dram_ctrl.cc revision 10286:e95a0ab1d368
1/*
2 * Copyright (c) 2010-2014 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2013 Amin Farmahini-Farahani
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Andreas Hansson
41 *          Ani Udipi
42 *          Neha Agarwal
43 */
44
45#include "base/bitfield.hh"
46#include "base/trace.hh"
47#include "debug/DRAM.hh"
48#include "debug/DRAMPower.hh"
49#include "debug/DRAMState.hh"
50#include "debug/Drain.hh"
51#include "mem/dram_ctrl.hh"
52#include "sim/system.hh"
53
54using namespace std;
55
56DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
57    AbstractMemory(p),
58    port(name() + ".port", *this),
59    retryRdReq(false), retryWrReq(false),
60    busState(READ),
61    nextReqEvent(this), respondEvent(this), activateEvent(this),
62    prechargeEvent(this), refreshEvent(this), powerEvent(this),
63    drainManager(NULL),
64    deviceBusWidth(p->device_bus_width), burstLength(p->burst_length),
65    deviceRowBufferSize(p->device_rowbuffer_size),
66    devicesPerRank(p->devices_per_rank),
67    burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8),
68    rowBufferSize(devicesPerRank * deviceRowBufferSize),
69    columnsPerRowBuffer(rowBufferSize / burstSize),
70    columnsPerStripe(range.granularity() / burstSize),
71    ranksPerChannel(p->ranks_per_channel),
72    banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0),
73    readBufferSize(p->read_buffer_size),
74    writeBufferSize(p->write_buffer_size),
75    writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0),
76    writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0),
77    minWritesPerSwitch(p->min_writes_per_switch),
78    writesThisTime(0), readsThisTime(0),
79    tCK(p->tCK), tWTR(p->tWTR), tRTW(p->tRTW), tBURST(p->tBURST),
80    tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS), tWR(p->tWR),
81    tRTP(p->tRTP), tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD),
82    tXAW(p->tXAW), activationLimit(p->activation_limit),
83    memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
84    pageMgmt(p->page_policy),
85    maxAccessesPerRow(p->max_accesses_per_row),
86    frontendLatency(p->static_frontend_latency),
87    backendLatency(p->static_backend_latency),
88    busBusyUntil(0), refreshDueAt(0), refreshState(REF_IDLE),
89    pwrStateTrans(PWR_IDLE), pwrState(PWR_IDLE), prevArrival(0),
90    nextReqTime(0), pwrStateTick(0), numBanksActive(0)
91{
92    // create the bank states based on the dimensions of the ranks and
93    // banks
94    banks.resize(ranksPerChannel);
95    actTicks.resize(ranksPerChannel);
96    for (size_t c = 0; c < ranksPerChannel; ++c) {
97        banks[c].resize(banksPerRank);
98        actTicks[c].resize(activationLimit, 0);
99    }
100
101    // set the bank indices
102    for (int r = 0; r < ranksPerChannel; r++) {
103        for (int b = 0; b < banksPerRank; b++) {
104            banks[r][b].rank = r;
105            banks[r][b].bank = b;
106        }
107    }
108
109    // perform a basic check of the write thresholds
110    if (p->write_low_thresh_perc >= p->write_high_thresh_perc)
111        fatal("Write buffer low threshold %d must be smaller than the "
112              "high threshold %d\n", p->write_low_thresh_perc,
113              p->write_high_thresh_perc);
114
115    // determine the rows per bank by looking at the total capacity
116    uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size());
117
118    DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
119            AbstractMemory::size());
120
121    DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n",
122            rowBufferSize, columnsPerRowBuffer);
123
124    rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel);
125
126    // a bit of sanity checks on the interleaving
127    if (range.interleaved()) {
128        if (channels != range.stripes())
129            fatal("%s has %d interleaved address stripes but %d channel(s)\n",
130                  name(), range.stripes(), channels);
131
132        if (addrMapping == Enums::RoRaBaChCo) {
133            if (rowBufferSize != range.granularity()) {
134                fatal("Channel interleaving of %s doesn't match RoRaBaChCo "
135                      "address map\n", name());
136            }
137        } else if (addrMapping == Enums::RoRaBaCoCh ||
138                   addrMapping == Enums::RoCoRaBaCh) {
139            // for the interleavings with channel bits in the bottom,
140            // if the system uses a channel striping granularity that
141            // is larger than the DRAM burst size, then map the
142            // sequential accesses within a stripe to a number of
143            // columns in the DRAM, effectively placing some of the
144            // lower-order column bits as the least-significant bits
145            // of the address (above the ones denoting the burst size)
146            assert(columnsPerStripe >= 1);
147
148            // channel striping has to be done at a granularity that
149            // is equal or larger to a cache line
150            if (system()->cacheLineSize() > range.granularity()) {
151                fatal("Channel interleaving of %s must be at least as large "
152                      "as the cache line size\n", name());
153            }
154
155            // ...and equal or smaller than the row-buffer size
156            if (rowBufferSize < range.granularity()) {
157                fatal("Channel interleaving of %s must be at most as large "
158                      "as the row-buffer size\n", name());
159            }
160            // this is essentially the check above, so just to be sure
161            assert(columnsPerStripe <= columnsPerRowBuffer);
162        }
163    }
164
165    // some basic sanity checks
166    if (tREFI <= tRP || tREFI <= tRFC) {
167        fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n",
168              tREFI, tRP, tRFC);
169    }
170}
171
172void
173DRAMCtrl::init()
174{
175    if (!port.isConnected()) {
176        fatal("DRAMCtrl %s is unconnected!\n", name());
177    } else {
178        port.sendRangeChange();
179    }
180}
181
182void
183DRAMCtrl::startup()
184{
185    // update the start tick for the precharge accounting to the
186    // current tick
187    pwrStateTick = curTick();
188
189    // shift the bus busy time sufficiently far ahead that we never
190    // have to worry about negative values when computing the time for
191    // the next request, this will add an insignificant bubble at the
192    // start of simulation
193    busBusyUntil = curTick() + tRP + tRCD + tCL;
194
195    // kick off the refresh, and give ourselves enough time to
196    // precharge
197    schedule(refreshEvent, curTick() + tREFI - tRP);
198}
199
200Tick
201DRAMCtrl::recvAtomic(PacketPtr pkt)
202{
203    DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
204
205    // do the actual memory access and turn the packet into a response
206    access(pkt);
207
208    Tick latency = 0;
209    if (!pkt->memInhibitAsserted() && pkt->hasData()) {
210        // this value is not supposed to be accurate, just enough to
211        // keep things going, mimic a closed page
212        latency = tRP + tRCD + tCL;
213    }
214    return latency;
215}
216
217bool
218DRAMCtrl::readQueueFull(unsigned int neededEntries) const
219{
220    DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n",
221            readBufferSize, readQueue.size() + respQueue.size(),
222            neededEntries);
223
224    return
225        (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize;
226}
227
228bool
229DRAMCtrl::writeQueueFull(unsigned int neededEntries) const
230{
231    DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n",
232            writeBufferSize, writeQueue.size(), neededEntries);
233    return (writeQueue.size() + neededEntries) > writeBufferSize;
234}
235
236DRAMCtrl::DRAMPacket*
237DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size,
238                       bool isRead)
239{
240    // decode the address based on the address mapping scheme, with
241    // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and
242    // channel, respectively
243    uint8_t rank;
244    uint8_t bank;
245    // use a 64-bit unsigned during the computations as the row is
246    // always the top bits, and check before creating the DRAMPacket
247    uint64_t row;
248
249    // truncate the address to a DRAM burst, which makes it unique to
250    // a specific column, row, bank, rank and channel
251    Addr addr = dramPktAddr / burstSize;
252
253    // we have removed the lowest order address bits that denote the
254    // position within the column
255    if (addrMapping == Enums::RoRaBaChCo) {
256        // the lowest order bits denote the column to ensure that
257        // sequential cache lines occupy the same row
258        addr = addr / columnsPerRowBuffer;
259
260        // take out the channel part of the address
261        addr = addr / channels;
262
263        // after the channel bits, get the bank bits to interleave
264        // over the banks
265        bank = addr % banksPerRank;
266        addr = addr / banksPerRank;
267
