dram_ctrl.cc revision 10245:70333502b9b5
1/* 2 * Copyright (c) 2010-2014 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2013 Amin Farmahini-Farahani 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Andreas Hansson 41 * Ani Udipi 42 * Neha Agarwal 43 */ 44 45#include "base/bitfield.hh" 46#include "base/trace.hh" 47#include "debug/DRAM.hh" 48#include "debug/DRAMState.hh" 49#include "debug/Drain.hh" 50#include "mem/dram_ctrl.hh" 51#include "sim/system.hh" 52 53using namespace std; 54 55DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) : 56 AbstractMemory(p), 57 port(name() + ".port", *this), 58 retryRdReq(false), retryWrReq(false), 59 busState(READ), 60 nextReqEvent(this), respondEvent(this), activateEvent(this), 61 prechargeEvent(this), refreshEvent(this), powerEvent(this), 62 drainManager(NULL), 63 deviceBusWidth(p->device_bus_width), burstLength(p->burst_length), 64 deviceRowBufferSize(p->device_rowbuffer_size), 65 devicesPerRank(p->devices_per_rank), 66 burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8), 67 rowBufferSize(devicesPerRank * deviceRowBufferSize), 68 columnsPerRowBuffer(rowBufferSize / burstSize), 69 ranksPerChannel(p->ranks_per_channel), 70 banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0), 71 readBufferSize(p->read_buffer_size), 72 writeBufferSize(p->write_buffer_size), 73 writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0), 74 writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0), 75 minWritesPerSwitch(p->min_writes_per_switch), 76 writesThisTime(0), readsThisTime(0), 77 tCK(p->tCK), tWTR(p->tWTR), tRTW(p->tRTW), tBURST(p->tBURST), 78 tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS), tWR(p->tWR), 79 tRTP(p->tRTP), tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD), 80 tXAW(p->tXAW), activationLimit(p->activation_limit), 81 memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping), 82 pageMgmt(p->page_policy), 83 maxAccessesPerRow(p->max_accesses_per_row), 84 frontendLatency(p->static_frontend_latency), 85 backendLatency(p->static_backend_latency), 86 busBusyUntil(0), refreshDueAt(0), refreshState(REF_IDLE), 87 pwrStateTrans(PWR_IDLE), pwrState(PWR_IDLE), prevArrival(0), 88 nextReqTime(0), pwrStateTick(0), numBanksActive(0) 89{ 90 // create the bank states based on the dimensions of the ranks and 91 // banks 92 banks.resize(ranksPerChannel); 93 actTicks.resize(ranksPerChannel); 94 for (size_t c = 0; c < ranksPerChannel; ++c) { 95 banks[c].resize(banksPerRank); 96 actTicks[c].resize(activationLimit, 0); 97 } 98 99 // perform a basic check of the write thresholds 100 if (p->write_low_thresh_perc >= p->write_high_thresh_perc) 101 fatal("Write buffer low threshold %d must be smaller than the " 102 "high threshold %d\n", p->write_low_thresh_perc, 103 p->write_high_thresh_perc); 104 105 // determine the rows per bank by looking at the total capacity 106 uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size()); 107 108 DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity, 109 AbstractMemory::size()); 110 111 DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n", 112 rowBufferSize, columnsPerRowBuffer); 113 114 rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel); 115 116 if (range.interleaved()) { 117 if (channels != range.stripes()) 118 fatal("%s has %d interleaved address stripes but %d channel(s)\n", 119 name(), range.stripes(), channels); 120 121 if (addrMapping == Enums::RoRaBaChCo) { 122 if (rowBufferSize != range.granularity()) { 123 fatal("Interleaving of %s doesn't match RoRaBaChCo " 124 "address map\n", name()); 125 } 126 } else if (addrMapping == Enums::RoRaBaCoCh) { 127 if (system()->cacheLineSize() != range.granularity()) { 128 fatal("Interleaving of %s doesn't match RoRaBaCoCh " 129 "address map\n", name()); 130 } 131 } else if (addrMapping == Enums::RoCoRaBaCh) { 132 if (system()->cacheLineSize() != range.granularity()) 133 fatal("Interleaving of %s doesn't match RoCoRaBaCh " 134 "address map\n", name()); 135 } 136 } 137 138 // some basic sanity checks 139 if (tREFI <= tRP || tREFI <= tRFC) { 140 fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n", 141 tREFI, tRP, tRFC); 142 } 143} 144 145void 146DRAMCtrl::init() 147{ 148 if (!port.isConnected()) { 149 fatal("DRAMCtrl %s is unconnected!\n", name()); 150 } else { 151 port.sendRangeChange(); 152 } 153} 154 155void 156DRAMCtrl::startup() 157{ 158 // update the start tick for the precharge accounting to the 159 // current tick 160 pwrStateTick = curTick(); 161 162 // shift the bus busy time sufficiently far ahead that we never 163 // have to worry about negative values when computing the time for 164 // the next request, this will add an insignificant bubble at the 165 // start of simulation 166 busBusyUntil = curTick() + tRP + tRCD + tCL; 167 168 // kick off the refresh, and give ourselves enough time to 169 // precharge 170 schedule(refreshEvent, curTick() + tREFI - tRP); 171} 172 173Tick 174DRAMCtrl::recvAtomic(PacketPtr pkt) 175{ 176 DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr()); 177 178 // do the actual memory access and turn the packet into a response 179 access(pkt); 180 181 Tick latency = 0; 182 if (!pkt->memInhibitAsserted() && pkt->hasData()) { 183 // this value is not supposed to be accurate, just enough to 184 // keep things going, mimic a closed page 185 latency = tRP + tRCD + tCL; 186 } 187 return latency; 188} 189 190bool 191DRAMCtrl::readQueueFull(unsigned int neededEntries) const 192{ 193 DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n", 194 readBufferSize, readQueue.size() + respQueue.size(), 195 neededEntries); 196 197 return 198 (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize; 199} 200 201bool 202DRAMCtrl::writeQueueFull(unsigned int neededEntries) const 203{ 204 DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n", 205 writeBufferSize, writeQueue.size(), neededEntries); 206 return (writeQueue.size() + neededEntries) > writeBufferSize; 207} 208 209DRAMCtrl::DRAMPacket* 210DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size, 211 bool isRead) 212{ 213 // decode the address based on the address mapping scheme, with 214 // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and 215 // channel, respectively 216 uint8_t rank; 217 uint8_t bank; 218 // use a 64-bit unsigned during the computations as the row is 219 // always the top bits, and check before creating the DRAMPacket 220 uint64_t row; 221 222 // truncate the address to the access granularity 223 Addr addr = dramPktAddr / burstSize; 224 225 // we have removed the lowest order address bits that denote the 226 // position within the column 227 if (addrMapping == Enums::RoRaBaChCo) { 228 // the lowest order bits denote the column to ensure that 229 // sequential cache lines occupy the same row 230 addr = addr / columnsPerRowBuffer; 231 232 // take out the channel part of the address 233 addr = addr / channels; 234 235 // after the channel bits, get the bank bits to interleave 236 // over the banks 237 bank = addr % banksPerRank; 238 addr = addr / banksPerRank; 239 240 // after the bank, we get the rank bits which thus interleaves 241 // over the ranks 242 rank = addr % ranksPerChannel; 243 addr = addr / ranksPerChannel; 244 245 // lastly, get the row bits 246 row = addr % rowsPerBank; 247 addr = addr / rowsPerBank; 248 } else if (addrMapping == Enums::RoRaBaCoCh) { 249 // take out the channel part of the address 250 addr = addr / channels; 251 252 // next, the column 253 addr = addr / columnsPerRowBuffer; 254 255 // after the column bits, we get the bank bits to interleave 256 // over the banks 257 bank = addr % banksPerRank; 258 addr = addr / banksPerRank; 259 260 // after the bank, we get the rank bits which thus interleaves 261 // over the ranks 262 rank = addr % ranksPerChannel; 263 addr = addr / ranksPerChannel; 264 265 // lastly, get the row bits 266 row = addr % rowsPerBank; 267 addr = addr / rowsPerBank; 268 } else if (addrMapping == Enums::RoCoRaBaCh) { 269 // optimise for closed page mode and utilise maximum 270 // parallelism of the DRAM (at the cost of power) 271 272 // take out the channel part of the address, not that this has 273 // to match with how accesses are interleaved between the 274 // controllers in the address mapping 275 addr = addr / channels; 276 277 // start with the bank bits, as this provides the maximum 278 // opportunity for parallelism between requests 279 bank = addr % banksPerRank; 280 addr = addr / banksPerRank; 281 282 // next get the rank bits 283 rank = addr % ranksPerChannel; 284 addr = addr / ranksPerChannel; 285 286 // next the column bits which we do not need to keep track of 287 // and simply skip past 288 addr = addr / columnsPerRowBuffer; 289 290 // lastly, get the row bits 291 row = addr % rowsPerBank; 292 addr = addr / rowsPerBank; 293 } else 294 panic("Unknown address mapping policy chosen!"); 295 296 assert(rank < ranksPerChannel); 297 assert(bank < banksPerRank); 298 assert(row < rowsPerBank); 299 assert(row < Bank::NO_ROW); 300 301 DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n", 302 dramPktAddr, rank, bank, row); 303 304 // create the corresponding DRAM packet with the entry time and 305 // ready time set to the current tick, the latter will be updated 306 // later 307 uint16_t bank_id = banksPerRank * rank + bank; 308 return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr, 309 size, banks[rank][bank]); 310} 311 312void 313DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount) 314{ 315 // only add to the read queue here. whenever the request is 316 // eventually done, set the readyTime, and call schedule() 317 assert(!pkt->isWrite()); 318 319 assert(pktCount != 0); 320 321 // if the request size is larger than burst size, the pkt is split into 322 // multiple DRAM packets 323 // Note if the pkt starting address is not aligened to burst size, the 324 // address of first DRAM packet is kept unaliged. Subsequent DRAM packets 325 // are aligned to burst size boundaries. This is to ensure we accurately 326 // check read packets against packets in write queue. 327 Addr addr = pkt->getAddr(); 328 unsigned pktsServicedByWrQ = 0; 329 BurstHelper* burst_helper = NULL; 330 for (int cnt = 0; cnt < pktCount; ++cnt) { 331 unsigned size = std::min((addr | (burstSize - 1)) + 1, 332 pkt->getAddr() + pkt->getSize()) - addr; 333 readPktSize[ceilLog2(size)]++; 334 readBursts++; 335 336 // First check write buffer to see if the data is already at 337 // the controller 338 bool foundInWrQ = false; 339 for (auto i = writeQueue.begin(); i != writeQueue.end(); ++i) { 340 // check if the read is subsumed in the write entry we are 341 // looking at 342 if ((*i)->addr <= addr && 343 (addr + size) <= ((*i)->addr + (*i)->size)) { 344 foundInWrQ = true; 345 servicedByWrQ++; 346 pktsServicedByWrQ++; 347 DPRINTF(DRAM, "Read to addr %lld with size %d serviced by " 348 "write queue\n", addr, size); 349 bytesReadWrQ += burstSize; 350 break; 351 } 352 } 353 354 // If not found in the write q, make a DRAM packet and 355 // push it onto the read queue 356 if (!foundInWrQ) { 357 358 // Make the burst helper for split packets 359 if (pktCount > 1 && burst_helper == NULL) { 360 DPRINTF(DRAM, "Read to addr %lld translates to %d " 361 "dram requests\n", pkt->getAddr(), pktCount); 362 burst_helper = new BurstHelper(pktCount); 363 } 364 365 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true); 366 dram_pkt->burstHelper = burst_helper; 367 368 assert(!readQueueFull(1)); 369 rdQLenPdf[readQueue.size() + respQueue.size()]++; 370 371 DPRINTF(DRAM, "Adding to read queue\n"); 372 373 readQueue.push_back(dram_pkt); 374 375 // Update stats 376 avgRdQLen = readQueue.size() + respQueue.size(); 377 } 378 379 // Starting address of next dram pkt (aligend to burstSize boundary) 380 addr = (addr | (burstSize - 1)) + 1; 381 } 382 383 // If all packets are serviced by write queue, we send the repsonse back 384 if (pktsServicedByWrQ == pktCount) { 385 accessAndRespond(pkt, frontendLatency); 386 return; 387 } 388 389 // Update how many split packets are serviced by write queue 390 if (burst_helper != NULL) 391 burst_helper->burstsServiced = pktsServicedByWrQ; 392 393 // If we are not already scheduled to get a request out of the 394 // queue, do so now 395 if (!nextReqEvent.scheduled()) { 396 DPRINTF(DRAM, "Request scheduled immediately\n"); 397 schedule(nextReqEvent, curTick()); 398 } 399} 400 401void 402DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount) 403{ 404 // only add to the write queue here. whenever the request is 405 // eventually done, set the readyTime, and call schedule() 406 assert(pkt->isWrite()); 407 408 // if the request size is larger than burst size, the pkt is split into 409 // multiple DRAM packets 410 Addr addr = pkt->getAddr(); 411 for (int cnt = 0; cnt < pktCount; ++cnt) { 412 unsigned size = std::min((addr | (burstSize - 1)) + 1, 413 pkt->getAddr() + pkt->getSize()) - addr; 414 writePktSize[ceilLog2(size)]++; 415 writeBursts++; 416 417 // see if we can merge with an existing item in the write 418 // queue and keep track of whether we have merged or not so we 419 // can stop at that point and also avoid enqueueing a new 420 // request 421 bool merged = false; 422 auto w = writeQueue.begin(); 423 424 while(!merged && w != writeQueue.end()) { 425 // either of the two could be first, if they are the same 426 // it does not matter which way we go 427 if ((*w)->addr >= addr) { 428 // the existing one starts after the new one, figure 429 // out where the new one ends with respect to the 430 // existing one 431 if ((addr + size) >= ((*w)->addr + (*w)->size)) { 432 // check if the existing one is completely 433 // subsumed in the new one 434 DPRINTF(DRAM, "Merging write covering existing burst\n"); 435 merged = true; 436 // update both the address and the size 437 (*w)->addr = addr; 438 (*w)->size = size; 439 } else if ((addr + size) >= (*w)->addr && 440 ((*w)->addr + (*w)->size - addr) <= burstSize) { 441 // the new one is just before or partially 442 // overlapping with the existing one, and together 443 // they fit within a burst 444 DPRINTF(DRAM, "Merging write before existing burst\n"); 445 merged = true; 446 // the existing queue item needs to be adjusted with 447 // respect to