dram_ctrl.cc revision 10210:793e5ff26e0b
1/*
2 * Copyright (c) 2010-2014 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2013 Amin Farmahini-Farahani
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Andreas Hansson
41 *          Ani Udipi
42 *          Neha Agarwal
43 */
44
45#include "base/bitfield.hh"
46#include "base/trace.hh"
47#include "debug/DRAM.hh"
48#include "debug/DRAMState.hh"
49#include "debug/Drain.hh"
50#include "mem/dram_ctrl.hh"
51#include "sim/system.hh"
52
53using namespace std;
54
55DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
56    AbstractMemory(p),
57    port(name() + ".port", *this),
58    retryRdReq(false), retryWrReq(false),
59    rowHitFlag(false), busState(READ),
60    nextReqEvent(this), respondEvent(this), activateEvent(this),
61    prechargeEvent(this), refreshEvent(this), powerEvent(this),
62    drainManager(NULL),
63    deviceBusWidth(p->device_bus_width), burstLength(p->burst_length),
64    deviceRowBufferSize(p->device_rowbuffer_size),
65    devicesPerRank(p->devices_per_rank),
66    burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8),
67    rowBufferSize(devicesPerRank * deviceRowBufferSize),
68    columnsPerRowBuffer(rowBufferSize / burstSize),
69    ranksPerChannel(p->ranks_per_channel),
70    banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0),
71    readBufferSize(p->read_buffer_size),
72    writeBufferSize(p->write_buffer_size),
73    writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0),
74    writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0),
75    minWritesPerSwitch(p->min_writes_per_switch),
76    writesThisTime(0), readsThisTime(0),
77    tWTR(p->tWTR), tRTW(p->tRTW), tBURST(p->tBURST),
78    tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS), tWR(p->tWR),
79    tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD),
80    tXAW(p->tXAW), activationLimit(p->activation_limit),
81    memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
82    pageMgmt(p->page_policy),
83    maxAccessesPerRow(p->max_accesses_per_row),
84    frontendLatency(p->static_frontend_latency),
85    backendLatency(p->static_backend_latency),
86    busBusyUntil(0), refreshDueAt(0), refreshState(REF_IDLE),
87    pwrStateTrans(PWR_IDLE), pwrState(PWR_IDLE), prevArrival(0),
88    nextReqTime(0), pwrStateTick(0), numBanksActive(0)
89{
90    // create the bank states based on the dimensions of the ranks and
91    // banks
92    banks.resize(ranksPerChannel);
93    actTicks.resize(ranksPerChannel);
94    for (size_t c = 0; c < ranksPerChannel; ++c) {
95        banks[c].resize(banksPerRank);
96        actTicks[c].resize(activationLimit, 0);
97    }
98
99    // perform a basic check of the write thresholds
100    if (p->write_low_thresh_perc >= p->write_high_thresh_perc)
101        fatal("Write buffer low threshold %d must be smaller than the "
102              "high threshold %d\n", p->write_low_thresh_perc,
103              p->write_high_thresh_perc);
104
105    // determine the rows per bank by looking at the total capacity
106    uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size());
107
108    DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
109            AbstractMemory::size());
110
111    DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n",
112            rowBufferSize, columnsPerRowBuffer);
113
114    rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel);
115
116    if (range.interleaved()) {
117        if (channels != range.stripes())
118            fatal("%s has %d interleaved address stripes but %d channel(s)\n",
119                  name(), range.stripes(), channels);
120
121        if (addrMapping == Enums::RoRaBaChCo) {
122            if (rowBufferSize != range.granularity()) {
123                fatal("Interleaving of %s doesn't match RoRaBaChCo "
124                      "address map\n", name());
125            }
126        } else if (addrMapping == Enums::RoRaBaCoCh) {
127            if (system()->cacheLineSize() != range.granularity()) {
128                fatal("Interleaving of %s doesn't match RoRaBaCoCh "
129                      "address map\n", name());
130            }
131        } else if (addrMapping == Enums::RoCoRaBaCh) {
132            if (system()->cacheLineSize() != range.granularity())
133                fatal("Interleaving of %s doesn't match RoCoRaBaCh "
134                      "address map\n", name());
135        }
136    }
137
138    // some basic sanity checks
139    if (tREFI <= tRP || tREFI <= tRFC) {
140        fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n",
141              tREFI, tRP, tRFC);
142    }
143}
144
145void
146DRAMCtrl::init()
147{
148    if (!port.isConnected()) {
149        fatal("DRAMCtrl %s is unconnected!\n", name());
