dram_ctrl.cc revision 10393:0fafa62b6c01
1/* 2 * Copyright (c) 2010-2014 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2013 Amin Farmahini-Farahani 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Andreas Hansson 41 * Ani Udipi 42 * Neha Agarwal 43 */ 44 45#include "base/bitfield.hh" 46#include "base/trace.hh" 47#include "debug/DRAM.hh" 48#include "debug/DRAMPower.hh" 49#include "debug/DRAMState.hh" 50#include "debug/Drain.hh" 51#include "mem/dram_ctrl.hh" 52#include "sim/system.hh" 53 54using namespace std; 55 56DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) : 57 AbstractMemory(p), 58 port(name() + ".port", *this), 59 retryRdReq(false), retryWrReq(false), 60 busState(READ), 61 nextReqEvent(this), respondEvent(this), activateEvent(this), 62 prechargeEvent(this), refreshEvent(this), powerEvent(this), 63 drainManager(NULL), 64 deviceBusWidth(p->device_bus_width), burstLength(p->burst_length), 65 deviceRowBufferSize(p->device_rowbuffer_size), 66 devicesPerRank(p->devices_per_rank), 67 burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8), 68 rowBufferSize(devicesPerRank * deviceRowBufferSize), 69 columnsPerRowBuffer(rowBufferSize / burstSize), 70 columnsPerStripe(range.granularity() / burstSize), 71 ranksPerChannel(p->ranks_per_channel), 72 banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0), 73 readBufferSize(p->read_buffer_size), 74 writeBufferSize(p->write_buffer_size), 75 writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0), 76 writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0), 77 minWritesPerSwitch(p->min_writes_per_switch), 78 writesThisTime(0), readsThisTime(0), 79 tCK(p->tCK), tWTR(p->tWTR), tRTW(p->tRTW), tCS(p->tCS), tBURST(p->tBURST), 80 tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS), tWR(p->tWR), 81 tRTP(p->tRTP), tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD), 82 tXAW(p->tXAW), activationLimit(p->activation_limit), 83 memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping), 84 pageMgmt(p->page_policy), 85 maxAccessesPerRow(p->max_accesses_per_row), 86 frontendLatency(p->static_frontend_latency), 87 backendLatency(p->static_backend_latency), 88 busBusyUntil(0), refreshDueAt(0), refreshState(REF_IDLE), 89 pwrStateTrans(PWR_IDLE), pwrState(PWR_IDLE), prevArrival(0), 90 nextReqTime(0), pwrStateTick(0), numBanksActive(0), 91 activeRank(0) 92{ 93 // create the bank states based on the dimensions of the ranks and 94 // banks 95 banks.resize(ranksPerChannel); 96 actTicks.resize(ranksPerChannel); 97 for (size_t c = 0; c < ranksPerChannel; ++c) { 98 banks[c].resize(banksPerRank); 99 actTicks[c].resize(activationLimit, 0); 100 } 101 102 // set the bank indices 103 for (int r = 0; r < ranksPerChannel; r++) { 104 for (int b = 0; b < banksPerRank; b++) { 105 banks[r][b].rank = r; 106 banks[r][b].bank = b; 107 } 108 } 109 110 // perform a basic check of the write thresholds 111 if (p->write_low_thresh_perc >= p->write_high_thresh_perc) 112 fatal("Write buffer low threshold %d must be smaller than the " 113 "high threshold %d\n", p->write_low_thresh_perc, 114 p->write_high_thresh_perc); 115 116 // determine the rows per bank by looking at the total capacity 117 uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size()); 118 119 DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity, 120 AbstractMemory::size()); 121 122 DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n", 123 rowBufferSize, columnsPerRowBuffer); 124 125 rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel); 126 127 // a bit of sanity checks on the interleaving 128 if (range.interleaved()) { 129 if (channels != range.stripes()) 130 fatal("%s has %d interleaved address stripes but %d channel(s)\n", 131 name(), range.stripes(), channels); 132 133 if (addrMapping == Enums::RoRaBaChCo) { 134 if (rowBufferSize != range.granularity()) { 135 fatal("Channel interleaving of %s doesn't match RoRaBaChCo " 136 "address map\n", name()); 137 } 138 } else if (addrMapping == Enums::RoRaBaCoCh || 139 addrMapping == Enums::RoCoRaBaCh) { 140 // for the interleavings with channel bits in the bottom, 141 // if the system uses a channel striping granularity that 142 // is larger than the DRAM burst size, then map the 143 // sequential accesses within a stripe to a number of 144 // columns in the DRAM, effectively placing some of the 145 // lower-order column bits as the least-significant bits 146 // of the address (above the ones denoting the burst size) 147 assert(columnsPerStripe >= 1); 148 149 // channel striping has to be done at a granularity that 150 // is equal or larger to a cache line 151 if (system()->cacheLineSize() > range.granularity()) { 152 fatal("Channel interleaving of %s must be at least as large " 153 "as the cache line size\n", name()); 154 } 155 156 // ...and equal or smaller than the row-buffer size 157 if (rowBufferSize < range.granularity()) { 158 fatal("Channel interleaving of %s must be at most as large " 159 "as the row-buffer size\n", name()); 160 } 161 // this is essentially the check above, so just to be sure 162 assert(columnsPerStripe <= columnsPerRowBuffer); 163 } 164 } 165 166 // some basic sanity checks 167 if (tREFI <= tRP || tREFI <= tRFC) { 168 fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n", 169 tREFI, tRP, tRFC); 170 } 171} 172 173void 174DRAMCtrl::init() 175{ 176 if (!port.isConnected()) { 177 fatal("DRAMCtrl %s is unconnected!\n", name()); 178 } else { 179 port.sendRangeChange(); 180 } 181} 182 183void 184DRAMCtrl::startup() 185{ 186 // update the start tick for the precharge accounting to the 187 // current tick 188 pwrStateTick = curTick(); 189 190 // shift the bus busy time sufficiently far ahead that we never 191 // have to worry about negative values when computing the time for 192 // the next request, this will add an insignificant bubble at the 193 // start of simulation 194 busBusyUntil = curTick() + tRP + tRCD + tCL; 195 196 // kick off the refresh, and give ourselves enough time to 197 // precharge 198 schedule(refreshEvent, curTick() + tREFI - tRP); 199} 200 201Tick 202DRAMCtrl::recvAtomic(PacketPtr pkt) 203{ 204 DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr()); 205 206 // do the actual memory access and turn the packet into a response 207 access(pkt); 208 209 Tick latency = 0; 210 if (!pkt->memInhibitAsserted() && pkt->hasData()) { 211 // this value is not supposed to be accurate, just enough to 212 // keep things going, mimic a closed page 213 latency = tRP + tRCD + tCL; 214 } 215 return latency; 216} 217 218bool 219DRAMCtrl::readQueueFull(unsigned int neededEntries) const 220{ 221 DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n", 222 readBufferSize, readQueue.size() + respQueue.size(), 223 neededEntries); 224 225 return 226 (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize; 227} 228 229bool 230DRAMCtrl::writeQueueFull(unsigned int neededEntries) const 231{ 232 DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n", 233 writeBufferSize, writeQueue.size(), neededEntries); 234 return (writeQueue.size() + neededEntries) > writeBufferSize; 235} 236 237DRAMCtrl::DRAMPacket* 238DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size, 239 bool isRead) 240{ 241 // decode the address based on the address mapping scheme, with 242 // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and 243 // channel, respectively 244 uint8_t rank; 245 uint8_t bank; 246 // use a 64-bit unsigned during the computations as the row is 247 // always the top bits, and check before creating the DRAMPacket 248 uint64_t row; 249 250 // truncate the address to a DRAM burst, which makes it unique to 251 // a specific column, row, bank, rank and channel 252 Addr addr = dramPktAddr / burstSize; 253 254 // we have removed the lowest order address bits