat") 1727 .desc("Average bus latency per DRAM burst") 1728 .precision(2); 1729 1730 avgBusLat = totBusLat / (readBursts - servicedByWrQ); 1731 1732 avgMemAccLat 1733 .name(name() + ".avgMemAccLat") 1734 .desc("Average memory access latency per DRAM burst") 1735 .precision(2); 1736 1737 avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ); 1738 1739 numRdRetry 1740 .name(name() + ".numRdRetry") 1741 .desc("Number of times read queue was full causing retry"); 1742 1743 numWrRetry 1744 .name(name() + ".numWrRetry") 1745 .desc("Number of times write queue was full causing retry"); 1746 1747 readRowHits 1748 .name(name() + ".readRowHits") 1749 .desc("Number of row buffer hits during reads"); 1750 1751 writeRowHits 1752 .name(name() + ".writeRowHits") 1753 .desc("Number of row buffer hits during writes"); 1754 1755 readRowHitRate 1756 .name(name() + ".readRowHitRate") 1757 .desc("Row buffer hit rate for reads") 1758 .precision(2); 1759 1760 readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100; 1761 1762 writeRowHitRate 1763 .name(name() + ".writeRowHitRate") 1764 .desc("Row buffer hit rate for writes") 1765 .precision(2); 1766 1767 writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100; 1768 1769 readPktSize 1770 .init(ceilLog2(burstSize) + 1) 1771 .name(name() + ".readPktSize") 1772 .desc("Read request sizes (log2)"); 1773 1774 writePktSize 1775 .init(ceilLog2(burstSize) + 1) 1776 .name(name() + ".writePktSize") 1777 .desc("Write request sizes (log2)"); 1778 1779 rdQLenPdf 1780 .init(readBufferSize) 1781 .name(name() + ".rdQLenPdf") 1782 .desc("What read queue length does an incoming req see"); 1783 1784 wrQLenPdf 1785 .init(writeBufferSize) 1786 .name(name() + ".wrQLenPdf") 1787 .desc("What write queue length does an incoming req see"); 1788 1789 bytesPerActivate 1790 .init(maxAccessesPerRow) 1791 .name(name() + ".bytesPerActivate") 1792 .desc("Bytes accessed per row activation") 1793 .flags(nozero); 1794 1795 rdPerTurnAround 1796 .init(readBufferSize) 1797 .name(name() + ".rdPerTurnAround") 1798 .desc("Reads before turning the bus around for writes") 1799 .flags(nozero); 1800 1801 wrPerTurnAround 1802 .init(writeBufferSize) 1803 .name(name() + ".wrPerTurnAround") 1804 .desc("Writes before turning the bus around for reads") 1805 .flags(nozero); 1806 1807 bytesReadDRAM 1808 .name(name() + ".bytesReadDRAM") 1809 .desc("Total number of bytes read from DRAM"); 1810 1811 bytesReadWrQ 1812 .name(name() + ".bytesReadWrQ") 1813 .desc("Total number of bytes read from write queue"); 1814 1815 bytesWritten 1816 .name(name() + ".bytesWritten") 1817 .desc("Total number of bytes written to DRAM"); 1818 1819 bytesReadSys 1820 .name(name() + ".bytesReadSys") 1821 .desc("Total read bytes from the system interface side"); 1822 1823 bytesWrittenSys 1824 .name(name() + ".bytesWrittenSys") 1825 .desc("Total written bytes from the system interface side"); 1826 1827 avgRdBW 1828 .name(name() + ".avgRdBW") 1829 .desc("Average DRAM read bandwidth in MiByte/s") 1830 .precision(2); 1831 1832 avgRdBW = (bytesReadDRAM / 1000000) / simSeconds; 1833 1834 avgWrBW 1835 .name(name() + ".avgWrBW") 1836 .desc("Average achieved write bandwidth in MiByte/s") 1837 .precision(2); 1838 1839 avgWrBW = (bytesWritten / 1000000) / simSeconds; 1840 1841 avgRdBWSys 1842 .name(name() + ".avgRdBWSys") 1843 .desc("Average system read bandwidth in MiByte/s") 1844 .precision(2); 1845 1846 avgRdBWSys = (bytesReadSys / 1000000) / simSeconds; 1847 1848 avgWrBWSys 1849 .name(name() + ".avgWrBWSys") 1850 .desc("Average system write bandwidth in MiByte/s") 1851 .precision(2); 1852 1853 avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds; 1854 1855 peakBW 1856 .name(name() + ".peakBW") 1857 .desc("Theoretical peak bandwidth in MiByte/s") 1858 .precision(2); 1859 1860 peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000; 