150    } else {
151        port.sendRangeChange();
152    }
153}
154
155void
156DRAMCtrl::startup()
157{
158    // update the start tick for the precharge accounting to the
159    // current tick
160    pwrStateTick = curTick();
161
162    // shift the bus busy time sufficiently far ahead that we never
163    // have to worry about negative values when computing the time for
164    // the next request, this will add an insignificant bubble at the
165    // start of simulation
166    busBusyUntil = curTick() + tRP + tRCD + tCL;
167
168    // print the configuration of the controller
169    printParams();
170
171    // kick off the refresh, and give ourselves enough time to
172    // precharge
173    schedule(refreshEvent, curTick() + tREFI - tRP);
174}
175
176Tick
177DRAMCtrl::recvAtomic(PacketPtr pkt)
178{
179    DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
180
181    // do the actual memory access and turn the packet into a response
182    access(pkt);
183
184    Tick latency = 0;
185    if (!pkt->memInhibitAsserted() && pkt->hasData()) {
186        // this value is not supposed to be accurate, just enough to
187        // keep things going, mimic a closed page
188        latency = tRP + tRCD + tCL;
189    }
190    return latency;
191}
192
193bool
194DRAMCtrl::readQueueFull(unsigned int neededEntries) const
195{
196    DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n",
197            readBufferSize, readQueue.size() + respQueue.size(),
198            neededEntries);
199
200    return
201        (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize;
202}
203
204bool
205DRAMCtrl::writeQueueFull(unsigned int neededEntries) const
206{
207    DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n",
208            writeBufferSize, writeQueue.size(), neededEntries);
209    return (writeQueue.size() + neededEntries) > writeBufferSize;
210}
211
212DRAMCtrl::DRAMPacket*
213DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size,
214                       bool isRead)
215{
216    // decode the address based on the address mapping scheme, with
217    // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and
218    // channel, respectively
219    uint8_t rank;
220    uint8_t bank;
221    uint16_t row;
222
223    // truncate the address to the access granularity
224    Addr addr = dramPktAddr / burstSize;
225
226    // we have removed the lowest order address bits that denote the
227    // position within the column
228    if (addrMapping == Enums::RoRaBaChCo) {
229        // the lowest order bits denote the column to ensure that
230        // sequential cache lines occupy the same row
231        addr = addr / columnsPerRowBuffer;
232
233        // take out the channel part of the address
234        addr = addr / channels;
235
236        // after the channel bits, get the bank bits to interleave
237        // over the banks
238        bank = addr % banksPerRank;
239        addr = addr / banksPerRank;
240
241        // after the bank, we get the rank bits which thus interleaves
242        // over the ranks
243        rank = addr % ranksPerChannel;
244        addr = addr / ranksPerChannel;
245
246        // lastly, get the row bits
247        row = addr % rowsPerBank;
248        addr = addr / rowsPerBank;
249    } else if (addrMapping == Enums::RoRaBaCoCh) {
250        // take out the channel part of the address
251        addr = addr / channels;
252
253        // next, the column
254        addr = addr / columnsPerRowBuffer;
255
256        // after the column bits, we get the bank bits to interleave
257        // over the banks
258        bank = addr % banksPerRank;
259        addr = addr / banksPerRank;
260
261        // after the bank, we get the rank bits which thus interleaves
262        // over the ranks
263        rank = addr % ranksPerChannel;
264        addr = addr / ranksPerChannel;
265
266        // lastly, get the row bits
267        row = addr % rowsPerBank;
268        addr = addr / rowsPerBank;
269    } else if (addrMapping == Enums::RoCoRaBaCh) {
270        // optimise for closed page mode and utilise maximum
271        // parallelism of the DRAM (at the cost of power)
272
273        // take out the channel part of the address, not that this has
274        // to match with how accesses are interleaved between the
275        // controllers in the address mapping
276        addr = addr / channels;
277
278        // start with the bank bits, as this provides the maximum
279        // opportunity for parallelism between requests
280        bank = addr % banksPerRank;
281        addr = addr / banksPerRank;
282
283        // next get the rank bits
284        rank = addr % ranksPerChannel;
285        addr = addr / ranksPerChannel;
