dram_ctrl.cc revision 10212:acc1131e01d6
1/* 2 * Copyright (c) 2010-2014 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2013 Amin Farmahini-Farahani 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Andreas Hansson 41 * Ani Udipi 42 * Neha Agarwal 43 */ 44 45#include "base/bitfield.hh" 46#include "base/trace.hh" 47#include "debug/DRAM.hh" 48#include "debug/DRAMState.hh" 49#include "debug/Drain.hh" 50#include "mem/dram_ctrl.hh" 51#include "sim/system.hh" 52 53using namespace std; 54 55DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) : 56 AbstractMemory(p), 57 port(name() + ".port", *this), 58 retryRdReq(false), retryWrReq(false), 59 busState(READ), 60 nextReqEvent(this), respondEvent(this), activateEvent(this), 61 prechargeEvent(this), refreshEvent(this), powerEvent(this), 62 drainManager(NULL), 63 deviceBusWidth(p->device_bus_width), burstLength(p->burst_length), 64 deviceRowBufferSize(p->device_rowbuffer_size), 65 devicesPerRank(p->devices_per_rank), 66 burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8), 67 rowBufferSize(devicesPerRank * deviceRowBufferSize), 68 columnsPerRowBuffer(rowBufferSize / burstSize), 69 ranksPerChannel(p->ranks_per_channel), 70 banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0), 71 readBufferSize(p->read_buffer_size), 72 writeBufferSize(p->write_buffer_size), 73 writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0), 74 writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0), 75 minWritesPerSwitch(p->min_writes_per_switch), 76 writesThisTime(0), readsThisTime(0), 77 tWTR(p->tWTR), tRTW(p->tRTW), tBURST(p->tBURST), 78 tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS), tWR(p->tWR), 79 tRTP(p->tRTP), tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD), 80 tXAW(p->tXAW), activationLimit(p->activation_limit), 81 memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping), 82 pageMgmt(p->page_policy), 83 maxAccessesPerRow(p->max_accesses_per_row), 84 frontendLatency(p->static_frontend_latency), 85 backendLatency(p->static_backend_latency), 86 busBusyUntil(0), refreshDueAt(0), refreshState(REF_IDLE), 87 pwrStateTrans(PWR_IDLE), pwrState(PWR_IDLE), prevArrival(0), 88 nextReqTime(0), pwrStateTick(0), numBanksActive(0) 89{ 90 // create the bank states based on the dimensions of the ranks and 91 // banks 92 banks.resize(ranksPerChannel); 93 actTicks.resize(ranksPerChannel); 94 for (size_t c = 0; c < ranksPerChannel; ++c) { 95 banks[c].resize(banksPerRank); 96 actTicks[c].resize(activationLimit, 0); 97 } 98 99 // perform a basic check of the write thresholds 100 if (p->write_low_thresh_perc >= p->write_high_thresh_perc) 101 fatal("Write buffer low threshold %d must be smaller than the " 102 "high threshold %d\n", p->write_low_thresh_perc, 103 p->write_high_thresh_perc); 104 105 // determine the rows per bank by looking at the total capacity 106 uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size()); 107 108 DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity, 109 AbstractMemory::size()); 110 111 DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n", 112 rowBufferSize, columnsPerRowBuffer); 113 114 rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel); 115 116 if (range.interleaved()) { 117 if (channels != range.stripes()) 118 fatal("%s has %d interleaved address stripes but %d channel(s)\n", 119 name(), range.stripes(), channels); 120 121 if (addrMapping == Enums::RoRaBaChCo) { 122 if (rowBufferSize != range.granularity()) { 123 fatal("Interleaving of %s doesn't match RoRaBaChCo " 124 "address map\n", name()); 125 } 126 } else if (addrMapping == Enums::RoRaBaCoCh) { 127 if (system()->cacheLineSize() != range.granularity()) { 128 fatal("Interleaving of %s doesn't match RoRaBaCoCh " 129 "address map\n", name()); 130 } 131 } else if (addrMapping == Enums::RoCoRaBaCh) { 132 if (system()->cacheLineSize() != range.granularity()) 133 fatal("Interleaving of %s doesn't match RoCoRaBaCh " 134 "address map\n", name()); 135 } 136 } 137 138 // some basic sanity checks 139 if (tREFI <= tRP || tREFI <= tRFC) { 140 fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n", 141 tREFI, tRP, tRFC); 142 } 143} 144 145void 146DRAMCtrl::init() 147{ 148 if (!port.isConnected()) { 149 fatal("DRAMCtrl %s is unconnected!\n", name()); 150 } else { 151 port.sendRangeChange(); 152 } 153} 154 155void 156DRAMCtrl::startup() 157{ 158 // update the start tick for the precharge accounting to the 159 // current tick 160 pwrStateTick = curTick(); 161 162 // shift the bus busy time sufficiently far ahead that we never 163 // have to worry about negative values when computing the time for 164 // the next request, this will add an insignificant bubble at the 165 // start of simulation 166 busBusyUntil = curTick() + tRP + tRCD + tCL; 167 168 // print the configuration of the controller 169 printParams(); 170 171 // kick off the refresh, and give ourselves enough time to 172 // precharge 173 schedule(refreshEvent, curTick() + tREFI - tRP); 174} 175 176Tick 177DRAMCtrl::recvAtomic(PacketPtr pkt) 178{ 179 DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr()); 180 181 // do the actual memory access and turn the packet into a response 182 access(pkt); 183 184 Tick latency = 0; 185 if (!pkt->memInhibitAsserted() && pkt->hasData()) { 186 // this value is not supposed to be accurate, just enough to 187 // keep things going, mimic a closed page 188 latency = tRP + tRCD + tCL; 189 } 190 return latency; 191} 192 193bool 194DRAMCtrl::readQueueFull(unsigned int neededEntries) const 195{ 196 DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n", 197 readBufferSize, readQueue.size() + respQueue.size(), 198 neededEntries); 199 200 return 201 (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize; 202} 203 204bool 205DRAMCtrl::writeQueueFull(unsigned int neededEntries) const 206{ 207 DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n", 208 writeBufferSize, writeQueue.size(), neededEntries); 209 return (writeQueue.size() + neededEntries) > writeBufferSize; 210} 211 212DRAMCtrl::DRAMPacket* 213DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size, 214 bool isRead) 215{ 216 // decode the address based on the address mapping scheme, with 217 // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and 218 // channel, respectively 219 uint8_t rank; 220 uint8_t bank; 221 uint16_t row; 222 223 // truncate the address to the access granularity 224 Addr addr = dramPktAddr / burstSize; 225 226 // we have removed the lowest order address bits that denote the 227 // position within the column 228 if (addrMapping == Enums::RoRaBaChCo) { 229 // the lowest order bits denote the column to ensure that 230 // sequential cache lines occupy the same row 231 addr = addr / columnsPerRowBuffer; 232 233 // take out the channel part of the address 234 addr = addr / channels; 235 236 // after the channel bits, get the bank bits to interleave 237 // over the banks 238 bank = addr % banksPerRank; 239 addr = addr / banksPerRank; 240 241 // after the bank, we get the rank bits which thus interleaves 242 // over the ranks 243 rank = addr % ranksPerChannel; 244 addr = addr / ranksPerChannel; 245 246 // lastly, get the row bits 247 row = addr % rowsPerBank; 248 addr = addr / rowsPerBank; 249 } else if (addrMapping == Enums::RoRaBaCoCh) { 250 // take out the channel part of the address 251 addr = addr / channels; 252 253 // next, the column 254 addr = addr / columnsPerRowBuffer; 255 256 // after the column bits, we get the bank bits to interleave 257 // over the banks 258 bank = addr % banksPerRank; 259 addr = addr / banksPerRank; 260 261 // after the bank, we get the rank bits which thus interleaves 262 // over the ranks 263 rank = addr % ranksPerChannel; 264 addr = addr / ranksPerChannel; 265 266 // lastly, get the row bits 267 row = addr % rowsPerBank; 268 addr = addr / rowsPerBank; 269 } else if (addrMapping == Enums::RoCoRaBaCh) { 270 // optimise for closed page mode and utilise maximum 271 // parallelism of the DRAM (at the cost of power) 272 273 // take out the channel part of the address, not that this has 274 // to match with how accesses are interleaved between the 275 // controllers in the address mapping 276 addr = addr / channels; 277 278 // start with the bank bits, as this provides the maximum 279 // opportunity for parallelism between requests 280 bank = addr % banksPerRank; 281 addr = addr / banksPerRank; 282 283 // next get the rank bits 284 rank = addr % ranksPerChannel; 285 addr = addr / ranksPerChannel; 286 287 // next the column bits which we do not need to keep track of 288 // and simply skip past 289 addr = addr / columnsPerRowBuffer; 290 291 // lastly, get the row bits 292 row = addr % rowsPerBank; 293 addr = addr / rowsPerBank; 294 } else 295 panic("Unknown address mapping policy chosen!"); 296 297 assert(rank < ranksPerChannel); 298 assert(bank < banksPerRank); 299 assert(row < rowsPerBank); 300 301 DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n", 302 dramPktAddr, rank, bank, row); 303 304 // create the corresponding DRAM packet with the entry time and 305 // ready time set to the current tick, the latter will be updated 306 // later 307 uint16_t bank_id = banksPerRank * rank + bank; 308 return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr, 309 size, banks[rank][bank]); 310} 311 312void 313DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount) 314{ 315 // only add to the read queue here. whenever the request is 316 // eventually done, set the readyTime, and call schedule() 317 assert(!pkt->isWrite()); 318 319 assert(pktCount != 0); 320 321 // if the request size is larger than burst size, the pkt is split into 322 // multiple DRAM packets 323 // Note if the pkt starting address is not aligened to burst size, the 324 // address of first DRAM packet is kept unaliged. Subsequent DRAM packets 325 // are aligned to burst size boundaries. This is to ensure we accurately 326 // check read packets against packets in write queue. 327 Addr addr = pkt->getAddr(); 328 unsigned pktsServicedByWrQ = 0; 329 BurstHelper* burst_helper = NULL; 330 for (int cnt = 0; cnt < pktCount; ++cnt) { 331 unsigned size = std::min((addr | (burstSize - 1)) + 1, 332 pkt->getAddr() + pkt->getSize()) - addr; 333 readPktSize[ceilLog2(size)]++; 334 readBursts++; 335 336 // First check write buffer to see if the data is already at 337 // the controller 338 bool foundInWrQ = false; 339 for (auto i = writeQueue.begin(); i != writeQueue.end(); ++i) { 340 // check if the read is subsumed in the write entry we are 341 // looking at 342 if ((*i)->addr <= addr && 343 (addr + size) <= ((*i)->addr + (*i)->size)) { 344 foundInWrQ = true; 345 servicedByWrQ++; 346 pktsServicedByWrQ++; 347 DPRINTF(DRAM, "Read to addr %lld with size %d serviced by " 348 "write queue\n", addr, size); 349 bytesReadWrQ += burstSize; 350 break; 351 } 352 } 353 354 // If not found in the write q, make a DRAM packet and 355 // push it onto the read queue 356 if (!foundInWrQ) { 357 358 // Make the burst helper for split packets 359 if (pktCount > 1 && burst_helper == NULL) { 360 DPRINTF(DRAM, "Read to addr %lld translates to %d " 361 "dram requests\n", pkt->getAddr(), pktCount); 362 burst_helper = new BurstHelper(pktCount); 363 } 364 365 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true); 366 dram_pkt->burstHelper = burst_helper; 367 368 assert(!readQueueFull(1)); 369 rdQLenPdf[readQueue.size() + respQueue.size()]++; 370 371 DPRINTF(DRAM, "Adding to read queue\n"); 372 373 readQueue.push_back(dram_pkt); 374 375 // Update stats 376 avgRdQLen = readQueue.size() + respQueue.size(); 377 } 378 379 // Starting address of next dram pkt (aligend to burstSize boundary) 380 addr = (addr | (burstSize - 1)) + 1; 381 } 382 383 // If all packets are serviced by write queue, we send the repsonse back 384 if (pktsServicedByWrQ == pktCount) { 385 accessAndRespond(pkt, frontendLatency); 386 return; 387 } 388 389 // Update how many split packets are serviced by write queue 390 if (burst_helper != NULL) 391 burst_helper->burstsServiced = pktsServicedByWrQ; 392 393 // If we are not already scheduled to get a request out of the 394 // queue, do so now 395 if (!nextReqEvent.scheduled()) { 396 DPRINTF(DRAM, "Request scheduled immediately\n"); 397 schedule(nextReqEvent, curTick()); 398 } 399} 400 401void 402DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount) 403{ 404 // only add to the write queue here. whenever the request is 405 // eventually done, set the readyTime, and call schedule() 406 assert(pkt->isWrite()); 407 408 // if the request size is larger than burst size, the pkt is split into 409 // multiple DRAM packets 410 Addr addr = pkt->getAddr(); 411 for (int cnt = 0; cnt < pktCount; ++cnt) { 412 unsigned size = std::min((addr | (burstSize - 1)) + 1, 413 pkt->getAddr() + pkt->getSize()) - addr; 414 writePktSize[ceilLog2(size)]++; 415 writeBursts++; 416 417 // see if we can merge with an existing item in the write 418 // queue and keep track of whether we have merged or not so we 419 // can stop at that point and also avoid enqueueing a new 420 // request 421 bool merged = false; 422 auto w = writeQueue.begin(); 423 424 while(!merged && w != writeQueue.end()) { 425 // either of the two could be first, if they are the same 426 // it does not matter which way we go 427 if ((*w)->addr >= addr) { 428 // the existing one starts after the new one, figure 429 // out where the new one ends with respect to the 430 // existing one 431 if ((addr + size) >= ((*w)->addr + (*w)->size)) { 432 // check if the existing one is completely 433 // subsumed in the new one 434 DPRINTF(DRAM, "Merging write covering existing burst\n"); 435 merged = true; 436 // update both the address and the size 437 (*w)->addr = addr; 438 (*w)->size = size; 439 } else if ((addr + size) >= (*w)->addr && 440 ((*w)->addr + (*w)->size - addr) <= burstSize) { 441 // the new one is just before or partially 442 // overlapping with the existing one, and together 443 // they fit within a burst 444 DPRINTF(DRAM, "Merging write before existing burst\n"); 445 merged = true; 446 // the existing queue item needs to be adjusted with 447 // respect to both address and size 448 (*w)->size = (*w)->addr + (*w)->size - addr; 449 (*w)->addr = addr; 450 } 451 } else { 452 // the new one starts after the current one, figure 453 // out where the existing one ends with respect to the 454 // new one 455 if (((*w)->addr + (*w)->size) >= (addr + size)) { 456 // check if the new one is completely subsumed in the 457 // existing one 458 DPRINTF(DRAM, "Merging write into existing burst\n"); 459 merged = true; 460 // no adjustments necessary 461 } else if (((*w)->addr + (*w)->size) >= addr && 462 (addr + size - (*w)->addr) <= burstSize) { 463 // the existing one is just before or partially 464 // overlapping with the new one, and together 465 // they fit within a burst 466 DPRINTF(DRAM, "Merging write after existing burst\n"); 467 merged = true; 468 // the address is right, and only the size has 469 // to be adjusted 470 (*w)->size = addr + size - (*w)->addr; 471 } 472 } 473 ++w; 474 } 475 476 // if the item was not merged we need to create a new write 477 // and enqueue it 478 if (!merged) { 479 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false); 480 481 assert(writeQueue.size() < writeBufferSize); 482 wrQLenPdf[writeQueue.size()]++; 483 484 DPRINTF(DRAM, "Adding to write queue\n"); 485 486 writeQueue.push_back(dram_pkt); 487 488 // Update stats 489 avgWrQLen = writeQueue.size(); 490 } else { 491 // keep track of the fact that this burst effectively 492 // disappeared as it was merged with an existing one 493 mergedWrBursts++; 494 } 495 496 // Starting address of next dram pkt (aligend to burstSize boundary) 497 addr = (addr | (burstSize - 1)) + 1; 498 } 499 500 // we do not wait for the writes to be send to the actual memory, 501 // but instead take responsibility for the consistency here and 502 // snoop the write queue for any upcoming reads 503 // @todo, if a pkt size is larger than burst size, we might need a 504 // different front end latency 505 accessAndRespond(pkt, frontendLatency); 506 507 // If we are not already scheduled to get a request out of the 508 // queue, do so now 509 if (!nextReqEvent.scheduled()) { 510 DPRINTF(DRAM, "Request scheduled immediately\n"); 511 schedule(nextReqEvent, curTick()); 512 } 513} 514 515void 516DRAMCtrl::printParams() const 517{ 518 // Sanity check print of important parameters 519 DPRINTF(DRAM, 520 "Memory controller %s physical organization\n" \ 521 "Number of devices per rank %d\n" \ 522 "Device bus width (in bits) %d\n" \ 523 "DRAM data bus burst (bytes) %d\n" \ 524 "Row buffer size (bytes) %d\n" \ 525 "Columns per row buffer %d\n" \ 526 "Rows per bank %d\n" \ 527 "Banks per rank %d\n" \ 528 "Ranks per channel %d\n" \ 529 "Total mem capacity (bytes) %u\n", 530 name(), devicesPerRank, deviceBusWidth, burstSize, rowBufferSize, 531 columnsPerRowBuffer, rowsPerBank, banksPerRank, ranksPerChannel, 532 rowBufferSize * rowsPerBank * banksPerRank * ranksPerChannel); 533 534 string scheduler = memSchedPolicy == Enums::fcfs ? "FCFS" : "FR-FCFS"; 535 string address_mapping = addrMapping == Enums::RoRaBaChCo ? "RoRaBaChCo" : 536 (addrMapping == Enums::RoRaBaCoCh ? "RoRaBaCoCh" : "RoCoRaBaCh"); 537 string page_policy = pageMgmt == Enums::open ? "OPEN" : 538 (pageMgmt == Enums::open_adaptive ? "OPEN (adaptive)" : 539 (pageMgmt == Enums::close_adaptive ? "CLOSE (adaptive)" : "CLOSE")); 540 541 DPRINTF(DRAM, 542 "Memory controller %s characteristics\n" \ 543 "Read buffer size %d\n" \ 544 "Write buffer size %d\n" \ 545 "Write high thresh %d\n" \ 546 "Write low thresh %d\n" \ 547 "Scheduler %s\n" \ 548 "Address mapping %s\n" \ 549 "Page policy %s\n", 550 name(), readBufferSize, writeBufferSize, writeHighThreshold, 551 writeLowThreshold, scheduler, address_mapping, page_policy); 552 553 DPRINTF(DRAM, "Memory controller %s timing specs\n" \ 554 "tRCD %d ticks\n" \ 555 "tCL %d ticks\n" \ 556 "tRP %d ticks\n" \ 557 "tBURST %d ticks\n" \ 558 "tRFC %d ticks\n" \ 559 "tREFI %d ticks\n" \ 560 "tWTR %d ticks\n" \ 561 "tRTW %d ticks\n" \ 562 "tWR %d ticks\n" \ 563 "tRTP %d ticks\n" \ 564 "tXAW (%d) %d ticks\n", 565 name(), tRCD, tCL, tRP, tBURST, tRFC, tREFI, tWTR, 566 tRTW, tWR, tRTP, activationLimit, tXAW); 567} 568 569void 570DRAMCtrl::printQs() const { 571 DPRINTF(DRAM, "===READ QUEUE===\n\n"); 572 for (auto i = readQueue.begin() ; i != readQueue.end() ; ++i) { 573 DPRINTF(DRAM, "Read %lu\n", (*i)->addr); 574 } 575 DPRINTF(DRAM, "\n===RESP QUEUE===\n\n"); 576 for (auto i = respQueue.begin() ; i != respQueue.end() ; ++i) { 577 DPRINTF(DRAM, "Response %lu\n", (*i)->addr); 578 } 579 DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n"); 580 for (auto i = writeQueue.begin() ; i != writeQueue.end() ; ++i) { 581 DPRINTF(DRAM, "Write %lu\n", (*i)->addr); 582 } 583} 584 585bool 586DRAMCtrl::recvTimingReq(PacketPtr pkt) 587{ 588 /// @todo temporary hack to deal with memory corruption issues until 589 /// 4-phase transactions are complete 590 for (int x = 0; x < pendingDelete.size(); x++) 591 delete pendingDelete[x]; 592 pendingDelete.clear(); 593 594 // This is where we enter from the outside world 595 DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n", 596 pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 597 598 // simply drop inhibited packets for now 599 if (pkt->memInhibitAsserted()) { 600 DPRINTF(DRAM, "Inhibited packet -- Dropping it now\n"); 601 pendingDelete.push_back(pkt); 602 return true; 603 } 604 605 // Calc avg gap between requests 606 if (prevArrival != 0) { 607 totGap += curTick() - prevArrival; 608 } 609 prevArrival = curTick(); 610 611 612 // Find out how many dram packets a pkt translates to 613 // If the burst size is equal or larger than the pkt size, then a pkt 614 // translates to only one dram packet. Otherwise, a pkt translates to 615 // multiple dram packets 616 unsigned size = pkt->getSize(); 617 unsigned offset = pkt->getAddr() & (burstSize - 1); 618 unsigned int dram_pkt_count = divCeil(offset + size, burstSize); 619 620 // check local buffers and do not accept if full 621 if (pkt->isRead()) { 622 assert(size != 0); 623 if (readQueueFull(dram_pkt_count)) { 624 DPRINTF(DRAM, "Read queue full, not accepting\n"); 625 // remember that we have to retry this port 626 retryRdReq = true; 627 numRdRetry++; 628 return false; 629 } else { 630 addToReadQueue(pkt, dram_pkt_count); 631 readReqs++; 632 bytesReadSys += size; 633 } 634 } else if (pkt->isWrite()) { 635 assert(size != 0); 636 if (writeQueueFull(dram_pkt_count)) { 637 DPRINTF(DRAM, "Write queue full, not accepting\n"); 638 // remember that we have to retry this port 639 retryWrReq = true; 640 numWrRetry++; 641 return false; 642 } else { 643 addToWriteQueue(pkt, dram_pkt_count); 644 writeReqs++; 645 bytesWrittenSys += size; 646 } 647 } else { 648 DPRINTF(DRAM,"Neither read nor write, ignore timing\n"); 649 neitherReadNorWrite++; 650 accessAndRespond(pkt, 1); 651 } 652 653 return true; 654} 655 656void 657DRAMCtrl::processRespondEvent() 658{ 659 DPRINTF(DRAM, 660 "processRespondEvent(): Some req has reached its readyTime\n"); 661 662 DRAMPacket* dram_pkt = respQueue.front(); 663 664 if (dram_pkt->burstHelper) { 665 // it is a split packet 666 dram_pkt->burstHelper->burstsServiced++; 667 if (dram_pkt->burstHelper->burstsServiced == 668 dram_pkt->burstHelper->burstCount) { 669 // we have now serviced all children packets of a system packet 670 // so we can now respond to the requester 671 // @todo we probably want to have a different front end and back 672 // end latency for split packets 673 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency); 674 delete dram_pkt->burstHelper; 675 dram_pkt->burstHelper = NULL; 676 } 677 } else { 678 // it is not a split packet 679 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency); 680 } 681 682 delete respQueue.front(); 683 respQueue.pop_front(); 684 685 if (!respQueue.empty()) { 686 assert(respQueue.front()->readyTime >= curTick()); 687 assert(!respondEvent.scheduled()); 688 