268        // after the bank, we get the rank bits which thus interleaves
269        // over the ranks
270        rank = addr % ranksPerChannel;
271        addr = addr / ranksPerChannel;
272
273        // lastly, get the row bits
274        row = addr % rowsPerBank;
275        addr = addr / rowsPerBank;
276    } else if (addrMapping == Enums::RoRaBaCoCh) {
277        // take out the lower-order column bits
278        addr = addr / columnsPerStripe;
279
280        // take out the channel part of the address
281        addr = addr / channels;
282
283        // next, the higher-order column bites
284        addr = addr / (columnsPerRowBuffer / columnsPerStripe);
285
286        // after the column bits, we get the bank bits to interleave
287        // over the banks
288        bank = addr % banksPerRank;
289        addr = addr / banksPerRank;
290
291        // after the bank, we get the rank bits which thus interleaves
292        // over the ranks
293        rank = addr % ranksPerChannel;
294        addr = addr / ranksPerChannel;
295
296        // lastly, get the row bits
297        row = addr % rowsPerBank;
298        addr = addr / rowsPerBank;
299    } else if (addrMapping == Enums::RoCoRaBaCh) {
300        // optimise for closed page mode and utilise maximum
301        // parallelism of the DRAM (at the cost of power)
302
303        // take out the lower-order column bits
304        addr = addr / columnsPerStripe;
305
306        // take out the channel part of the address, not that this has
307        // to match with how accesses are interleaved between the
308        // controllers in the address mapping
309        addr = addr / channels;
310
311        // start with the bank bits, as this provides the maximum
312        // opportunity for parallelism between requests
313        bank = addr % banksPerRank;
314        addr = addr / banksPerRank;
315
316        // next get the rank bits
317        rank = addr % ranksPerChannel;
318        addr = addr / ranksPerChannel;
319
320        // next, the higher-order column bites
321        addr = addr / (columnsPerRowBuffer / columnsPerStripe);
322
323        // lastly, get the row bits
324        row = addr % rowsPerBank;
325        addr = addr / rowsPerBank;
326    } else
327        panic("Unknown address mapping policy chosen!");
328
329    assert(rank < ranksPerChannel);
330    assert(bank < banksPerRank);
331    assert(row < rowsPerBank);
332    assert(row < Bank::NO_ROW);
333
334    DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
335            dramPktAddr, rank, bank, row);
336
337    // create the corresponding DRAM packet with the entry time and
338    // ready time set to the current tick, the latter will be updated
339    // later
340    uint16_t bank_id = banksPerRank * rank + bank;
341    return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr,
342                          size, banks[rank][bank]);
343}
344
345void
346DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount)
347{
348    // only add to the read queue here. whenever the request is
349    // eventually done, set the readyTime, and call schedule()
350    assert(!pkt->isWrite());
351
352    assert(pktCount != 0);
353
354    // if the request size is larger than burst size, the pkt is split into
355    // multiple DRAM packets
356    // Note if the pkt starting address is not aligened to burst size, the
357    // address of first DRAM packet is kept unaliged. Subsequent DRAM packets
358    // are aligned to burst size boundaries. This is to ensure we accurately
359    // check read packets against packets in write queue.
360    Addr addr = pkt->getAddr();
361    unsigned pktsServicedByWrQ = 0;
362    BurstHelper* burst_helper = NULL;
363    for (int cnt = 0; cnt < pktCount; ++cnt) {
364        unsigned size = std::min((addr | (burstSize - 1)) + 1,
365                        pkt->getAddr() + pkt->getSize()) - addr;
366        readPktSize[ceilLog2(size)]++;
367        readBursts++;
368
369        // First check write buffer to see if the data is already at
370        // the controller
371        bool foundInWrQ = false;
372        for (auto i = writeQueue.begin(); i != writeQueue.end(); ++i) {
373            // check if the read is subsumed in the write entry we are
374            // looking at
375            if ((*i)->addr <= addr &&
376                (addr + size) <= ((*i)->addr + (*i)->size)) {
377                foundInWrQ = true;
378                servicedByWrQ++;
379                pktsServicedByWrQ++;
380                DPRINTF(DRAM, "Read to addr %lld with size %d serviced by "
381                        "write queue\n", addr, size);
382                bytesReadWrQ += burstSize;
383                break;
384            }
385        }
386
387        // If not found in the write q, make a DRAM packet and
388        // push it onto the read queue
389        if (!foundInWrQ) {
390
391            // Make the burst helper for split packets
392            if (pktCount > 1 && burst_helper == NULL) {
393                DPRINTF(DRAM, "Read to addr %lld translates to %d "
394                        "dram requests\n", pkt->getAddr(), pktCount);
395                burst_helper = new BurstHelper(pktCount);
396            }
397
398            DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true);
399            dram_pkt->burstHelper = burst_helper;
400
401            assert(!readQueueFull(1));
402            rdQLenPdf[readQueue.size() + respQueue.size()]++;
403
404            DPRINTF(DRAM, "Adding to read queue\n");
405
406            readQueue.push_back(dram_pkt);
407
408            // Update stats
409            avgRdQLen = readQueue.size() + respQueue.size();
410        }
411
412        // Starting address of next dram pkt (aligend to burstSize boundary)
413        addr = (addr | (burstSize - 1)) + 1;
414    }
415
416    // If all packets are serviced by write queue, we send the repsonse back
417    if (pktsServicedByWrQ == pktCount) {
418        accessAndRespond(pkt, frontendLatency);
419        return;
420    }
421
422    // Update how many split packets are serviced by write queue
423    if (burst_helper != NULL)
424        burst_helper->burstsServiced = pktsServicedByWrQ;
425
426    // If we are not already scheduled to get a request out of the
427    // queue, do so now
428    if (!nextReqEvent.scheduled()) {
429        DPRINTF(DRAM, "Request scheduled immediately\n");
430        schedule(nextReqEvent, curTick());
431    }
432}
433
434void
435DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount)
436{
437    // only add to the write queue here. whenever the request is
438    // eventually done, set the readyTime, and call schedule()
439    assert(pkt->isWrite());
440
441    // if the request size is larger than burst size, the pkt is split into
442    // multiple DRAM packets
443    Addr addr = pkt->getAddr();
444    for (int cnt = 0; cnt < pktCount; ++cnt) {
445        unsigned size = std::min((addr | (burstSize - 1)) + 1,
446                        pkt->getAddr() + pkt->getSize()) - addr;
447        writePktSize[ceilLog2(size)]++;
448        writeBursts++;
449
450        // see if we can merge with an existing item in the write
451        // queue and keep track of whether we have merged or not so we
452        // can stop at that point and also avoid enqueueing a new
453        // request
454        bool merged = false;
455        auto w = writeQueue.begin();
456
457        while(!merged && w != writeQueue.end()) {
458            // either of the two could be first, if they are the same
459            // it does not matter which way we go
460            if ((*w)->addr >= addr) {
461                // the existing one starts after the new one, figure
462                // out where the new one ends with respect to the
463                // existing one
464                if ((addr + size) >= ((*w)->addr + (*w)->size)) {
465                    // check if the existing one is completely
466                    // subsumed in the new one
467                    DPRINTF(DRAM, "Merging write covering existing burst\n");
468                    merged = true;
469                    // update both the address and the size
470                    (*w)->addr = addr;
471                    (*w)->size = size;
472                } else if ((addr + size) >= (*w)->addr &&
473                           ((*w)->addr + (*w)->size - addr) <= burstSize) {
474                    // the new one is just before or partially
475                    // overlapping with the existing one, and together
476                    // they fit within a burst
477                    DPRINTF(DRAM, "Merging write before existing burst\n");
478                    merged = true;
479                    // the existing queue item needs to be adjusted with
480                    // respect to both address and size
481                    (*w)->size = (*w)->addr + (*w)->size - addr;
482                    (*w)->addr = addr;
483                }
484            } else {
485                // the new one starts after the current one, figure
486                // out where the existing one ends with respect to the
487                // new one