286
287        // next the column bits which we do not need to keep track of
288        // and simply skip past
289        addr = addr / columnsPerRowBuffer;
290
291        // lastly, get the row bits
292        row = addr % rowsPerBank;
293        addr = addr / rowsPerBank;
294    } else
295        panic("Unknown address mapping policy chosen!");
296
297    assert(rank < ranksPerChannel);
298    assert(bank < banksPerRank);
299    assert(row < rowsPerBank);
300
301    DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
302            dramPktAddr, rank, bank, row);
303
304    // create the corresponding DRAM packet with the entry time and
305    // ready time set to the current tick, the latter will be updated
306    // later
307    uint16_t bank_id = banksPerRank * rank + bank;
308    return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr,
309                          size, banks[rank][bank]);
310}
311
312void
313DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount)
314{
315    // only add to the read queue here. whenever the request is
316    // eventually done, set the readyTime, and call schedule()
317    assert(!pkt->isWrite());
318
319    assert(pktCount != 0);
320
321    // if the request size is larger than burst size, the pkt is split into
322    // multiple DRAM packets
323    // Note if the pkt starting address is not aligened to burst size, the
324    // address of first DRAM packet is kept unaliged. Subsequent DRAM packets
325    // are aligned to burst size boundaries. This is to ensure we accurately
326    // check read packets against packets in write queue.
327    Addr addr = pkt->getAddr();
328    unsigned pktsServicedByWrQ = 0;
329    BurstHelper* burst_helper = NULL;
330    for (int cnt = 0; cnt < pktCount; ++cnt) {
331        unsigned size = std::min((addr | (burstSize - 1)) + 1,
332                        pkt->getAddr() + pkt->getSize()) - addr;
333        readPktSize[ceilLog2(size)]++;
334        readBursts++;
335
336        // First check write buffer to see if the data is already at
337        // the controller
338        bool foundInWrQ = false;
339        for (auto i = writeQueue.begin(); i != writeQueue.end(); ++i) {
340            // check if the read is subsumed in the write entry we are
341            // looking at
342            if ((*i)->addr <= addr &&
343                (addr + size) <= ((*i)->addr + (*i)->size)) {
344                foundInWrQ = true;
345                servicedByWrQ++;
346                pktsServicedByWrQ++;
347                DPRINTF(DRAM, "Read to addr %lld with size %d serviced by "
348                        "write queue\n", addr, size);
349                bytesReadWrQ += burstSize;
350                break;
351            }
352        }
353
354        // If not found in the write q, make a DRAM packet and
355        // push it onto the read queue
356        if (!foundInWrQ) {
357
358            // Make the burst helper for split packets
359            if (pktCount > 1 && burst_helper == NULL) {
360                DPRINTF(DRAM, "Read to addr %lld translates to %d "
361                        "dram requests\n", pkt->getAddr(), pktCount);
362                burst_helper = new BurstHelper(pktCount);
363            }
364
365            DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true);
366            dram_pkt->burstHelper = burst_helper;
367
368            assert(!readQueueFull(1));
369            rdQLenPdf[readQueue.size() + respQueue.size()]++;
370
371            DPRINTF(DRAM, "Adding to read queue\n");
372
373            readQueue.push_back(dram_pkt);
374
375            // Update stats
376            avgRdQLen = readQueue.size() + respQueue.size();
377        }
378
379        // Starting address of next dram pkt (aligend to burstSize boundary)
380        addr = (addr | (burstSize - 1)) + 1;
381    }
382
383    // If all packets are serviced by write queue, we send the repsonse back
384    if (pktsServicedByWrQ == pktCount) {
385        accessAndRespond(pkt, frontendLatency);
386        return;
387    }
388
389    // Update how many split packets are serviced by write queue
390    if (burst_helper != NULL)
391        burst_helper->burstsServiced = pktsServicedByWrQ;
392
393    // If we are not already scheduled to get a request out of the
394    // queue, do so now
395    if (!nextReqEvent.scheduled()) {
396        DPRINTF(DRAM, "Request scheduled immediately\n");
397        schedule(nextReqEvent, curTick());
398    }
399}
400
401void
402DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount)
403{
404    // only add to the write queue here. whenever the request is
405    // eventually done, set the readyTime, and call schedule()
406    assert(pkt->isWrite());