schedule(respondEvent, respQueue.front()->readyTime); 689 } else { 690 // if there is nothing left in any queue, signal a drain 691 if (writeQueue.empty() && readQueue.empty() && 692 drainManager) { 693 drainManager->signalDrainDone(); 694 drainManager = NULL; 695 } 696 } 697 698 // We have made a location in the queue available at this point, 699 // so if there is a read that was forced to wait, retry now 700 if (retryRdReq) { 701 retryRdReq = false; 702 port.sendRetry(); 703 } 704} 705 706void 707DRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue) 708{ 709 // This method does the arbitration between requests. The chosen 710 // packet is simply moved to the head of the queue. The other 711 // methods know that this is the place to look. For example, with 712 // FCFS, this method does nothing 713 assert(!queue.empty()); 714 715 if (queue.size() == 1) { 716 DPRINTF(DRAM, "Single request, nothing to do\n"); 717 return; 718 } 719 720 if (memSchedPolicy == Enums::fcfs) { 721 // Do nothing, since the correct request is already head 722 } else if (memSchedPolicy == Enums::frfcfs) { 723 reorderQueue(queue); 724 } else 725 panic("No scheduling policy chosen\n"); 726} 727 728void 729DRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue) 730{ 731 // Only determine this when needed 732 uint64_t earliest_banks = 0; 733 734 // Search for row hits first, if no row hit is found then schedule the 735 // packet to one of the earliest banks available 736 bool found_earliest_pkt = false; 737 auto selected_pkt_it = queue.begin(); 738 739 for (auto i = queue.begin(); i != queue.end() ; ++i) { 740 DRAMPacket* dram_pkt = *i; 741 const Bank& bank = dram_pkt->bankRef; 742 // Check if it is a row hit 743 if (bank.openRow == dram_pkt->row) { 744 // FCFS within the hits 745 DPRINTF(DRAM, "Row buffer hit\n"); 746 selected_pkt_it = i; 747 break; 748 } else if (!found_earliest_pkt) { 749 // No row hit, go for first ready 750 if (earliest_banks == 0) 751 earliest_banks = minBankActAt(queue); 752 753 // simplistic approximation of when the bank can issue an 754 // activate, this is calculated in minBankActAt and could 755 // be cached 756 Tick act_at = bank.openRow == Bank::NO_ROW ? 757 bank.actAllowedAt : 758 std::max(bank.preAllowedAt, curTick()) + tRP; 759 760 // Bank is ready or is the first available bank 761 if (act_at <= curTick() || 762 bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) { 763 // Remember the packet to be scheduled to one of the earliest 764 // banks available, FCFS amongst the earliest banks 765 selected_pkt_it = i; 766 found_earliest_pkt = true; 767 } 768 } 769 } 770 771 DRAMPacket* selected_pkt = *selected_pkt_it; 772 queue.erase(selected_pkt_it); 773 queue.push_front(selected_pkt); 774} 775 776void 777DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency) 778{ 779 DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr()); 780 781 bool needsResponse = pkt->needsResponse(); 782 // do the actual memory access which also turns the packet into a 783 // response 784 access(pkt); 785 786 // turn packet around to go back to requester if response expected 787 if (needsResponse) { 788 // access already turned the packet into a response 789 assert(pkt->isResponse()); 790 791 // @todo someone should pay for this 792 pkt->busFirstWordDelay = pkt->busLastWordDelay = 0; 793 794 // queue the packet in the response queue to be sent out after 795 // the static latency has passed 796 port.schedTimingResp(pkt, curTick() + static_latency); 797 } else { 798 // @todo the packet is going to be deleted, and the DRAMPacket 799 // is still having a pointer to it 800 pendingDelete.push_back(pkt); 801 } 802 803 DPRINTF(DRAM, "Done\n"); 804 805 return; 806} 807 808void 809DRAMCtrl::activateBank(Tick act_tick, uint8_t rank, uint8_t bank, 810 uint16_t row, Bank& bank_ref) 811{ 812 assert(0 <= rank && rank < ranksPerChannel); 813 assert(actTicks[rank].size() == activationLimit); 814 815 DPRINTF(DRAM, "Activate at tick %d\n", act_tick); 816 817 // update the open row 818 assert(bank_ref.openRow == Bank::NO_ROW); 819 bank_ref.openRow = row; 820 821 // start counting anew, this covers both the case when we 822 // auto-precharged, and when this access is forced to 823 // precharge 824 bank_ref.bytesAccessed = 0; 825 bank_ref.rowAccesses = 0; 826 827 ++numBanksActive; 828 assert(numBanksActive <= banksPerRank * ranksPerChannel); 829 830 DPRINTF(DRAM, "Activate bank at tick %lld, now got %d active\n", 831 act_tick, numBanksActive); 832 833 // The next access has to respect tRAS for this bank 834 bank_ref.preAllowedAt = act_tick + tRAS; 835 836 // Respect the row-to-column command delay 837 bank_ref.colAllowedAt = act_tick + tRCD; 838 839 // start by enforcing tRRD 840 for(int i = 0; i < banksPerRank; i++) { 841 // next activate to any bank in this rank must not happen 842 // before tRRD 843 banks[rank][i].actAllowedAt = std::max(act_tick + tRRD, 844 banks[rank][i].actAllowedAt); 845 } 846 847 // next, we deal with tXAW, if the activation limit is disabled 848 // then we are done 849 if (actTicks[rank].empty()) 850 return; 851 852 // sanity check 853 if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) { 854 panic("Got %d activates in window %d (%llu - %llu) which is smaller " 855 "than %llu\n", activationLimit, act_tick - actTicks[rank].back(), 856 act_tick, actTicks[rank].back(), tXAW); 857 } 858 859 // shift the times used for the book keeping, the last element 860 // (highest index) is the oldest one and hence the lowest value 861 actTicks[rank].pop_back(); 862 863 // record an new activation (in the future) 864 actTicks[rank].push_front(act_tick); 865 866 // cannot activate more than X times in time window tXAW, push the 867 // next one (the X + 1'st activate) to be tXAW away from the 868 // oldest in our window of X 869 if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) { 870 DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate no earlier " 871 "than %llu\n", activationLimit, actTicks[rank].back() + tXAW); 872 for(int j = 0; j < banksPerRank; j++) 873 // next activate must not happen before end of window 874 banks[rank][j].actAllowedAt = 875 std::max(actTicks[rank].back() + tXAW, 876 banks[rank][j].actAllowedAt); 877 } 878 879 // at the point when this activate takes place, make sure we 880 // transition to the active power state 881 if (!activateEvent.scheduled()) 882 schedule(activateEvent, act_tick); 883 else if (activateEvent.when() > act_tick) 884 // move it sooner in time 885 reschedule(activateEvent, act_tick); 886} 887 888void 889DRAMCtrl::processActivateEvent() 890{ 891 // we should transition to the active state as soon as any bank is active 892 if (pwrState != PWR_ACT) 893 // note that at this point numBanksActive could be back at 894 // zero again due to a precharge scheduled in the future 895 schedulePowerEvent(PWR_ACT, curTick()); 896} 897 898void 899DRAMCtrl::prechargeBank(Bank& bank, Tick pre_at) 900{ 901 // make sure the bank has an open row 902 assert(bank.openRow != Bank::NO_ROW); 903 904 // sample the bytes per activate here since we are closing 905 // the page 906 bytesPerActivate.sample(bank.bytesAccessed); 907 908 bank.openRow = Bank::NO_ROW; 909 910 Tick pre_done_at = pre_at + tRP; 911 912 bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at); 913 914 assert(numBanksActive != 0); 915 --numBanksActive; 