both address and size 448 (*w)->size = (*w)->addr + (*w)->size - addr; 449 (*w)->addr = addr; 450 } 451 } else { 452 // the new one starts after the current one, figure 453 // out where the existing one ends with respect to the 454 // new one 455 if (((*w)->addr + (*w)->size) >= (addr + size)) { 456 // check if the new one is completely subsumed in the 457 // existing one 458 DPRINTF(DRAM, "Merging write into existing burst\n"); 459 merged = true; 460 // no adjustments necessary 461 } else if (((*w)->addr + (*w)->size) >= addr && 462 (addr + size - (*w)->addr) <= burstSize) { 463 // the existing one is just before or partially 464 // overlapping with the new one, and together 465 // they fit within a burst 466 DPRINTF(DRAM, "Merging write after existing burst\n"); 467 merged = true; 468 // the address is right, and only the size has 469 // to be adjusted 470 (*w)->size = addr + size - (*w)->addr; 471 } 472 } 473 ++w; 474 } 475 476 // if the item was not merged we need to create a new write 477 // and enqueue it 478 if (!merged) { 479 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false); 480 481 assert(writeQueue.size() < writeBufferSize); 482 wrQLenPdf[writeQueue.size()]++; 483 484 DPRINTF(DRAM, "Adding to write queue\n"); 485 486 writeQueue.push_back(dram_pkt); 487 488 // Update stats 489 avgWrQLen = writeQueue.size(); 490 } else { 491 // keep track of the fact that this burst effectively 492 // disappeared as it was merged with an existing one 493 mergedWrBursts++; 494 } 495 496 // Starting address of next dram pkt (aligend to burstSize boundary) 497 addr = (addr | (burstSize - 1)) + 1; 498 } 499 500 // we do not wait for the writes to be send to the actual memory, 501 // but instead take responsibility for the consistency here and 502 // snoop the write queue for any upcoming reads 503 // @todo, if a pkt size is larger than burst size, we might need a 504 // different front end latency 505 accessAndRespond(pkt, frontendLatency); 506 507 // If we are not already scheduled to get a request out of the 508 // queue, do so now 509 if (!nextReqEvent.scheduled()) { 510 DPRINTF(DRAM, "Request scheduled immediately\n"); 511 schedule(nextReqEvent, curTick()); 512 } 513} 514 515void 516DRAMCtrl::printQs() const { 517 DPRINTF(DRAM, "===READ QUEUE===\n\n"); 518 for (auto i = readQueue.begin() ; i != readQueue.end() ; ++i) { 519 DPRINTF(DRAM, "Read %lu\n", (*i)->addr); 520 } 521 DPRINTF(DRAM, "\n===RESP QUEUE===\n\n"); 522 for (auto i = respQueue.begin() ; i != respQueue.end() ; ++i) { 523 DPRINTF(DRAM, "Response %lu\n", (*i)->addr); 524 } 525 DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n"); 526 for (auto i = writeQueue.begin() ; i != writeQueue.end() ; ++i) { 527 DPRINTF(DRAM, "Write %lu\n", (*i)->addr); 528 } 529} 530 531bool 532DRAMCtrl::recvTimingReq(PacketPtr pkt) 533{ 534 /// @todo temporary hack to deal with memory corruption issues until 535 /// 4-phase transactions are complete 536 for (int x = 0; x < pendingDelete.size(); x++) 537 delete pendingDelete[x]; 538 pendingDelete.clear(); 539 540 // This is where we enter from the outside world 541 DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n", 542 pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 543 544 // simply drop inhibited packets for now 545 if (pkt->memInhibitAsserted()) { 546 DPRINTF(DRAM, "Inhibited packet -- Dropping it now\n"); 547 pendingDelete.push_back(pkt); 548 return true; 549 } 550 551 // Calc avg gap between requests 552 if (prevArrival != 0) { 553 totGap += curTick() - prevArrival; 554 } 555 prevArrival = curTick(); 556 557 558 // Find out how many dram packets a pkt translates to 559 // If the burst size is equal or larger than the pkt size, then a pkt 560 // translates to only one dram packet. Otherwise, a pkt translates to 561 // multiple dram packets 562 unsigned size = pkt->getSize(); 563 unsigned offset = pkt->getAddr() & (burstSize - 1); 564 unsigned int dram_pkt_count = divCeil(offset + size, burstSize); 565 566 // check local buffers and do not accept if full 567 if (pkt->isRead()) { 568 assert(size != 0); 569 if (readQueueFull(dram_pkt_count)) { 570 DPRINTF(DRAM, "Read queue full, not accepting\n"); 571 // remember that we have to retry this port 572 retryRdReq = true; 573 numRdRetry++; 574 return false; 575 } else { 576 addToReadQueue(pkt, dram_pkt_count); 577 readReqs++; 578 bytesReadSys += size; 579 } 580 } else if (pkt->isWrite()) { 581 assert(size != 0); 582 if (writeQueueFull(dram_pkt_count)) { 583 DPRINTF(DRAM, "Write queue full, not accepting\n"); 584 // remember that we have to retry this port 585 retryWrReq = true; 586 numWrRetry++; 587 return false; 588 } else { 589 addToWriteQueue(pkt, dram_pkt_count); 590 writeReqs++; 591 bytesWrittenSys += size; 592 } 593 } else { 594 DPRINTF(DRAM,"Neither read nor write, ignore timing\n"); 595 neitherReadNorWrite++; 596 accessAndRespond(pkt, 1); 597 } 598 599 return true; 600} 601 602void 603DRAMCtrl::processRespondEvent() 604{ 605 DPRINTF(DRAM, 606 "processRespondEvent(): Some req has reached its readyTime\n"); 607 608 DRAMPacket* dram_pkt = respQueue.front(); 609 610 if (dram_pkt->burstHelper) { 611 // it is a split packet 612 dram_pkt->burstHelper->burstsServiced++; 613 if (dram_pkt->burstHelper->burstsServiced == 614 dram_pkt->burstHelper->burstCount) { 615 // we have now serviced all children packets of a system packet 616 // so we can now respond to the requester 617 // @todo we probably want to have a different front end and back 618 // end latency for split packets 619 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency); 620 delete dram_pkt->burstHelper; 621 dram_pkt->burstHelper = NULL; 622 } 623 } else { 624 // it is not a split packet 625 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency); 626 } 627 628 delete respQueue.front(); 629 respQueue.pop_front(); 630 631 if (!respQueue.empty()) { 632 assert(respQueue.front()->readyTime >= curTick()); 633 assert(!respondEvent.scheduled()); 634 schedule(respondEvent, respQueue.front()->readyTime); 635 } else { 636 // if there is nothing left in any queue, signal a drain 637 if (writeQueue.empty() && readQueue.empty() && 638 drainManager) { 639 drainManager->signalDrainDone(); 640 drainManager = NULL; 641 } 642 } 643 644 // We have made a location in the queue available at this point, 645 // so if there is a read that was forced to wait, retry now 646 if (retryRdReq) { 647 retryRdReq = false; 648 port.sendRetry(); 649 } 650} 651 652void 653DRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue) 654{ 655 // This method does the arbitration between requests. The chosen 656 // packet is simply moved to the head of the queue. The other 657 // methods know that this is the place to look. For example, with 658 // FCFS, this method does nothing 659 assert(!queue.empty()); 660 661 if (queue.size() == 1) { 662 DPRINTF(DRAM, "Single request, nothing to do\n"); 663 return; 664 } 665 666 if (memSchedPolicy == Enums::fcfs) { 667 // Do nothing, since the correct request is already head 668 } else if (memSchedPolicy == Enums::frfcfs) { 669 reorderQueue(queue); 670 } else 671 panic("No scheduling policy chosen\n"); 672} 673 674void 675DRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue) 676{ 677 // Only determine this when needed 678 uint64_t earliest_banks = 0; 679 680 // Search for row hits first, if no row hit is found then schedule the 681 // packet to one of the earliest banks available 682 bool found_earliest_pkt = false; 683 auto selected_pkt_it = queue.begin(); 684 685 for (auto i = queue.begin(); i != queue.end() ; ++i) { 686 DRAMPacket* dram_pkt = *i; 687 const Bank& bank = dram_pkt->bankRef; 688 // Check if it is a row hit 689 if (bank.openRow == dram_pkt->row) { 690 // FCFS within the hits 691 DPRINTF(DRAM, "Row buffer hit\n"); 692 selected_pkt_it = i; 693 break; 694 } else if (!found_earliest_pkt) { 695 // No row hit, go for first ready 696 if (earliest_banks == 0) 697 earliest_banks = minBankActAt(queue); 698 699 // simplistic approximation of when the bank can issue an 700 // activate, this is calculated in minBankActAt and could 701 // be cached 702 Tick act_at = bank.openRow == Bank::NO_ROW ? 