407
408    // if the request size is larger than burst size, the pkt is split into
409    // multiple DRAM packets
410    Addr addr = pkt->getAddr();
411    for (int cnt = 0; cnt < pktCount; ++cnt) {
412        unsigned size = std::min((addr | (burstSize - 1)) + 1,
413                        pkt->getAddr() + pkt->getSize()) - addr;
414        writePktSize[ceilLog2(size)]++;
415        writeBursts++;
416
417        // see if we can merge with an existing item in the write
418        // queue and keep track of whether we have merged or not so we
419        // can stop at that point and also avoid enqueueing a new
420        // request
421        bool merged = false;
422        auto w = writeQueue.begin();
423
424        while(!merged && w != writeQueue.end()) {
425            // either of the two could be first, if they are the same
426            // it does not matter which way we go
427            if ((*w)->addr >= addr) {
428                // the existing one starts after the new one, figure
429                // out where the new one ends with respect to the
430                // existing one
431                if ((addr + size) >= ((*w)->addr + (*w)->size)) {
432                    // check if the existing one is completely
433                    // subsumed in the new one
434                    DPRINTF(DRAM, "Merging write covering existing burst\n");
435                    merged = true;
436                    // update both the address and the size
437                    (*w)->addr = addr;
438                    (*w)->size = size;
439                } else if ((addr + size) >= (*w)->addr &&
440                           ((*w)->addr + (*w)->size - addr) <= burstSize) {
441                    // the new one is just before or partially
442                    // overlapping with the existing one, and together
443                    // they fit within a burst
444                    DPRINTF(DRAM, "Merging write before existing burst\n");
445                    merged = true;
446                    // the existing queue item needs to be adjusted with
447                    // respect to both address and size
448                    (*w)->size = (*w)->addr + (*w)->size - addr;
449                    (*w)->addr = addr;
450                }
451            } else {
452                // the new one starts after the current one, figure
453                // out where the existing one ends with respect to the
454                // new one
455                if (((*w)->addr + (*w)->size) >= (addr + size)) {
456                    // check if the new one is completely subsumed in the
457                    // existing one
458                    DPRINTF(DRAM, "Merging write into existing burst\n");
459                    merged = true;
460                    // no adjustments necessary
461                } else if (((*w)->addr + (*w)->size) >= addr &&
462                           (addr + size - (*w)->addr) <= burstSize) {
463                    // the existing one is just before or partially
464                    // overlapping with the new one, and together
465                    // they fit within a burst
466                    DPRINTF(DRAM, "Merging write after existing burst\n");
467                    merged = true;
468                    // the address is right, and only the size has
469                    // to be adjusted
470                    (*w)->size = addr + size - (*w)->addr;
471                }
472            }
473            ++w;
474        }
475
476        // if the item was not merged we need to create a new write
477        // and enqueue it
478        if (!merged) {
479            DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false);
480
481            assert(writeQueue.size() < writeBufferSize);
482            wrQLenPdf[writeQueue.size()]++;
483
484            DPRINTF(DRAM, "Adding to write queue\n");
485
486            writeQueue.push_back(dram_pkt);
487
488            // Update stats
489            avgWrQLen = writeQueue.size();
490        } else {
491            // keep track of the fact that this burst effectively
492            // disappeared as it was merged with an existing one
493            mergedWrBursts++;
494        }
495
496        // Starting address of next dram pkt (aligend to burstSize boundary)
497        addr = (addr | (burstSize - 1)) + 1;
498    }
499
500    // we do not wait for the writes to be send to the actual memory,
501    // but instead take responsibility for the consistency here and
502    // snoop the write queue for any upcoming reads
503    // @todo, if a pkt size is larger than burst size, we might need a
504    // different front end latency
505    accessAndRespond(pkt, frontendLatency);