488                if (((*w)->addr + (*w)->size) >= (addr + size)) {
489                    // check if the new one is completely subsumed in the
490                    // existing one
491                    DPRINTF(DRAM, "Merging write into existing burst\n");
492                    merged = true;
493                    // no adjustments necessary
494                } else if (((*w)->addr + (*w)->size) >= addr &&
495                           (addr + size - (*w)->addr) <= burstSize) {
496                    // the existing one is just before or partially
497                    // overlapping with the new one, and together
498                    // they fit within a burst
499                    DPRINTF(DRAM, "Merging write after existing burst\n");
500                    merged = true;
501                    // the address is right, and only the size has
502                    // to be adjusted
503                    (*w)->size = addr + size - (*w)->addr;
504                }
505            }
506            ++w;
507        }
508
509        // if the item was not merged we need to create a new write
510        // and enqueue it
511        if (!merged) {
512            DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false);
513
514            assert(writeQueue.size() < writeBufferSize);
515            wrQLenPdf[writeQueue.size()]++;
516
517            DPRINTF(DRAM, "Adding to write queue\n");
518
519            writeQueue.push_back(dram_pkt);
520
521            // Update stats
522            avgWrQLen = writeQueue.size();
523        } else {
524            // keep track of the fact that this burst effectively
525            // disappeared as it was merged with an existing one
526            mergedWrBursts++;
527        }
528
529        // Starting address of next dram pkt (aligend to burstSize boundary)
530        addr = (addr | (burstSize - 1)) + 1;
531    }
532
533    // we do not wait for the writes to be send to the actual memory,
534    // but instead take responsibility for the consistency here and
535    // snoop the write queue for any upcoming reads
536    // @todo, if a pkt size is larger than burst size, we might need a
537    // different front end latency
538    accessAndRespond(pkt, frontendLatency);
539
540    // If we are not already scheduled to get a request out of the
541    // queue, do so now
542    if (!nextReqEvent.scheduled()) {
543        DPRINTF(DRAM, "Request scheduled immediately\n");
544        schedule(nextReqEvent, curTick());
545    }
546}
547
548void
549DRAMCtrl::printQs() const {
550    DPRINTF(DRAM, "===READ QUEUE===\n\n");
551    for (auto i = readQueue.begin() ;  i != readQueue.end() ; ++i) {
552        DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
553    }
554    DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
555    for (auto i = respQueue.begin() ;  i != respQueue.end() ; ++i) {
556        DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
557    }
558    DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
559    for (auto i = writeQueue.begin() ;  i != writeQueue.end() ; ++i) {
560        DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
561    }
562}
563
564bool
565DRAMCtrl::recvTimingReq(PacketPtr pkt)
566{
567    /// @todo temporary hack to deal with memory corruption issues until
568    /// 4-phase transactions are complete
569    for (int x = 0; x < pendingDelete.size(); x++)
570        delete pendingDelete[x];
571    pendingDelete.clear();
572
573    // This is where we enter from the outside world
574    DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n",
575            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
576
577    // simply drop inhibited packets for now
578    if (pkt->memInhibitAsserted()) {
579        DPRINTF(DRAM, "Inhibited packet -- Dropping it now\n");
580        pendingDelete.push_back(pkt);
581        return true;
582    }
583
584    // Calc avg gap between requests
585    if (prevArrival != 0) {
586        totGap += curTick() - prevArrival;
587    }
588    prevArrival = curTick();
589
590
591    // Find out how many dram packets a pkt translates to
592    // If the burst size is equal or larger than the pkt size, then a pkt
593    // translates to only one dram packet. Otherwise, a pkt translates to
594    // multiple dram packets
595    unsigned size = pkt->getSize();
596    unsigned offset = pkt->getAddr() & (burstSize - 1);
597    unsigned int dram_pkt_count = divCeil(offset + size, burstSize);
598
599    // check local buffers and do not accept if full
600    if (pkt->isRead()) {
601        assert(size != 0);
602        if (readQueueFull(dram_pkt_count)) {
603            DPRINTF(DRAM, "Read queue full, not accepting\n");
604            // remember that we have to retry this port
605            retryRdReq = true;
606            numRdRetry++;
607            return false;
608        } else {
609            addToReadQueue(pkt, dram_pkt_count);
610            readReqs++;
611            bytesReadSys += size;
612        }
613    } else if (pkt->isWrite()) {
614        assert(size != 0);
615        if (writeQueueFull(dram_pkt_count)) {
616            DPRINTF(DRAM, "Write queue full, not accepting\n");
617            // remember that we have to retry this port
618            retryWrReq = true;
619            numWrRetry++;
620            return false;
621        } else {
622            addToWriteQueue(pkt, dram_pkt_count);
623            writeReqs++;
624            bytesWrittenSys += size;
625        }
626    } else {
627        DPRINTF(DRAM,"Neither read nor write, ignore timing\n");
628        neitherReadNorWrite++;
629        accessAndRespond(pkt, 1);
630    }
631
632    return true;
633}
634
635void
636DRAMCtrl::processRespondEvent()
637{
638    DPRINTF(DRAM,
639            "processRespondEvent(): Some req has reached its readyTime\n");
640
641    DRAMPacket* dram_pkt = respQueue.front();
642
643    if (dram_pkt->burstHelper) {
644        // it is a split packet
645        dram_pkt->burstHelper->burstsServiced++;
646        if (dram_pkt->burstHelper->burstsServiced ==
647            dram_pkt->burstHelper->burstCount) {
648            // we have now serviced all children packets of a system packet
649            // so we can now respond to the requester
650            // @todo we probably want to have a different front end and back
651            // end latency for split packets
652            accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
653            delete dram_pkt->burstHelper;
654            dram_pkt->burstHelper = NULL;
655        }
656    } else {
657        // it is not a split packet
658        accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
659    }
660
661    delete respQueue.front();
662    respQueue.pop_front();
663
664    if (!respQueue.empty()) {
665        assert(respQueue.front()->readyTime >= curTick());
666        assert(!respondEvent.scheduled());
667        schedule(respondEvent, respQueue.front()->readyTime);
668    } else {
669        // if there is nothing left in any queue, signal a drain
670        if (writeQueue.empty() && readQueue.empty() &&
671            drainManager) {
672            drainManager->signalDrainDone();
673            drainManager = NULL;
674        }
675    }
676
677    // We have made a location in the queue available at this point,
678    // so if there is a read that was forced to wait, retry now
679    if (retryRdReq) {
680        retryRdReq = false;
681        port.sendRetry();
682    }
683}
684
685void
686DRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue)
687{
688    // This method does the arbitration between requests. The chosen
689    // packet is simply moved to the head of the queue. The other
690    // methods know that this is the place to look. For example, with
691    // FCFS, this method does nothing
692    assert(!queue.empty());
693
694    if (queue.size() == 1) {
695        DPRINTF(DRAM, "Single request, nothing to do\n");
696        return;
697    }
698
699    if (memSchedPolicy == Enums::fcfs) {
700        // Do nothing, since the correct request is already head
701    } else if (memSchedPolicy == Enums::frfcfs) {
702        reorderQueue(queue);
703    } else
704        panic("No scheduling policy chosen\n");
705}
706
707void
708DRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue)
709{
710    // Only determine this when needed
711    uint64_t earliest_banks = 0;
712
713    // Search for row hits first, if no row hit is found then schedule the
714    // packet to one of the earliest banks available
715    bool found_earliest_pkt = false;
716    auto selected_pkt_it = queue.begin();
717
718    for (auto i = queue.begin(); i != queue.end() ; ++i) {
719        DRAMPacket* dram_pkt = *i;
720        const Bank& bank = dram_pkt->bankRef;
721        // Check if it is a row hit
722        if (bank.openRow == dram_pkt->row) {
723            // FCFS within the hits
724            DPRINTF(DRAM, "Row buffer hit\n");
725            selected_pkt_it = i;
726            break;
727        } else if (!found_earliest_pkt) {
728            // No row hit, go for first ready
729            if (earliest_banks == 0)
730                earliest_banks = minBankActAt(queue);