916 917 DPRINTF(DRAM, "Precharging bank at tick %lld, now got %d active\n", 918 pre_at, numBanksActive); 919 920 // if we look at the current number of active banks we might be 921 // tempted to think the DRAM is now idle, however this can be 922 // undone by an activate that is scheduled to happen before we 923 // would have reached the idle state, so schedule an event and 924 // rather check once we actually make it to the point in time when 925 // the (last) precharge takes place 926 if (!prechargeEvent.scheduled()) 927 schedule(prechargeEvent, pre_done_at); 928 else if (prechargeEvent.when() < pre_done_at) 929 reschedule(prechargeEvent, pre_done_at); 930} 931 932void 933DRAMCtrl::processPrechargeEvent() 934{ 935 // if we reached zero, then special conditions apply as we track 936 // if all banks are precharged for the power models 937 if (numBanksActive == 0) { 938 // we should transition to the idle state when the last bank 939 // is precharged 940 schedulePowerEvent(PWR_IDLE, curTick()); 941 } 942} 943 944void 945DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt) 946{ 947 DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n", 948 dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row); 949 950 // get the bank 951 Bank& bank = dram_pkt->bankRef; 952 953 // for the state we need to track if it is a row hit or not 954 bool row_hit = true; 955 956 // respect any constraints on the command (e.g. tRCD or tCCD) 957 Tick cmd_at = std::max(bank.colAllowedAt, curTick()); 958 959 // Determine the access latency and update the bank state 960 if (bank.openRow == dram_pkt->row) { 961 // nothing to do 962 } else { 963 row_hit = false; 964 965 // If there is a page open, precharge it. 966 if (bank.openRow != Bank::NO_ROW) { 967 prechargeBank(bank, std::max(bank.preAllowedAt, curTick())); 968 } 969 970 // next we need to account for the delay in activating the 971 // page 972 Tick act_tick = std::max(bank.actAllowedAt, curTick()); 973 974 // Record the activation and deal with all the global timing 975 // constraints caused be a new activation (tRRD and tXAW) 976 activateBank(act_tick, dram_pkt->rank, dram_pkt->bank, 977 dram_pkt->row, bank); 978 979 // issue the command as early as possible 980 cmd_at = bank.colAllowedAt; 981 } 982 983 // we need to wait until the bus is available before we can issue 984 // the command 985 cmd_at = std::max(cmd_at, busBusyUntil - tCL); 986 987 // update the packet ready time 988 dram_pkt->readyTime = cmd_at + tCL + tBURST; 989 990 // only one burst can use the bus at any one point in time 991 assert(dram_pkt->readyTime - busBusyUntil >= tBURST); 992 993 // not strictly necessary, but update the time for the next 994 // read/write (add a max with tCCD here) 995 bank.colAllowedAt = cmd_at + tBURST; 996 997 // If this is a write, we also need to respect the write recovery 998 // time before a precharge, in the case of a read, respect the 999 // read to precharge constraint 1000 bank.preAllowedAt = std::max(bank.preAllowedAt, 1001 dram_pkt->isRead ? cmd_at + tRTP : 1002 dram_pkt->readyTime + tWR); 1003 1004 // increment the bytes accessed and the accesses per row 1005 bank.bytesAccessed += burstSize; 1006 ++bank.rowAccesses; 1007 1008 // if we reached the max, then issue with an auto-precharge 1009 bool auto_precharge = pageMgmt == Enums::close || 1010 bank.rowAccesses == maxAccessesPerRow; 1011 1012 // if we did not hit the limit, we might still want to 1013 // auto-precharge 1014 if (!auto_precharge && 1015 (pageMgmt == Enums::open_adaptive || 1016 pageMgmt == Enums::close_adaptive)) { 1017 // a twist on the open and close page policies: 1018 // 1) open_adaptive page policy does not blindly keep the 1019 // page open, but close it if there are no row hits, and there 1020 // are bank conflicts in the queue 1021 // 2) close_adaptive page policy does not blindly close the 1022 // page, but closes it only if there are no row hits in the queue. 1023 // In this case, only force an auto precharge when there 1024 // are no same page hits in the queue 1025 bool got_more_hits = false; 1026 bool got_bank_conflict = false; 1027 1028 // either look at the read queue or write queue 1029 const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue : 1030 writeQueue; 1031 auto p = queue.begin(); 1032 // make sure we are not considering the packet that we are 1033 // currently dealing with (which is the head of the queue) 1034 ++p; 1035 1036 // keep on looking until we have found required condition or 1037 // reached the end 1038 while (!(got_more_hits && 1039 (got_bank_conflict || pageMgmt == Enums::close_adaptive)) && 1040 p != queue.end()) { 1041 bool same_rank_bank = (dram_pkt->rank == (*p)->rank) && 1042 (dram_pkt->bank == (*p)->bank); 1043 bool same_row = dram_pkt->row == (*p)->row; 1044 got_more_hits |= same_rank_bank && same_row; 1045 got_bank_conflict |= same_rank_bank && !same_row; 1046 ++p; 1047 } 1048 1049 // auto pre-charge when either 1050 // 1) open_adaptive policy, we have not got any more hits, and 1051 // have a bank conflict 1052 // 2) close_adaptive policy and we have not got any more hits 1053 auto_precharge = !got_more_hits && 1054 (got_bank_conflict || pageMgmt == Enums::close_adaptive); 1055 } 1056 1057 // if this access should use auto-precharge, then we are 1058 // closing the row 1059 if (auto_precharge) { 1060 prechargeBank(bank, std::max(curTick(), bank.preAllowedAt)); 1061 1062 DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId); 1063 } 1064 1065 // Update bus state 1066 busBusyUntil = dram_pkt->readyTime; 1067 1068 DPRINTF(DRAM, "Access to %lld, ready at %lld bus busy until %lld.\n", 1069 dram_pkt->addr, dram_pkt->readyTime, busBusyUntil); 1070 1071 // Update the minimum timing between the requests, this is a 1072 // conservative estimate of when we have to schedule the next 1073 // request to not introduce any unecessary bubbles. In most cases 1074 // we will wake up sooner than we have to. 1075 nextReqTime = busBusyUntil - (tRP + tRCD + tCL); 1076 1077 // Update the stats and schedule the next request 1078 if (dram_pkt->isRead) { 1079 ++readsThisTime; 1080 if (row_hit) 1081 readRowHits++; 1082 bytesReadDRAM += burstSize; 1083 perBankRdBursts[dram_pkt->bankId]++; 1084 1085 // Update latency stats 1086 totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime; 1087 totBusLat += tBURST; 1088 totQLat += cmd_at - dram_pkt->entryTime; 1089 } else { 1090 ++writesThisTime; 1091 if (row_hit) 1092 writeRowHits++; 1093 bytesWritten += burstSize; 1094 perBankWrBursts[dram_pkt->bankId]++; 1095 } 1096} 1097 1098void 1099DRAMCtrl::moveToRespQ() 1100{ 1101 // Remove from read queue 1102 DRAMPacket* dram_pkt = readQueue.front(); 1103 readQueue.pop_front(); 1104 1105 // sanity check 1106 assert(dram_pkt->size <= burstSize); 1107 1108 // Insert into response queue sorted by readyTime 1109 // It will be sent back to the requestor at its 1110 // readyTime 1111 if (respQueue.empty()) { 1112 respQueue.push_front(dram_pkt); 1113 assert(!respondEvent.scheduled()); 1114 assert(dram_pkt->readyTime >= curTick()); 1115 schedule(respondEvent, dram_pkt->readyTime); 1116 } else { 1117 bool done = false; 1118 auto i = respQueue.begin(); 1119 while (!done && i != respQueue.end()) { 1120 if ((*i)->readyTime > dram_pkt->readyTime) { 1121 respQueue.insert(i, dram_pkt); 1122 done = true; 1123 } 1124 ++i; 1125 } 1126 1127 if (!done) 1128 respQueue.push_back(dram_pkt); 1129 1130 assert(respondEvent.scheduled()); 1131 1132 if (respQueue.front()->readyTime < respondEvent.when()) { 1133 assert(respQueue.front()->readyTime >= curTick()); 1134 reschedule(respondEvent, respQueue.front()->readyTime); 1135 } 1136 } 1137} 1138 1139void 1140DRAMCtrl::processNextReqEvent() 1141{ 1142 if (busState == READ_TO_WRITE) { 1143 DPRINTF(DRAM, "Switching to writes after %d reads with %d reads " 1144 "waiting\n", readsThisTime, readQueue.size()); 1145 1146 // sample and reset the read-related stats as we are now 1147 // transitioning to writes, and all reads are done 1148 rdPerTurnAround.sample(readsThisTime); 1149 readsThisTime = 0; 1150 1151 // now proceed to do the actual writes 1152 busState = WRITE; 1153 } else if (busState == WRITE_TO_READ) { 1154 DPRINTF(DRAM, "Switching to reads after %d writes with %d writes " 1155 "waiting\n", writesThisTime, writeQueue.size()); 1156 1157 wrPerTurnAround.sample(writesThisTime); 1158 writesThisTime = 0; 1159 1160 busState = READ; 1161 } 1162 1163 if (refreshState != REF_IDLE) { 1164 // if a refresh waiting for this event loop to finish, then hand 1165 // over now, and do not schedule a new nextReqEvent 1166 if (refreshState == REF_DRAIN) { 1167 DPRINTF(DRAM, "Refresh drain done, now precharging\n"); 1168 1169 refreshState = REF_PRE; 1170 1171 // hand control back to the refresh event loop 1172 schedule(refreshEvent, curTick()); 1173 } 1174 1175 // let the refresh finish before issuing any further requests 1176 return; 1177 } 1178 1179 // when we get here it is either a read or a write 1180 if (busState == READ) { 1181 1182 // track if we should switch or not 1183 bool switch_to_writes = false; 1184 1185 if (readQueue.empty()) { 1186 // In the case there is no read request to go next, 1187 // trigger writes if we have passed the low threshold (or 1188 // if we are draining) 1189 if (!writeQueue.empty() && 1190 (drainManager || writeQueue.size() > writeLowThreshold)) { 1191 1192 switch_to_writes = true; 1193 } else { 1194 // check if we are drained 1195 if (respQueue.empty () && drainManager) { 1196 drainManager->signalDrainDone(); 1197 drainManager = NULL; 1198 } 1199 1200 // nothing to do, not even any point in scheduling an 1201 // event for the next request 1202 return; 1203 } 1204 } else { 1205 // Figure out which read request goes next, and move it to the 1206 // front of the read queue 1207 chooseNext(readQueue); 1208 1209 doDRAMAccess(readQueue.front()); 1210 1211 // At this point we're done dealing with the request 1212 // It will be moved to a separate response queue with a 1213 // correct readyTime, and eventually be sent back at that 1214 // time 1215 moveToRespQ(); 1216 1217 // we have so many writes that we have to transition 1218 if (writeQueue.size() > writeHighThreshold) { 1219 switch_to_writes = true; 1220 } 1221 } 1222 1223 // switching to writes, either because the read queue is empty 1224 // and the writes have passed the low threshold (or we are 1225 // draining), or because the writes hit the hight threshold 1226 if (switch_to_writes) { 1227 // transition to writing 1228 busState = READ_TO_WRITE; 1229 1230 // add a bubble to the data bus, as defined by the 1231 // tRTW parameter 1232 busBusyUntil += tRTW; 1233 1234 // update the minimum timing between the requests, 1235 // this shifts us back in time far enough to do any 1236 // bank preparation 1237 nextReqTime = busBusyUntil - (tRP + tRCD + tCL); 1238 } 1239 } else { 1240 chooseNext(writeQueue); 1241 DRAMPacket* dram_pkt = writeQueue.front(); 1242 // sanity check 1243 assert(dram_pkt->size <= burstSize); 1244 doDRAMAccess(dram_pkt); 1245 1246 writeQueue.pop_front(); 1247 delete dram_pkt; 1248 1249 // If we emptied the write queue, or got sufficiently below the 1250 // threshold (using the minWritesPerSwitch as the hysteresis) and 1251 // are not draining, or we have reads waiting and have done enough 1252 // writes, then switch to reads. 1253 if (writeQueue.empty() || 1254 (writeQueue.size() + minWritesPerSwitch < writeLowThreshold && 1255 !drainManager) || 1256 (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) { 1257 // turn the bus back around for reads again 1258 busState = WRITE_TO_READ; 1259 1260 // note that the we switch back to reads also in the idle 1261 // case, which eventually will check for any draining and 1262 // also pause any further scheduling if there is really 1263 // nothing to do 1264 1265 // here we get a bit creative and shift the bus busy time not 1266 // just the tWTR, but also a CAS latency to capture the fact 1267 // that we are allowed to prepare a new bank, but not issue a 1268 // read command until after tWTR, in essence we capture a 1269 // bubble on the data bus that is tWTR + tCL 1270 busBusyUntil += tWTR + tCL; 1271 1272 // update the minimum timing between the requests, this shifts 1273 // us back in time far enough to do any bank preparation 1274 nextReqTime = busBusyUntil - (tRP + tRCD + tCL); 1275 } 1276 } 1277 1278 schedule(nextReqEvent, std::max(nextReqTime, curTick())); 1279 1280 // If there is space available and we have writes waiting then let 1281 // them retry. This is done here to ensure that the retry does not 1282 // cause a nextReqEvent to be scheduled before we do so as part of 1283 // the next request processing 1284 if (retryWrReq && writeQueue.size() < writeBufferSize) { 1285 retryWrReq = false; 1286 port.sendRetry(); 1287 } 1288} 1289 1290uint64_t 1291DRAMCtrl::minBankActAt(const deque<DRAMPacket*>& queue) const 1292{ 1293 uint64_t bank_mask = 0; 1294 Tick min_act_at = MaxTick; 1295 1296 // deterimne if we have queued transactions targetting a 1297 // bank in question 1298 vector<bool> got_waiting(ranksPerChannel * banksPerRank, false); 1299 for (auto p = queue.begin(); p != queue.end(); ++p) { 1300 got_waiting[(*p)->bankId] = true; 1301 } 1302 1303 for (int i = 0; i < ranksPerChannel; i++) { 1304 for (int j = 0; j < banksPerRank; j++) { 1305 uint8_t bank_id = i * banksPerRank + j; 1306 1307 // if we have waiting requests for the bank, and it is 1308 // amongst the first available, update the mask 1309 if (got_waiting[bank_id]) { 1310 // simplistic approximation of when the bank can issue 1311 // an activate, ignoring any rank-to-rank switching 1312 // cost 1313 Tick act_at = banks[i][j].openRow == Bank::NO_ROW ? 