506
507    // If we are not already scheduled to get a request out of the
508    // queue, do so now
509    if (!nextReqEvent.scheduled()) {
510        DPRINTF(DRAM, "Request scheduled immediately\n");
511        schedule(nextReqEvent, curTick());
512    }
513}
514
515void
516DRAMCtrl::printParams() const
517{
518    // Sanity check print of important parameters
519    DPRINTF(DRAM,
520            "Memory controller %s physical organization\n"      \
521            "Number of devices per rank   %d\n"                 \
522            "Device bus width (in bits)   %d\n"                 \
523            "DRAM data bus burst (bytes)  %d\n"                 \
524            "Row buffer size (bytes)      %d\n"                 \
525            "Columns per row buffer       %d\n"                 \
526            "Rows    per bank             %d\n"                 \
527            "Banks   per rank             %d\n"                 \
528            "Ranks   per channel          %d\n"                 \
529            "Total mem capacity (bytes)   %u\n",
530            name(), devicesPerRank, deviceBusWidth, burstSize, rowBufferSize,
531            columnsPerRowBuffer, rowsPerBank, banksPerRank, ranksPerChannel,
532            rowBufferSize * rowsPerBank * banksPerRank * ranksPerChannel);
533
534    string scheduler =  memSchedPolicy == Enums::fcfs ? "FCFS" : "FR-FCFS";
535    string address_mapping = addrMapping == Enums::RoRaBaChCo ? "RoRaBaChCo" :
536        (addrMapping == Enums::RoRaBaCoCh ? "RoRaBaCoCh" : "RoCoRaBaCh");
537    string page_policy = pageMgmt == Enums::open ? "OPEN" :
538        (pageMgmt == Enums::open_adaptive ? "OPEN (adaptive)" :
539        (pageMgmt == Enums::close_adaptive ? "CLOSE (adaptive)" : "CLOSE"));
540
541    DPRINTF(DRAM,
542            "Memory controller %s characteristics\n"    \
543            "Read buffer size     %d\n"                 \
544            "Write buffer size    %d\n"                 \
545            "Write high thresh    %d\n"                 \
546            "Write low thresh     %d\n"                 \
547            "Scheduler            %s\n"                 \
548            "Address mapping      %s\n"                 \
549            "Page policy          %s\n",
550            name(), readBufferSize, writeBufferSize, writeHighThreshold,
551            writeLowThreshold, scheduler, address_mapping, page_policy);
552
553    DPRINTF(DRAM, "Memory controller %s timing specs\n" \
554            "tRCD      %d ticks\n"                        \
555            "tCL       %d ticks\n"                        \
556            "tRP       %d ticks\n"                        \
557            "tBURST    %d ticks\n"                        \
558            "tRFC      %d ticks\n"                        \
559            "tREFI     %d ticks\n"                        \
560            "tWTR      %d ticks\n"                        \
561            "tRTW      %d ticks\n"                        \
562            "tWR       %d ticks\n"                        \
563            "tXAW (%d) %d ticks\n",
564            name(), tRCD, tCL, tRP, tBURST, tRFC, tREFI, tWTR,
565            tRTW, tWR, activationLimit, tXAW);
566}
567
568void
569DRAMCtrl::printQs() const {
570    DPRINTF(DRAM, "===READ QUEUE===\n\n");
571    for (auto i = readQueue.begin() ;  i != readQueue.end() ; ++i) {
572        DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
573    }
574    DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
575    for (auto i = respQueue.begin() ;  i != respQueue.end() ; ++i) {
576        DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
577    }
578    DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
579    for (auto i = writeQueue.begin() ;  i != writeQueue.end() ; ++i) {
580        DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
581    }
582}
583
584bool
585DRAMCtrl::recvTimingReq(PacketPtr pkt)
586{
587    /// @todo temporary hack to deal with memory corruption issues until
588    /// 4-phase transactions are complete
589    for (int x = 0; x < pendingDelete.size(); x++)
590        delete pendingDelete[x];
591    pendingDelete.clear();
592
593    // This is where we enter from the outside world
594    DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n",
595            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
596
597    // simply drop inhibited packets for now
598    if (pkt->memInhibitAsserted()) {
599        DPRINTF(DRAM, "Inhibited packet -- Dropping it now\n");
600        pendingDelete.push_back(pkt);
601        return true;
602    }
603
604    // Calc avg gap between requests
605    if (prevArrival != 0) {
606        totGap += curTick() - prevArrival;
607    }
608    prevArrival = curTick();