that denote the 255 // position within the column 256 if (addrMapping == Enums::RoRaBaChCo) { 257 // the lowest order bits denote the column to ensure that 258 // sequential cache lines occupy the same row 259 addr = addr / columnsPerRowBuffer; 260 261 // take out the channel part of the address 262 addr = addr / channels; 263 264 // after the channel bits, get the bank bits to interleave 265 // over the banks 266 bank = addr % banksPerRank; 267 addr = addr / banksPerRank; 268 269 // after the bank, we get the rank bits which thus interleaves 270 // over the ranks 271 rank = addr % ranksPerChannel; 272 addr = addr / ranksPerChannel; 273 274 // lastly, get the row bits 275 row = addr % rowsPerBank; 276 addr = addr / rowsPerBank; 277 } else if (addrMapping == Enums::RoRaBaCoCh) { 278 // take out the lower-order column bits 279 addr = addr / columnsPerStripe; 280 281 // take out the channel part of the address 282 addr = addr / channels; 283 284 // next, the higher-order column bites 285 addr = addr / (columnsPerRowBuffer / columnsPerStripe); 286 287 // after the column bits, we get the bank bits to interleave 288 // over the banks 289 bank = addr % banksPerRank; 290 addr = addr / banksPerRank; 291 292 // after the bank, we get the rank bits which thus interleaves 293 // over the ranks 294 rank = addr % ranksPerChannel; 295 addr = addr / ranksPerChannel; 296 297 // lastly, get the row bits 298 row = addr % rowsPerBank; 299 addr = addr / rowsPerBank; 300 } else if (addrMapping == Enums::RoCoRaBaCh) { 301 // optimise for closed page mode and utilise maximum 302 // parallelism of the DRAM (at the cost of power) 303 304 // take out the lower-order column bits 305 addr = addr / columnsPerStripe; 306 307 // take out the channel part of the address, not that this has 308 // to match with how accesses are interleaved between the 309 // controllers in the address mapping 310 addr = addr / channels; 311 312 // start with the bank bits, as this provides the maximum 313 // opportunity for parallelism between requests 314 bank = addr % banksPerRank; 315 addr = addr / banksPerRank; 316 317 // next get the rank bits 318 rank = addr % ranksPerChannel; 319 addr = addr / ranksPerChannel; 320 321 // next, the higher-order column bites 322 addr = addr / (columnsPerRowBuffer / columnsPerStripe); 323 324 // lastly, get the row bits 325 row = addr % rowsPerBank; 326 addr = addr / rowsPerBank; 327 } else 328 panic("Unknown address mapping policy chosen!"); 329 330 assert(rank < ranksPerChannel); 331 assert(bank < banksPerRank); 332 assert(row < rowsPerBank); 333 assert(row < Bank::NO_ROW); 334 335 DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n", 336 dramPktAddr, rank, bank, row); 337 338 // create the corresponding DRAM packet with the entry time and 339 // ready time set to the current tick, the latter will be updated 340 // later 341 uint16_t bank_id = banksPerRank * rank + bank; 342 return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr, 343 size, banks[rank][bank]); 344} 345 346void 347DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount) 348{ 349 // only add to the read queue here. whenever the request is 350 // eventually done, set the readyTime, and call schedule() 351 assert(!pkt->isWrite()); 352 353 assert(pktCount != 0); 354 355 // if the request size is larger than burst size, the pkt is split into 356 // multiple DRAM packets 357 // Note if the pkt starting address is not aligened to burst size, the 358 // address of first DRAM packet is kept unaliged. Subsequent DRAM packets 359 // are aligned to burst size boundaries. This is to ensure we accurately 360 // check read packets against packets in write queue. 361 Addr addr = pkt->getAddr(); 362 unsigned pktsServicedByWrQ = 0; 363 BurstHelper* burst_helper = NULL; 364 for (int cnt = 0; cnt < pktCount; ++cnt) { 365 unsigned size = std::min((addr | (burstSize - 1)) + 1, 366 pkt->getAddr() + pkt->getSize()) - addr; 367 readPktSize[ceilLog2(size)]++; 368 readBursts++; 369 370 // First check write buffer to see if the data is already at 371 // the controller 372 bool foundInWrQ = false; 373 for (auto i = writeQueue.begin(); i != writeQueue.end(); ++i) { 374 // check if the read is subsumed in the write entry we are 375 // looking at 376 if ((*i)->addr <= addr && 377 (addr + size) <= ((*i)->addr + (*i)->size)) { 378 foundInWrQ = true; 379 servicedByWrQ++; 380 pktsServicedByWrQ++; 381 DPRINTF(DRAM, "Read to addr %lld with size %d serviced by " 382 "write queue\n", addr, size); 383 bytesReadWrQ += burstSize; 384 break; 385 } 386 } 387 388 // If not found in the write q, make a DRAM packet and 389 // push it onto the read queue 390 if (!foundInWrQ) { 391 392 // Make the burst helper for split packets 393 if (pktCount > 1 && burst_helper == NULL) { 394 DPRINTF(DRAM, "Read to addr %lld translates to %d " 395 "dram requests\n", pkt->getAddr(), pktCount); 396 burst_helper = new BurstHelper(pktCount); 397 } 398 399 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true); 400 dram_pkt->burstHelper = burst_helper; 401 402 assert(!readQueueFull(1)); 403 rdQLenPdf[readQueue.size() + respQueue.size()]++; 404 405 DPRINTF(DRAM, "Adding to read queue\n"); 406 407 readQueue.push_back(dram_pkt); 408 409 // Update stats 410 avgRdQLen = readQueue.size() + respQueue.size(); 411 } 412 413 // Starting address of next dram pkt (aligend to burstSize boundary) 414 addr = (addr | (burstSize - 1)) + 1; 415 } 416 417 // If all packets are serviced by write queue, we send the repsonse back 418 if (pktsServicedByWrQ == pktCount) { 419 accessAndRespond(pkt, frontendLatency); 420 return; 421 } 422 423 // Update how many split packets are serviced by write queue 424 if (burst_helper != NULL) 425 burst_helper->burstsServiced = pktsServicedByWrQ; 426 427 // If we are not already scheduled to get a request out of the 428 // queue, do so now 429 if (!nextReqEvent.scheduled()) { 430 DPRINTF(DRAM, "Request scheduled immediately\n"); 431 schedule(nextReqEvent, curTick()); 432 } 433} 434 435void 436DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount) 437{ 438 // only add to the write queue here. whenever the request is 439 // eventually done, set the readyTime, and call schedule() 440 assert(pkt->isWrite()); 441 442 // if the request size is larger than burst size, the pkt is split into 443 // multiple DRAM packets 444 Addr addr = pkt->getAddr(); 445 for (int cnt = 0; cnt < pktCount; ++cnt) { 446 unsigned size = std::min((addr | (burstSize - 1)) + 1, 447 pkt->getAddr() + pkt->getSize()) - addr; 448 writePktSize[ceilLog2(size)]++; 449 writeBursts++; 450 451 // see if we can merge with an existing item in the write 452 // queue and keep track of whether we have merged or not so we 453 // can stop at that point and also avoid enqueueing a new 454 // request 455 bool merged = false; 456 auto w = writeQueue.begin(); 457 458 while(!merged && w != writeQueue.end()) { 459 // either of the two could be first, if they are the same 460 // it does not matter which way we go 461 if ((*w)->addr >= addr) { 462 // the existing one starts after the new one, figure 463 // out where the new one ends with respect to the 464 // existing one 465 if ((addr + size) >= ((*w)->addr + (*w)->size)) { 466 // check if the existing one is completely 467 // subsumed in the new one 468 DPRINTF(DRAM, "Merging write covering existing burst\n"); 469 merged = true; 470 // update both the address and the size 471 (*w)->addr = addr; 472 (*w)->size = size; 473 } else if ((addr + size) >= (*w)->addr && 474 ((*w)->addr + (*w)->size - addr) <= burstSize) { 475 // the new one is just before or partially 476 // overlapping with the existing one, and together 477 // they fit within a burst 478 DPRINTF(DRAM, "Merging write before existing burst\n"); 479 merged = true; 