703 bank.actAllowedAt : 704 std::max(bank.preAllowedAt, curTick()) + tRP; 705 706 // Bank is ready or is the first available bank 707 if (act_at <= curTick() || 708 bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) { 709 // Remember the packet to be scheduled to one of the earliest 710 // banks available, FCFS amongst the earliest banks 711 selected_pkt_it = i; 712 found_earliest_pkt = true; 713 } 714 } 715 } 716 717 DRAMPacket* selected_pkt = *selected_pkt_it; 718 queue.erase(selected_pkt_it); 719 queue.push_front(selected_pkt); 720} 721 722void 723DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency) 724{ 725 DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr()); 726 727 bool needsResponse = pkt->needsResponse(); 728 // do the actual memory access which also turns the packet into a 729 // response 730 access(pkt); 731 732 // turn packet around to go back to requester if response expected 733 if (needsResponse) { 734 // access already turned the packet into a response 735 assert(pkt->isResponse()); 736 737 // @todo someone should pay for this 738 pkt->busFirstWordDelay = pkt->busLastWordDelay = 0; 739 740 // queue the packet in the response queue to be sent out after 741 // the static latency has passed 742 port.schedTimingResp(pkt, curTick() + static_latency); 743 } else { 744 // @todo the packet is going to be deleted, and the DRAMPacket 745 // is still having a pointer to it 746 pendingDelete.push_back(pkt); 747 } 748 749 DPRINTF(DRAM, "Done\n"); 750 751 return; 752} 753 754void 755DRAMCtrl::activateBank(Tick act_tick, uint8_t rank, uint8_t bank, 756 uint32_t row, Bank& bank_ref) 757{ 758 assert(0 <= rank && rank < ranksPerChannel); 759 assert(actTicks[rank].size() == activationLimit); 760 761 DPRINTF(DRAM, "Activate at tick %d\n", act_tick); 762 763 // update the open row 764 assert(bank_ref.openRow == Bank::NO_ROW); 765 bank_ref.openRow = row; 766 767 // start counting anew, this covers both the case when we 768 // auto-precharged, and when this access is forced to 769 // precharge 770 bank_ref.bytesAccessed = 0; 771 bank_ref.rowAccesses = 0; 772 773 ++numBanksActive; 774 assert(numBanksActive <= banksPerRank * ranksPerChannel); 775 776 DPRINTF(DRAM, "Activate bank at tick %lld, now got %d active\n", 777 act_tick, numBanksActive); 778 779 // The next access has to respect tRAS for this bank 780 bank_ref.preAllowedAt = act_tick + tRAS; 781 782 // Respect the row-to-column command delay 783 bank_ref.colAllowedAt = act_tick + tRCD; 784 785 // start by enforcing tRRD 786 for(int i = 0; i < banksPerRank; i++) { 787 // next activate to any bank in this rank must not happen 788 // before tRRD 789 banks[rank][i].actAllowedAt = std::max(act_tick + tRRD, 790 banks[rank][i].actAllowedAt); 791 } 792 793 // next, we deal with tXAW, if the activation limit is disabled 794 // then we are done 795 if (actTicks[rank].empty()) 796 return; 797 798 // sanity check 799 if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) { 800 panic("Got %d activates in window %d (%llu - %llu) which is smaller " 801 "than %llu\n", activationLimit, act_tick - actTicks[rank].back(), 802 act_tick, actTicks[rank].back(), tXAW); 803 } 804 805 // shift the times used for the book keeping, the last element 806 // (highest index) is the oldest one and hence the lowest value 807 actTicks[rank].pop_back(); 808 809 // record an new activation (in the future) 810 actTicks[rank].push_front(act_tick); 811 812 // cannot activate more than X times in time window tXAW, push the 813 // next one (the X + 1'st activate) to be tXAW away from the 814 // oldest in our window of X 815 if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) { 816 DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate no earlier " 817 "than %llu\n", activationLimit, actTicks[rank].back() + tXAW); 818 for(int j = 0; j < banksPerRank; j++) 819 // next activate must not happen before end of window 820 banks[rank][j].actAllowedAt = 821 std::max(actTicks[rank].back() + tXAW, 822 banks[rank][j].actAllowedAt); 823 } 824 825 // at the point when this activate takes place, make sure we 826 // transition to the active power state 827 if (!activateEvent.scheduled()) 828 schedule(activateEvent, act_tick); 829 else if (activateEvent.when() > act_tick) 830 // move it sooner in time 831 reschedule(activateEvent, act_tick); 832} 833 834void 835DRAMCtrl::processActivateEvent() 836{ 837 // we should transition to the active state as soon as any bank is active 838 if (pwrState != PWR_ACT) 839 // note that at this point numBanksActive could be back at 840 // zero again due to a precharge scheduled in the future 841 schedulePowerEvent(PWR_ACT, curTick()); 842} 843 844void 845DRAMCtrl::prechargeBank(Bank& bank, Tick pre_at) 846{ 847 // make sure the bank has an open row 848 assert(bank.openRow != Bank::NO_ROW); 849 850 // sample the bytes per activate here since we are closing 851 // the page 852 bytesPerActivate.sample(bank.bytesAccessed); 853 854 bank.openRow = Bank::NO_ROW; 855 856 // no precharge allowed before this one 857 bank.preAllowedAt = pre_at; 858 859 Tick pre_done_at = pre_at + tRP; 860 861 bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at); 862 863 assert(numBanksActive != 0); 864 --numBanksActive; 865 866 DPRINTF(DRAM, "Precharging bank at tick %lld, now got %d active\n", 867 pre_at, numBanksActive); 868 869 // if we look at the current number of active banks we might be 870 // tempted to think the DRAM is now idle, however this can be 871 // undone by an activate that is scheduled to happen before we 872 // would have reached the idle state, so schedule an event and 873 // rather check once we actually make it to the point in time when 874 // the (last) precharge takes place 875 if (!prechargeEvent.scheduled()) 876 schedule(prechargeEvent, pre_done_at); 877 else if (prechargeEvent.when() < pre_done_at) 878 reschedule(prechargeEvent, pre_done_at); 879} 880 881void 882DRAMCtrl::processPrechargeEvent() 883{ 884 // if we reached zero, then special conditions apply as we track 885 // if all banks are precharged for the power models 