dram_ctrl.cc revision 10211:e084db2b1527
1/* 2 * Copyright (c) 2010-2014 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2013 Amin Farmahini-Farahani 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Andreas Hansson 41 * Ani Udipi 42 * Neha Agarwal 43 */ 44 45#include "base/bitfield.hh" 46#include "base/trace.hh" 47#include "debug/DRAM.hh" 48#include "debug/DRAMState.hh" 49#include "debug/Drain.hh" 50#include "mem/dram_ctrl.hh" 51#include "sim/system.hh" 52 53using namespace std; 54 55DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) : 56 AbstractMemory(p), 57 port(name() + ".port", *this), 58 retryRdReq(false), retryWrReq(false), 59 busState(READ), 60 nextReqEvent(this), respondEvent(this), activateEvent(this), 61 prechargeEvent(this), refreshEvent(this), powerEvent(this), 62 drainManager(NULL), 63 deviceBusWidth(p->device_bus_width), burstLength(p->burst_length), 64 deviceRowBufferSize(p->device_rowbuffer_size), 65 devicesPerRank(p->devices_per_rank), 66 burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8), 67 rowBufferSize(devicesPerRank * deviceRowBufferSize), 68 columnsPerRowBuffer(rowBufferSize / burstSize), 69 ranksPerChannel(p->ranks_per_channel), 70 banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0), 71 readBufferSize(p->read_buffer_size), 72 writeBufferSize(p->write_buffer_size), 73 writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0), 74 writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0), 75 minWritesPerSwitch(p->min_writes_per_switch), 76 writesThisTime(0), readsThisTime(0), 77 tWTR(p->tWTR), tRTW(p->tRTW), tBURST(p->tBURST), 78 tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS), tWR(p->tWR), 79 tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD), 80 tXAW(p->tXAW), activationLimit(p->activation_limit), 81 memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping), 82 pageMgmt(p->page_policy), 83 maxAccessesPerRow(p->max_accesses_per_row), 84 frontendLatency(p->static_frontend_latency), 85 backendLatency(p->static_backend_latency), 86 busBusyUntil(0), refreshDueAt(0), refreshState(REF_IDLE), 87 pwrStateTrans(PWR_IDLE), pwrState(PWR_IDLE), prevArrival(0), 88 nextReqTime(0), pwrStateTick(0), numBanksActive(0) 89{ 90 // create the bank states based on the dimensions of the ranks and 91 // banks 92 banks.resize(ranksPerChannel); 93 actTicks.resize(ranksPerChannel); 94 for (size_t c = 0; c < ranksPerChannel; ++c) { 95 banks[c].resize(banksPerRank); 96 actTicks[c].resize(activationLimit, 0); 97 } 98 99 // perform a basic check of the write thresholds 100 if (p->write_low_thresh_perc >= p->write_high_thresh_perc) 101 fatal("Write buffer low threshold %d must be smaller than the " 102 "high threshold %d\n", p->write_low_thresh_perc, 103 p->write_high_thresh_perc); 104 105 // determine the rows per bank by looking at the total capacity 106 uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size()); 107 108 DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity, 109 AbstractMemory::size()); 110 111 DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n", 112 rowBufferSize, columnsPerRowBuffer); 113 114 rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel); 115 116 if (range.interleaved()) { 117 if (channels != range.stripes()) 118 fatal("%s has %d interleaved address stripes but %d channel(s)\n", 119 name(), range.stripes(), channels); 120 121 if (addrMapping == Enums::RoRaBaChCo) { 122 if (rowBufferSize != range.granularity()) { 123 fatal("Interleaving of %s doesn't match RoRaBaChCo " 124 "address map\n", name()); 125 } 126 } else if (addrMapping == Enums::RoRaBaCoCh) { 127 if (system()->cacheLineSize() != range.granularity()) { 128 fatal("Interleaving of %s doesn't match RoRaBaCoCh " 129 "address map\n", name()); 130 } 131 } else if (addrMapping == Enums::RoCoRaBaCh) { 132 if (system()->cacheLineSize() != range.granularity()) 133 fatal("Interleaving of %s doesn't match RoCoRaBaCh " 134 "address map\n", name()); 135 } 136 } 137 138 // some basic sanity checks 139 if (tREFI <= tRP || tREFI <= tRFC) { 140 fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n", 141 tREFI, tRP, tRFC); 142 } 143} 144 145void 146DRAMCtrl::init() 147{ 148 if (!port.isConnected()) { 149 fatal("DRAMCtrl %s is unconnected!\n", name()); 150 } else { 151 port.sendRangeChange(); 152 } 153} 154 155void 156DRAMCtrl::startup() 157{ 158 // update the start tick for the precharge accounting to the 159 // current tick 160 pwrStateTick = curTick(); 161 162 // shift the bus busy time sufficiently far ahead that we never 163 // have to worry about negative values when computing the time for 164 // the next request, this will add an insignificant bubble at the 165 // start of simulation 166 busBusyUntil = curTick() + tRP + tRCD + tCL; 167 168 // print the configuration of the controller 169 printParams(); 170 171 // kick off the refresh, and give ourselves enough time to 172 // precharge 173 schedule(refreshEvent, curTick() + tREFI - tRP); 174} 175 176Tick 177DRAMCtrl::recvAtomic(PacketPtr pkt) 178{ 179 DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr()); 180 181 // do the actual memory access and turn the packet into a response 182 access(pkt); 183 184 Tick latency = 0; 185 if (!pkt->memInhibitAsserted() && pkt->hasData()) { 186 // this value is not supposed to be accurate, just enough to 187 // keep things going, mimic a closed page 188 latency = tRP + tRCD + tCL; 189 } 190 return latency; 191} 192 193bool 194DRAMCtrl::readQueueFull(unsigned int neededEntries) const 195{ 196 DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n", 197 readBufferSize, readQueue.size() + respQueue.size(), 198 neededEntries); 199 200 return 201 (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize; 202} 203 204bool 205DRAMCtrl::writeQueueFull(unsigned int neededEntries) const 206{ 207 DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n", 208 writeBufferSize, writeQueue.size(), neededEntries); 209 return (writeQueue.size() + neededEntries) > writeBufferSize; 210} 211 212DRAMCtrl::DRAMPacket* 213DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size, 214 bool isRead) 215{ 216 // decode the address based on the address mapping scheme, with 217 // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and 218 // channel, respectively 219 uint8_t rank; 220 uint8_t bank; 221 uint16_t row; 222 223 // truncate the address to the access granularity 224 Addr addr = dramPktAddr / burstSize; 225 226 // we have removed the lowest order address bits that denote the 227 // position within the column 228 if (addrMapping == Enums::RoRaBaChCo) { 229 // the lowest order bits denote the column to ensure that 230 // sequential cache lines occupy the same row 231 addr = addr / columnsPerRowBuffer; 232 233 // take out the channel part of the address 234 addr = addr / channels; 235 236 // after the channel bits, get the bank bits to interleave 237 // over the banks 238 bank = addr % banksPerRank; 239 addr = addr / banksPerRank; 240 241 // after the bank, we get the rank bits which thus interleaves 242 // over the ranks 243 rank = addr % ranksPerChannel; 244 addr = addr / ranksPerChannel; 245 246 // lastly, get the row bits 247 row = addr % rowsPerBank; 248 addr = addr / rowsPerBank; 249 } else if (addrMapping == Enums::RoRaBaCoCh) { 250 // take out the channel part of the address 251 addr = addr / channels; 252 253 // next, the column 254 addr = addr / columnsPerRowBuffer; 255 256 // after the column bits, we get the bank bits to interleave 257 // over the banks 258 bank = addr % banksPerRank; 259 addr = addr / banksPerRank; 260 261 // after the bank, we get the rank bits which thus interleaves 262 // over the ranks 263 rank = addr % ranksPerChannel; 264 addr = addr / ranksPerChannel; 265 266 // lastly, get the row bits 267 row = addr % rowsPerBank; 268 addr = addr / rowsPerBank; 269 } else if (addrMapping == Enums::RoCoRaBaCh) { 270 // optimise for closed page mode and utilise maximum 271 // parallelism of the DRAM (at the cost of power) 272 273 // take out the channel part of the address, not that this has 274 // to match with how accesses are interleaved between the 275 // controllers in the address mapping 276 addr = addr / channels; 277 278 // start with the bank bits, as this provides the maximum 279 // opportunity for parallelism between requests 280 bank = addr % banksPerRank; 281 addr = addr / banksPerRank; 282 283 // next get the rank bits 284 rank = addr % ranksPerChannel; 285 addr = addr / ranksPerChannel; 286 287 // next the column bits which we do not need to keep track of 288 // and simply skip past 289 addr = addr / columnsPerRowBuffer; 290 291 // lastly, get the row bits 292 row = addr % rowsPerBank; 293 addr = addr / rowsPerBank; 294 } else 295 panic("Unknown address mapping policy chosen!"); 296 297 assert(rank < ranksPerChannel); 298 assert(bank < banksPerRank); 299 assert(row < rowsPerBank); 300 301 DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n", 302 dramPktAddr, rank, bank, row); 303 304 // create the corresponding DRAM packet with the entry time and 305 // ready time set to the current tick, the latter will be updated 306 // later 307 uint16_t bank_id = banksPerRank * rank + bank; 308 return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr, 309 size, banks[rank][bank]); 310} 311 312void 313DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount) 314{ 315 // only add to the read queue here. whenever the request is 316 // eventually done, set the readyTime, and call schedule() 317 assert(!pkt->isWrite()); 318 319 assert(pktCount != 0); 320 321 // if the request size is larger than burst size, the pkt is split into 322 // multiple DRAM packets 323 // Note if the pkt starting address is not aligened to burst size, the 324 // address of first DRAM packet is kept unaliged. Subsequent DRAM packets 325 // are aligned to burst size boundaries. This is to ensure we accurately 326 // check read packets against packets in write queue. 327 Addr addr = pkt->getAddr(); 328 unsigned pktsServicedByWrQ = 0; 329 BurstHelper* burst_helper = NULL; 330 for (int cnt = 0; cnt < pktCount; ++cnt) { 331 unsigned size = std::min((addr | (burstSize - 1)) + 1, 332 pkt->getAddr() + pkt->getSize()) - addr; 333 readPktSize[ceilLog2(size)]++; 334 readBursts++; 335 336 // First check write buffer to see if the data is already at 337 // the controller 338 bool foundInWrQ = false; 339 for (auto i = writeQueue.begin(); i != writeQueue.end(); ++i) { 340 // check if the read is subsumed in the write entry we are 341 // looking at 342 if ((*i)->addr <= addr && 343 (addr + size) <= ((*i)->addr + (*i)->size)) { 344 foundInWrQ = true; 345 servicedByWrQ++; 346 pktsServicedByWrQ++; 347 DPRINTF(DRAM, "Read to addr %lld with size %d serviced by " 348 "write queue\n", addr, size); 349 bytesReadWrQ += burstSize; 350 break; 351 } 352 } 353 354 // If not found in the write q, make a DRAM packet and 355 // push it onto the read queue 356 if (!foundInWrQ) { 357 358 // Make the burst helper for split packets 359 if (pktCount > 1 && burst_helper == NULL) { 360 DPRINTF(DRAM, "Read to addr %lld translates to %d " 361 "dram requests\n", pkt->getAddr(), pktCount); 362 burst_helper = new BurstHelper(pktCount); 363 } 364 365 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true); 366 dram_pkt->burstHelper = burst_helper; 367 368 assert(!readQueueFull(1)); 369 rdQLenPdf[readQueue.size() + respQueue.size()]++; 370 371 DPRINTF(DRAM, "Adding to read queue\n"); 372 373 readQueue.push_back(dram_pkt); 374 375 // Update stats 376 avgRdQLen = readQueue.size() + respQueue.size(); 377 } 378 379 // Starting address of next dram pkt (aligend to burstSize boundary) 380 addr = (addr | (burstSize - 1)) + 1; 381 } 382 383 // If all packets are serviced by write queue, we send the repsonse back 384 if (pktsServicedByWrQ == pktCount) { 385 accessAndRespond(pkt, frontendLatency); 386 return; 387 } 388 389 // Update how many split packets are serviced by write queue 390 if (burst_helper != NULL) 391 burst_helper->burstsServiced = pktsServicedByWrQ; 392 393 // If we are not already scheduled to get a request out of the 394 // queue, do so now 395 if (!nextReqEvent.scheduled()) { 396 DPRINTF(DRAM, "Request scheduled immediately\n"); 397 schedule(nextReqEvent, curTick()); 398 } 399} 400 401void 402DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount) 403{ 404 // only add to the write queue here. whenever the request is 405 // eventually done, set the readyTime, and call schedule() 406 assert(pkt->isWrite()); 407 408 // if the request size is larger than burst size, the pkt is split into 409 // multiple DRAM packets 410 Addr addr = pkt->getAddr(); 411 for (int cnt = 0; cnt < pktCount; ++cnt) { 412 unsigned size = std::min((addr | (burstSize - 1)) + 1, 413 pkt->getAddr() + pkt->getSize()) - addr; 414 writePktSize[ceilLog2(size)]++; 415 writeBursts++; 416 417 // see if we can merge with an existing item in the write 418 // queue and keep track of whether we have merged or not so we 419 // can stop at that point and also avoid enqueueing a new 420 // request 421 bool merged = false; 422 auto w = writeQueue.begin(); 423 424 while(!merged && w != writeQueue.end()) { 425 // either of the two could be first, if they are the same 426 // it does not matter which way we go 427 if ((*w)->addr >= addr) { 428 // the existing one starts after the new one, figure 429 // out where the new one ends with respect to the 430 // existing one 431 if ((addr + size) >= ((*w)->addr + (*w)->size)) { 432 // check if the existing one is completely 433 // subsumed in the new one 434 DPRINTF(DRAM, "Merging write covering existing burst\n"); 435 merged = true; 436 // update both the address and the size 437 (*w)->addr = addr; 438 (*w)->size = size; 439 } else if ((addr + size) >= (*w)->addr && 440 ((*w)->addr + (*w)->size - addr) <= burstSize) { 441 // the new one is just before or partially 442 // overlapping with the existing one, and together 443 // they fit within a burst 444 DPRINTF(DRAM, "Merging write before existing burst\n"); 445 merged = true; 446 // the existing queue item needs to be adjusted with 447 // respect to both address and size 448 (*w)->size = (*w)->addr + (*w)->size - addr; 449 (*w)->addr = addr; 450 } 451 } else { 452 // the new one starts after the current one, figure 453 // out where the existing one ends with respect to the 454 // new one 455 if (((*w)->addr + (*w)->size) >= (addr + size)) { 456 // check if the new one is completely subsumed in the 457 // existing one 458 DPRINTF(DRAM, "Merging write into existing burst\n"); 459 merged = true; 460 // no adjustments necessary 461 } else if (((*w)->addr + (*w)->size) >= addr && 462 (addr + size - (*w)->addr) <= burstSize) { 463 // the existing one is just before or partially 464 // overlapping with the new one, and together 465 // they fit within a burst 466 DPRINTF(DRAM, "Merging write after existing burst\n"); 467 merged = true; 468 // the address is right, and only the size has 469 // to be adjusted 470 (*w)->size = addr + size - (*w)->addr; 471 } 472 } 473 ++w; 474 } 475 476 // if the item was not merged we need to create a new write 477 // and enqueue it 478 if (!merged) { 479 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false); 480 481 assert(writeQueue.size() < writeBufferSize); 482 wrQLenPdf[writeQueue.size()]++; 483 484 DPRINTF(DRAM, "Adding to write queue\n"); 485 486 writeQueue.push_back(dram_pkt); 487 488 // Update stats 489 avgWrQLen = writeQueue.size(); 490 } else { 491 // keep track of the fact that this burst effectively 492 // disappeared as it was merged with an existing one 493 mergedWrBursts++; 494 } 495 496 // Starting address of next dram pkt (aligend to burstSize boundary) 497 addr = (addr | (burstSize - 1)) + 1; 498 } 499 500 // we do not wait for the writes to be send to the actual memory, 501 // but instead take responsibility for the consistency here and 502 // snoop the write queue for any upcoming reads 503 // @todo, if a pkt size is larger than burst size, we might need a 504 // different front end latency 505 accessAndRespond(pkt, frontendLatency); 506 507 // If we are not already scheduled to get a request out of the 508 // queue, do so now 509 if (!nextReqEvent.scheduled()) { 510 DPRINTF(DRAM, "Request scheduled immediately\n"); 511 schedule(nextReqEvent, curTick()); 512 } 513} 514 515void 516DRAMCtrl::printParams() const 517{ 518 // Sanity check print of important parameters 519 DPRINTF(DRAM, 520 "Memory controller %s physical organization\n" \ 521 "Number of devices per rank %d\n" \ 522 "Device bus width (in bits) %d\n" \ 523 "DRAM data bus burst (bytes) %d\n" \ 524 "Row buffer size (bytes) %d\n" \ 525 "Columns per row buffer %d\n" \ 526 "Rows per bank %d\n" \ 527 "Banks per rank %d\n" \ 528 "Ranks per channel %d\n" \ 529 "Total mem capacity (bytes) %u\n", 530 name(), devicesPerRank, deviceBusWidth, burstSize, rowBufferSize, 531 columnsPerRowBuffer, rowsPerBank, banksPerRank, ranksPerChannel, 532 rowBufferSize * rowsPerBank * banksPerRank * ranksPerChannel); 533 534 string scheduler = memSchedPolicy == Enums::fcfs ? "FCFS" : "FR-FCFS"; 535 string address_mapping = addrMapping == Enums::RoRaBaChCo ? "RoRaBaChCo" : 536 (addrMapping == Enums::RoRaBaCoCh ? "RoRaBaCoCh" : "RoCoRaBaCh"); 537 string page_policy = pageMgmt == Enums::open ? "OPEN" : 538 (pageMgmt == Enums::open_adaptive ? "OPEN (adaptive)" : 539 (pageMgmt == Enums::close_adaptive ? "CLOSE (adaptive)" : "CLOSE")); 540 541 DPRINTF(DRAM, 542 "Memory controller %s characteristics\n" \ 543 "Read buffer size %d\n" \ 544 "Write buffer size %d\n" \ 545 "Write high thresh %d\n" \ 546 "Write low thresh %d\n" \ 547 "Scheduler %s\n" \ 548 "Address mapping %s\n" \ 549 "Page policy %s\n", 550 name(), readBufferSize, writeBufferSize, writeHighThreshold, 551 writeLowThreshold, scheduler, address_mapping, page_policy); 552 553 DPRINTF(DRAM, "Memory controller %s timing specs\n" \ 554 "tRCD %d ticks\n" \ 555 "tCL %d ticks\n" \ 556 "tRP %d ticks\n" \ 557 "tBURST %d ticks\n" \ 558 "tRFC %d ticks\n" \ 559 "tREFI %d ticks\n" \ 560 "tWTR %d ticks\n" \ 561 "tRTW %d ticks\n" \ 562 "tWR %d ticks\n" \ 563 "tXAW (%d) %d ticks\n", 564 name(), tRCD, tCL, tRP, tBURST, tRFC, tREFI, tWTR, 565 tRTW, tWR, activationLimit, tXAW); 566} 567 568void 569DRAMCtrl::printQs() const { 570 DPRINTF(DRAM, "===READ QUEUE===\n\n"); 571 for (auto i = readQueue.begin() ; i != readQueue.end() ; ++i) { 572 DPRINTF(DRAM, "Read %lu\n", (*i)->addr); 573 } 574 DPRINTF(DRAM, "\n===RESP QUEUE===\n\n"); 575 for (auto i = respQueue.begin() ; i != respQueue.end() ; ++i) { 576 DPRINTF(DRAM, "Response %lu\n", (*i)->addr); 577 } 578 DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n"); 579 for (auto i = writeQueue.begin() ; i != writeQueue.end() ; ++i) { 580 DPRINTF(DRAM, "Write %lu\n", (*i)->addr); 581 } 582} 583 584bool 585DRAMCtrl::recvTimingReq(PacketPtr pkt) 586{ 587 /// @todo temporary hack to deal with memory corruption issues until 588 /// 4-phase transactions are complete 589 for (int x = 0; x < pendingDelete.size(); x++) 590 delete pendingDelete[x]; 591 pendingDelete.clear(); 592 593 // This is where we enter from the outside world 594 DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n", 595 pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 596 597 // simply drop inhibited packets for now 598 if (pkt->memInhibitAsserted()) { 599 DPRINTF(DRAM, "Inhibited packet -- Dropping it now\n"); 600 pendingDelete.push_back(pkt); 601 return true; 602 } 603 604 // Calc avg gap between requests 605 if (prevArrival != 0) { 606 totGap += curTick() - prevArrival; 607 } 608 prevArrival = curTick(); 609 610 611 // Find out how many dram packets a pkt translates to 612 // If the burst size is equal or larger than the pkt size, then a pkt 613 // translates to only one dram packet. Otherwise, a pkt translates to 614 // multiple dram packets 615 unsigned size = pkt->getSize(); 616 unsigned offset = pkt->getAddr() & (burstSize - 1); 617 unsigned int dram_pkt_count = divCeil(offset + size, burstSize); 618 619 // check local buffers and do not accept if full 620 if (pkt->isRead()) { 621 assert(size != 0); 622 if (readQueueFull(dram_pkt_count)) { 623 DPRINTF(DRAM, "Read queue full, not accepting\n"); 624 // remember that we have to retry this port 625 retryRdReq = true; 626 numRdRetry++; 627 return false; 628 } else { 629 addToReadQueue(pkt, dram_pkt_count); 630 readReqs++; 631 bytesReadSys += size; 632 } 633 } else if (pkt->isWrite()) { 634 assert(size != 0); 635 if (writeQueueFull(dram_pkt_count)) { 636 DPRINTF(DRAM, "Write queue full, not accepting\n"); 637 // remember that we have to retry this port 638 retryWrReq = true; 639 numWrRetry++; 640 return false; 641 } else { 642 addToWriteQueue(pkt, dram_pkt_count); 643 writeReqs++; 644 bytesWrittenSys += size; 645 } 646 } else { 647 DPRINTF(DRAM,"Neither read nor write, ignore timing\n"); 648 neitherReadNorWrite++; 649 accessAndRespond(pkt, 1); 650 } 651 652 return true; 653} 654 655void 656DRAMCtrl::processRespondEvent() 657{ 658 DPRINTF(DRAM, 659 "processRespondEvent(): Some req has reached its readyTime\n"); 660 661 DRAMPacket* dram_pkt = respQueue.front(); 662 663 if (dram_pkt->burstHelper) { 664 // it is a split packet 665 dram_pkt->burstHelper->burstsServiced++; 666 if (dram_pkt->burstHelper->burstsServiced == 667 dram_pkt->burstHelper->burstCount) { 668 // we have now serviced all children packets of a system packet 669 // so we can now respond to the requester 670 // @todo we probably want to have a different front end and back 671 // end latency for split packets 672 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency); 673 delete dram_pkt->burstHelper; 674 dram_pkt->burstHelper = NULL; 675 } 676 } else { 677 // it is not a split packet 678 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency); 679 } 680 681 delete respQueue.front(); 682 respQueue.pop_front(); 683 684 if (!respQueue.empty()) { 685 assert(respQueue.front()->readyTime >= curTick()); 686 assert(!respondEvent.scheduled()); 687 