480 // the existing queue item needs to be adjusted with 481 // respect to both address and size 482 (*w)->size = (*w)->addr + (*w)->size - addr; 483 (*w)->addr = addr; 484 } 485 } else { 486 // the new one starts after the current one, figure 487 // out where the existing one ends with respect to the 488 // new one 489 if (((*w)->addr + (*w)->size) >= (addr + size)) { 490 // check if the new one is completely subsumed in the 491 // existing one 492 DPRINTF(DRAM, "Merging write into existing burst\n"); 493 merged = true; 494 // no adjustments necessary 495 } else if (((*w)->addr + (*w)->size) >= addr && 496 (addr + size - (*w)->addr) <= burstSize) { 497 // the existing one is just before or partially 498 // overlapping with the new one, and together 499 // they fit within a burst 500 DPRINTF(DRAM, "Merging write after existing burst\n"); 501 merged = true; 502 // the address is right, and only the size has 503 // to be adjusted 504 (*w)->size = addr + size - (*w)->addr; 505 } 506 } 507 ++w; 508 } 509 510 // if the item was not merged we need to create a new write 511 // and enqueue it 512 if (!merged) { 513 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false); 514 515 assert(writeQueue.size() < writeBufferSize); 516 wrQLenPdf[writeQueue.size()]++; 517 518 DPRINTF(DRAM, "Adding to write queue\n"); 519 520 writeQueue.push_back(dram_pkt); 521 522 // Update stats 523 avgWrQLen = writeQueue.size(); 524 } else { 525 // keep track of the fact that this burst effectively 526 // disappeared as it was merged with an existing one 527 mergedWrBursts++; 528 } 529 530 // Starting address of next dram pkt (aligend to burstSize boundary) 531 addr = (addr | (burstSize - 1)) + 1; 532 } 533 534 // we do not wait for the writes to be send to the actual memory, 535 // but instead take responsibility for the consistency here and 536 // snoop the write queue for any upcoming reads 537 // @todo, if a pkt size is larger than burst size, we might need a 538 // different front end latency 539 accessAndRespond(pkt, frontendLatency); 540 541 // If we are not already scheduled to get a request out of the 542 // queue, do so now 543 if (!nextReqEvent.scheduled()) { 544 DPRINTF(DRAM, "Request scheduled immediately\n"); 545 schedule(nextReqEvent, curTick()); 546 } 547} 548 549void 550DRAMCtrl::printQs() const { 551 DPRINTF(DRAM, "===READ QUEUE===\n\n"); 552 for (auto i = readQueue.begin() ; i != readQueue.end() ; ++i) { 553 DPRINTF(DRAM, "Read %lu\n", (*i)->addr); 554 } 555 DPRINTF(DRAM, "\n===RESP QUEUE===\n\n"); 556 for (auto i = respQueue.begin() ; i != respQueue.end() ; ++i) { 557 DPRINTF(DRAM, "Response %lu\n", (*i)->addr); 558 } 559 DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n"); 560 for (auto i = writeQueue.begin() ; i != writeQueue.end() ; ++i) { 561 DPRINTF(DRAM, "Write %lu\n", (*i)->addr); 562 } 563} 564 565bool 566DRAMCtrl::recvTimingReq(PacketPtr pkt) 567{ 568 /// @todo temporary hack to deal with memory corruption issues until 569 /// 4-phase transactions are complete 570 for (int x = 0; x < pendingDelete.size(); x++) 571 delete pendingDelete[x]; 572 pendingDelete.clear(); 573 574 // This is where we enter from the outside world 575 DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n", 576 pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 577 578 // simply drop inhibited packets for now 579 if (pkt->memInhibitAsserted()) { 580 DPRINTF(DRAM, "Inhibited packet -- Dropping it now\n"); 581 pendingDelete.push_back(pkt); 582 return true; 583 } 584 585 // Calc avg gap between requests 586 if (prevArrival != 0) { 587 totGap += curTick() - prevArrival; 588 } 589 prevArrival = curTick(); 590 591 592 // Find out how many dram packets a pkt translates to 593 // If the burst size is equal or larger than the pkt size, then a pkt 594 // translates to only one dram packet. Otherwise, a pkt translates to 595 // multiple dram packets 596 unsigned size = pkt->getSize(); 597 unsigned offset = pkt->getAddr() & (burstSize - 1); 598 unsigned int dram_pkt_count = divCeil(offset + size, burstSize); 599 600 // check local buffers and do not accept if full 601 if (pkt->isRead()) { 602 assert(size != 0); 603 if (readQueueFull(dram_pkt_count)) { 604 DPRINTF(DRAM, "Read queue full, not accepting\n"); 605 // remember that we have to retry this port 606 retryRdReq = true; 607 numRdRetry++; 608 return false; 609 } else { 610 addToReadQueue(pkt, dram_pkt_count); 611 readReqs++; 612 bytesReadSys += size; 613 } 614 } else if (pkt->isWrite()) { 615 assert(size != 0); 616 if (writeQueueFull(dram_pkt_count)) { 617 DPRINTF(DRAM, "Write queue full, not accepting\n"); 618 // remember that we have to retry this port 619 retryWrReq = true; 620 numWrRetry++; 621 return false; 622 } else { 623 addToWriteQueue(pkt, dram_pkt_count); 624 writeReqs++; 625 bytesWrittenSys += size; 626 } 627 } else { 628 DPRINTF(DRAM,"Neither read nor write, ignore timing\n"); 629 neitherReadNorWrite++; 630 accessAndRespond(pkt, 1); 631 } 632 633 return true; 634} 635 636void 637DRAMCtrl::processRespondEvent() 638{ 639 DPRINTF(DRAM, 640 "processRespondEvent(): Some req has reached its readyTime\n"); 641 642 DRAMPacket* dram_pkt = respQueue.front(); 643 644 if (dram_pkt->burstHelper) { 645 // it is a split packet 646 dram_pkt->burstHelper->burstsServiced++; 647 if (dram_pkt->burstHelper->burstsServiced == 648 dram_pkt->burstHelper->burstCount) { 649 // we have now serviced all children packets of a system packet 650 // so we can now respond to the requester 651 // @todo we probably want to have a different front end and back 652 // end latency for split packets 653 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency); 654 delete dram_pkt->burstHelper; 655 dram_pkt->burstHelper = NULL; 656 } 657 } else { 658 // it is not a split packet 659 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency); 660 } 661 662 delete respQueue.front(); 663 respQueue.pop_front(); 664 665 if (!respQueue.empty()) { 666 assert(respQueue.front()->readyTime >= curTick()); 667 assert(!respondEvent.scheduled()); 668 schedule(respondEvent, respQueue.front()->readyTime); 669 } else { 670 // if there is nothing left in any queue, signal a drain 671 if (writeQueue.empty() && readQueue.empty() && 672 drainManager) { 673 drainManager->signalDrainDone(); 674 drainManager = NULL; 675 } 676 } 677 678 // We have made a location in the queue available at this point, 679 // so if there is a read that was forced to wait, retry now 680 if (retryRdReq) { 681 retryRdReq = false; 682 port.sendRetry(); 683 } 684} 685 686void 687DRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue, bool switched_cmd_type) 688{ 689 // This method does the arbitration between requests. The chosen 690 // packet is simply moved to the head of the queue. The other 691 // methods know that this is the place to look. For example, with 692 // FCFS, this method does nothing 693 assert(!queue.empty()); 694 695 if (queue.size() == 1) { 696 DPRINTF(DRAM, "Single request, nothing to do\n"); 697 return; 698 } 699 700 if (memSchedPolicy == Enums::fcfs) { 701 // Do nothing, since the correct request is already head 702 } else if (memSchedPolicy == Enums::frfcfs) { 703 reorderQueue(queue, switched_cmd_type); 704 } else 705 panic("No scheduling policy chosen\n"); 706} 707 708void 709DRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue, bool switched_cmd_type) 710{ 711 // Only determine this when needed 712 uint64_t earliest_banks = 0; 713 714 // Search for row hits first, if no row hit is found then schedule the 715 // packet to one of the earliest banks available 716 bool found_earliest_pkt = false; 717 bool found_prepped_diff_rank_pkt = false; 718 auto selected_pkt_it = queue.begin(); 719 720 for (auto i = queue.begin(); i != queue.end() ; ++i) { 721 