886 if (numBanksActive == 0) { 887 // we should transition to the idle state when the last bank 888 // is precharged 889 schedulePowerEvent(PWR_IDLE, curTick()); 890 } 891} 892 893void 894DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt) 895{ 896 DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n", 897 dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row); 898 899 // get the bank 900 Bank& bank = dram_pkt->bankRef; 901 902 // for the state we need to track if it is a row hit or not 903 bool row_hit = true; 904 905 // respect any constraints on the command (e.g. tRCD or tCCD) 906 Tick cmd_at = std::max(bank.colAllowedAt, curTick()); 907 908 // Determine the access latency and update the bank state 909 if (bank.openRow == dram_pkt->row) { 910 // nothing to do 911 } else { 912 row_hit = false; 913 914 // If there is a page open, precharge it. 915 if (bank.openRow != Bank::NO_ROW) { 916 prechargeBank(bank, std::max(bank.preAllowedAt, curTick())); 917 } 918 919 // next we need to account for the delay in activating the 920 // page 921 Tick act_tick = std::max(bank.actAllowedAt, curTick()); 922 923 // Record the activation and deal with all the global timing 924 // constraints caused be a new activation (tRRD and tXAW) 925 activateBank(act_tick, dram_pkt->rank, dram_pkt->bank, 926 dram_pkt->row, bank); 927 928 // issue the command as early as possible 929 cmd_at = bank.colAllowedAt; 930 } 931 932 // we need to wait until the bus is available before we can issue 933 // the command 934 cmd_at = std::max(cmd_at, busBusyUntil - tCL); 935 936 // update the packet ready time 937 dram_pkt->readyTime = cmd_at + tCL + tBURST; 938 939 // only one burst can use the bus at any one point in time 940 assert(dram_pkt->readyTime - busBusyUntil >= tBURST); 941 942 // not strictly necessary, but update the time for the next 943 // read/write (add a max with tCCD here) 944 bank.colAllowedAt = cmd_at + tBURST; 945 946 // If this is a write, we also need to respect the write recovery 947 // time before a precharge, in the case of a read, respect the 948 // read to precharge constraint 949 bank.preAllowedAt = std::max(bank.preAllowedAt, 950 dram_pkt->isRead ? cmd_at + tRTP : 951 dram_pkt->readyTime + tWR); 952 953 // increment the bytes accessed and the accesses per row 954 bank.bytesAccessed += burstSize; 955 ++bank.rowAccesses; 956 957 // if we reached the max, then issue with an auto-precharge 958 bool auto_precharge = pageMgmt == Enums::close || 959 bank.rowAccesses == maxAccessesPerRow; 960 961 // if we did not hit the limit, we might still want to 962 // auto-precharge 963 if (!auto_precharge && 964 (pageMgmt == Enums::open_adaptive || 965 pageMgmt == Enums::close_adaptive)) { 966 // a twist on the open and close page policies: 967 // 1) open_adaptive page policy does not blindly keep the 968 // page open, but close it if there are no row hits, and there 969 // are bank conflicts in the queue 970 // 2) close_adaptive page policy does not blindly close the 971 // page, but closes it only if there are no row hits in the queue. 972 // In this case, only force an auto precharge when there 973 // are no same page hits in the queue 974 bool got_more_hits = false; 975 bool got_bank_conflict = false; 976 977 // either look at the read queue or write queue 978 const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue : 979 writeQueue; 980 auto p = queue.begin(); 981 // make sure we are not considering the packet that we are 982 // currently dealing with (which is the head of the queue) 983 ++p; 984 985 // keep on looking until we have found required condition or 986 // reached the end 987 while (!(got_more_hits && 988 (got_bank_conflict || pageMgmt == Enums::close_adaptive)) && 989 p != queue.end()) { 990 bool same_rank_bank = (dram_pkt->rank == (*p)->rank) && 991 (dram_pkt->bank == (*p)->bank); 992 bool same_row = dram_pkt->row == (*p)->row; 993 got_more_hits |= same_rank_bank && same_row; 994 got_bank_conflict |= same_rank_bank && !same_row; 995 ++p; 996 } 997 998 // auto pre-charge when either 999 // 1) open_adaptive policy, we have not got any more hits, and 1000 // have a bank conflict 1001 // 2) close_adaptive policy and we have not got any more hits 1002 auto_precharge = !got_more_hits && 1003 (got_bank_conflict || pageMgmt == Enums::close_adaptive); 1004 } 1005 1006 // if this access should use auto-precharge, then we are 1007 // closing the row 1008 if (auto_precharge) { 1009 prechargeBank(bank, std::max(curTick(), bank.preAllowedAt)); 1010 1011 DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId); 1012 } 1013 1014 // Update bus state 1015 busBusyUntil = dram_pkt->readyTime; 1016 1017 DPRINTF(DRAM, "Access to %lld, ready at %lld bus busy until %lld.\n", 1018 dram_pkt->addr, dram_pkt->readyTime, busBusyUntil); 1019 1020 // Update the minimum timing between the requests, this is a 1021 // conservative estimate of when we have to schedule the next 1022 // request to not introduce any unecessary bubbles. In most cases 1023 // we will wake up sooner than we have to. 1024 nextReqTime = busBusyUntil - (tRP + tRCD + tCL); 1025 1026 // Update the stats and schedule the next request 1027 if (dram_pkt->isRead) { 1028 ++readsThisTime; 1029 if (row_hit) 1030 readRowHits++; 1031 bytesReadDRAM += burstSize; 1032 perBankRdBursts[dram_pkt->bankId]++; 1033 1034 // Update latency stats 1035 totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime; 1036 totBusLat += tBURST; 1037 totQLat += cmd_at - dram_pkt->entryTime; 1038 } else { 1039 ++writesThisTime; 1040 if (row_hit) 1041 writeRowHits++; 1042 bytesWritten += burstSize; 1043 perBankWrBursts[dram_pkt->bankId]++; 1044 } 1045} 1046 1047void 1048DRAMCtrl::processNextReqEvent() 1049{ 1050 if (busState == READ_TO_WRITE) { 1051 DPRINTF(DRAM, "Switching to writes after %d reads with %d reads " 1052 "waiting\n", readsThisTime, readQueue.size()); 1053 1054 // sample and reset the read-related stats as we are now 1055 // transitioning to writes, and all reads are done 1056 rdPerTurnAround.sample(readsThisTime); 1057 readsThisTime = 0; 1058 1059 // now proceed to do the actual writes 1060 busState = WRITE; 1061 } else if (busState == WRITE_TO_READ) { 1062 DPRINTF(DRAM, "Switching to reads after %d writes with %d writes " 1063 "waiting\n", writesThisTime, writeQueue.size()); 1064 1065 wrPerTurnAround.sample(writesThisTime); 1066 writesThisTime = 0; 1067 1068 busState = READ; 1069 } 1070 1071 if (refreshState != REF_IDLE) { 1072 // if a refresh waiting for this event loop to finish, then hand 1073 // over now, and do not schedule a new nextReqEvent 1074 if (refreshState == REF_DRAIN) { 1075 DPRINTF(DRAM, "Refresh drain done, now precharging\n"); 1076 1077 refreshState = REF_PRE; 1078 1079 // hand control back to the refresh event loop 1080 schedule(refreshEvent, curTick()); 1081 } 1082 1083 // let the refresh finish before issuing any further requests 1084 return; 1085 } 1086 1087 // when we get here it is either a read or a write 1088 if (busState == READ) { 1089 1090 // track if we should switch or not 1091 bool switch_to_writes = false; 1092 1093 if (readQueue.empty()) { 