1314 banks[i][j].actAllowedAt : 1315 std::max(banks[i][j].preAllowedAt, curTick()) + tRP; 1316 1317 if (act_at <= min_act_at) { 1318 // reset bank mask if new minimum is found 1319 if (act_at < min_act_at) 1320 bank_mask = 0; 1321 // set the bit corresponding to the available bank 1322 replaceBits(bank_mask, bank_id, bank_id, 1); 1323 min_act_at = act_at; 1324 } 1325 } 1326 } 1327 } 1328 1329 return bank_mask; 1330} 1331 1332void 1333DRAMCtrl::processRefreshEvent() 1334{ 1335 // when first preparing the refresh, remember when it was due 1336 if (refreshState == REF_IDLE) { 1337 // remember when the refresh is due 1338 refreshDueAt = curTick(); 1339 1340 // proceed to drain 1341 refreshState = REF_DRAIN; 1342 1343 DPRINTF(DRAM, "Refresh due\n"); 1344 } 1345 1346 // let any scheduled read or write go ahead, after which it will 1347 // hand control back to this event loop 1348 if (refreshState == REF_DRAIN) { 1349 if (nextReqEvent.scheduled()) { 1350 // hand control over to the request loop until it is 1351 // evaluated next 1352 DPRINTF(DRAM, "Refresh awaiting draining\n"); 1353 1354 return; 1355 } else { 1356 refreshState = REF_PRE; 1357 } 1358 } 1359 1360 // at this point, ensure that all banks are precharged 1361 if (refreshState == REF_PRE) { 1362 // precharge any active bank if we are not already in the idle 1363 // state 1364 if (pwrState != PWR_IDLE) { 1365 DPRINTF(DRAM, "Precharging all\n"); 1366 for (int i = 0; i < ranksPerChannel; i++) { 1367 for (int j = 0; j < banksPerRank; j++) { 1368 if (banks[i][j].openRow != Bank::NO_ROW) { 1369 // respect both causality and any existing bank 1370 // constraints 1371 Tick pre_at = std::max(banks[i][j].preAllowedAt, 1372 curTick()); 1373 1374 prechargeBank(banks[i][j], pre_at); 1375 } 1376 } 1377 } 1378 } else { 1379 DPRINTF(DRAM, "All banks already precharged, starting refresh\n"); 1380 1381 // go ahead and kick the power state machine into gear if 1382 // we are already idle 1383 schedulePowerEvent(PWR_REF, curTick()); 1384 } 1385 1386 refreshState = REF_RUN; 1387 assert(numBanksActive == 0); 1388 1389 // wait for all banks to be precharged, at which point the 1390 // power state machine will transition to the idle state, and 1391 // automatically move to a refresh, at that point it will also 1392 // call this method to get the refresh event loop going again 1393 return; 1394 } 1395 1396 // last but not least we perform the actual refresh 1397 if (refreshState == REF_RUN) { 1398 // should never get here with any banks active 1399 assert(numBanksActive == 0); 1400 assert(pwrState == PWR_REF); 1401 1402 Tick ref_done_at = curTick() + tRFC; 1403 1404 for (int i = 0; i < ranksPerChannel; i++) { 1405 for (int j = 0; j < banksPerRank; j++) { 1406 banks[i][j].actAllowedAt = ref_done_at; 1407 } 1408 } 1409 1410 // make sure we did not wait so long that we cannot make up 1411 // for it 1412 if (refreshDueAt + tREFI < ref_done_at) { 1413 fatal("Refresh was delayed so long we cannot catch up\n"); 1414 } 1415 1416 // compensate for the delay in actually performing the refresh 1417 // when scheduling the next one 1418 schedule(refreshEvent, refreshDueAt + tREFI - tRP); 1419 1420 assert(!powerEvent.scheduled()); 1421 1422 // move to the idle power state once the refresh is done, this 1423 // will also move the refresh state machine to the refresh 1424 // idle state 1425 schedulePowerEvent(PWR_IDLE, ref_done_at); 1426 1427 DPRINTF(DRAMState, "Refresh done at %llu and next refresh at %llu\n", 1428 ref_done_at, refreshDueAt + tREFI); 1429 } 1430} 1431 1432void 1433DRAMCtrl::schedulePowerEvent(PowerState pwr_state, Tick tick) 1434{ 1435 // respect causality 1436 assert(tick >= curTick()); 1437 1438 if (!powerEvent.scheduled()) { 1439 DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n", 1440 tick, pwr_state); 1441 1442 // insert the new transition 1443 pwrStateTrans = pwr_state; 1444 1445 schedule(powerEvent, tick); 1446 } else { 1447 panic("Scheduled power event at %llu to state %d, " 1448 "with scheduled event at %llu to %d\n", tick, pwr_state, 1449 powerEvent.when(), pwrStateTrans); 1450 } 1451} 1452 1453void 1454DRAMCtrl::processPowerEvent() 1455{ 1456 // remember where we were, and for how long 1457 Tick duration = curTick() - pwrStateTick; 1458 PowerState prev_state = pwrState; 1459 1460 // update the accounting 1461 pwrStateTime[prev_state] += duration; 1462 1463 pwrState = pwrStateTrans; 1464 pwrStateTick = curTick(); 1465 1466 if (pwrState == PWR_IDLE) { 1467 DPRINTF(DRAMState, "All banks precharged\n"); 1468 1469 // if we were refreshing, make sure we start scheduling requests again 1470 if (prev_state == PWR_REF) { 1471 DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration); 1472 assert(pwrState == PWR_IDLE); 1473 1474 // kick things into action again 1475 refreshState = REF_IDLE; 1476 assert(!nextReqEvent.scheduled()); 1477 schedule(nextReqEvent, curTick()); 1478 } else { 1479 assert(prev_state == PWR_ACT); 1480 1481 // if we have a pending refresh, and are now moving to 1482 // the idle state, direclty transition to a refresh 1483 if (refreshState == REF_RUN) { 1484 // there should be nothing waiting at this point 1485 assert(!powerEvent.scheduled()); 1486 1487 // update the state in zero time and proceed below 1488 pwrState = PWR_REF; 1489 } 1490 } 1491 } 1492 1493 // we transition to the refresh state, let the refresh state 1494 // machine know of this state update and let it deal with the 1495 // scheduling of the next power state transition as well as the 1496 // following refresh 1497 if (pwrState == PWR_REF) { 1498 DPRINTF(DRAMState, "Refreshing\n"); 1499 // kick the refresh event loop into action again, and that 1500 // in turn will schedule a transition to the idle power 1501 // state once the refresh is done 1502 assert(refreshState == REF_RUN); 1503 processRefreshEvent(); 1504 } 1505} 1506 1507void 1508DRAMCtrl::regStats() 1509{ 1510 using namespace Stats; 1511 1512 AbstractMemory::regStats(); 1513 1514 readReqs 1515 .name(name() + ".readReqs") 1516 .desc("Number of read requests accepted"); 1517 1518 writeReqs 1519 .name(name() + ".writeReqs") 1520 .desc("Number of write requests accepted"); 1521 1522 readBursts 1523 .name(name() + ".readBursts") 1524 .desc("Number of DRAM read bursts, " 1525 "including those serviced by the write queue"); 1526 1527 writeBursts 1528 .name(name() + ".writeBursts") 1529 .desc("Number of DRAM write bursts, " 1530 "including those merged in the write queue"); 1531 1532 servicedByWrQ 1533 .name(name() + ".servicedByWrQ") 1534 .desc("Number of DRAM read bursts serviced by the write queue"); 1535 1536 mergedWrBursts 1537 .name(name() + ".mergedWrBursts") 1538 .desc("Number of DRAM write bursts merged with an existing one"); 1539 1540 neitherReadNorWrite 1541 .name(name() + ".neitherReadNorWriteReqs") 1542 .desc("Number of requests that are neither read nor write"); 1543 1544 perBankRdBursts 1545 .init(banksPerRank * ranksPerChannel) 1546 .name(name() + ".perBankRdBursts") 1547 .desc("Per bank write bursts"); 1548 1549 perBankWrBursts 1550 .init(banksPerRank * ranksPerChannel) 1551 .name(name() + ".perBankWrBursts") 1552 .desc("Per bank write bursts"); 1553 1554 avgRdQLen 1555 .name(name() + ".avgRdQLen") 1556 .desc("Average read queue length when enqueuing") 1557 .precision(2); 1558 1559 avgWrQLen 1560 .name(name() + ".avgWrQLen") 1561 .desc("Average write queue length when enqueuing") 1562 .precision(2); 1563 1564 totQLat 1565 .name(name() + ".totQLat") 1566 .desc("Total ticks spent queuing"); 1567 1568 totBusLat 1569 .name(name() + ".totBusLat") 1570 .desc("Total ticks spent in databus transfers"); 1571 1572 totMemAccLat 1573 .name(name() + ".totMemAccLat") 1574 .desc("Total ticks spent from burst creation until serviced " 1575 "by the DRAM"); 1576 1577 avgQLat 1578 .name(name() + ".avgQLat") 1579 .desc("Average queueing delay per DRAM burst") 1580 .precision(2); 1581 1582 avgQLat = totQLat / (readBursts - servicedByWrQ); 1583 1584 avgBusLat 1585 .name(name() + ".avgBusLat") 1586 .desc("Average bus latency per DRAM burst") 1587 .precision(2); 1588 1589 avgBusLat = totBusLat / (readBursts - servicedByWrQ); 1590 1591 avgMemAccLat 1592 .name(name() + ".avgMemAccLat") 1593 .desc("Average memory access latency per DRAM burst") 1594 .precision(2); 1595 1596 avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ); 1597 1598 numRdRetry 1599 .name(name() + ".numRdRetry") 1600 .desc("Number of times read queue was full causing retry"); 1601 1602 numWrRetry 1603 .name(name() + ".numWrRetry") 1604 .desc("Number of times write queue was full causing retry"); 1605 1606 readRowHits 1607 .name(name() + ".readRowHits") 1608 .desc("Number of row buffer hits during reads"); 1609 1610 writeRowHits 1611 .name(name() + ".writeRowHits") 1612 .desc("Number of row buffer hits during writes"); 1613 1614 readRowHitRate 1615 .name(name() + ".readRowHitRate") 1616 .desc("Row buffer hit rate for reads") 1617 .precision(2); 1618 1619 readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100; 1620 1621 writeRowHitRate 1622 .name(name() + ".writeRowHitRate") 1623 .desc("Row buffer hit rate for writes") 1624 .precision(2); 1625 1626 writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100; 1627 1628 readPktSize 1629 .init(ceilLog2(burstSize) + 1) 1630 .name(name() + ".readPktSize") 1631 .desc("Read request sizes (log2)"); 1632 1633 writePktSize 1634 .init(ceilLog2(burstSize) + 1) 1635 .name(name() + ".writePktSize") 1636 .desc("Write request sizes (log2)"); 1637 1638 rdQLenPdf 1639 .init(readBufferSize) 1640 .name(name() + ".rdQLenPdf") 1641 .desc("What read queue length does an incoming req see"); 1642 1643 wrQLenPdf 1644 .init(writeBufferSize) 1645 .name(name() + ".wrQLenPdf") 1646 .desc("What write queue length does an incoming req see"); 1647 1648 bytesPerActivate 1649 .init(maxAccessesPerRow) 1650 .name(name() + ".bytesPerActivate") 1651 .desc("Bytes accessed per row activation") 1652 .flags(nozero); 1653 1654 rdPerTurnAround 1655 .init(readBufferSize) 1656 .name(name() + ".rdPerTurnAround") 1657 .desc("Reads before turning the bus around for writes") 1658 .flags(nozero); 1659 1660 wrPerTurnAround 1661 .init(writeBufferSize) 1662 .name(name() + ".wrPerTurnAround") 1663 .desc("Writes before turning the bus around for reads") 1664 .flags(nozero); 1665 1666 bytesReadDRAM 1667 .name(name() + ".bytesReadDRAM") 1668 .desc("Total number of bytes read from DRAM"); 1669 1670 bytesReadWrQ 1671 .name(name() + ".bytesReadWrQ") 1672 .desc("Total number of bytes read from write queue"); 1673 1674 bytesWritten 1675 .name(name() + ".bytesWritten") 1676 .desc("Total number of bytes written to DRAM"); 1677 1678 bytesReadSys 1679 .name(name() + ".bytesReadSys") 1680 .desc("Total read bytes from the system interface side"); 1681 1682 bytesWrittenSys 1683 .name(name() + ".bytesWrittenSys") 1684 .desc("Total written bytes from the system interface side"); 1685 1686 avgRdBW 1687 .name(name() + ".avgRdBW") 1688 .desc("Average DRAM read bandwidth in MiByte/s") 1689 .precision(2); 1690 1691 avgRdBW = (bytesReadDRAM / 1000000) / simSeconds; 1692 1693 avgWrBW 1694 .name(name() + ".avgWrBW") 1695 .desc("Average achieved write bandwidth in MiByte/s") 1696 .precision(2); 1697 1698 avgWrBW = (bytesWritten / 1000000) / simSeconds; 1699 1700 avgRdBWSys 1701 .name(name() + ".avgRdBWSys") 1702 .desc("Average system read bandwidth in MiByte/s") 1703 .precision(2); 1704 1705 avgRdBWSys = (bytesReadSys / 1000000) / simSeconds; 1706 1707 avgWrBWSys 1708 .name(name() + ".avgWrBWSys") 1709 .desc("Average system write bandwidth in MiByte/s") 1710 .precision(2); 1711 1712 avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds; 1713 1714 peakBW 1715 .name(name() + ".peakBW") 1716 .desc("Theoretical peak bandwidth in MiByte/s") 1717 .precision(2); 1718 1719 peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000; 1720 1721 busUtil 1722 .name(name() + ".busUtil") 1723 .desc("Data bus utilization in percentage") 1724 .precision(2); 1725 1726 busUtil = (avgRdBW + avgWrBW) / peakBW * 100; 1727 1728 totGap 1729 .name(name() + ".totGap") 1730 .desc("Total gap between requests"); 1731 1732 avgGap 1733 .name(name() + ".avgGap") 1734 .desc("Average gap between requests") 1735 .precision(2); 1736 1737 avgGap = totGap / (readReqs + writeReqs); 1738 1739 // Stats for DRAM Power calculation based on Micron datasheet 1740 busUtilRead 1741 .name(name() + ".busUtilRead") 1742 .desc("Data bus utilization in percentage for reads") 1743 .precision(2); 1744 1745 busUtilRead = avgRdBW / peakBW * 100; 1746 1747 busUtilWrite 1748 .name(name() + ".busUtilWrite") 1749 .desc("Data bus utilization in percentage for writes") 1750 .precision(2); 1751 1752 busUtilWrite = avgWrBW / peakBW * 100; 1753 1754 pageHitRate 1755 .name(name() + ".pageHitRate") 1756 .desc("Row buffer hit rate, read and write combined") 1757 .precision(2); 1758 1759 pageHitRate = (writeRowHits + readRowHits) / 1760 (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100; 1761 1762 pwrStateTime 1763 .init(5) 1764 .name(name() + ".memoryStateTime") 1765 .desc("Time in different power states"); 1766 pwrStateTime.subname(0, "IDLE"); 1767 pwrStateTime.subname(1, "REF"); 1768 pwrStateTime.subname(2, "PRE_PDN"); 1769 pwrStateTime.subname(3, "ACT"); 1770 pwrStateTime.subname(4, "ACT_PDN"); 1771} 1772 1773void 1774DRAMCtrl::recvFunctional(PacketPtr pkt) 1775{ 1776 // rely on the abstract memory 1777 functionalAccess(pkt); 1778} 1779 1780BaseSlavePort& 1781DRAMCtrl::getSlavePort(const string &if_name, PortID idx) 1782{ 1783 if (if_name != "port") { 1784 return MemObject::getSlavePort(if_name, idx); 1785 } else { 1786 return port; 1787 } 1788} 1789 1790unsigned int 1791DRAMCtrl::drain(DrainManager *dm) 1792{ 1793 unsigned int count = port.drain(dm); 1794 1795 // if there is anything in any of our internal queues, keep track 1796 // of that as well 1797 if (!(writeQueue.empty() && readQueue.empty() && 1798 respQueue.empty())) { 1799 DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d," 1800 " resp: %d\n", writeQueue.size(), readQueue.size(), 1801 respQueue.size()); 1802 ++count; 1803 drainManager = dm; 1804 1805 // the only part that is not drained automatically over time 1806 // is the write queue, thus kick things into action if needed 1807 if (!writeQueue.empty() && !nextReqEvent.scheduled()) { 1808 schedule(nextReqEvent, curTick()); 1809 } 1810 } 1811 1812 if (count) 1813 setDrainState(Drainable::Draining); 1814 else 1815 setDrainState(Drainable::Drained); 1816 return count; 1817} 1818 1819DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory) 1820 : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this), 1821 memory(_memory) 1822{ } 1823 1824AddrRangeList 1825DRAMCtrl::MemoryPort::getAddrRanges() const 1826{ 1827 AddrRangeList ranges; 1828 ranges.push_back(memory.getAddrRange()); 1829 return ranges; 1830} 1831 1832void 1833DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt) 1834{ 1835 pkt->pushLabel(memory.name()); 1836 1837 if (!queue.checkFunctional(pkt)) { 1838 // Default implementation of SimpleTimingPort::recvFunctional() 1839 // calls recvAtomic() and throws away the latency; we can save a 1840 // little here by just not calculating the latency. 1841 memory.recvFunctional(pkt); 1842 } 1843 1844 pkt->popLabel(); 1845} 1846 1847Tick 1848DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt) 1849{ 1850 return memory.recvAtomic(pkt); 1851} 1852 1853bool 1854DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt) 1855{ 1856 // pass it to the memory controller 1857 return memory.recvTimingReq(pkt); 1858} 1859 1860DRAMCtrl* 1861DRAMCtrlParams::create() 1862{ 1863 return new DRAMCtrl(this); 1864} 1865