DRAMPacket* dram_pkt = *i; 722 const Bank& bank = dram_pkt->bankRef; 723 // Check if it is a row hit 724 if (bank.openRow == dram_pkt->row) { 725 if (dram_pkt->rank == activeRank || switched_cmd_type) { 726 // FCFS within the hits, giving priority to commands 727 // that access the same rank as the previous burst 728 // to minimize bus turnaround delays 729 // Only give rank prioity when command type is not changing 730 DPRINTF(DRAM, "Row buffer hit\n"); 731 selected_pkt_it = i; 732 break; 733 } else if (!found_prepped_diff_rank_pkt) { 734 // found row hit for command on different rank than prev burst 735 selected_pkt_it = i; 736 found_prepped_diff_rank_pkt = true; 737 } 738 } else if (!found_earliest_pkt & !found_prepped_diff_rank_pkt) { 739 // No row hit and 740 // haven't found an entry with a row hit to a new rank 741 if (earliest_banks == 0) 742 // Determine entries with earliest bank prep delay 743 // Function will give priority to commands that access the 744 // same rank as previous burst and can prep the bank seamlessly 745 earliest_banks = minBankPrep(queue, switched_cmd_type); 746 747 // FCFS - Bank is first available bank 748 if (bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) { 749 // Remember the packet to be scheduled to one of the earliest 750 // banks available, FCFS amongst the earliest banks 751 selected_pkt_it = i; 752 found_earliest_pkt = true; 753 } 754 } 755 } 756 757 DRAMPacket* selected_pkt = *selected_pkt_it; 758 queue.erase(selected_pkt_it); 759 queue.push_front(selected_pkt); 760} 761 762void 763DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency) 764{ 765 DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr()); 766 767 bool needsResponse = pkt->needsResponse(); 768 // do the actual memory access which also turns the packet into a 769 // response 770 access(pkt); 771 772 // turn packet around to go back to requester if response expected 773 if (needsResponse) { 774 // access already turned the packet into a response 775 assert(pkt->isResponse()); 776 777 // @todo someone should pay for this 778 pkt->busFirstWordDelay = pkt->busLastWordDelay = 0; 779 780 // queue the packet in the response queue to be sent out after 781 // the static latency has passed 782 port.schedTimingResp(pkt, curTick() + static_latency); 783 } else { 784 // @todo the packet is going to be deleted, and the DRAMPacket 785 // is still having a pointer to it 786 pendingDelete.push_back(pkt); 787 } 788 789 DPRINTF(DRAM, "Done\n"); 790 791 return; 792} 793 794void 795DRAMCtrl::activateBank(Bank& bank, Tick act_tick, uint32_t row) 796{ 797 // get the rank index from the bank 798 uint8_t rank = bank.rank; 799 800 assert(actTicks[rank].size() == activationLimit); 801 802 DPRINTF(DRAM, "Activate at tick %d\n", act_tick); 803 804 // update the open row 805 assert(bank.openRow == Bank::NO_ROW); 806 bank.openRow = row; 807 808 // start counting anew, this covers both the case when we 809 // auto-precharged, and when this access is forced to 810 // precharge 811 bank.bytesAccessed = 0; 812 bank.rowAccesses = 0; 813 814 ++numBanksActive; 815 assert(numBanksActive <= banksPerRank * ranksPerChannel); 816 817 DPRINTF(DRAM, "Activate bank %d, rank %d at tick %lld, now got %d active\n", 818 bank.bank, bank.rank, act_tick, numBanksActive); 819 820 DPRINTF(DRAMPower, "%llu,ACT,%d,%d\n", divCeil(act_tick, tCK), bank.bank, 821 bank.rank); 822 823 // The next access has to respect tRAS for this bank 824 bank.preAllowedAt = act_tick + tRAS; 825 826 // Respect the row-to-column command delay 827 bank.colAllowedAt = act_tick + tRCD; 828 829 // start by enforcing tRRD 830 for(int i = 0; i < banksPerRank; i++) { 831 // next activate to any bank in this rank must not happen 832 // before tRRD 833 banks[rank][i].actAllowedAt = std::max(act_tick + tRRD, 834 banks[rank][i].actAllowedAt); 835 } 836 837 // next, we deal with tXAW, if the activation limit is disabled 838 // then we are done 839 if (actTicks[rank].empty()) 840 return; 841 842 // sanity check 843 if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) { 844 panic("Got %d activates in window %d (%llu - %llu) which is smaller " 845 "than %llu\n", activationLimit, act_tick - actTicks[rank].back(), 846 act_tick, actTicks[rank].back(), tXAW); 847 } 848 849 // shift the times used for the book keeping, the last element 850 // (highest index) is the oldest one and hence the lowest value 851 actTicks[rank].pop_back(); 852 853 // record an new activation (in the future) 854 actTicks[rank].push_front(act_tick); 855 856 // cannot activate more than X times in time window tXAW, push the 857 // next one (the X + 1'st activate) to be tXAW away from the 858 // oldest in our window of X 859 if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) { 860 DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate no earlier " 861 "than %llu\n", activationLimit, actTicks[rank].back() + tXAW); 862 for(int j = 0; j < banksPerRank; j++) 863 // next activate must not happen before end of window 864 banks[rank][j].actAllowedAt = 865 std::max(actTicks[rank].back() + tXAW, 866 banks[rank][j].actAllowedAt); 867 } 868 869 // at the point when this activate takes place, make sure we 870 // transition to the active power state 871 if (!activateEvent.scheduled()) 872 schedule(activateEvent, act_tick); 873 else if (activateEvent.when() > act_tick) 874 // move it sooner in time 875 reschedule(activateEvent, act_tick); 876} 877 878void 879DRAMCtrl::processActivateEvent() 880{ 881 // we should transition to the active state as soon as any bank is active 882 if (pwrState != PWR_ACT) 883 // note that at this point numBanksActive could be back at 884 // zero again due to a precharge scheduled in the future 885 schedulePowerEvent(PWR_ACT, curTick()); 886} 887 888void 889DRAMCtrl::prechargeBank(Bank& bank, Tick pre_at, bool trace) 890{ 891 // make sure the bank has an open row 892 assert(bank.openRow != Bank::NO_ROW); 893 894 // sample the bytes per activate here since we are closing 895 // the page 896 bytesPerActivate.sample(bank.bytesAccessed); 897 898 bank.openRow = Bank::NO_ROW; 899 900 // no precharge allowed before this one 901 bank.preAllowedAt = pre_at; 902 903 Tick pre_done_at = pre_at + tRP; 904 905 bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at); 906 907 assert(numBanksActive != 0); 908 --numBanksActive; 909 910 DPRINTF(DRAM, "Precharging bank %d, rank %d at tick %lld, now got " 911 "%d active\n", bank.bank, bank.rank, pre_at, numBanksActive); 912 913 if (trace) 914 DPRINTF(DRAMPower, "%llu,PRE,%d,%d\n", divCeil(pre_at, tCK), 915 bank.bank, bank.rank); 916 917 // if we look at the current number of active banks we might be 918 // tempted to think the DRAM is now idle, however this can be 919 // undone by an activate that is scheduled to happen before we 920 // would have reached the idle state, so schedule an event and 921 // rather check once we actually make it to the point in time when 922 // the (last) precharge takes place 923 if (!prechargeEvent.scheduled()) 924 schedule(prechargeEvent, pre_done_at); 925 else if (prechargeEvent.when() < pre_done_at) 926 reschedule(prechargeEvent, pre_done_at); 927} 928 929void 930DRAMCtrl::processPrechargeEvent() 931{ 932 // if we reached zero, then special conditions apply as we track 933 // if all banks are precharged for the power models 934 if (numBanksActive == 0) { 935 // we should transition to the idle state when the last bank 936 // is precharged 937 schedulePowerEvent(PWR_IDLE, curTick()); 938 } 939} 940 941void 942DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt) 943{ 944 DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n", 945 dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row); 946 947 // get the bank 948 Bank& bank = dram_pkt->bankRef; 949 