schedule(respondEvent, respQueue.front()->readyTime); 688 } else { 689 // if there is nothing left in any queue, signal a drain 690 if (writeQueue.empty() && readQueue.empty() && 691 drainManager) { 692 drainManager->signalDrainDone(); 693 drainManager = NULL; 694 } 695 } 696 697 // We have made a location in the queue available at this point, 698 // so if there is a read that was forced to wait, retry now 699 if (retryRdReq) { 700 retryRdReq = false; 701 port.sendRetry(); 702 } 703} 704 705void 706DRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue) 707{ 708 // This method does the arbitration between requests. The chosen 709 // packet is simply moved to the head of the queue. The other 710 // methods know that this is the place to look. For example, with 711 // FCFS, this method does nothing 712 assert(!queue.empty()); 713 714 if (queue.size() == 1) { 715 DPRINTF(DRAM, "Single request, nothing to do\n"); 716 return; 717 } 718 719 if (memSchedPolicy == Enums::fcfs) { 720 // Do nothing, since the correct request is already head 721 } else if (memSchedPolicy == Enums::frfcfs) { 722 reorderQueue(queue); 723 } else 724 panic("No scheduling policy chosen\n"); 725} 726 727void 728DRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue) 729{ 730 // Only determine this when needed 731 uint64_t earliest_banks = 0; 732 733 // Search for row hits first, if no row hit is found then schedule the 734 // packet to one of the earliest banks available 735 bool found_earliest_pkt = false; 736 auto selected_pkt_it = queue.begin(); 737 738 for (auto i = queue.begin(); i != queue.end() ; ++i) { 739 DRAMPacket* dram_pkt = *i; 740 const Bank& bank = dram_pkt->bankRef; 741 // Check if it is a row hit 742 if (bank.openRow == dram_pkt->row) { 743 // FCFS within the hits 744 DPRINTF(DRAM, "Row buffer hit\n"); 745 selected_pkt_it = i; 746 break; 747 } else if (!found_earliest_pkt) { 748 // No row hit, go for first ready 749 if (earliest_banks == 0) 750 earliest_banks = minBankActAt(queue); 751 752 // simplistic approximation of when the bank can issue an 753 // activate, this is calculated in minBankActAt and could 754 // be cached 755 Tick act_at = bank.openRow == Bank::NO_ROW ? 756 bank.actAllowedAt : 757 std::max(bank.preAllowedAt, curTick()) + tRP; 758 759 // Bank is ready or is the first available bank 760 if (act_at <= curTick() || 761 bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) { 762 // Remember the packet to be scheduled to one of the earliest 763 // banks available, FCFS amongst the earliest banks 764 selected_pkt_it = i; 765 found_earliest_pkt = true; 766 } 767 } 768 } 769 770 DRAMPacket* selected_pkt = *selected_pkt_it; 771 queue.erase(selected_pkt_it); 772 queue.push_front(selected_pkt); 773} 774 775void 776DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency) 777{ 778 DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr()); 779 780 bool needsResponse = pkt->needsResponse(); 781 // do the actual memory access which also turns the packet into a 782 // response 783 access(pkt); 784 785 // turn packet around to go back to requester if response expected 786 if (needsResponse) { 787 // access already turned the packet into a response 788 assert(pkt->isResponse()); 789 790 // @todo someone should pay for this 791 pkt->busFirstWordDelay = pkt->busLastWordDelay = 0; 792 793 // queue the packet in the response queue to be sent out after 794 // the static latency has passed 795 port.schedTimingResp(pkt, curTick() + static_latency); 796 } else { 797 // @todo the packet is going to be deleted, and the DRAMPacket 798 // is still having a pointer to it 799 pendingDelete.push_back(pkt); 800 } 801 802 DPRINTF(DRAM, "Done\n"); 803 804 return; 805} 806 807void 808DRAMCtrl::activateBank(Tick act_tick, uint8_t rank, uint8_t bank, 809 uint16_t row, Bank& bank_ref) 810{ 811 assert(0 <= rank && rank < ranksPerChannel); 812 assert(actTicks[rank].size() == activationLimit); 813 814 DPRINTF(DRAM, "Activate at tick %d\n", act_tick); 815 816 // update the open row 817 assert(bank_ref.openRow == Bank::NO_ROW); 818 bank_ref.openRow = row; 819 820 // start counting anew, this covers both the case when we 821 // auto-precharged, and when this access is forced to 822 // precharge 823 bank_ref.bytesAccessed = 0; 824 bank_ref.rowAccesses = 0; 825 826 ++numBanksActive; 827 assert(numBanksActive <= banksPerRank * ranksPerChannel); 828 829 DPRINTF(DRAM, "Activate bank at tick %lld, now got %d active\n", 830 act_tick, numBanksActive); 831 832 // The next access has to respect tRAS for this bank 833 bank_ref.preAllowedAt = act_tick + tRAS; 834 835 // Respect the row-to-column command delay 836 bank_ref.colAllowedAt = act_tick + tRCD; 837 838 // start by enforcing tRRD 839 for(int i = 0; i < banksPerRank; i++) { 840 // next activate to any bank in this rank must not happen 841 // before tRRD 842 banks[rank][i].actAllowedAt = std::max(act_tick + tRRD, 843 banks[rank][i].actAllowedAt); 844 } 845 846 // next, we deal with tXAW, if the activation limit is disabled 847 // then we are done 848 if (actTicks[rank].empty()) 849 return; 850 851 // sanity check 852 if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) { 853 panic("Got %d activates in window %d (%llu - %llu) which is smaller " 854 "than %llu\n", activationLimit, act_tick - actTicks[rank].back(), 855 act_tick, actTicks[rank].back(), tXAW); 856 } 857 858 // shift the times used for the book keeping, the last element 859 // (highest index) is the oldest one and hence the lowest value 860 actTicks[rank].pop_back(); 861 862 // record an new activation (in the future) 863 actTicks[rank].push_front(act_tick); 864 865 // cannot activate more than X times in time window tXAW, push the 866 // next one (the X + 1'st activate) to be tXAW away from the 867 // oldest in our window of X 868 if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) { 869 DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate no earlier " 870 "than %llu\n", activationLimit, actTicks[rank].back() + tXAW); 871 for(int j = 0; j < banksPerRank; j++) 872 // next activate must not happen before end of window 873 banks[rank][j].actAllowedAt = 874 std::max(actTicks[rank].back() + tXAW, 875 banks[rank][j].actAllowedAt); 876 } 877 878 // at the point when this activate takes place, make sure we 879 // transition to the active power state 880 if (!activateEvent.scheduled()) 881 schedule(activateEvent, act_tick); 882 else if (activateEvent.when() > act_tick) 883 // move it sooner in time 884 reschedule(activateEvent, act_tick); 885} 886 887void 888DRAMCtrl::processActivateEvent() 889{ 890 // we should transition to the active state as soon as any bank is active 891 if (pwrState != PWR_ACT) 892 // note that at this point numBanksActive could be back at 893 // zero again due to a precharge scheduled in the future 894 schedulePowerEvent(PWR_ACT, curTick()); 895} 896 897void 898DRAMCtrl::prechargeBank(Bank& bank, Tick pre_at) 899{ 900 // make sure the bank has an open row 901 assert(bank.openRow != Bank::NO_ROW); 902 903 // sample the bytes per activate here since we are closing 904 // the page 905 bytesPerActivate.sample(bank.bytesAccessed); 906 907 bank.openRow = Bank::NO_ROW; 908 909 Tick pre_done_at = pre_at + tRP; 910 911 bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at); 912 913 assert(numBanksActive != 0); 914 --numBanksActive; 915 916 DPRINTF(DRAM, "Precharging bank at tick %lld, now got %d active\n", 917 pre_at, numBanksActive); 918 919 // if we look at the current number of active banks we might be 920 // tempted to think the DRAM is now idle, however this can be 921 // undone by an activate that is scheduled to happen before we 922 // would have reached the idle state, so schedule an event and 923 // rather check once we actually make it to the point in time when 924 // the (last) precharge takes place 925 if (!prechargeEvent.scheduled()) 926 schedule(prechargeEvent, pre_done_at); 927 else if (prechargeEvent.when() < pre_done_at) 928 reschedule(prechargeEvent, pre_done_at); 929} 930 931void 932DRAMCtrl::processPrechargeEvent() 933{ 934 // if we reached zero, then special conditions apply as we track 935 // if all banks are precharged for the power models 936 if (numBanksActive == 0) { 937 // we should transition to the idle state when the last bank 938 // is precharged 939 schedulePowerEvent(PWR_IDLE, curTick()); 940 } 941} 942 943void 944DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt) 945{ 946 DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n", 947 dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row); 948 949 // get the bank 950 Bank& bank = dram_pkt->bankRef; 951 952 // for the state we need to track if it is a row hit or not 953 bool row_hit = true; 954 955 // respect any constraints on the command (e.g. tRCD or tCCD) 956 Tick cmd_at = std::max(bank.colAllowedAt, curTick()); 957 958 // Determine the access latency and update the bank state 959 if (bank.openRow == dram_pkt->row) { 960 // nothing to do 961 } else { 962 row_hit = false; 963 964 // If there is a page open, precharge it. 965 if (bank.openRow != Bank::NO_ROW) { 966 prechargeBank(bank, std::max(bank.preAllowedAt, curTick())); 967 } 968 969 // next we need to account for the delay in activating the 970 // page 971 Tick act_tick = std::max(bank.actAllowedAt, curTick()); 972 973 // Record the activation and deal with all the global timing 974 // constraints caused be a new activation (tRRD and tXAW) 975 activateBank(act_tick, dram_pkt->rank, dram_pkt->bank, 976 dram_pkt->row, bank); 977 978 // issue the command as early as possible 979 cmd_at = bank.colAllowedAt; 980 } 981 982 // we need to wait until the bus is available before we can issue 983 // the command 984 cmd_at = std::max(cmd_at, busBusyUntil - tCL); 985 986 // update the packet ready time 987 dram_pkt->readyTime = cmd_at + tCL + tBURST; 988 989 // only one burst can use the bus at any one point in time 990 assert(dram_pkt->readyTime - busBusyUntil >= tBURST); 991 992 // not strictly necessary, but update the time for the next 993 // read/write (add a max with tCCD here) 994 bank.colAllowedAt = cmd_at + tBURST; 995 996 // If this is a write, we also need to respect the write 997 // recovery time before a precharge 998 if (!dram_pkt->isRead) { 999 bank.preAllowedAt = std::max(bank.preAllowedAt, 1000 dram_pkt->readyTime + tWR); 1001 } 1002 1003 // increment the bytes accessed and the accesses per row 1004 bank.bytesAccessed += burstSize; 1005 ++bank.rowAccesses; 1006 1007 // if we reached the max, then issue with an auto-precharge 1008 bool auto_precharge = pageMgmt == Enums::close || 1009 bank.rowAccesses == maxAccessesPerRow; 1010 1011 // if we did not hit the limit, we might still want to 1012 // auto-precharge 1013 if (!auto_precharge && 1014 (pageMgmt == Enums::open_adaptive || 1015 pageMgmt == Enums::close_adaptive)) { 1016 // a twist on the open and close page policies: 1017 // 1) open_adaptive page policy does not blindly keep the 1018 // page open, but close it if there are no row hits, and there 1019 // are bank conflicts in the queue 1020 // 2) close_adaptive page policy does not blindly close the 1021 // page, but closes it only if there are no row hits in the queue. 1022 // In this case, only force an auto precharge when there 1023 // are no same page hits in the queue 1024 bool got_more_hits = false; 1025 bool got_bank_conflict = false; 1026 1027 // either look at the read queue or write queue 1028 const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue : 1029 writeQueue; 1030 auto p = queue.begin(); 1031 // make sure we are not considering the packet that we are 1032 // currently dealing with (which is the head of the queue) 1033 ++p; 1034 1035 // keep on looking until we have found required condition or 1036 // reached the end 1037 while (!(got_more_hits && 1038 (got_bank_conflict || pageMgmt == Enums::close_adaptive)) && 1039 p != queue.end()) { 1040 bool same_rank_bank = (dram_pkt->rank == (*p)->rank) && 1041 (dram_pkt->bank == (*p)->bank); 1042 bool same_row = dram_pkt->row == (*p)->row; 1043 got_more_hits |= same_rank_bank && same_row; 1044 got_bank_conflict |= same_rank_bank && !same_row; 1045 ++p; 1046 } 1047 1048 // auto pre-charge when either 1049 // 1) open_adaptive policy, we have not got any more hits, and 1050 // have a bank conflict 1051 // 2) close_adaptive policy and we have not got any more hits 1052 auto_precharge = !got_more_hits && 1053 (got_bank_conflict || pageMgmt == Enums::close_adaptive); 1054 } 1055 1056 // if this access should use auto-precharge, then we are 1057 // closing the row 1058 if (auto_precharge) { 1059 prechargeBank(bank, std::max(curTick(), bank.preAllowedAt)); 1060 1061 DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId); 1062 } 1063 1064 // Update bus state 1065 busBusyUntil = dram_pkt->readyTime; 1066 1067 DPRINTF(DRAM, "Access to %lld, ready at %lld bus busy until %lld.\n", 1068 dram_pkt->addr, dram_pkt->readyTime, busBusyUntil); 1069 1070 // Update the minimum timing between the requests, this is a 1071 // conservative estimate of when we have to schedule the next 1072 // request to not introduce any unecessary bubbles. In most cases 1073 // we will wake up sooner than we have to. 1074 nextReqTime = busBusyUntil - (tRP + tRCD + tCL); 1075 1076 // Update the stats and schedule the next request 1077 if (dram_pkt->isRead) { 1078 ++readsThisTime; 1079 if (row_hit) 1080 readRowHits++; 1081 bytesReadDRAM += burstSize; 1082 perBankRdBursts[dram_pkt->bankId]++; 1083 1084 // Update latency stats 1085 totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime; 1086 totBusLat += tBURST; 1087 totQLat += cmd_at - dram_pkt->entryTime; 1088 } else { 1089 ++writesThisTime; 1090 if (row_hit) 1091 writeRowHits++; 1092 bytesWritten += burstSize; 1093 perBankWrBursts[dram_pkt->bankId]++; 1094 } 1095} 1096 1097void 1098DRAMCtrl::moveToRespQ() 1099{ 1100 // Remove from read queue 1101 DRAMPacket* dram_pkt = readQueue.front(); 1102 readQueue.pop_front(); 1103 1104 // sanity check 1105 assert(dram_pkt->size <= burstSize); 1106 1107 // Insert into response queue sorted by readyTime 1108 // It will be sent back to the requestor at its 1109 // readyTime 1110 if (respQueue.empty()) { 1111 respQueue.push_front(dram_pkt); 1112 assert(!respondEvent.scheduled()); 1113 assert(dram_pkt->readyTime >= curTick()); 1114 schedule(respondEvent, dram_pkt->readyTime); 1115 } else { 1116 bool done = false; 1117 auto i = respQueue.begin(); 1118 while (!done && i != respQueue.end()) { 1119 if ((*i)->readyTime > dram_pkt->readyTime) { 1120 respQueue.insert(i, dram_pkt); 1121 done = true; 1122 } 1123 ++i; 1124 } 1125 1126 if (!done) 1127 