1094 // In the case there is no read request to go next, 1095 // trigger writes if we have passed the low threshold (or 1096 // if we are draining) 1097 if (!writeQueue.empty() && 1098 (drainManager || writeQueue.size() > writeLowThreshold)) { 1099 1100 switch_to_writes = true; 1101 } else { 1102 // check if we are drained 1103 if (respQueue.empty () && drainManager) { 1104 drainManager->signalDrainDone(); 1105 drainManager = NULL; 1106 } 1107 1108 // nothing to do, not even any point in scheduling an 1109 // event for the next request 1110 return; 1111 } 1112 } else { 1113 // Figure out which read request goes next, and move it to the 1114 // front of the read queue 1115 chooseNext(readQueue); 1116 1117 DRAMPacket* dram_pkt = readQueue.front(); 1118 1119 doDRAMAccess(dram_pkt); 1120 1121 // At this point we're done dealing with the request 1122 readQueue.pop_front(); 1123 1124 // sanity check 1125 assert(dram_pkt->size <= burstSize); 1126 assert(dram_pkt->readyTime >= curTick()); 1127 1128 // Insert into response queue. It will be sent back to the 1129 // requestor at its readyTime 1130 if (respQueue.empty()) { 1131 assert(!respondEvent.scheduled()); 1132 schedule(respondEvent, dram_pkt->readyTime); 1133 } else { 1134 assert(respQueue.back()->readyTime <= dram_pkt->readyTime); 1135 assert(respondEvent.scheduled()); 1136 } 1137 1138 respQueue.push_back(dram_pkt); 1139 1140 // we have so many writes that we have to transition 1141 if (writeQueue.size() > writeHighThreshold) { 1142 switch_to_writes = true; 1143 } 1144 } 1145 1146 // switching to writes, either because the read queue is empty 1147 // and the writes have passed the low threshold (or we are 1148 // draining), or because the writes hit the hight threshold 1149 if (switch_to_writes) { 1150 // transition to writing 1151 busState = READ_TO_WRITE; 1152 1153 // add a bubble to the data bus, as defined by the 1154 // tRTW parameter 1155 busBusyUntil += tRTW; 1156 1157 // update the minimum timing between the requests, 1158 // this shifts us back in time far enough to do any 1159 // bank preparation 1160 nextReqTime = busBusyUntil - (tRP + tRCD + tCL); 1161 } 1162 } else { 1163 chooseNext(writeQueue); 1164 DRAMPacket* dram_pkt = writeQueue.front(); 1165 // sanity check 1166 assert(dram_pkt->size <= burstSize); 1167 doDRAMAccess(dram_pkt); 1168 1169 writeQueue.pop_front(); 1170 delete dram_pkt; 1171 1172 // If we emptied the write queue, or got sufficiently below the 1173 // threshold (using the minWritesPerSwitch as the hysteresis) and 1174 // are not draining, or we have reads waiting and have done enough 1175 // writes, then switch to reads. 1176 if (writeQueue.empty() || 1177 (writeQueue.size() + minWritesPerSwitch < writeLowThreshold && 1178 !drainManager) || 1179 (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) { 1180 // turn the bus back around for reads again 1181 busState = WRITE_TO_READ; 1182 1183 // note that the we switch back to reads also in the idle 1184 // case, which eventually will check for any draining and 1185 // also pause any further scheduling if there is really 1186 // nothing to do 1187 1188 // here we get a bit creative and shift the bus busy time not 1189 // just the tWTR, but also a CAS latency to capture the fact 1190 // that we are allowed to prepare a new bank, but not issue a 1191 // read command until after tWTR, in essence we capture a 1192 // bubble on the data bus that is tWTR + tCL 1193 busBusyUntil += tWTR + tCL; 1194 1195 // update the minimum timing between the requests, this shifts 1196 // us back in time far enough to do any bank preparation 1197 nextReqTime = busBusyUntil - (tRP + tRCD + tCL); 1198 } 1199 } 1200 1201 schedule(nextReqEvent, std::max(nextReqTime, curTick())); 1202 1203 // If there is space available and we have writes waiting then let 1204 // them retry. This is done here to ensure that the retry does not 1205 // cause a nextReqEvent to be scheduled before we do so as part of 1206 // the next request processing 1207 if (retryWrReq && writeQueue.size() < writeBufferSize) { 1208 retryWrReq = false; 1209 port.sendRetry(); 1210 } 1211} 1212 1213uint64_t 1214DRAMCtrl::minBankActAt(const deque<DRAMPacket*>& queue) const 1215{ 1216 uint64_t bank_mask = 0; 1217 Tick min_act_at = MaxTick; 1218 1219 // deterimne if we have queued transactions targetting a 1220 // bank in question 1221 vector<bool> got_waiting(ranksPerChannel * banksPerRank, false); 1222 for (auto p = queue.begin(); p != queue.end(); ++p) { 1223 got_waiting[(*p)->bankId] = true; 1224 } 1225 1226 for (int i = 0; i < ranksPerChannel; i++) { 1227 for (int j = 0; j < banksPerRank; j++) { 1228 uint8_t bank_id = i * banksPerRank + j; 1229 1230 // if we have waiting requests for the bank, and it is 1231 // amongst the first available, update the mask 1232 if (got_waiting[bank_id]) { 1233 // simplistic approximation of when the bank can issue 1234 // an activate, ignoring any rank-to-rank switching 1235 // cost 1236 Tick act_at = banks[i][j].openRow == Bank::NO_ROW ? 1237 banks[i][j].actAllowedAt : 1238 std::max(banks[i][j].preAllowedAt, curTick()) + tRP; 1239 1240 if (act_at <= min_act_at) { 1241 // reset bank mask if new minimum is found 1242 if (act_at < min_act_at) 1243 bank_mask = 0; 1244 // set the bit corresponding to the available bank 1245 replaceBits(bank_mask, bank_id, bank_id, 1); 1246 min_act_at = act_at; 1247 } 1248 } 1249 } 1250 } 1251 1252 return bank_mask; 1253} 1254 1255void 1256DRAMCtrl::processRefreshEvent() 1257{ 1258 // when first preparing the refresh, remember when it was due 1259 if (refreshState == REF_IDLE) { 1260 // remember when the refresh is due 1261 refreshDueAt = curTick(); 1262 1263 // proceed to drain 1264 refreshState = REF_DRAIN; 1265 1266 DPRINTF(DRAM, "Refresh due\n"); 1267 } 1268 1269 // let any scheduled read or write go ahead, after which it will 1270 // hand control back to this event loop 1271 if (refreshState == REF_DRAIN) { 1272 if (nextReqEvent.scheduled()) { 1273 // hand control over to the request loop until it is 1274 // evaluated next 1275 DPRINTF(DRAM, "Refresh awaiting draining\n"); 1276 1277 return; 1278 } else { 1279 refreshState = REF_PRE; 1280 } 1281 } 1282 1283 // at this point, ensure that all banks are precharged 1284 if (refreshState == REF_PRE) { 1285 // precharge any active bank if we are not already in the idle 1286 // state 1287 if (pwrState != PWR_IDLE) { 1288 // at the moment, we use a precharge all even if there is 1289 // only a single bank open 1290 DPRINTF(DRAM, "Precharging all\n"); 1291 1292 // first determine when we can precharge 1293 Tick pre_at = curTick(); 1294 for (int i = 0; i < ranksPerChannel; i++) { 1295 for (int j = 0; j < banksPerRank; j++) { 1296 // respect both causality and any existing bank 1297 // constraints, some banks could already have a 1298 // (auto) precharge scheduled 1299 pre_at = std::max(banks[i][j].preAllowedAt, pre_at); 1300 } 1301 } 1302 1303 // make sure all banks are precharged, and for those that 1304 // already are, update their availability 1305 Tick act_allowed_at = pre_at + tRP; 1306 1307 for (int i = 0; i < ranksPerChannel; i++) { 