950 // for the state we need to track if it is a row hit or not 951 bool row_hit = true; 952 953 // respect any constraints on the command (e.g. tRCD or tCCD) 954 Tick cmd_at = std::max(bank.colAllowedAt, curTick()); 955 956 // Determine the access latency and update the bank state 957 if (bank.openRow == dram_pkt->row) { 958 // nothing to do 959 } else { 960 row_hit = false; 961 962 // If there is a page open, precharge it. 963 if (bank.openRow != Bank::NO_ROW) { 964 prechargeBank(bank, std::max(bank.preAllowedAt, curTick())); 965 } 966 967 // next we need to account for the delay in activating the 968 // page 969 Tick act_tick = std::max(bank.actAllowedAt, curTick()); 970 971 // Record the activation and deal with all the global timing 972 // constraints caused be a new activation (tRRD and tXAW) 973 activateBank(bank, act_tick, dram_pkt->row); 974 975 // issue the command as early as possible 976 cmd_at = bank.colAllowedAt; 977 } 978 979 // we need to wait until the bus is available before we can issue 980 // the command 981 cmd_at = std::max(cmd_at, busBusyUntil - tCL); 982 983 // update the packet ready time 984 dram_pkt->readyTime = cmd_at + tCL + tBURST; 985 986 // only one burst can use the bus at any one point in time 987 assert(dram_pkt->readyTime - busBusyUntil >= tBURST); 988 989 // not strictly necessary, but update the time for the next 990 // read/write (add a max with tCCD here) 991 bank.colAllowedAt = cmd_at + tBURST; 992 993 // Save rank of current access 994 activeRank = dram_pkt->rank; 995 996 // If this is a write, we also need to respect the write recovery 997 // time before a precharge, in the case of a read, respect the 998 // read to precharge constraint 999 bank.preAllowedAt = std::max(bank.preAllowedAt, 1000 dram_pkt->isRead ? cmd_at + tRTP : 1001 dram_pkt->readyTime + tWR); 1002 1003 // increment the bytes accessed and the accesses per row 1004 bank.bytesAccessed += burstSize; 1005 ++bank.rowAccesses; 1006 1007 // if we reached the max, then issue with an auto-precharge 1008 bool auto_precharge = pageMgmt == Enums::close || 1009 bank.rowAccesses == maxAccessesPerRow; 1010 1011 // if we did not hit the limit, we might still want to 1012 // auto-precharge 1013 if (!auto_precharge && 1014 (pageMgmt == Enums::open_adaptive || 1015 pageMgmt == Enums::close_adaptive)) { 1016 // a twist on the open and close page policies: 1017 // 1) open_adaptive page policy does not blindly keep the 1018 // page open, but close it if there are no row hits, and there 1019 // are bank conflicts in the queue 1020 // 2) close_adaptive page policy does not blindly close the 1021 // page, but closes it only if there are no row hits in the queue. 1022 // In this case, only force an auto precharge when there 1023 // are no same page hits in the queue 1024 bool got_more_hits = false; 1025 bool got_bank_conflict = false; 1026 1027 // either look at the read queue or write queue 1028 const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue : 1029 writeQueue; 1030 auto p = queue.begin(); 1031 // make sure we are not considering the packet that we are 1032 // currently dealing with (which is the head of the queue) 1033 ++p; 1034 1035 // keep on looking until we have found required condition or 1036 // reached the end 1037 while (!(got_more_hits && 1038 (got_bank_conflict || pageMgmt == Enums::close_adaptive)) && 1039 p != queue.end()) { 1040 bool same_rank_bank = (dram_pkt->rank == (*p)->rank) && 1041 (dram_pkt->bank == (*p)->bank); 1042 bool same_row = dram_pkt->row == (*p)->row; 1043 got_more_hits |= same_rank_bank && same_row; 1044 got_bank_conflict |= same_rank_bank && !same_row; 1045 ++p; 1046 } 1047 1048 // auto pre-charge when either 1049 // 1) open_adaptive policy, we have not got any more hits, and 1050 // have a bank conflict 1051 // 2) close_adaptive policy and we have not got any more hits 1052 auto_precharge = !got_more_hits && 1053 (got_bank_conflict || pageMgmt == Enums::close_adaptive); 1054 } 1055 1056 // DRAMPower trace command to be written 1057 std::string mem_cmd = dram_pkt->isRead ? "RD" : "WR"; 1058 1059 // if this access should use auto-precharge, then we are 1060 // closing the row 1061 if (auto_precharge) { 1062 prechargeBank(bank, std::max(curTick(), bank.preAllowedAt), false); 1063 1064 mem_cmd.append("A"); 1065 1066 DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId); 1067 } 1068 1069 // Update bus state 1070 busBusyUntil = dram_pkt->readyTime; 1071 1072 DPRINTF(DRAM, "Access to %lld, ready at %lld bus busy until %lld.\n", 1073 dram_pkt->addr, dram_pkt->readyTime, busBusyUntil); 1074 1075 DPRINTF(DRAMPower, "%llu,%s,%d,%d\n", divCeil(cmd_at, tCK), mem_cmd, 1076 dram_pkt->bank, dram_pkt->rank); 1077 1078 // Update the minimum timing between the requests, this is a 1079 // conservative estimate of when we have to schedule the next 1080 // request to not introduce any unecessary bubbles. In most cases 1081 // we will wake up sooner than we have to. 1082 nextReqTime = busBusyUntil - (tRP + tRCD + tCL); 1083 1084 // Update the stats and schedule the next request 1085 if (dram_pkt->isRead) { 1086 ++readsThisTime; 1087 if (row_hit) 1088 readRowHits++; 1089 bytesReadDRAM += burstSize; 1090 perBankRdBursts[dram_pkt->bankId]++; 1091 1092 // Update latency stats 1093 totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime; 1094 totBusLat += tBURST; 1095 totQLat += cmd_at - dram_pkt->entryTime; 1096 } else { 1097 ++writesThisTime; 1098 if (row_hit) 1099 writeRowHits++; 1100 bytesWritten += burstSize; 1101 perBankWrBursts[dram_pkt->bankId]++; 1102 } 1103} 1104 1105void 1106DRAMCtrl::processNextReqEvent() 1107{ 1108 // pre-emptively set to false. Overwrite if in READ_TO_WRITE 1109 // or WRITE_TO_READ state 1110 bool switched_cmd_type = false; 1111 if (busState == READ_TO_WRITE) { 1112 DPRINTF(DRAM, "Switching to writes after %d reads with %d reads " 1113 "waiting\n", readsThisTime, readQueue.size()); 1114 1115 // sample and reset the read-related stats as we are now 1116 // transitioning to writes, and all reads are done 1117 rdPerTurnAround.sample(readsThisTime); 1118 readsThisTime = 0; 1119 1120 // now proceed to do the actual writes 1121 busState = WRITE; 1122 switched_cmd_type = true; 1123 } else if (busState == WRITE_TO_READ) { 1124 DPRINTF(DRAM, "Switching to reads after %d writes with %d writes " 1125 "waiting\n", writesThisTime, writeQueue.size()); 1126 1127 wrPerTurnAround.sample(writesThisTime); 1128 writesThisTime = 0; 1129 1130 busState = READ; 1131 switched_cmd_type = true; 1132 } 1133 1134 if (refreshState != REF_IDLE) { 1135 // if a refresh waiting for this event loop to finish, then hand 1136 // over now, and do not schedule a new nextReqEvent 1137 if (refreshState == REF_DRAIN) { 1138 DPRINTF(DRAM, "Refresh drain done, now precharging\n"); 1139 1140 refreshState = REF_PRE; 1141 1142 // hand control back to the refresh event loop 1143 schedule(refreshEvent, curTick()); 1144 } 1145 1146 // let the refresh finish before issuing any further requests 1147 return; 1148 } 1149 1150 // when we get here it is either a read or a write 1151 if (busState == READ) { 1152 1153 // track if we should switch or not 1154 bool switch_to_writes = false; 1155 1156 if (readQueue.empty()) { 1157 // In the case there is no read request to go next, 1158 // trigger writes if we have passed the low threshold (or 1159 // if we are draining) 1160 if (!writeQueue.empty() && 1161 (drainManager || writeQueue.size() > writeLowThreshold)) { 1162 1163 switch_to_writes = true; 1164 } else { 1165 // check if we are drained 1166 if (respQueue.empty () && drainManager) { 1167 drainManager->signalDrainDone(); 1168 drainManager = NULL; 1169 } 1170 1171 // nothing to do, not even any point in scheduling an 1172 // event for the next request 1173 return; 1174 } 1175 } else { 1176 // Figure out which read request goes next, and move it to the 1177 // front of the read queue 1178 chooseNext(readQueue, switched_cmd_type); 1179 1180 DRAMPacket* dram_pkt = readQueue.front(); 1181 1182 // here we get a bit creative and shift the bus busy time not 1183 // just the tWTR, but also a CAS latency to capture the fact 1184 // that we are allowed to prepare a new bank, but not issue a 1185 // read command until after tWTR, in essence we capture a 1186 // bubble on the data bus that is tWTR + tCL 1187 if (switched_cmd_type) { 1188 // add a bubble to the data bus for write-to-read turn around 1189 // or tCS (different rank bus delay). 