respQueue.push_back(dram_pkt); 1128 1129 assert(respondEvent.scheduled()); 1130 1131 if (respQueue.front()->readyTime < respondEvent.when()) { 1132 assert(respQueue.front()->readyTime >= curTick()); 1133 reschedule(respondEvent, respQueue.front()->readyTime); 1134 } 1135 } 1136} 1137 1138void 1139DRAMCtrl::processNextReqEvent() 1140{ 1141 if (busState == READ_TO_WRITE) { 1142 DPRINTF(DRAM, "Switching to writes after %d reads with %d reads " 1143 "waiting\n", readsThisTime, readQueue.size()); 1144 1145 // sample and reset the read-related stats as we are now 1146 // transitioning to writes, and all reads are done 1147 rdPerTurnAround.sample(readsThisTime); 1148 readsThisTime = 0; 1149 1150 // now proceed to do the actual writes 1151 busState = WRITE; 1152 } else if (busState == WRITE_TO_READ) { 1153 DPRINTF(DRAM, "Switching to reads after %d writes with %d writes " 1154 "waiting\n", writesThisTime, writeQueue.size()); 1155 1156 wrPerTurnAround.sample(writesThisTime); 1157 writesThisTime = 0; 1158 1159 busState = READ; 1160 } 1161 1162 if (refreshState != REF_IDLE) { 1163 // if a refresh waiting for this event loop to finish, then hand 1164 // over now, and do not schedule a new nextReqEvent 1165 if (refreshState == REF_DRAIN) { 1166 DPRINTF(DRAM, "Refresh drain done, now precharging\n"); 1167 1168 refreshState = REF_PRE; 1169 1170 // hand control back to the refresh event loop 1171 schedule(refreshEvent, curTick()); 1172 } 1173 1174 // let the refresh finish before issuing any further requests 1175 return; 1176 } 1177 1178 // when we get here it is either a read or a write 1179 if (busState == READ) { 1180 1181 // track if we should switch or not 1182 bool switch_to_writes = false; 1183 1184 if (readQueue.empty()) { 1185 // In the case there is no read request to go next, 1186 // trigger writes if we have passed the low threshold (or 1187 // if we are draining) 1188 if (!writeQueue.empty() && 1189 (drainManager || writeQueue.size() > writeLowThreshold)) { 1190 1191 switch_to_writes = true; 1192 } else { 1193 // check if we are drained 1194 if (respQueue.empty () && drainManager) { 1195 drainManager->signalDrainDone(); 1196 drainManager = NULL; 1197 } 1198 1199 // nothing to do, not even any point in scheduling an 1200 // event for the next request 1201 return; 1202 } 1203 } else { 1204 // Figure out which read request goes next, and move it to the 1205 // front of the read queue 1206 chooseNext(readQueue); 1207 1208 doDRAMAccess(readQueue.front()); 1209 1210 // At this point we're done dealing with the request 1211 // It will be moved to a separate response queue with a 1212 // correct readyTime, and eventually be sent back at that 1213 // time 1214 moveToRespQ(); 1215 1216 // we have so many writes that we have to transition 1217 if (writeQueue.size() > writeHighThreshold) { 1218 switch_to_writes = true; 1219 } 1220 } 1221 1222 // switching to writes, either because the read queue is empty 1223 // and the writes have passed the low threshold (or we are 1224 // draining), or because the writes hit the hight threshold 1225 if (switch_to_writes) { 1226 // transition to writing 1227 busState = READ_TO_WRITE; 1228 1229 // add a bubble to the data bus, as defined by the 1230 // tRTW parameter 1231 busBusyUntil += tRTW; 1232 1233 // update the minimum timing between the requests, 1234 // this shifts us back in time far enough to do any 1235 // bank preparation 1236 nextReqTime = busBusyUntil - (tRP + tRCD + tCL); 1237 } 1238 } else { 1239 chooseNext(writeQueue); 1240 DRAMPacket* dram_pkt = writeQueue.front(); 1241 // sanity check 1242 assert(dram_pkt->size <= burstSize); 1243 doDRAMAccess(dram_pkt); 1244 1245 writeQueue.pop_front(); 1246 delete dram_pkt; 1247 1248 // If we emptied the write queue, or got sufficiently below the 1249 // threshold (using the minWritesPerSwitch as the hysteresis) and 1250 // are not draining, or we have reads waiting and have done enough 1251 // writes, then switch to reads. 1252 if (writeQueue.empty() || 1253 (writeQueue.size() + minWritesPerSwitch < writeLowThreshold && 1254 !drainManager) || 1255 (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) { 1256 // turn the bus back around for reads again 1257 busState = WRITE_TO_READ; 1258 1259 // note that the we switch back to reads also in the idle 1260 // case, which eventually will check for any draining and 1261 // also pause any further scheduling if there is really 1262 // nothing to do 1263 1264 // here we get a bit creative and shift the bus busy time not 1265 // just the tWTR, but also a CAS latency to capture the fact 1266 // that we are allowed to prepare a new bank, but not issue a 1267 // read command until after tWTR, in essence we capture a 1268 // bubble on the data bus that is tWTR + tCL 1269 busBusyUntil += tWTR + tCL; 1270 1271 // update the minimum timing between the requests, this shifts 1272 // us back in time far enough to do any bank preparation 1273 nextReqTime = busBusyUntil - (tRP + tRCD + tCL); 1274 } 1275 } 1276 1277 schedule(nextReqEvent, std::max(nextReqTime, curTick())); 1278 1279 // If there is space available and we have writes waiting then let 1280 // them retry. This is done here to ensure that the retry does not 1281 // cause a nextReqEvent to be scheduled before we do so as part of 1282 // the next request processing 1283 if (retryWrReq && writeQueue.size() < writeBufferSize) { 1284 retryWrReq = false; 1285 port.sendRetry(); 1286 } 1287} 1288 1289uint64_t 1290DRAMCtrl::minBankActAt(const deque<DRAMPacket*>& queue) const 1291{ 1292 uint64_t bank_mask = 0; 1293 Tick min_act_at = MaxTick; 1294 1295 // deterimne if we have queued transactions targetting a 1296 // bank in question 1297 vector<bool> got_waiting(ranksPerChannel * banksPerRank, false); 1298 for (auto p = queue.begin(); p != queue.end(); ++p) { 1299 got_waiting[(*p)->bankId] = true; 1300 } 1301 1302 for (int i = 0; i < ranksPerChannel; i++) { 1303 for (int j = 0; j < banksPerRank; j++) { 1304 uint8_t bank_id = i * banksPerRank + j; 1305 1306 // if we have waiting requests for the bank, and it is 1307 // amongst the first available, update the mask 1308 if (got_waiting[bank_id]) { 1309 // simplistic approximation of when the bank can issue 1310 // an activate, ignoring any rank-to-rank switching 1311 // cost 1312 Tick act_at = banks[i][j].openRow == Bank::NO_ROW ? 