1861 1862 busUtil 1863 .name(name() + ".busUtil") 1864 .desc("Data bus utilization in percentage") 1865 .precision(2); 1866 1867 busUtil = (avgRdBW + avgWrBW) / peakBW * 100; 1868 1869 totGap 1870 .name(name() + ".totGap") 1871 .desc("Total gap between requests"); 1872 1873 avgGap 1874 .name(name() + ".avgGap") 1875 .desc("Average gap between requests") 1876 .precision(2); 1877 1878 avgGap = totGap / (readReqs + writeReqs); 1879 1880 // Stats for DRAM Power calculation based on Micron datasheet 1881 busUtilRead 1882 .name(name() + ".busUtilRead") 1883 .desc("Data bus utilization in percentage for reads") 1884 .precision(2); 1885 1886 busUtilRead = avgRdBW / peakBW * 100; 1887 1888 busUtilWrite 1889 .name(name() + ".busUtilWrite") 1890 .desc("Data bus utilization in percentage for writes") 1891 .precision(2); 1892 1893 busUtilWrite = avgWrBW / peakBW * 100; 1894 1895 pageHitRate 1896 .name(name() + ".pageHitRate") 1897 .desc("Row buffer hit rate, read and write combined") 1898 .precision(2); 1899 1900 pageHitRate = (writeRowHits + readRowHits) / 1901 (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100; 1902 1903 pwrStateTime 1904 .init(5) 1905 .name(name() + ".memoryStateTime") 1906 .desc("Time in different power states"); 1907 pwrStateTime.subname(0, "IDLE"); 1908 pwrStateTime.subname(1, "REF"); 1909 pwrStateTime.subname(2, "PRE_PDN"); 1910 pwrStateTime.subname(3, "ACT"); 1911 pwrStateTime.subname(4, "ACT_PDN"); 1912} 1913 1914void 1915DRAMCtrl::recvFunctional(PacketPtr pkt) 1916{ 1917 // rely on the abstract memory 1918 functionalAccess(pkt); 1919} 1920 1921BaseSlavePort& 1922DRAMCtrl::getSlavePort(const string &if_name, PortID idx) 1923{ 1924 if (if_name != "port") { 1925 return MemObject::getSlavePort(if_name, idx); 1926 } else { 1927 return port; 1928 } 1929} 1930 1931unsigned int 1932DRAMCtrl::drain(DrainManager *dm) 1933{ 1934 unsigned int count = port.drain(dm); 1935 1936 // if there is anything in any of our internal queues, keep track 1937 // of that as well 1938 if (!(writeQueue.empty() && readQueue.empty() && 1939 respQueue.empty())) { 1940 DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d," 1941 " resp: %d\n", writeQueue.size(), readQueue.size(), 1942 respQueue.size()); 1943 ++count; 1944 drainManager = dm; 1945 1946 // the only part that is not drained automatically over time 1947 // is the write queue, thus kick things into action if needed 1948 if (!writeQueue.empty() && !nextReqEvent.scheduled()) { 1949 schedule(nextReqEvent, curTick()); 1950 } 1951 } 1952 1953 if (count) 1954 setDrainState(Drainable::Draining); 1955 else 1956 setDrainState(Drainable::Drained); 1957 return count; 1958} 1959 1960DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory) 1961 : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this), 1962 memory(_memory) 1963{ } 1964 1965AddrRangeList 1966DRAMCtrl::MemoryPort::getAddrRanges() const 1967{ 1968 AddrRangeList ranges; 1969 ranges.push_back(memory.getAddrRange()); 1970 return ranges; 1971} 1972 1973void 1974DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt) 1975{ 1976 pkt->pushLabel(memory.name()); 1977 1978 if (!queue.checkFunctional(pkt)) { 1979 // Default implementation of SimpleTimingPort::recvFunctional() 1980 // calls recvAtomic() and throws away the latency; we can save a 1981 // little here by just not calculating the latency. 1982 memory.recvFunctional(pkt); 1983 } 1984 1985 pkt->popLabel(); 1986} 1987 1988Tick 1989DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt) 1990{ 1991 return memory.recvAtomic(pkt); 1992} 1993 1994bool 1995DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt) 1996{ 1997 // pass it to the memory controller 1998 return memory.recvTimingReq(pkt); 1999} 2000 2001DRAMCtrl* 2002DRAMCtrlParams::create() 2003{ 2004 return new DRAMCtrl(this); 2005} 2006