1190 busBusyUntil += (dram_pkt->rank == activeRank) ? tWTR + tCL : 1191 tCS; 1192 } else if (dram_pkt->rank != activeRank) { 1193 // add a bubble to the data bus, as defined by the 1194 // tCS parameter for rank-to-rank delay 1195 busBusyUntil += tCS; 1196 } 1197 1198 doDRAMAccess(dram_pkt); 1199 1200 // At this point we're done dealing with the request 1201 readQueue.pop_front(); 1202 1203 // sanity check 1204 assert(dram_pkt->size <= burstSize); 1205 assert(dram_pkt->readyTime >= curTick()); 1206 1207 // Insert into response queue. It will be sent back to the 1208 // requestor at its readyTime 1209 if (respQueue.empty()) { 1210 assert(!respondEvent.scheduled()); 1211 schedule(respondEvent, dram_pkt->readyTime); 1212 } else { 1213 assert(respQueue.back()->readyTime <= dram_pkt->readyTime); 1214 assert(respondEvent.scheduled()); 1215 } 1216 1217 respQueue.push_back(dram_pkt); 1218 1219 // we have so many writes that we have to transition 1220 if (writeQueue.size() > writeHighThreshold) { 1221 switch_to_writes = true; 1222 } 1223 } 1224 1225 // switching to writes, either because the read queue is empty 1226 // and the writes have passed the low threshold (or we are 1227 // draining), or because the writes hit the hight threshold 1228 if (switch_to_writes) { 1229 // transition to writing 1230 busState = READ_TO_WRITE; 1231 } 1232 } else { 1233 chooseNext(writeQueue, switched_cmd_type); 1234 DRAMPacket* dram_pkt = writeQueue.front(); 1235 // sanity check 1236 assert(dram_pkt->size <= burstSize); 1237 1238 if (switched_cmd_type) { 1239 // add a bubble to the data bus, as defined by the 1240 // tRTW or tCS parameter, depending on whether changing ranks 1241 busBusyUntil += (dram_pkt->rank == activeRank) ? tRTW : tCS; 1242 } else if (dram_pkt->rank != activeRank) { 1243 // add a bubble to the data bus, as defined by the 1244 // tCS parameter for rank-to-rank delay 1245 busBusyUntil += tCS; 1246 } 1247 1248 doDRAMAccess(dram_pkt); 1249 1250 writeQueue.pop_front(); 1251 delete dram_pkt; 1252 1253 // If we emptied the write queue, or got sufficiently below the 1254 // threshold (using the minWritesPerSwitch as the hysteresis) and 1255 // are not draining, or we have reads waiting and have done enough 1256 // writes, then switch to reads. 1257 if (writeQueue.empty() || 1258 (writeQueue.size() + minWritesPerSwitch < writeLowThreshold && 1259 !drainManager) || 1260 (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) { 1261 // turn the bus back around for reads again 1262 busState = WRITE_TO_READ; 1263 1264 // note that the we switch back to reads also in the idle 1265 // case, which eventually will check for any draining and 1266 // also pause any further scheduling if there is really 1267 // nothing to do 1268 } 1269 } 1270 1271 schedule(nextReqEvent, std::max(nextReqTime, curTick())); 1272 1273 // If there is space available and we have writes waiting then let 1274 // them retry. This is done here to ensure that the retry does not 1275 // cause a nextReqEvent to be scheduled before we do so as part of 1276 // the next request processing 1277 if (retryWrReq && writeQueue.size() < writeBufferSize) { 1278 retryWrReq = false; 1279 port.sendRetry(); 1280 } 1281} 1282 1283uint64_t 1284DRAMCtrl::minBankPrep(const deque<DRAMPacket*>& queue, 1285 bool switched_cmd_type) const 1286{ 1287 uint64_t bank_mask = 0; 1288 Tick min_act_at = MaxTick; 1289 1290 uint64_t bank_mask_same_rank = 0; 1291 Tick min_act_at_same_rank = MaxTick; 1292 1293 // Give precedence to commands that access same rank as previous command 1294 bool same_rank_match = false; 1295 1296 // determine if we have queued transactions targetting the 1297 // bank in question 1298 vector<bool> got_waiting(ranksPerChannel * banksPerRank, false); 1299 for (auto p = queue.begin(); p != queue.end(); ++p) { 1300 got_waiting[(*p)->bankId] = true; 1301 } 1302 1303 for (int i = 0; i < ranksPerChannel; i++) { 1304 for (int j = 0; j < banksPerRank; j++) { 1305 uint8_t bank_id = i * banksPerRank + j; 1306 1307 // if we have waiting requests for the bank, and it is 1308 // amongst the first available, update the mask 1309 if (got_waiting[bank_id]) { 1310 // simplistic approximation of when the bank can issue 1311 // an activate, ignoring any rank-to-rank switching 1312 // cost in this calculation 1313 Tick act_at = banks[i][j].openRow == Bank::NO_ROW ? 1314 banks[i][j].actAllowedAt : 1315 std::max(banks[i][j].preAllowedAt, curTick()) + tRP; 1316 1317 // prioritize commands that access the 1318 // same rank as previous burst 1319 // Calculate bank mask separately for the case and 1320 // evaluate after loop iterations complete 1321 if (i == activeRank && ranksPerChannel > 1) { 1322 if (act_at <= min_act_at_same_rank) { 1323 // reset same rank bank mask if new minimum is found 1324 // and previous minimum could not immediately send ACT 1325 if (act_at < min_act_at_same_rank && 1326 min_act_at_same_rank > curTick()) 1327 bank_mask_same_rank = 0; 1328 1329 // Set flag indicating that a same rank 1330 // opportunity was found 1331 same_rank_match = true; 1332 1333 // set the bit corresponding to the available bank 1334 replaceBits(bank_mask_same_rank, bank_id, bank_id, 1); 1335 min_act_at_same_rank = act_at; 1336 } 1337 } else { 1338 if (act_at <= min_act_at) { 1339 // reset bank mask if new minimum is found 1340 // and either previous minimum could not immediately send ACT 1341 if (act_at < min_act_at && min_act_at > curTick()) 1342 bank_mask = 0; 1343 // set the bit corresponding to the available bank 1344 replaceBits(bank_mask, bank_id, bank_id, 1); 1345 min_act_at = act_at; 1346 } 1347 } 1348 } 1349 } 1350 } 1351 1352 // Determine the earliest time when the next burst can issue based 1353 // on the current busBusyUntil delay. 1354 // Offset by tRCD to correlate with ACT timing variables 1355 Tick min_cmd_at = busBusyUntil - tCL - tRCD; 1356 1357 // Prioritize same rank accesses that can issue B2B 1358 // Only optimize for same ranks when the command type 1359 // does not change; do not want to unnecessarily incur tWTR 1360 // 1361 // Resulting FCFS prioritization Order is: 1362 // 1) Commands that access the same rank as previous burst 1363 // and can prep the bank seamlessly. 