1313 banks[i][j].actAllowedAt : 1314 std::max(banks[i][j].preAllowedAt, curTick()) + tRP; 1315 1316 if (act_at <= min_act_at) { 1317 // reset bank mask if new minimum is found 1318 if (act_at < min_act_at) 1319 bank_mask = 0; 1320 // set the bit corresponding to the available bank 1321 replaceBits(bank_mask, bank_id, bank_id, 1); 1322 min_act_at = act_at; 1323 } 1324 } 1325 } 1326 } 1327 1328 return bank_mask; 1329} 1330 1331void 1332DRAMCtrl::processRefreshEvent() 1333{ 1334 // when first preparing the refresh, remember when it was due 1335 if (refreshState == REF_IDLE) { 1336 // remember when the refresh is due 1337 refreshDueAt = curTick(); 1338 1339 // proceed to drain 1340 refreshState = REF_DRAIN; 1341 1342 DPRINTF(DRAM, "Refresh due\n"); 1343 } 1344 1345 // let any scheduled read or write go ahead, after which it will 1346 // hand control back to this event loop 1347 if (refreshState == REF_DRAIN) { 1348 if (nextReqEvent.scheduled()) { 1349 // hand control over to the request loop until it is 1350 // evaluated next 1351 DPRINTF(DRAM, "Refresh awaiting draining\n"); 1352 1353 return; 1354 } else { 1355 refreshState = REF_PRE; 1356 } 1357 } 1358 1359 // at this point, ensure that all banks are precharged 1360 if (refreshState == REF_PRE) { 1361 // precharge any active bank if we are not already in the idle 1362 // state 1363 if (pwrState != PWR_IDLE) { 1364 DPRINTF(DRAM, "Precharging all\n"); 1365 for (int i = 0; i < ranksPerChannel; i++) { 1366 for (int j = 0; j < banksPerRank; j++) { 1367 if (banks[i][j].openRow != Bank::NO_ROW) { 1368 // respect both causality and any existing bank 1369 // constraints 1370 Tick pre_at = std::max(banks[i][j].preAllowedAt, 1371 curTick()); 1372 1373 prechargeBank(banks[i][j], pre_at); 1374 } 1375 } 1376 } 1377 } else { 1378 DPRINTF(DRAM, "All banks already precharged, starting refresh\n"); 1379 1380 // go ahead and kick the power state machine into gear if 1381 // we are already idle 1382 schedulePowerEvent(PWR_REF, curTick()); 1383 } 1384 1385 refreshState = REF_RUN; 1386 assert(numBanksActive == 0); 1387 1388 // wait for all banks to be precharged, at which point the 1389 // power state machine will transition to the idle state, and 1390 // automatically move to a refresh, at that point it will also 1391 // call this method to get the refresh event loop going again 1392 return; 1393 } 1394 1395 // last but not least we perform the actual refresh 1396 if (refreshState == REF_RUN) { 1397 // should never get here with any banks active 1398 assert(numBanksActive == 0); 1399 assert(pwrState == PWR_REF); 1400 1401 Tick ref_done_at = curTick() + tRFC; 1402 1403 for (int i = 0; i < ranksPerChannel; i++) { 1404 for (int j = 0; j < banksPerRank; j++) { 1405 banks[i][j].actAllowedAt = ref_done_at; 1406 } 1407 } 1408 1409 // make sure we did not wait so long that we cannot make up 1410 // for it 1411 if (refreshDueAt + tREFI < ref_done_at) { 1412 fatal("Refresh was delayed so long we cannot catch up\n"); 1413 } 1414 1415 // compensate for the delay in actually performing the refresh 1416 // when scheduling the next one 1417 schedule(refreshEvent, refreshDueAt + tREFI - tRP); 1418 1419 assert(!powerEvent.scheduled()); 1420 1421 // move to the idle power state once the refresh is done, this 1422 // will also move the refresh state machine to the refresh 1423 // idle state 1424 schedulePowerEvent(PWR_IDLE, ref_done_at); 1425 1426 DPRINTF(DRAMState, "Refresh done at %llu and next refresh at %llu\n", 1427 ref_done_at, refreshDueAt + tREFI); 1428 } 1429} 1430 1431void 1432DRAMCtrl::schedulePowerEvent(PowerState pwr_state, Tick tick) 1433{ 1434 // respect causality 1435 assert(tick >= curTick()); 1436 1437 if (!powerEvent.scheduled()) { 1438 DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n", 1439 tick, pwr_state); 1440 1441 // insert the new transition 1442 pwrStateTrans = pwr_state; 1443 1444 schedule(powerEvent, tick); 1445 } else { 1446 panic("Scheduled power event at %llu to state %d, " 1447 "with scheduled event at %llu to %d\n", tick, pwr_state, 1448 powerEvent.when(), pwrStateTrans); 1449 } 1450} 1451 1452void 1453DRAMCtrl::processPowerEvent() 1454{ 1455 // remember where we were, and for how long 1456 Tick duration = curTick() - pwrStateTick; 1457 PowerState prev_state = pwrState; 1458 1459 // update the accounting 1460 pwrStateTime[prev_state] += duration; 1461 1462 pwrState = pwrStateTrans; 1463 pwrStateTick = curTick(); 1464 1465 if (pwrState == PWR_IDLE) { 1466 DPRINTF(DRAMState, "All banks precharged\n"); 1467 1468 // if we were refreshing, make sure we start scheduling requests again 1469 if (prev_state == PWR_REF) { 1470 DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration); 1471 assert(pwrState == PWR_IDLE); 1472 1473 // kick things into action again 1474 refreshState = REF_IDLE; 1475 assert(!nextReqEvent.scheduled()); 1476 schedule(nextReqEvent, curTick()); 1477 } else { 1478 assert(prev_state == PWR_ACT); 1479 1480 // if we have a pending refresh, and are now moving to 1481 // the idle state, direclty transition to a refresh 1482 if (refreshState == REF_RUN) { 1483 // there should be nothing waiting at this point 1484 assert(!powerEvent.scheduled()); 1485 1486 // update the state in zero time and proceed below 1487 pwrState = PWR_REF; 1488 } 1489 } 1490 } 1491 1492 // we transition to the refresh state, let the refresh state 1493 // machine know of this state update and let it deal with the 1494 // scheduling of the next power state transition as well as the 1495 // following refresh 1496 if (pwrState == PWR_REF) { 1497 DPRINTF(DRAMState, "Refreshing\n"); 1498 // kick the refresh event loop into action again, and that 1499 // in turn will schedule a transition to the idle power 1500 // state once the refresh is done 1501 assert(refreshState == REF_RUN); 1502 processRefreshEvent(); 1503 } 1504} 1505 1506void 1507DRAMCtrl::regStats() 1508{ 1509 using namespace Stats; 1510 1511 AbstractMemory::regStats(); 1512 1513 readReqs 1514 .name(name() + ".readReqs") 1515 .desc("Number of read requests accepted"); 1516 1517 writeReqs 1518 .name(name() + ".writeReqs") 1519 .desc("Number of write requests accepted"); 1520 1521 readBursts 1522 .name(name() + ".readBursts") 1523 .desc("Number of DRAM read bursts, " 1524 "including those serviced by the write queue"); 1525 1526 writeBursts 1527 .name(name() + ".writeBursts") 1528 .desc("Number of DRAM write bursts, " 1529 "including those merged in the write queue"); 1530 1531 servicedByWrQ 1532 .name(name() + ".servicedByWrQ") 1533 .desc("Number of DRAM read bursts serviced by the write queue"); 1534 1535 mergedWrBursts 1536 .name(name() + ".mergedWrBursts") 1537 .desc("Number of DRAM write bursts merged with an existing one"); 1538 1539 neitherReadNorWrite 1540 .name(name() + ".neitherReadNorWriteReqs") 1541 .desc("Number of requests that are neither read nor write"); 1542 1543 perBankRdBursts 1544 .init(banksPerRank * ranksPerChannel) 1545 .name(name() + ".perBankRdBursts") 1546 .desc("Per bank write bursts"); 1547 1548 perBankWrBursts 1549 .init(banksPerRank * ranksPerChannel) 1550 .name(name() + ".perBankWrBursts") 1551 .desc("Per bank write bursts"); 1552 1553 avgRdQLen 1554 .name(name() + ".avgRdQLen") 1555 .desc("Average read queue length when enqueuing") 1556 .precision(2); 1557 1558 avgWrQLen 1559 .name(name() + ".avgWrQLen") 1560 .desc("Average write queue length when enqueuing") 1561 .precision(2); 1562 1563 totQLat 1564 .name(name() + ".totQLat") 1565 .desc("Total ticks spent queuing"); 1566 1567 totBusLat 1568 .name(name() + ".totBusLat") 1569 .desc("Total ticks spent in databus transfers"); 1570 1571 totMemAccLat 1572 .name(name() + ".totMemAccLat") 1573 .desc("Total ticks spent from burst creation until serviced " 1574 "by the DRAM"); 1575 1576 avgQLat 1577 .name(name() + ".avgQLat") 1578 .desc("Average queueing delay per DRAM burst") 1579 .precision(2); 1580 1581 avgQLat = totQLat / (readBursts - servicedByWrQ); 1582 1583 avgBusLat 1584 .name(name() + ".avgBusLat") 1585 .desc("Average bus latency per DRAM burst") 1586 .precision(2); 1587 1588 avgBusLat = totBusLat / (readBursts - servicedByWrQ); 1589 1590 avgMemAccLat 1591 .name(name() + ".avgMemAccLat") 1592 .desc("Average memory access latency per DRAM burst") 1593 .precision(2); 1594 1595 avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ); 