609
610
611    // Find out how many dram packets a pkt translates to
612    // If the burst size is equal or larger than the pkt size, then a pkt
613    // translates to only one dram packet. Otherwise, a pkt translates to
614    // multiple dram packets
615    unsigned size = pkt->getSize();
616    unsigned offset = pkt->getAddr() & (burstSize - 1);
617    unsigned int dram_pkt_count = divCeil(offset + size, burstSize);
618
619    // check local buffers and do not accept if full
620    if (pkt->isRead()) {
621        assert(size != 0);
622        if (readQueueFull(dram_pkt_count)) {
623            DPRINTF(DRAM, "Read queue full, not accepting\n");
624            // remember that we have to retry this port
625            retryRdReq = true;
626            numRdRetry++;
627            return false;
628        } else {
629            addToReadQueue(pkt, dram_pkt_count);
630            readReqs++;
631            bytesReadSys += size;
632        }
633    } else if (pkt->isWrite()) {
634        assert(size != 0);
635        if (writeQueueFull(dram_pkt_count)) {
636            DPRINTF(DRAM, "Write queue full, not accepting\n");
637            // remember that we have to retry this port
638            retryWrReq = true;
639            numWrRetry++;
640            return false;
641        } else {
642            addToWriteQueue(pkt, dram_pkt_count);
643            writeReqs++;
644            bytesWrittenSys += size;
645        }
646    } else {
647        DPRINTF(DRAM,"Neither read nor write, ignore timing\n");
648        neitherReadNorWrite++;
649        accessAndRespond(pkt, 1);
650    }
651
652    return true;
653}
654
655void
656DRAMCtrl::processRespondEvent()
657{
658    DPRINTF(DRAM,
659            "processRespondEvent(): Some req has reached its readyTime\n");
660
661    DRAMPacket* dram_pkt = respQueue.front();
662
663    if (dram_pkt->burstHelper) {
664        // it is a split packet
665        dram_pkt->burstHelper->burstsServiced++;
666        if (dram_pkt->burstHelper->burstsServiced ==
667            dram_pkt->burstHelper->burstCount) {
668            // we have now serviced all children packets of a system packet
669            // so we can now respond to the requester
670            // @todo we probably want to have a different front end and back
671            // end latency for split packets
672            accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
673            delete dram_pkt->burstHelper;
674            dram_pkt->burstHelper = NULL;
675        }
676    } else {
677        // it is not a split packet
678        accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
679    }
680
681    delete respQueue.front();
682    respQueue.pop_front();
683
684    if (!respQueue.empty()) {
685        assert(respQueue.front()->readyTime >= curTick());
686        assert(!respondEvent.scheduled());
687        schedule(respondEvent, respQueue.front()->readyTime);
688    } else {
689        // if there is nothing left in any queue, signal a drain
690        if (writeQueue.empty() && readQueue.empty() &&
691            drainManager) {
692            drainManager->signalDrainDone();
693            drainManager = NULL;
694        }
695    }
696
697    // We have made a location in the queue available at this point,
698    // so if there is a read that was forced to wait, retry now
699    if (retryRdReq) {
700        retryRdReq = false;
701        port.sendRetry();
702    }
703}
704
705void
706DRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue)
707{
708    // This method does the arbitration between requests. The chosen
709    // packet is simply moved to the head of the queue. The other
710    // methods know that this is the place to look. For example, with
711    // FCFS, this method does nothing
712    assert(!queue.empty());
713
714    if (queue.size() == 1) {
715        DPRINTF(DRAM, "Single request, nothing to do\n");
716        return;
717    }
718
719    if (memSchedPolicy == Enums::fcfs) {
720        // Do nothing, since the correct request is already head
721    } else if (memSchedPolicy == Enums::frfcfs) {
722        reorderQueue(queue);
723    } else
724        panic("No scheduling policy chosen\n");
725}
726
727void
728DRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue)
729{
730    // Only determine this when needed
731    uint64_t earliest_banks = 0;
732
733    // Search for row hits first, if no row hit is found then schedule the
734    // packet to one of the earliest banks available
735    bool found_earliest_pkt = false;
736    auto selected_pkt_it = queue.begin();
737
738    for (auto i = queue.begin(); i != queue.end() ; ++i) {
739        DRAMPacket* dram_pkt = *i;
740        const Bank& bank = dram_pkt->bankRef;