731
732            // simplistic approximation of when the bank can issue an
733            // activate, this is calculated in minBankActAt and could
734            // be cached
735            Tick act_at = bank.openRow == Bank::NO_ROW ?
736                bank.actAllowedAt :
737                std::max(bank.preAllowedAt, curTick()) + tRP;
738
739            // Bank is ready or is the first available bank
740            if (act_at <= curTick() ||
741                bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) {
742                // Remember the packet to be scheduled to one of the earliest
743                // banks available, FCFS amongst the earliest banks
744                selected_pkt_it = i;
745                found_earliest_pkt = true;
746            }
747        }
748    }
749
750    DRAMPacket* selected_pkt = *selected_pkt_it;
751    queue.erase(selected_pkt_it);
752    queue.push_front(selected_pkt);
753}
754
755void
756DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency)
757{
758    DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
759
760    bool needsResponse = pkt->needsResponse();
761    // do the actual memory access which also turns the packet into a
762    // response
763    access(pkt);
764
765    // turn packet around to go back to requester if response expected
766    if (needsResponse) {
767        // access already turned the packet into a response
768        assert(pkt->isResponse());
769
770        // @todo someone should pay for this
771        pkt->busFirstWordDelay = pkt->busLastWordDelay = 0;
772
773        // queue the packet in the response queue to be sent out after
774        // the static latency has passed
775        port.schedTimingResp(pkt, curTick() + static_latency);
776    } else {
777        // @todo the packet is going to be deleted, and the DRAMPacket
778        // is still having a pointer to it
779        pendingDelete.push_back(pkt);
780    }
781
782    DPRINTF(DRAM, "Done\n");
783
784    return;
785}
786
787void
788DRAMCtrl::activateBank(Bank& bank, Tick act_tick, uint32_t row)
789{
790    // get the rank index from the bank
791    uint8_t rank = bank.rank;
792
793    assert(actTicks[rank].size() == activationLimit);
794
795    DPRINTF(DRAM, "Activate at tick %d\n", act_tick);
796
797    // update the open row
798    assert(bank.openRow == Bank::NO_ROW);
799    bank.openRow = row;
800
801    // start counting anew, this covers both the case when we
802    // auto-precharged, and when this access is forced to
803    // precharge
804    bank.bytesAccessed = 0;
805    bank.rowAccesses = 0;
806
807    ++numBanksActive;
808    assert(numBanksActive <= banksPerRank * ranksPerChannel);
809
810    DPRINTF(DRAM, "Activate bank %d, rank %d at tick %lld, now got %d active\n",
811            bank.bank, bank.rank, act_tick, numBanksActive);
812
813    DPRINTF(DRAMPower, "%llu,ACT,%d,%d\n", divCeil(act_tick, tCK), bank.bank,
814            bank.rank);
815
816    // The next access has to respect tRAS for this bank
817    bank.preAllowedAt = act_tick + tRAS;
818
819    // Respect the row-to-column command delay
820    bank.colAllowedAt = act_tick + tRCD;
821
822    // start by enforcing tRRD
823    for(int i = 0; i < banksPerRank; i++) {
824        // next activate to any bank in this rank must not happen
825        // before tRRD
826        banks[rank][i].actAllowedAt = std::max(act_tick + tRRD,
827                                               banks[rank][i].actAllowedAt);
828    }
829
830    // next, we deal with tXAW, if the activation limit is disabled
831    // then we are done
832    if (actTicks[rank].empty())
833        return;
834
835    // sanity check
836    if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) {
837        panic("Got %d activates in window %d (%llu - %llu) which is smaller "
838              "than %llu\n", activationLimit, act_tick - actTicks[rank].back(),
839              act_tick, actTicks[rank].back(), tXAW);
840    }
841
842    // shift the times used for the book keeping, the last element
843    // (highest index) is the oldest one and hence the lowest value
844    actTicks[rank].pop_back();
845
846    // record an new activation (in the future)
847    actTicks[rank].push_front(act_tick);
848
849    // cannot activate more than X times in time window tXAW, push the
850    // next one (the X + 1'st activate) to be tXAW away from the
851    // oldest in our window of X
852    if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) {
853        DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate no earlier "
854                "than %llu\n", activationLimit, actTicks[rank].back() + tXAW);
855            for(int j = 0; j < banksPerRank; j++)
856                // next activate must not happen before end of window
857                banks[rank][j].actAllowedAt =
858                    std::max(actTicks[rank].back() + tXAW,
859                             banks[rank][j].actAllowedAt);
860    }
861
862    // at the point when this activate takes place, make sure we
863    // transition to the active power state
864    if (!activateEvent.scheduled())
865        schedule(activateEvent, act_tick);
866    else if (activateEvent.when() > act_tick)
867        // move it sooner in time
868        reschedule(activateEvent, act_tick);
869}
870
871void
872DRAMCtrl::processActivateEvent()
873{
874    // we should transition to the active state as soon as any bank is active
875    if (pwrState != PWR_ACT)
876        // note that at this point numBanksActive could be back at
877        // zero again due to a precharge scheduled in the future
878        schedulePowerEvent(PWR_ACT, curTick());
879}
880
881void
882DRAMCtrl::prechargeBank(Bank& bank, Tick pre_at, bool trace)
883{
884    // make sure the bank has an open row
885    assert(bank.openRow != Bank::NO_ROW);
886
887    // sample the bytes per activate here since we are closing
888    // the page
889    bytesPerActivate.sample(bank.bytesAccessed);
890
891    bank.openRow = Bank::NO_ROW;
892
893    // no precharge allowed before this one
894    bank.preAllowedAt = pre_at;
895
896    Tick pre_done_at = pre_at + tRP;
897
898    bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at);
899
900    assert(numBanksActive != 0);
901    --numBanksActive;
902
903    DPRINTF(DRAM, "Precharging bank %d, rank %d at tick %lld, now got "
904            "%d active\n", bank.bank, bank.rank, pre_at, numBanksActive);
905
906    if (trace)
907        DPRINTF(DRAMPower, "%llu,PRE,%d,%d\n", divCeil(pre_at, tCK),
908                bank.bank, bank.rank);
909
910    // if we look at the current number of active banks we might be
911    // tempted to think the DRAM is now idle, however this can be
912    // undone by an activate that is scheduled to happen before we
913    // would have reached the idle state, so schedule an event and
914    // rather check once we actually make it to the point in time when
915    // the (last) precharge takes place
916    if (!prechargeEvent.scheduled())
917        schedule(prechargeEvent, pre_done_at);
918    else if (prechargeEvent.when() < pre_done_at)
919        reschedule(prechargeEvent, pre_done_at);
920}
921
922void
923DRAMCtrl::processPrechargeEvent()
924{
925    // if we reached zero, then special conditions apply as we track
926    // if all banks are precharged for the power models
927    if (numBanksActive == 0) {
928        // we should transition to the idle state when the last bank
929        // is precharged
930        schedulePowerEvent(PWR_IDLE, curTick());
931    }
932}
933
934void
935DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
936{
937    DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
938            dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
939
940    // get the bank
941    Bank& bank = dram_pkt->bankRef;
942
943    // for the state we need to track if it is a row hit or not
944    bool row_hit = true;
945
946    // respect any constraints on the command (e.g. tRCD or tCCD)
947    Tick cmd_at = std::max(bank.colAllowedAt, curTick());
948
949    // Determine the access latency and update the bank state
950    if (bank.openRow == dram_pkt->row) {
951        // nothing to do
952    } else {
953        row_hit = false;
954
955        // If there is a page open, precharge it.