1364 // 2) Commands (any rank) with earliest bank prep 1365 if (!switched_cmd_type && same_rank_match && 1366 min_act_at_same_rank <= min_cmd_at) { 1367 bank_mask = bank_mask_same_rank; 1368 } 1369 1370 return bank_mask; 1371} 1372 1373void 1374DRAMCtrl::processRefreshEvent() 1375{ 1376 // when first preparing the refresh, remember when it was due 1377 if (refreshState == REF_IDLE) { 1378 // remember when the refresh is due 1379 refreshDueAt = curTick(); 1380 1381 // proceed to drain 1382 refreshState = REF_DRAIN; 1383 1384 DPRINTF(DRAM, "Refresh due\n"); 1385 } 1386 1387 // let any scheduled read or write go ahead, after which it will 1388 // hand control back to this event loop 1389 if (refreshState == REF_DRAIN) { 1390 if (nextReqEvent.scheduled()) { 1391 // hand control over to the request loop until it is 1392 // evaluated next 1393 DPRINTF(DRAM, "Refresh awaiting draining\n"); 1394 1395 return; 1396 } else { 1397 refreshState = REF_PRE; 1398 } 1399 } 1400 1401 // at this point, ensure that all banks are precharged 1402 if (refreshState == REF_PRE) { 1403 // precharge any active bank if we are not already in the idle 1404 // state 1405 if (pwrState != PWR_IDLE) { 1406 // at the moment, we use a precharge all even if there is 1407 // only a single bank open 1408 DPRINTF(DRAM, "Precharging all\n"); 1409 1410 // first determine when we can precharge 1411 Tick pre_at = curTick(); 1412 for (int i = 0; i < ranksPerChannel; i++) { 1413 for (int j = 0; j < banksPerRank; j++) { 1414 // respect both causality and any existing bank 1415 // constraints, some banks could already have a 1416 // (auto) precharge scheduled 1417 pre_at = std::max(banks[i][j].preAllowedAt, pre_at); 1418 } 1419 } 1420 1421 // make sure all banks are precharged, and for those that 1422 // already are, update their availability 1423 Tick act_allowed_at = pre_at + tRP; 1424 1425 for (int i = 0; i < ranksPerChannel; i++) { 1426 for (int j = 0; j < banksPerRank; j++) { 1427 if (banks[i][j].openRow != Bank::NO_ROW) { 1428 prechargeBank(banks[i][j], pre_at, false); 1429 } else { 1430 banks[i][j].actAllowedAt = 1431 std::max(banks[i][j].actAllowedAt, act_allowed_at); 1432 banks[i][j].preAllowedAt = 1433 std::max(banks[i][j].preAllowedAt, pre_at); 1434 } 1435 } 1436 1437 // at the moment this affects all ranks 1438 DPRINTF(DRAMPower, "%llu,PREA,0,%d\n", divCeil(pre_at, tCK), 1439 i); 1440 } 1441 } else { 1442 DPRINTF(DRAM, "All banks already precharged, starting refresh\n"); 1443 1444 // go ahead and kick the power state machine into gear if 1445 // we are already idle 1446 schedulePowerEvent(PWR_REF, curTick()); 1447 } 1448 1449 refreshState = REF_RUN; 1450 assert(numBanksActive == 0); 1451 1452 // wait for all banks to be precharged, at which point the 1453 // power state machine will transition to the idle state, and 1454 // automatically move to a refresh, at that point it will also 1455 // call this method to get the refresh event loop going again 1456 return; 1457 } 1458 1459 // last but not least we perform the actual refresh 1460 if (refreshState == REF_RUN) { 1461 // should never get here with any banks active 1462 assert(numBanksActive == 0); 1463 assert(pwrState == PWR_REF); 1464 1465 Tick ref_done_at = curTick() + tRFC; 1466 1467 for (int i = 0; i < ranksPerChannel; i++) { 1468 for (int j = 0; j < banksPerRank; j++) { 1469 banks[i][j].actAllowedAt = ref_done_at; 1470 } 1471 1472 // at the moment this affects all ranks 1473 DPRINTF(DRAMPower, "%llu,REF,0,%d\n", divCeil(curTick(), tCK), i); 1474 } 1475 1476 // make sure we did not wait so long that we cannot make up 1477 // for it 1478 if (refreshDueAt + tREFI < ref_done_at) { 1479 fatal("Refresh was delayed so long we cannot catch up\n"); 1480 } 1481 1482 // compensate for the delay in actually performing the refresh 1483 // when scheduling the next one 1484 schedule(refreshEvent, refreshDueAt + tREFI - tRP); 1485 1486 assert(!powerEvent.scheduled()); 1487 1488 // move to the idle power state once the refresh is done, this 1489 // will also move the refresh state machine to the refresh 1490 // idle state 1491 schedulePowerEvent(PWR_IDLE, ref_done_at); 1492 1493 DPRINTF(DRAMState, "Refresh done at %llu and next refresh at %llu\n", 1494 ref_done_at, refreshDueAt + tREFI); 1495 } 1496} 1497 1498void 1499DRAMCtrl::schedulePowerEvent(PowerState pwr_state, Tick tick) 1500{ 1501 // respect causality 1502 assert(tick >= curTick()); 1503 1504 if (!powerEvent.scheduled()) { 1505 DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n", 1506 tick, pwr_state); 1507 1508 // insert the new transition 1509 pwrStateTrans = pwr_state; 1510 1511 schedule(powerEvent, tick); 1512 } else { 1513 panic("Scheduled power event at %llu to state %d, " 1514 "with scheduled event at %llu to %d\n", tick, pwr_state, 1515 powerEvent.when(), pwrStateTrans); 1516 } 1517} 1518 1519void 1520DRAMCtrl::processPowerEvent() 1521{ 1522 // remember where we were, and for how long 1523 Tick duration = curTick() - pwrStateTick; 1524 PowerState prev_state = pwrState; 1525 1526 // update the accounting 1527 pwrStateTime[prev_state] += duration; 1528 1529 pwrState = pwrStateTrans; 1530 pwrStateTick = curTick(); 1531 1532 if (pwrState == PWR_IDLE) { 1533 DPRINTF(DRAMState, "All banks precharged\n"); 1534 1535 // if we were refreshing, make sure we start scheduling requests again 1536 if (prev_state == PWR_REF) { 1537 DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration); 1538 assert(pwrState == PWR_IDLE); 1539 1540 // kick things into action again 1541 refreshState = REF_IDLE; 1542 assert(!nextReqEvent.scheduled()); 1543 schedule(nextReqEvent, curTick()); 1544 } else { 1545 assert(prev_state == PWR_ACT); 1546 1547 // if we have a pending refresh, and are now moving to 1548 // the idle state, direclty transition to a refresh 1549 if (refreshState == REF_RUN) { 1550 // there should be nothing waiting at this point 1551 assert(!powerEvent.scheduled()); 1552 1553 // update the state in zero time and proceed below 1554 pwrState = PWR_REF; 1555 } 1556 } 1557 } 1558 1559 // we transition to the refresh state, let the refresh state 1560 // machine know of this state update and let it deal with the 1561 // scheduling of the next power state transition as well as the 1562 // following refresh 1563 if (pwrState == PWR_REF) { 1564 DPRINTF(DRAMState, "Refreshing\n"); 1565 // kick the refresh event loop into action again, and that 1566 // in turn will schedule a transition to the idle power 1567 // state once the refresh is done 1568 assert(refreshState == REF_RUN); 1569 processRefreshEvent(); 1570 } 1571} 1572 1573void 1574DRAMCtrl::regStats() 1575{ 1576 using namespace Stats; 1577 1578 AbstractMemory::regStats(); 1579 1580 readReqs 1581 .name(name() + ".readReqs") 1582 .desc("Number of read requests accepted"); 1583 1584 writeReqs 1585 .name(name() + ".writeReqs") 1586 .desc("Number of write requests accepted"); 1587 1588 readBursts 1589 .name(name() + ".readBursts") 1590 .desc("Number of DRAM read bursts, " 1591 "including those serviced by the write queue"); 1592 1593 writeBursts 1594 .name(name() + ".writeBursts") 1595 .desc("Number of DRAM write bursts, " 1596 "including those merged in the write queue"); 1597 1598 servicedByWrQ 1599 .name(name() + ".servicedByWrQ") 1600 .desc("Number of DRAM read bursts serviced by the write queue"); 1601 1602 mergedWrBursts 1603 .name(name() + ".mergedWrBursts") 1604 .desc("Number of DRAM write bursts merged with an existing one"); 1605 1606 neitherReadNorWrite 1607 .name(name() + ".neitherReadNorWriteReqs") 1608 .desc("Number of requests that are neither read nor write"); 1609 1610 perBankRdBursts 1611 .init(banksPerRank * ranksPerChannel) 1612 .name(name() + ".perBankRdBursts") 1613 .desc("Per bank write bursts"); 1614 1615 perBankWrBursts 1616 .init(banksPerRank * ranksPerChannel) 1617 .name(name() + ".perBankWrBursts") 1618 .desc("Per bank write bursts"); 1619 1620 avgRdQLen 1621 .name(name() + ".avgRdQLen") 1622 .desc("Average read queue length when enqueuing") 1623 .precision(2); 1624 1625 avgWrQLen 1626 .name(name() + ".avgWrQLen") 1627 .desc("Average write queue length when enqueuing") 1628 .precision(2); 1629 1630 totQLat 1631 .name(name() + ".totQLat") 1632 .desc("Total ticks spent queuing"); 1633 1634 totBusLat 1635 .name(name() + ".totBusLat") 1636 .desc("Total ticks spent in databus transfers"); 1637 1638 totMemAccLat 1639 .name(name() + ".totMemAccLat") 1640 .desc("Total ticks spent from burst creation until serviced " 1641 "by the DRAM"); 1642 1643 avgQLat 1644 .name(name() + ".avgQLat") 1645 .desc("Average queueing delay per DRAM burst") 1646 .precision(2); 