1308 for (int j = 0; j < banksPerRank; j++) { 1309 if (banks[i][j].openRow != Bank::NO_ROW) { 1310 prechargeBank(banks[i][j], pre_at); 1311 } else { 1312 banks[i][j].actAllowedAt = 1313 std::max(banks[i][j].actAllowedAt, act_allowed_at); 1314 banks[i][j].preAllowedAt = 1315 std::max(banks[i][j].preAllowedAt, pre_at); 1316 } 1317 } 1318 } 1319 } else { 1320 DPRINTF(DRAM, "All banks already precharged, starting refresh\n"); 1321 1322 // go ahead and kick the power state machine into gear if 1323 // we are already idle 1324 schedulePowerEvent(PWR_REF, curTick()); 1325 } 1326 1327 refreshState = REF_RUN; 1328 assert(numBanksActive == 0); 1329 1330 // wait for all banks to be precharged, at which point the 1331 // power state machine will transition to the idle state, and 1332 // automatically move to a refresh, at that point it will also 1333 // call this method to get the refresh event loop going again 1334 return; 1335 } 1336 1337 // last but not least we perform the actual refresh 1338 if (refreshState == REF_RUN) { 1339 // should never get here with any banks active 1340 assert(numBanksActive == 0); 1341 assert(pwrState == PWR_REF); 1342 1343 Tick ref_done_at = curTick() + tRFC; 1344 1345 for (int i = 0; i < ranksPerChannel; i++) { 1346 for (int j = 0; j < banksPerRank; j++) { 1347 banks[i][j].actAllowedAt = ref_done_at; 1348 } 1349 } 1350 1351 // make sure we did not wait so long that we cannot make up 1352 // for it 1353 if (refreshDueAt + tREFI < ref_done_at) { 1354 fatal("Refresh was delayed so long we cannot catch up\n"); 1355 } 1356 1357 // compensate for the delay in actually performing the refresh 1358 // when scheduling the next one 1359 schedule(refreshEvent, refreshDueAt + tREFI - tRP); 1360 1361 assert(!powerEvent.scheduled()); 1362 1363 // move to the idle power state once the refresh is done, this 1364 // will also move the refresh state machine to the refresh 1365 // idle state 1366 schedulePowerEvent(PWR_IDLE, ref_done_at); 1367 1368 DPRINTF(DRAMState, "Refresh done at %llu and next refresh at %llu\n", 1369 ref_done_at, refreshDueAt + tREFI); 1370 } 1371} 1372 1373void 1374DRAMCtrl::schedulePowerEvent(PowerState pwr_state, Tick tick) 1375{ 1376 // respect causality 1377 assert(tick >= curTick()); 1378 1379 if (!powerEvent.scheduled()) { 1380 DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n", 1381 tick, pwr_state); 1382 1383 // insert the new transition 1384 pwrStateTrans = pwr_state; 1385 1386 schedule(powerEvent, tick); 1387 } else { 1388 panic("Scheduled power event at %llu to state %d, " 1389 "with scheduled event at %llu to %d\n", tick, pwr_state, 1390 powerEvent.when(), pwrStateTrans); 1391 } 1392} 1393 1394void 1395DRAMCtrl::processPowerEvent() 1396{ 1397 // remember where we were, and for how long 1398 Tick duration = curTick() - pwrStateTick; 1399 PowerState prev_state = pwrState; 1400 1401 // update the accounting 1402 pwrStateTime[prev_state] += duration; 1403 1404 pwrState = pwrStateTrans; 1405 pwrStateTick = curTick(); 1406 1407 if (pwrState == PWR_IDLE) { 1408 DPRINTF(DRAMState, "All banks precharged\n"); 1409 1410 // if we were refreshing, make sure we start scheduling requests again 1411 if (prev_state == PWR_REF) { 1412 DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration); 1413 assert(pwrState == PWR_IDLE); 1414 1415 // kick things into action again 1416 refreshState = REF_IDLE; 1417 assert(!nextReqEvent.scheduled()); 1418 schedule(nextReqEvent, curTick()); 1419 } else { 1420 assert(prev_state == PWR_ACT); 1421 1422 // if we have a pending refresh, and are now moving to 1423 // the idle state, direclty transition to a refresh 1424 if (refreshState == REF_RUN) { 1425 // there should be nothing waiting at this point 1426 assert(!powerEvent.scheduled()); 1427 1428 // update the state in zero time and proceed below 1429 pwrState = PWR_REF; 1430 } 1431 } 1432 } 1433 1434 // we transition to the refresh state, let the refresh state 1435 // machine know of this state update and let it deal with the 1436 // scheduling of the next power state transition as well as the 1437 // following refresh 1438 if (pwrState == PWR_REF) { 1439 DPRINTF(DRAMState, "Refreshing\n"); 1440 // kick the refresh event loop into action again, and that 1441 // in turn will schedule a transition to the idle power 1442 // state once the refresh is done 1443 assert(refreshState == REF_RUN); 1444 processRefreshEvent(); 1445 } 1446} 1447 1448void 1449DRAMCtrl::regStats() 1450{ 1451 using namespace Stats; 1452 1453 AbstractMemory::regStats(); 1454 1455 readReqs 1456 .name(name() + ".readReqs") 1457 .desc("Number of read requests accepted"); 1458 1459 writeReqs 1460 .name(name() + ".writeReqs") 1461 .desc("Number of write requests accepted"); 1462 1463 readBursts 1464 .name(name() + ".readBursts") 1465 .desc("Number of DRAM read bursts, " 1466 "including those serviced by the write queue"); 1467 1468 writeBursts 1469 .name(name() + ".writeBursts") 1470 .desc("Number of DRAM write bursts, " 1471 "including those merged in the write queue"); 1472 1473 servicedByWrQ 1474 .name(name() + ".servicedByWrQ") 1475 .desc("Number of DRAM read bursts serviced by the write queue"); 1476 1477 mergedWrBursts 1478 .name(name() + ".mergedWrBursts") 1479 .desc("Number of DRAM write bursts merged with an existing one"); 1480 1481 neitherReadNorWrite 1482 .name(name() + ".neitherReadNorWriteReqs") 1483 .desc("Number of requests that are neither read nor write"); 1484 1485 perBankRdBursts 1486 .init(banksPerRank * ranksPerChannel) 1487 .name(name() + ".perBankRdBursts") 1488 .desc("Per bank write bursts"); 1489 1490 perBankWrBursts 1491 .init(banksPerRank * ranksPerChannel) 1492 .name(name() + ".perBankWrBursts") 1493 .desc("Per bank write bursts"); 1494 1495 avgRdQLen 1496 .name(name() + ".avgRdQLen") 1497 .desc("Average read queue length when enqueuing") 1498 .precision(2); 1499 1500 avgWrQLen 1501 .name(name() + ".avgWrQLen") 1502 .desc("Average write queue length when enqueuing") 1503 .precision(2); 1504 1505 totQLat 1506 .name(name() + ".totQLat") 1507 .desc("Total ticks spent queuing"); 1508 1509 totBusLat 1510 .name(name() + ".totBusLat") 1511 .desc("Total ticks spent in databus transfers"); 1512 1513 totMemAccLat 1514 .name(name() + ".totMemAccLat") 1515 .desc("Total ticks spent from burst creation until serviced " 1516 "by the DRAM"); 1517 1518 avgQLat 1519 .name(name() + ".avgQLat") 1520 .desc("Average queueing delay per DRAM burst") 1521 .precision(2); 1522 1523 avgQLat = totQLat / (readBursts - servicedByWrQ); 1524 1525 avgBusLat 1526 .name(name() + ".avgBusLat") 1527 .desc("Average bus latency per DRAM burst") 1528 .precision(2); 1529 1530 avgBusLat = totBusLat / (readBursts - servicedByWrQ); 1531 1532 avgMemAccLat 1533 .name(name() + ".avgMemAccLat") 1534 .desc("Average memory access latency per DRAM burst") 1535 .precision(2); 1536 1537 avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ); 1538 1539 numRdRetry 1540 .name(name() + ".numRdRetry") 1541 .desc("Number of times read queue was full causing retry"); 1542 1543 numWrRetry 1544 .name(name() + ".numWrRetry") 1545 .desc("Number