956        if (bank.openRow != Bank::NO_ROW) {
957            prechargeBank(bank, std::max(bank.preAllowedAt, curTick()));
958        }
959
960        // next we need to account for the delay in activating the
961        // page
962        Tick act_tick = std::max(bank.actAllowedAt, curTick());
963
964        // Record the activation and deal with all the global timing
965        // constraints caused be a new activation (tRRD and tXAW)
966        activateBank(bank, act_tick, dram_pkt->row);
967
968        // issue the command as early as possible
969        cmd_at = bank.colAllowedAt;
970    }
971
972    // we need to wait until the bus is available before we can issue
973    // the command
974    cmd_at = std::max(cmd_at, busBusyUntil - tCL);
975
976    // update the packet ready time
977    dram_pkt->readyTime = cmd_at + tCL + tBURST;
978
979    // only one burst can use the bus at any one point in time
980    assert(dram_pkt->readyTime - busBusyUntil >= tBURST);
981
982    // not strictly necessary, but update the time for the next
983    // read/write (add a max with tCCD here)
984    bank.colAllowedAt = cmd_at + tBURST;
985
986    // If this is a write, we also need to respect the write recovery
987    // time before a precharge, in the case of a read, respect the
988    // read to precharge constraint
989    bank.preAllowedAt = std::max(bank.preAllowedAt,
990                                 dram_pkt->isRead ? cmd_at + tRTP :
991                                 dram_pkt->readyTime + tWR);
992
993    // increment the bytes accessed and the accesses per row
994    bank.bytesAccessed += burstSize;
995    ++bank.rowAccesses;
996
997    // if we reached the max, then issue with an auto-precharge
998    bool auto_precharge = pageMgmt == Enums::close ||
999        bank.rowAccesses == maxAccessesPerRow;
1000
1001    // if we did not hit the limit, we might still want to
1002    // auto-precharge
1003    if (!auto_precharge &&
1004        (pageMgmt == Enums::open_adaptive ||
1005         pageMgmt == Enums::close_adaptive)) {
1006        // a twist on the open and close page policies:
1007        // 1) open_adaptive page policy does not blindly keep the
1008        // page open, but close it if there are no row hits, and there
1009        // are bank conflicts in the queue
1010        // 2) close_adaptive page policy does not blindly close the
1011        // page, but closes it only if there are no row hits in the queue.
1012        // In this case, only force an auto precharge when there
1013        // are no same page hits in the queue
1014        bool got_more_hits = false;
1015        bool got_bank_conflict = false;
1016
1017        // either look at the read queue or write queue
1018        const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue :
1019            writeQueue;
1020        auto p = queue.begin();
1021        // make sure we are not considering the packet that we are
1022        // currently dealing with (which is the head of the queue)
1023        ++p;
1024
1025        // keep on looking until we have found required condition or
1026        // reached the end
1027        while (!(got_more_hits &&
1028                 (got_bank_conflict || pageMgmt == Enums::close_adaptive)) &&
1029               p != queue.end()) {
1030            bool same_rank_bank = (dram_pkt->rank == (*p)->rank) &&
1031                (dram_pkt->bank == (*p)->bank);
1032            bool same_row = dram_pkt->row == (*p)->row;
1033            got_more_hits |= same_rank_bank && same_row;
1034            got_bank_conflict |= same_rank_bank && !same_row;
1035            ++p;
1036        }
1037
1038        // auto pre-charge when either
1039        // 1) open_adaptive policy, we have not got any more hits, and
1040        //    have a bank conflict
1041        // 2) close_adaptive policy and we have not got any more hits
1042        auto_precharge = !got_more_hits &&
1043            (got_bank_conflict || pageMgmt == Enums::close_adaptive);
1044    }
1045
1046    // DRAMPower trace command to be written
1047    std::string mem_cmd = dram_pkt->isRead ? "RD" : "WR";
1048
1049    // if this access should use auto-precharge, then we are
1050    // closing the row
1051    if (auto_precharge) {
1052        prechargeBank(bank, std::max(curTick(), bank.preAllowedAt), false);
1053
1054        mem_cmd.append("A");
1055
1056        DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId);
1057    }
1058
1059    // Update bus state
1060    busBusyUntil = dram_pkt->readyTime;
1061
1062    DPRINTF(DRAM, "Access to %lld, ready at %lld bus busy until %lld.\n",
1063            dram_pkt->addr, dram_pkt->readyTime, busBusyUntil);
1064
1065    DPRINTF(DRAMPower, "%llu,%s,%d,%d\n", divCeil(cmd_at, tCK), mem_cmd,
1066            dram_pkt->bank, dram_pkt->rank);
1067
1068    // Update the minimum timing between the requests, this is a
1069    // conservative estimate of when we have to schedule the next
1070    // request to not introduce any unecessary bubbles. In most cases
1071    // we will wake up sooner than we have to.
1072    nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
1073
1074    // Update the stats and schedule the next request
1075    if (dram_pkt->isRead) {
1076        ++readsThisTime;
1077        if (row_hit)
1078            readRowHits++;
1079        bytesReadDRAM += burstSize;
1080        perBankRdBursts[dram_pkt->bankId]++;
1081
1082        // Update latency stats
1083        totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
1084        totBusLat += tBURST;
1085        totQLat += cmd_at - dram_pkt->entryTime;
1086    } else {
1087        ++writesThisTime;
1088        if (row_hit)
1089            writeRowHits++;
1090        bytesWritten += burstSize;
1091        perBankWrBursts[dram_pkt->bankId]++;
1092    }
1093}
1094
1095void
1096DRAMCtrl::processNextReqEvent()
1097{
1098    if (busState == READ_TO_WRITE) {
1099        DPRINTF(DRAM, "Switching to writes after %d reads with %d reads "
1100                "waiting\n", readsThisTime, readQueue.size());
1101
1102        // sample and reset the read-related stats as we are now
1103        // transitioning to writes, and all reads are done
1104        rdPerTurnAround.sample(readsThisTime);
1105        readsThisTime = 0;
1106
1107        // now proceed to do the actual writes
1108        busState = WRITE;
1109    } else if (busState == WRITE_TO_READ) {
1110        DPRINTF(DRAM, "Switching to reads after %d writes with %d writes "
1111                "waiting\n", writesThisTime, writeQueue.size());
1112
1113        wrPerTurnAround.sample(writesThisTime);
1114        writesThisTime = 0;
1115
1116        busState = READ;
1117    }
1118
1119    if (refreshState != REF_IDLE) {
1120        // if a refresh waiting for this event loop to finish, then hand
1121        // over now, and do not schedule a new nextReqEvent
1122        if (refreshState == REF_DRAIN) {
1123            DPRINTF(DRAM, "Refresh drain done, now precharging\n");
1124
1125            refreshState = REF_PRE;
1126
1127            // hand control back to the refresh event loop
1128            schedule(refreshEvent, curTick());
1129        }
1130
1131        // let the refresh finish before issuing any further requests
1132        return;
1133    }
1134
1135    // when we get here it is either a read or a write
1136    if (busState == READ) {
1137
1138        // track if we should switch or not
1139        bool switch_to_writes = false;
1140
1141        if (readQueue.empty()) {
1142            // In the case there is no read request to go next,
1143            // trigger writes if we have passed the low threshold (or
1144            // if we are draining)
1145            if (!writeQueue.empty() &&
1146                (drainManager || writeQueue.size() > writeLowThreshold)) {
1147
1148                switch_to_writes = true;
1149            } else {
1150                // check if we are drained
1151                if (respQueue.empty () && drainManager) {
1152                    drainManager->signalDrainDone();
1153                    drainManager = NULL;
1154                }
1155
1156                // nothing to do, not even any point in scheduling an
1157                // event for the next request
1158                return;
1159            }
1160        } else {
1161            // Figure out which read request goes next, and move it to the
1162            // front of the read queue
1163            chooseNext(readQueue);
1164
1165            DRAMPacket* dram_pkt = readQueue.front();
1166
1167            doDRAMAccess(dram_pkt);
1168
1169            // At this point we're done dealing with the request
1170            readQueue.pop_front();
1171
1172            // sanity check
1173            assert(dram_pkt->size <= burstSize);
1174            assert(dram_pkt->readyTime >= curTick());
1175
1176            // Insert into response queue. It will be sent back to the
1177            // requestor at its readyTime
1178            if (respQueue.empty()) {
1179                assert(!respondEvent.scheduled());
1180                schedule(respondEvent, dram_pkt->readyTime);
1181            } else {
1182                assert(respQueue.back()->readyTime <= dram_pkt->readyTime);
1183                assert(respondEvent.scheduled());
1184            }
1185
1186            respQueue.push_back(dram_pkt);
1187
1188            // we have so many writes that we have to transition
1189            if (writeQueue.size() > writeHighThreshold) {
1190                switch_to_writes = true;
1191            }
1192        }
1193
1194        // switching to writes, either because the read queue is empty
1195        // and the writes have passed the low threshold (or we are
1196        // draining), or because the writes hit the hight threshold
1197        if (switch_to_writes) {
1198            // transition to writing
1199            busState = READ_TO_WRITE;
1200
1201            // add a bubble to the data bus, as defined by the
1202            // tRTW parameter
1203            busBusyUntil += tRTW;
1204
1205            // update the minimum timing between the requests,
1206            // this shifts us back in time far enough to do any
1207            // bank preparation
1208            nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
1209        }
1210    } else {
1211        chooseNext(writeQueue);
1212        DRAMPacket* dram_pkt = writeQueue.front();
1213        // sanity check
1214        assert(dram_pkt->size <= burstSize);
1215        doDRAMAccess(dram_pkt);
1216
1217        writeQueue.pop_front();
1218        delete dram_pkt;
1219
1220        // If we emptied the write queue, or got sufficiently below the
1221        // threshold (using the minWritesPerSwitch as the hysteresis) and
1222        // are not draining, or we have reads waiting and have done enough
1223        // writes, then switch to reads.