1647 1648 avgQLat = totQLat / (readBursts - servicedByWrQ); 1649 1650 avgBusLat 1651 .name(name() + ".avgBusLat") 1652 .desc("Average bus latency per DRAM burst") 1653 .precision(2); 1654 1655 avgBusLat = totBusLat / (readBursts - servicedByWrQ); 1656 1657 avgMemAccLat 1658 .name(name() + ".avgMemAccLat") 1659 .desc("Average memory access latency per DRAM burst") 1660 .precision(2); 1661 1662 avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ); 1663 1664 numRdRetry 1665 .name(name() + ".numRdRetry") 1666 .desc("Number of times read queue was full causing retry"); 1667 1668 numWrRetry 1669 .name(name() + ".numWrRetry") 1670 .desc("Number of times write queue was full causing retry"); 1671 1672 readRowHits 1673 .name(name() + ".readRowHits") 1674 .desc("Number of row buffer hits during reads"); 1675 1676 writeRowHits 1677 .name(name() + ".writeRowHits") 1678 .desc("Number of row buffer hits during writes"); 1679 1680 readRowHitRate 1681 .name(name() + ".readRowHitRate") 1682 .desc("Row buffer hit rate for reads") 1683 .precision(2); 1684 1685 readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100; 1686 1687 writeRowHitRate 1688 .name(name() + ".writeRowHitRate") 1689 .desc("Row buffer hit rate for writes") 1690 .precision(2); 1691 1692 writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100; 1693 1694 readPktSize 1695 .init(ceilLog2(burstSize) + 1) 1696 .name(name() + ".readPktSize") 1697 .desc("Read request sizes (log2)"); 1698 1699 writePktSize 1700 .init(ceilLog2(burstSize) + 1) 1701 .name(name() + ".writePktSize") 1702 .desc("Write request sizes (log2)"); 1703 1704 rdQLenPdf 1705 .init(readBufferSize) 1706 .name(name() + ".rdQLenPdf") 1707 .desc("What read queue length does an incoming req see"); 1708 1709 wrQLenPdf 1710 .init(writeBufferSize) 1711 .name(name() + ".wrQLenPdf") 1712 .desc("What write queue length does an incoming req see"); 1713 1714 bytesPerActivate 1715 .init(maxAccessesPerRow) 1716 .name(name() + ".bytesPerActivate") 1717 .desc("Bytes accessed per row activation") 1718 .flags(nozero); 1719 1720 rdPerTurnAround 1721 .init(readBufferSize) 1722 .name(name() + ".rdPerTurnAround") 1723 .desc("Reads before turning the bus around for writes") 1724 .flags(nozero); 1725 1726 wrPerTurnAround 1727 .init(writeBufferSize) 1728 .name(name() + ".wrPerTurnAround") 1729 .desc("Writes before turning the bus around for reads") 1730 .flags(nozero); 1731 1732 bytesReadDRAM 1733 .name(name() + ".bytesReadDRAM") 1734 .desc("Total number of bytes read from DRAM"); 1735 1736 bytesReadWrQ 1737 .name(name() + ".bytesReadWrQ") 1738 .desc("Total number of bytes read from write queue"); 1739 1740 bytesWritten 1741 .name(name() + ".bytesWritten") 1742 .desc("Total number of bytes written to DRAM"); 1743 1744 bytesReadSys 1745 .name(name() + ".bytesReadSys") 1746 .desc("Total read bytes from the system interface side"); 1747 1748 bytesWrittenSys 1749 .name(name() + ".bytesWrittenSys") 1750 .desc("Total written bytes from the system interface side"); 1751 1752 avgRdBW 1753 .name(name() + ".avgRdBW") 1754 .desc("Average DRAM read bandwidth in MiByte/s") 1755 .precision(2); 1756 1757 avgRdBW = (bytesReadDRAM / 1000000) / simSeconds; 1758 1759 avgWrBW 1760 .name(name() + ".avgWrBW") 1761 .desc("Average achieved write bandwidth in MiByte/s") 1762 .precision(2); 1763 1764 avgWrBW = (bytesWritten / 1000000) / simSeconds; 1765 1766 avgRdBWSys 1767 .name(name() + ".avgRdBWSys") 1768 .desc("Average system read bandwidth in MiByte/s") 1769 .precision(2); 1770 1771 avgRdBWSys = (bytesReadSys / 1000000) / simSeconds; 1772 1773 avgWrBWSys 1774 .name(name() + ".avgWrBWSys") 1775 .desc("Average system write bandwidth in MiByte/s") 1776 .precision(2); 1777 1778 avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds; 1779 1780 peakBW 1781 .name(name() + ".peakBW") 1782 .desc("Theoretical peak bandwidth in MiByte/s") 1783 .precision(2); 1784 1785 peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000; 1786 1787 busUtil 1788 .name(name() + ".busUtil") 1789 .desc("Data bus utilization in percentage") 1790 .precision(2); 1791 1792 busUtil = (avgRdBW + avgWrBW) / peakBW * 100; 1793 1794 totGap 1795 .name(name() + ".totGap") 1796 .desc("Total gap between requests"); 1797 1798 avgGap 1799 .name(name() + ".avgGap") 1800 .desc("Average gap between requests") 1801 .precision(2); 1802 1803 avgGap = totGap / (readReqs + writeReqs); 1804 1805 // Stats for DRAM Power calculation based on Micron datasheet 1806 busUtilRead 1807 .name(name() + ".busUtilRead") 1808 .desc("Data bus utilization in percentage for reads") 1809 .precision(2); 1810 1811 busUtilRead = avgRdBW / peakBW * 100; 1812 1813 busUtilWrite 1814 .name(name() + ".busUtilWrite") 1815 .desc("Data bus utilization in percentage for writes") 1816 .precision(2); 1817 1818 busUtilWrite = avgWrBW / peakBW * 100; 1819 1820 pageHitRate 1821 .name(name() + ".pageHitRate") 1822 .desc("Row buffer hit rate, read and write combined") 1823 .precision(2); 1824 1825 pageHitRate = (writeRowHits + readRowHits) / 1826 (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100; 1827 1828 pwrStateTime 1829 .init(5) 1830 .name(name() + ".memoryStateTime") 1831 .desc("Time in different power states"); 1832 pwrStateTime.subname(0, "IDLE"); 1833 pwrStateTime.subname(1, "REF"); 1834 pwrStateTime.subname(2, "PRE_PDN"); 1835 pwrStateTime.subname(3, "ACT"); 1836 pwrStateTime.subname(4, "ACT_PDN"); 1837} 1838 1839void 1840DRAMCtrl::recvFunctional(PacketPtr pkt) 1841{ 1842 // rely on the abstract memory 1843 functionalAccess(pkt); 1844} 1845 1846BaseSlavePort& 1847DRAMCtrl::getSlavePort(const string &if_name, PortID idx) 1848{ 1849 if (if_name != "port") { 1850 return MemObject::getSlavePort(if_name, idx); 1851 } else { 1852 return port; 1853 } 1854} 1855 1856unsigned int 1857DRAMCtrl::drain(DrainManager *dm) 1858{ 1859 unsigned int count = port.drain(dm); 1860 1861 // if there is anything in any of our internal queues, keep track 1862 // of that as well 1863 if (!(writeQueue.empty() && readQueue.empty() && 1864 respQueue.empty())) { 1865 DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d," 1866 " resp: %d\n", writeQueue.size(), readQueue.size(), 1867 respQueue.size()); 1868 ++count; 1869 drainManager = dm; 1870 1871 // the only part that is not drained automatically over time 1872 // is the write queue, thus kick things into action if needed 1873 if (!writeQueue.empty() && !nextReqEvent.scheduled()) { 1874 schedule(nextReqEvent, curTick()); 1875 } 1876 } 1877 1878 if (count) 1879 setDrainState(Drainable::Draining); 1880 else 1881 setDrainState(Drainable::Drained); 1882 return count; 1883} 1884 1885DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory) 1886 : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this), 1887 memory(_memory) 1888{ } 1889 1890AddrRangeList 1891DRAMCtrl::MemoryPort::getAddrRanges() const 1892{ 1893 AddrRangeList ranges; 1894 ranges.push_back(memory.getAddrRange()); 1895 return ranges; 1896} 1897 1898void 1899DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt) 1900{ 1901 pkt->pushLabel(memory.name()); 1902 1903 if (!queue.checkFunctional(pkt)) { 1904 // Default implementation of SimpleTimingPort::recvFunctional() 1905 // calls recvAtomic() and throws away the latency; we can save a 1906 // little here by just not calculating the latency. 1907 memory.recvFunctional(pkt); 1908 } 1909 1910 pkt->popLabel(); 1911} 1912 1913Tick 1914DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt) 1915{ 1916 return memory.recvAtomic(pkt); 1917} 1918 1919bool 1920DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt) 1921{ 1922 // pass it to the memory controller 1923 return memory.recvTimingReq(pkt); 1924} 1925 1926DRAMCtrl* 1927DRAMCtrlParams::create() 1928{ 1929 return new DRAMCtrl(this); 1930} 1931