1596 1597 numRdRetry 1598 .name(name() + ".numRdRetry") 1599 .desc("Number of times read queue was full causing retry"); 1600 1601 numWrRetry 1602 .name(name() + ".numWrRetry") 1603 .desc("Number of times write queue was full causing retry"); 1604 1605 readRowHits 1606 .name(name() + ".readRowHits") 1607 .desc("Number of row buffer hits during reads"); 1608 1609 writeRowHits 1610 .name(name() + ".writeRowHits") 1611 .desc("Number of row buffer hits during writes"); 1612 1613 readRowHitRate 1614 .name(name() + ".readRowHitRate") 1615 .desc("Row buffer hit rate for reads") 1616 .precision(2); 1617 1618 readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100; 1619 1620 writeRowHitRate 1621 .name(name() + ".writeRowHitRate") 1622 .desc("Row buffer hit rate for writes") 1623 .precision(2); 1624 1625 writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100; 1626 1627 readPktSize 1628 .init(ceilLog2(burstSize) + 1) 1629 .name(name() + ".readPktSize") 1630 .desc("Read request sizes (log2)"); 1631 1632 writePktSize 1633 .init(ceilLog2(burstSize) + 1) 1634 .name(name() + ".writePktSize") 1635 .desc("Write request sizes (log2)"); 1636 1637 rdQLenPdf 1638 .init(readBufferSize) 1639 .name(name() + ".rdQLenPdf") 1640 .desc("What read queue length does an incoming req see"); 1641 1642 wrQLenPdf 1643 .init(writeBufferSize) 1644 .name(name() + ".wrQLenPdf") 1645 .desc("What write queue length does an incoming req see"); 1646 1647 bytesPerActivate 1648 .init(maxAccessesPerRow) 1649 .name(name() + ".bytesPerActivate") 1650 .desc("Bytes accessed per row activation") 1651 .flags(nozero); 1652 1653 rdPerTurnAround 1654 .init(readBufferSize) 1655 .name(name() + ".rdPerTurnAround") 1656 .desc("Reads before turning the bus around for writes") 1657 .flags(nozero); 1658 1659 wrPerTurnAround 1660 .init(writeBufferSize) 1661 .name(name() + ".wrPerTurnAround") 1662 .desc("Writes before turning the bus around for reads") 1663 .flags(nozero); 1664 1665 bytesReadDRAM 1666 .name(name() + ".bytesReadDRAM") 1667 .desc("Total number of bytes read from DRAM"); 1668 1669 bytesReadWrQ 1670 .name(name() + ".bytesReadWrQ") 1671 .desc("Total number of bytes read from write queue"); 1672 1673 bytesWritten 1674 .name(name() + ".bytesWritten") 1675 .desc("Total number of bytes written to DRAM"); 1676 1677 bytesReadSys 1678 .name(name() + ".bytesReadSys") 1679 .desc("Total read bytes from the system interface side"); 1680 1681 bytesWrittenSys 1682 .name(name() + ".bytesWrittenSys") 1683 .desc("Total written bytes from the system interface side"); 1684 1685 avgRdBW 1686 .name(name() + ".avgRdBW") 1687 .desc("Average DRAM read bandwidth in MiByte/s") 1688 .precision(2); 1689 1690 avgRdBW = (bytesReadDRAM / 1000000) / simSeconds; 1691 1692 avgWrBW 1693 .name(name() + ".avgWrBW") 1694 .desc("Average achieved write bandwidth in MiByte/s") 1695 .precision(2); 1696 1697 avgWrBW = (bytesWritten / 1000000) / simSeconds; 1698 1699 avgRdBWSys 1700 .name(name() + ".avgRdBWSys") 1701 .desc("Average system read bandwidth in MiByte/s") 1702 .precision(2); 1703 1704 avgRdBWSys = (bytesReadSys / 1000000) / simSeconds; 1705 1706 avgWrBWSys 1707 .name(name() + ".avgWrBWSys") 1708 .desc("Average system write bandwidth in MiByte/s") 1709 .precision(2); 1710 1711 avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds; 1712 1713 peakBW 1714 .name(name() + ".peakBW") 1715 .desc("Theoretical peak bandwidth in MiByte/s") 1716 .precision(2); 1717 1718 peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000; 1719 1720 busUtil 1721 .name(name() + ".busUtil") 1722 .desc("Data bus utilization in percentage") 1723 .precision(2); 1724 1725 busUtil = (avgRdBW + avgWrBW) / peakBW * 100; 1726 1727 totGap 1728 .name(name() + ".totGap") 1729 .desc("Total gap between requests"); 1730 1731 avgGap 1732 .name(name() + ".avgGap") 1733 .desc("Average gap between requests") 1734 .precision(2); 1735 1736 avgGap = totGap / (readReqs + writeReqs); 1737 1738 // Stats for DRAM Power calculation based on Micron datasheet 1739 busUtilRead 1740 .name(name() + ".busUtilRead") 1741 .desc("Data bus utilization in percentage for reads") 1742 .precision(2); 1743 1744 busUtilRead = avgRdBW / peakBW * 100; 1745 1746 busUtilWrite 1747 .name(name() + ".busUtilWrite") 1748 .desc("Data bus utilization in percentage for writes") 1749 .precision(2); 1750 1751 busUtilWrite = avgWrBW / peakBW * 100; 1752 1753 pageHitRate 1754 .name(name() + ".pageHitRate") 1755 .desc("Row buffer hit rate, read and write combined") 1756 .precision(2); 1757 1758 pageHitRate = (writeRowHits + readRowHits) / 1759 (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100; 1760 1761 pwrStateTime 1762 .init(5) 1763 .name(name() + ".memoryStateTime") 1764 .desc("Time in different power states"); 1765 pwrStateTime.subname(0, "IDLE"); 1766 pwrStateTime.subname(1, "REF"); 1767 pwrStateTime.subname(2, "PRE_PDN"); 1768 pwrStateTime.subname(3, "ACT"); 1769 pwrStateTime.subname(4, "ACT_PDN"); 1770} 1771 1772void 1773DRAMCtrl::recvFunctional(PacketPtr pkt) 1774{ 1775 // rely on the abstract memory 1776 functionalAccess(pkt); 1777} 1778 1779BaseSlavePort& 1780DRAMCtrl::getSlavePort(const string &if_name, PortID idx) 1781{ 1782 if (if_name != "port") { 1783 return MemObject::getSlavePort(if_name, idx); 1784 } else { 1785 return port; 1786 } 1787} 1788 1789unsigned int 1790DRAMCtrl::drain(DrainManager *dm) 1791{ 1792 unsigned int count = port.drain(dm); 1793 1794 // if there is anything in any of our internal queues, keep track 1795 // of that as well 1796 if (!(writeQueue.empty() && readQueue.empty() && 1797 respQueue.empty())) { 1798 DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d," 1799 " resp: %d\n", writeQueue.size(), readQueue.size(), 1800 respQueue.size()); 1801 ++count; 1802 drainManager = dm; 1803 1804 // the only part that is not drained automatically over time 1805 // is the write queue, thus kick things into action if needed 1806 if (!writeQueue.empty() && !nextReqEvent.scheduled()) { 1807 schedule(nextReqEvent, curTick()); 1808 } 1809 } 1810 1811 if (count) 1812 setDrainState(Drainable::Draining); 1813 else 1814 setDrainState(Drainable::Drained); 1815 return count; 1816} 1817 1818DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory) 1819 : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this), 1820 memory(_memory) 1821{ } 1822 1823AddrRangeList 1824DRAMCtrl::MemoryPort::getAddrRanges() const 1825{ 1826 AddrRangeList ranges; 1827 ranges.push_back(memory.getAddrRange()); 1828 return ranges; 1829} 1830 1831void 1832DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt) 1833{ 1834 pkt->pushLabel(memory.name()); 1835 1836 if (!queue.checkFunctional(pkt)) { 1837 // Default implementation of SimpleTimingPort::recvFunctional() 1838 // calls recvAtomic() and throws away the latency; we can save a 1839 // little here by just not calculating the latency. 1840 memory.recvFunctional(pkt); 1841 } 1842 1843 pkt->popLabel(); 1844} 1845 1846Tick 1847DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt) 1848{ 1849 return memory.recvAtomic(pkt); 1850} 1851 1852bool 1853DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt) 1854{ 1855 // pass it to the memory controller 1856 return memory.recvTimingReq(pkt); 1857} 1858 1859DRAMCtrl* 1860DRAMCtrlParams::create() 1861{ 1862 return new DRAMCtrl(this); 1863} 1864