1224        if (writeQueue.empty() ||
1225            (writeQueue.size() + minWritesPerSwitch < writeLowThreshold &&
1226             !drainManager) ||
1227            (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) {
1228            // turn the bus back around for reads again
1229            busState = WRITE_TO_READ;
1230
1231            // note that the we switch back to reads also in the idle
1232            // case, which eventually will check for any draining and
1233            // also pause any further scheduling if there is really
1234            // nothing to do
1235
1236            // here we get a bit creative and shift the bus busy time not
1237            // just the tWTR, but also a CAS latency to capture the fact
1238            // that we are allowed to prepare a new bank, but not issue a
1239            // read command until after tWTR, in essence we capture a
1240            // bubble on the data bus that is tWTR + tCL
1241            busBusyUntil += tWTR + tCL;
1242
1243            // update the minimum timing between the requests, this shifts
1244            // us back in time far enough to do any bank preparation
1245            nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
1246        }
1247    }
1248
1249    schedule(nextReqEvent, std::max(nextReqTime, curTick()));
1250
1251    // If there is space available and we have writes waiting then let
1252    // them retry. This is done here to ensure that the retry does not
1253    // cause a nextReqEvent to be scheduled before we do so as part of
1254    // the next request processing
1255    if (retryWrReq && writeQueue.size() < writeBufferSize) {
1256        retryWrReq = false;
1257        port.sendRetry();
1258    }
1259}
1260
1261uint64_t
1262DRAMCtrl::minBankActAt(const deque<DRAMPacket*>& queue) const
1263{
1264    uint64_t bank_mask = 0;
1265    Tick min_act_at = MaxTick;
1266
1267    // deterimne if we have queued transactions targetting a
1268    // bank in question
1269    vector<bool> got_waiting(ranksPerChannel * banksPerRank, false);
1270    for (auto p = queue.begin(); p != queue.end(); ++p) {
1271        got_waiting[(*p)->bankId] = true;
1272    }
1273
1274    for (int i = 0; i < ranksPerChannel; i++) {
1275        for (int j = 0; j < banksPerRank; j++) {
1276            uint8_t bank_id = i * banksPerRank + j;
1277
1278            // if we have waiting requests for the bank, and it is
1279            // amongst the first available, update the mask
1280            if (got_waiting[bank_id]) {
1281                // simplistic approximation of when the bank can issue
1282                // an activate, ignoring any rank-to-rank switching
1283                // cost
1284                Tick act_at = banks[i][j].openRow == Bank::NO_ROW ?
1285                    banks[i][j].actAllowedAt :
1286                    std::max(banks[i][j].preAllowedAt, curTick()) + tRP;
1287
1288                if (act_at <= min_act_at) {
1289                    // reset bank mask if new minimum is found
1290                    if (act_at < min_act_at)
1291                        bank_mask = 0;
1292                    // set the bit corresponding to the available bank
1293                    replaceBits(bank_mask, bank_id, bank_id, 1);
1294                    min_act_at = act_at;
1295                }
1296            }
1297        }
1298    }
1299
1300    return bank_mask;
1301}
1302
1303void
1304DRAMCtrl::processRefreshEvent()
1305{
1306    // when first preparing the refresh, remember when it was due
1307    if (refreshState == REF_IDLE) {
1308        // remember when the refresh is due
1309        refreshDueAt = curTick();
1310
1311        // proceed to drain
1312        refreshState = REF_DRAIN;
1313
1314        DPRINTF(DRAM, "Refresh due\n");
1315    }
1316
1317    // let any scheduled read or write go ahead, after which it will
1318    // hand control back to this event loop
1319    if (refreshState == REF_DRAIN) {
1320        if (nextReqEvent.scheduled()) {
1321            // hand control over to the request loop until it is
1322            // evaluated next
1323            DPRINTF(DRAM, "Refresh awaiting draining\n");
1324
1325            return;
1326        } else {
1327            refreshState = REF_PRE;
1328        }
1329    }
1330
1331    // at this point, ensure that all banks are precharged
1332    if (refreshState == REF_PRE) {
1333        // precharge any active bank if we are not already in the idle
1334        // state
1335        if (pwrState != PWR_IDLE) {
1336            // at the moment, we use a precharge all even if there is
1337            // only a single bank open
1338            DPRINTF(DRAM, "Precharging all\n");
1339
1340            // first determine when we can precharge
1341            Tick pre_at = curTick();
1342            for (int i = 0; i < ranksPerChannel; i++) {
1343                for (int j = 0; j < banksPerRank; j++) {
1344                    // respect both causality and any existing bank
1345                    // constraints, some banks could already have a
1346                    // (auto) precharge scheduled
1347                    pre_at = std::max(banks[i][j].preAllowedAt, pre_at);
1348                }
1349            }
1350
1351            // make sure all banks are precharged, and for those that
1352            // already are, update their availability
1353            Tick act_allowed_at = pre_at + tRP;
1354
1355            for (int i = 0; i < ranksPerChannel; i++) {
1356                for (int j = 0; j < banksPerRank; j++) {
1357                    if (banks[i][j].openRow != Bank::NO_ROW) {
1358                        prechargeBank(banks[i][j], pre_at, false);
1359                    } else {
1360                        banks[i][j].actAllowedAt =
1361                            std::max(banks[i][j].actAllowedAt, act_allowed_at);
1362                        banks[i][j].preAllowedAt =
1363                            std::max(banks[i][j].preAllowedAt, pre_at);
1364                    }
1365                }
1366
1367                // at the moment this affects all ranks
1368                DPRINTF(DRAMPower, "%llu,PREA,0,%d\n", divCeil(pre_at, tCK),
1369                        i);
1370            }
1371        } else {
1372            DPRINTF(DRAM, "All banks already precharged, starting refresh\n");
1373
1374            // go ahead and kick the power state machine into gear if
1375            // we are already idle
1376            schedulePowerEvent(PWR_REF, curTick());
1377        }
1378
1379        refreshState = REF_RUN;
1380        assert(numBanksActive == 0);
1381
1382        // wait for all banks to be precharged, at which point the
1383        // power state machine will transition to the idle state, and
1384        // automatically move to a refresh, at that point it will also
1385        // call this method to get the refresh event loop going again
1386        return;
1387    }
1388
1389    // last but not least we perform the actual refresh
1390    if (refreshState == REF_RUN) {
1391        // should never get here with any banks active
1392        assert(numBanksActive == 0);
1393        assert(pwrState == PWR_REF);
1394
1395        Tick ref_done_at = curTick() + tRFC;
1396
1397        for (int i = 0; i < ranksPerChannel; i++) {
1398            for (int j = 0; j < banksPerRank; j++) {
1399                banks[i][j].actAllowedAt = ref_done_at;
1400            }
1401