of times write queue was full causing retry"); 1546 1547 readRowHits 1548 .name(name() + ".readRowHits") 1549 .desc("Number of row buffer hits during reads"); 1550 1551 writeRowHits 1552 .name(name() + ".writeRowHits") 1553 .desc("Number of row buffer hits during writes"); 1554 1555 readRowHitRate 1556 .name(name() + ".readRowHitRate") 1557 .desc("Row buffer hit rate for reads") 1558 .precision(2); 1559 1560 readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100; 1561 1562 writeRowHitRate 1563 .name(name() + ".writeRowHitRate") 1564 .desc("Row buffer hit rate for writes") 1565 .precision(2); 1566 1567 writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100; 1568 1569 readPktSize 1570 .init(ceilLog2(burstSize) + 1) 1571 .name(name() + ".readPktSize") 1572 .desc("Read request sizes (log2)"); 1573 1574 writePktSize 1575 .init(ceilLog2(burstSize) + 1) 1576 .name(name() + ".writePktSize") 1577 .desc("Write request sizes (log2)"); 1578 1579 rdQLenPdf 1580 .init(readBufferSize) 1581 .name(name() + ".rdQLenPdf") 1582 .desc("What read queue length does an incoming req see"); 1583 1584 wrQLenPdf 1585 .init(writeBufferSize) 1586 .name(name() + ".wrQLenPdf") 1587 .desc("What write queue length does an incoming req see"); 1588 1589 bytesPerActivate 1590 .init(maxAccessesPerRow) 1591 .name(name() + ".bytesPerActivate") 1592 .desc("Bytes accessed per row activation") 1593 .flags(nozero); 1594 1595 rdPerTurnAround 1596 .init(readBufferSize) 1597 .name(name() + ".rdPerTurnAround") 1598 .desc("Reads before turning the bus around for writes") 1599 .flags(nozero); 1600 1601 wrPerTurnAround 1602 .init(writeBufferSize) 1603 .name(name() + ".wrPerTurnAround") 1604 .desc("Writes before turning the bus around for reads") 1605 .flags(nozero); 1606 1607 bytesReadDRAM 1608 .name(name() + ".bytesReadDRAM") 1609 .desc("Total number of bytes read from DRAM"); 1610 1611 bytesReadWrQ 1612 .name(name() + ".bytesReadWrQ") 1613 .desc("Total number of bytes read from write queue"); 1614 1615 bytesWritten 1616 .name(name() + ".bytesWritten") 1617 .desc("Total number of bytes written to DRAM"); 1618 1619 bytesReadSys 1620 .name(name() + ".bytesReadSys") 1621 .desc("Total read bytes from the system interface side"); 1622 1623 bytesWrittenSys 1624 .name(name() + ".bytesWrittenSys") 1625 .desc("Total written bytes from the system interface side"); 1626 1627 avgRdBW 1628 .name(name() + ".avgRdBW") 1629 .desc("Average DRAM read bandwidth in MiByte/s") 1630 .precision(2); 1631 1632 avgRdBW = (bytesReadDRAM / 1000000) / simSeconds; 1633 1634 avgWrBW 1635 .name(name() + ".avgWrBW") 1636 .desc("Average achieved write bandwidth in MiByte/s") 1637 .precision(2); 1638 1639 avgWrBW = (bytesWritten / 1000000) / simSeconds; 1640 1641 avgRdBWSys 1642 .name(name() + ".avgRdBWSys") 1643 .desc("Average system read bandwidth in MiByte/s") 1644 .precision(2); 1645 1646 avgRdBWSys = (bytesReadSys / 1000000) / simSeconds; 1647 1648 avgWrBWSys 1649 .name(name() + ".avgWrBWSys") 1650 .desc("Average system write bandwidth in MiByte/s") 1651 .precision(2); 1652 1653 avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds; 1654 1655 peakBW 1656 .name(name() + ".peakBW") 1657 .desc("Theoretical peak bandwidth in MiByte/s") 1658 .precision(2); 1659 1660 peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000; 1661 1662 busUtil 1663 .name(name() + ".busUtil") 1664 .desc("Data bus utilization in percentage") 1665 .precision(2); 1666 1667 busUtil = (avgRdBW + avgWrBW) / peakBW * 100; 1668 1669 totGap 1670 .name(name() + ".totGap") 1671 .desc("Total gap between requests"); 1672 1673 avgGap 1674 .name(name() + ".avgGap") 1675 .desc("Average gap between requests") 1676 .precision(2); 1677 1678 avgGap = totGap / (readReqs + writeReqs); 1679 1680 // Stats for DRAM Power calculation based on Micron datasheet 1681 busUtilRead 1682 .name(name() + ".busUtilRead") 1683 .desc("Data bus utilization in percentage for reads") 1684 .precision(2); 1685 1686 busUtilRead = avgRdBW / peakBW * 100; 1687 1688 busUtilWrite 1689 .name(name() + ".busUtilWrite") 1690 .desc("Data bus utilization in percentage for writes") 1691 .precision(2); 1692 1693 busUtilWrite = avgWrBW / peakBW * 100; 1694 1695 pageHitRate 1696 .name(name() + ".pageHitRate") 1697 .desc("Row buffer hit rate, read and write combined") 1698 .precision(2); 1699 1700 pageHitRate = (writeRowHits + readRowHits) / 1701 (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100; 1702 1703 pwrStateTime 1704 .init(5) 1705 .name(name() + ".memoryStateTime") 1706 .desc("Time in different power states"); 1707 pwrStateTime.subname(0, "IDLE"); 1708 pwrStateTime.subname(1, "REF"); 1709 pwrStateTime.subname(2, "PRE_PDN"); 1710 pwrStateTime.subname(3, "ACT"); 1711 pwrStateTime.subname(4, "ACT_PDN"); 1712} 1713 1714void 1715DRAMCtrl::recvFunctional(PacketPtr pkt) 1716{ 1717 // rely on the abstract memory 1718 functionalAccess(pkt); 1719} 1720 1721BaseSlavePort& 1722DRAMCtrl::getSlavePort(const string &if_name, PortID idx) 1723{ 1724 if (if_name != "port") { 1725 return MemObject::getSlavePort(if_name, idx); 1726 } else { 1727 return port; 1728 } 1729} 1730 1731unsigned int 1732DRAMCtrl::drain(DrainManager *dm) 1733{ 1734 unsigned int count = port.drain(dm); 1735 1736 // if there is anything in any of our internal queues, keep track 1737 // of that as well 1738 if (!(writeQueue.empty() && readQueue.empty() && 1739 respQueue.empty())) { 1740 DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d," 1741 " resp: %d\n", writeQueue.size(), readQueue.size(), 1742 respQueue.size()); 1743 ++count; 1744 drainManager = dm; 1745 1746 // the only part that is not drained automatically over time 1747 // is the write queue, thus kick things into action if needed 1748 if (!writeQueue.empty() && !nextReqEvent.scheduled()) { 1749 schedule(nextReqEvent, curTick()); 1750 } 1751 } 1752 1753 if (count) 1754 setDrainState(Drainable::Draining); 1755 else 1756 setDrainState(Drainable::Drained); 1757 return count; 1758} 1759 1760DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory) 1761 : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this), 1762 memory(_memory) 1763{ } 1764 1765AddrRangeList 1766DRAMCtrl::MemoryPort::getAddrRanges() const 1767{ 1768 AddrRangeList ranges; 1769 ranges.push_back(memory.getAddrRange()); 1770 return ranges; 1771} 1772 1773void 1774DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt) 1775{ 1776 pkt->pushLabel(memory.name()); 1777 1778 if (!queue.checkFunctional(pkt)) { 1779 // Default implementation of SimpleTimingPort::recvFunctional() 1780 // calls recvAtomic() and throws away the latency; we can save a 1781 // little here by just not calculating the latency. 1782 memory.recvFunctional(pkt); 1783 } 1784 1785 pkt->popLabel(); 1786} 1787 1788Tick 1789DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt) 1790{ 1791 return memory.recvAtomic(pkt); 1792} 1793 1794bool 1795DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt) 1796{ 1797 // pass it to the memory controller 1798 return memory.recvTimingReq(pkt); 1799} 1800 1801DRAMCtrl* 1802DRAMCtrlParams::create() 1803{ 1804 return new DRAMCtrl(this); 1805} 1806