1402            // at the moment this affects all ranks
1403            DPRINTF(DRAMPower, "%llu,REF,0,%d\n", divCeil(curTick(), tCK), i);
1404        }
1405
1406        // make sure we did not wait so long that we cannot make up
1407        // for it
1408        if (refreshDueAt + tREFI < ref_done_at) {
1409            fatal("Refresh was delayed so long we cannot catch up\n");
1410        }
1411
1412        // compensate for the delay in actually performing the refresh
1413        // when scheduling the next one
1414        schedule(refreshEvent, refreshDueAt + tREFI - tRP);
1415
1416        assert(!powerEvent.scheduled());
1417
1418        // move to the idle power state once the refresh is done, this
1419        // will also move the refresh state machine to the refresh
1420        // idle state
1421        schedulePowerEvent(PWR_IDLE, ref_done_at);
1422
1423        DPRINTF(DRAMState, "Refresh done at %llu and next refresh at %llu\n",
1424                ref_done_at, refreshDueAt + tREFI);
1425    }
1426}
1427
1428void
1429DRAMCtrl::schedulePowerEvent(PowerState pwr_state, Tick tick)
1430{
1431    // respect causality
1432    assert(tick >= curTick());
1433
1434    if (!powerEvent.scheduled()) {
1435        DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n",
1436                tick, pwr_state);
1437
1438        // insert the new transition
1439        pwrStateTrans = pwr_state;
1440
1441        schedule(powerEvent, tick);
1442    } else {
1443        panic("Scheduled power event at %llu to state %d, "
1444              "with scheduled event at %llu to %d\n", tick, pwr_state,
1445              powerEvent.when(), pwrStateTrans);
1446    }
1447}
1448
1449void
1450DRAMCtrl::processPowerEvent()
1451{
1452    // remember where we were, and for how long
1453    Tick duration = curTick() - pwrStateTick;
1454    PowerState prev_state = pwrState;
1455
1456    // update the accounting
1457    pwrStateTime[prev_state] += duration;
1458
1459    pwrState = pwrStateTrans;
1460    pwrStateTick = curTick();
1461
1462    if (pwrState == PWR_IDLE) {
1463        DPRINTF(DRAMState, "All banks precharged\n");
1464
1465        // if we were refreshing, make sure we start scheduling requests again
1466        if (prev_state == PWR_REF) {
1467            DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration);
1468            assert(pwrState == PWR_IDLE);
1469
1470            // kick things into action again
1471            refreshState = REF_IDLE;
1472            assert(!nextReqEvent.scheduled());
1473            schedule(nextReqEvent, curTick());
1474        } else {
1475            assert(prev_state == PWR_ACT);
1476
1477            // if we have a pending refresh, and are now moving to
1478            // the idle state, direclty transition to a refresh
1479            if (refreshState == REF_RUN) {
1480                // there should be nothing waiting at this point
1481                assert(!powerEvent.scheduled());
1482
1483                // update the state in zero time and proceed below
1484                pwrState = PWR_REF;
1485            }
1486        }
1487    }
1488
1489    // we transition to the refresh state, let the refresh state
1490    // machine know of this state update and let it deal with the
1491    // scheduling of the next power state transition as well as the
1492    // following refresh
1493    if (pwrState == PWR_REF) {
1494        DPRINTF(DRAMState, "Refreshing\n");
1495        // kick the refresh event loop into action again, and that
1496        // in turn will schedule a transition to the idle power
1497        // state once the refresh is done
1498        assert(refreshState == REF_RUN);
1499        processRefreshEvent();
1500    }
1501}
1502
1503void
1504DRAMCtrl::regStats()
1505{
1506    using namespace Stats;
1507
1508    AbstractMemory::regStats();
1509
1510    readReqs
1511        .name(name() + ".readReqs")
1512        .desc("Number of read requests accepted");
1513
1514    writeReqs
1515        .name(name() + ".writeReqs")
1516        .desc("Number of write requests accepted");
1517
1518    readBursts
1519        .name(name() + ".readBursts")
1520        .desc("Number of DRAM read bursts, "
1521              "including those serviced by the write queue");
1522
1523    writeBursts
1524        .name(name() + ".writeBursts")
1525        .desc("Number of DRAM write bursts, "
1526              "including those merged in the write queue");
1527
1528    servicedByWrQ
1529        .name(name() + ".servicedByWrQ")
1530        .desc("Number of DRAM read bursts serviced by the write queue");
1531
1532    mergedWrBursts
1533        .name(name() + ".mergedWrBursts")
1534        .desc("Number of DRAM write bursts merged with an existing one");
1535
1536    neitherReadNorWrite
1537        .name(name() + ".neitherReadNorWriteReqs")
1538        .desc("Number of requests that are neither read nor write");
1539
1540    perBankRdBursts
1541        .init(banksPerRank * ranksPerChannel)
1542        .name(name() + ".perBankRdBursts")
1543        .desc("Per bank write bursts");
1544
1545    perBankWrBursts
1546        .init(banksPerRank * ranksPerChannel)
1547        .name(name() + ".perBankWrBursts")
1548        .desc("Per bank write bursts");
1549
1550    avgRdQLen
1551        .name(name() + ".avgRdQLen")
1552        .desc("Average read queue length when enqueuing")
1553        .precision(2);
1554
1555    avgWrQLen
1556        .name(name() + ".avgWrQLen")
1557        .desc("Average write queue length when enqueuing")
1558        .precision(2);
1559
1560    totQLat
1561        .name(name() + ".totQLat")
1562        .desc("Total ticks spent queuing");
1563
1564    totBusLat
1565        .name(name() + ".totBusLat")
1566        .desc("Total ticks spent in databus transfers");
1567
1568    totMemAccLat
1569        .name(name() + ".totMemAccLat")
1570        .desc("Total ticks spent from burst creation until serviced "
1571              "by the DRAM");
1572
1573    avgQLat
1574        .name(name() + ".avgQLat")
1575        .desc("Average queueing delay per DRAM burst")
1576        .precision(2);
1577
1578    avgQLat = totQLat / (readBursts - servicedByWrQ);
1579
1580    avgBusLat
1581        .name(name() + ".avgBusLat")
1582        .desc("Average bus latency per DRAM burst")
1583        .precision(2);
1584
1585    avgBusLat = totBusLat / (readBursts - servicedByWrQ);
1586
1587    avgMemAccLat
1588        .name(name() + ".avgMemAccLat")
1589        .desc("Average memory access latency per DRAM burst")
1590        .precision(2);
1591
1592    avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ);
1593
1594    numRdRetry
1595        .name(name() + ".numRdRetry")
1596        .desc("Number of times read queue was full causing retry");
1597
1598    numWrRetry
1599        .name(name() + ".numWrRetry")
1600        .desc("Number of times write queue was full causing retry");
1601
1602    readRowHits
1603        .name(name() + ".readRowHits")
1604        .desc("Number of row buffer hits during reads");
1605
1606    writeRowHits
1607        .name(name() + ".writeRowHits")
1608        .desc("Number of row buffer hits during writes");
1609
1610    readRowHitRate
1611        .name(name() + ".readRowHitRate")
1612        .desc("Row buffer hit rate for reads")
1613        .precision(2);
1614
1615    readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100;
1616
1617    writeRowHitRate
1618        .name(name() + ".writeRowHitRate")
1619        .desc("Row buffer hit rate for writes")
1620        .precision(2);
1621
1622    writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100;
1623
1624    readPktSize
1625        .init(ceilLog2(burstSize) + 1)
1626        .name(name() + ".readPktSize")
1627        .desc("Read request sizes (log2)");
1628
1629     writePktSize
1630        .init(ceilLog2(burstSize) + 1)
1631        .name(name() + ".writePktSize")
1632        .desc("Write request sizes (log2)");
1633
1634     rdQLenPdf
1635        .init(readBufferSize)
1636        .name(name() + ".rdQLenPdf")
1637        .desc("What read queue length does an incoming req see");
1638
1639     wrQLenPdf
1640        .init(writeBufferSize)
1641        .name(name() + ".wrQLenPdf")
1642        .desc("What write queue length does an incoming req see");
1643
1644     bytesPerActivate
1645         .init(maxAccessesPerRow)
1646         .name(name() + ".bytesPerActivate")
1647         .desc("Bytes accessed per row activation")
1648         .flags(nozero);
1649
1650     rdPerTurnAround
1651         .init(readBufferSize)
1652         .name(name() + ".rdPerTurnAround")
1653         .desc("Reads before turning the bus around for writes")
1654         .flags(nozero);
1655
1656     wrPerTurnAround
1657         .init(writeBufferSize)
1658         .name(name() + ".wrPerTurnAround")
1659         .desc("Writes before turning the bus around for reads")
1660         .flags(nozero);
1661
1662    bytesReadDRAM
1663        .name(name() + ".bytesReadDRAM")
1664        .desc("Total number of bytes read from DRAM");
1665
1666    bytesReadWrQ
1667        .name(name() + ".bytesReadWrQ")
1668        .desc("Total number of bytes read from write queue");
1669
1670    bytesWritten
1671        .name(name() + ".bytesWritten")
1672        .desc("Total number of bytes written to DRAM");
1673
1674    bytesReadSys
1675        .name(name() + ".bytesReadSys")
1676        .desc("Total read bytes from the system interface side");
1677
1678    bytesWrittenSys
1679        .name(name() + ".bytesWrittenSys")
1680        .desc("Total written bytes from the system interface side");
1681
1682    avgRdBW
1683        .name(name() + ".avgRdBW")
1684        .desc("Average DRAM read bandwidth in MiByte/s")
1685        .precision(2);
1686
1687    avgRdBW = (bytesReadDRAM / 1000000) / simSeconds;
1688
1689    avgWrBW
1690        .name(name() + ".avgWrBW")
1691        .desc("Average achieved write bandwidth in MiByte/s")
1692        .precision(2);
1693
1694    avgWrBW = (bytesWritten / 1000000) / simSeconds;
1695
1696    avgRdBWSys
1697        .name(name() + ".avgRdBWSys")
1698        .desc("Average system read bandwidth in MiByte/s")
1699        .precision(2);
1700
1701    avgRdBWSys = (bytesReadSys / 1000000) / simSeconds;
1702
1703    avgWrBWSys
1704        .name(name() + ".avgWrBWSys")
1705        .desc("Average system write bandwidth in MiByte/s")
1706        .precision(2);
1707
1708    avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds;
1709
1710    peakBW
1711        .name(name() + ".peakBW")
1712        .desc("Theoretical peak bandwidth in MiByte/s")
1713        .precision(2);
1714
1715    peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000;
1716
1717    busUtil
1718        .name(name() + ".busUtil")
1719        .desc("Data bus utilization in percentage")
1720        .precision(2);
1721
1722    busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
1723
1724    totGap
1725        .name(name() + ".totGap")
1726        .desc("Total gap between requests");
1727
1728    avgGap
1729        .name(name() + ".avgGap")
1730        .desc("Average gap between requests")
1731        .precision(2);
1732
1733    avgGap = totGap / (readReqs + writeReqs);
1734
1735    // Stats for DRAM Power calculation based on Micron datasheet
1736    busUtilRead
1737        .name(name() + ".busUtilRead")
1738        .desc("Data bus utilization in percentage for reads")
1739        .precision(2);
1740
1741    busUtilRead = avgRdBW / peakBW * 100;
1742
1743    busUtilWrite
1744        .name(name() + ".busUtilWrite")
1745        .desc("Data bus utilization in percentage for writes")
1746        .precision(2);
1747
1748    busUtilWrite = avgWrBW / peakBW * 100;
1749
1750    pageHitRate
1751        .name(name() + ".pageHitRate")
1752        .desc("Row buffer hit rate, read and write combined")
1753        .precision(2);
1754
1755    pageHitRate = (writeRowHits + readRowHits) /
1756        (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100;
1757
1758    pwrStateTime
1759        .init(5)
1760        .name(name() + ".memoryStateTime")
1761        .desc("Time in different power states");
1762    pwrStateTime.subname(0, "IDLE");
1763    pwrStateTime.subname(1, "REF");
1764    pwrStateTime.subname(2, "PRE_PDN");
1765    pwrStateTime.subname(3, "ACT");
1766    pwrStateTime.subname(4, "ACT_PDN");
1767}
1768
1769void
1770DRAMCtrl::recvFunctional(PacketPtr pkt)
1771{
1772    // rely on the abstract memory
1773    functionalAccess(pkt);
1774}
1775
1776BaseSlavePort&
1777DRAMCtrl::getSlavePort(const string &if_name, PortID idx)
1778{
1779    if (if_name != "port") {
1780        return MemObject::getSlavePort(if_name, idx);
1781    } else {
1782        return port;
1783    }
1784}
1785
1786unsigned int
1787DRAMCtrl::drain(DrainManager *dm)
1788{
1789    unsigned int count = port.drain(dm);
1790
1791    // if there is anything in any of our internal queues, keep track
1792    // of that as well
1793    if (!(writeQueue.empty() && readQueue.empty() &&
1794          respQueue.empty())) {
1795        DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
1796                " resp: %d\n", writeQueue.size(), readQueue.size(),
1797                respQueue.size());
1798        ++count;
1799        drainManager = dm;
1800
1801        // the only part that is not drained automatically over time
1802        // is the write queue, thus kick things into action if needed
1803        if (!writeQueue.empty() && !nextReqEvent.scheduled()) {
1804            schedule(nextReqEvent, curTick());
1805        }
1806    }
1807
1808    if (count)
1809        setDrainState(Drainable::Draining);
1810    else
1811        setDrainState(Drainable::Drained);
1812    return count;
1813}
1814
1815DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory)
1816    : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
1817      memory(_memory)
1818{ }
1819
1820AddrRangeList
1821DRAMCtrl::MemoryPort::getAddrRanges() const
1822{
1823    AddrRangeList ranges;
1824    ranges.push_back(memory.getAddrRange());
1825    return ranges;
1826}
1827
1828void
1829DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt)
1830{
1831    pkt->pushLabel(memory.name());
1832
1833    if (!queue.checkFunctional(pkt)) {
1834        // Default implementation of SimpleTimingPort::recvFunctional()
1835        // calls recvAtomic() and throws away the latency; we can save a
1836        // little here by just not calculating the latency.
1837        memory.recvFunctional(pkt);
1838    }
1839
1840    pkt->popLabel();
1841}
1842
1843Tick
1844DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt)
1845{
1846    return memory.recvAtomic(pkt);
1847}
1848
1849bool
1850DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt)
1851{
1852    // pass it to the memory controller
1853    return memory.recvTimingReq(pkt);
1854}
1855
1856DRAMCtrl*
1857DRAMCtrlParams::create()
1858{
1859    return new DRAMCtrl(this);
1860}
1861