741        // Check if it is a row hit
742        if (bank.openRow == dram_pkt->row) {
743            DPRINTF(DRAM, "Row buffer hit\n");
744            selected_pkt_it = i;
745            break;
746        } else if (!found_earliest_pkt) {
747            // No row hit, go for first ready
748            if (earliest_banks == 0)
749                earliest_banks = minBankFreeAt(queue);
750
751            // Bank is ready or is the first available bank
752            if (bank.freeAt <= curTick() ||
753                bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) {
754                // Remember the packet to be scheduled to one of the earliest
755                // banks available
756                selected_pkt_it = i;
757                found_earliest_pkt = true;
758            }
759        }
760    }
761
762    DRAMPacket* selected_pkt = *selected_pkt_it;
763    queue.erase(selected_pkt_it);
764    queue.push_front(selected_pkt);
765}
766
767void
768DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency)
769{
770    DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
771
772    bool needsResponse = pkt->needsResponse();
773    // do the actual memory access which also turns the packet into a
774    // response
775    access(pkt);
776
777    // turn packet around to go back to requester if response expected
778    if (needsResponse) {
779        // access already turned the packet into a response
780        assert(pkt->isResponse());
781
782        // @todo someone should pay for this
783        pkt->busFirstWordDelay = pkt->busLastWordDelay = 0;
784
785        // queue the packet in the response queue to be sent out after
786        // the static latency has passed
787        port.schedTimingResp(pkt, curTick() + static_latency);
788    } else {
789        // @todo the packet is going to be deleted, and the DRAMPacket
790        // is still having a pointer to it
791        pendingDelete.push_back(pkt);
792    }
793
794    DPRINTF(DRAM, "Done\n");
795
796    return;
797}
798
799pair<Tick, Tick>
800DRAMCtrl::estimateLatency(DRAMPacket* dram_pkt, Tick inTime)
801{
802    // If a request reaches a bank at tick 'inTime', how much time
803    // *after* that does it take to finish the request, depending
804    // on bank status and page open policy. Note that this method
805    // considers only the time taken for the actual read or write
806    // to complete, NOT any additional time thereafter for tRAS or
807    // tRP.
808    Tick accLat = 0;
809    Tick bankLat = 0;
810    rowHitFlag = false;
811
812    const Bank& bank = dram_pkt->bankRef;
813
814    if (bank.openRow == dram_pkt->row) {
815        // When we have a row-buffer hit,
816        // we don't care about tRAS having expired or not,
817        // but do care about bank being free for access
818        rowHitFlag = true;
819
820        // When a series of requests arrive to the same row,
821        // DDR systems are capable of streaming data continuously
822        // at maximum bandwidth (subject to tCCD). Here, we approximate
823        // this condition, and assume that if whenever a bank is already
824        // busy and a new request comes in, it can be completed with no
825        // penalty beyond waiting for the existing read to complete.
826        if (bank.freeAt > inTime) {
827            accLat += bank.freeAt - inTime;
828            bankLat += 0;
829        } else {
830            // CAS latency only
831            accLat += tCL;
832            bankLat += tCL;
833        }
834    } else {
835        // Row-buffer miss, need to potentially close an existing row,
836        // then open the new one, then add CAS latency
837        Tick free_at = bank.freeAt;
838        Tick precharge_delay = 0;
839
840        // Check if we first need to precharge
841        if (bank.openRow != Bank::NO_ROW) {
842            free_at = std::max(bank.preAllowedAt, free_at);
843            precharge_delay = tRP;
844        }
845
846        // If the earliest time to issue the command is in the future,
847        // add it to the access latency
848        if (free_at > inTime)
849            accLat += free_at - inTime;
850
851        // We also need to account for the earliest activation time,
852        // and potentially add that as well to the access latency
853        Tick act_at = inTime + accLat + precharge_delay;
854        if (act_at < bank.actAllowedAt)
855            accLat += bank.actAllowedAt - act_at;
856
857        accLat += precharge_delay + tRCD + tCL;
858        bankLat += precharge_delay + tRCD + tCL;
859    }
860
861    DPRINTF(DRAM, "Returning < %lld, %lld > from estimateLatency()\n",
862            bankLat, accLat);
863
864    return make_pair(bankLat, accLat);
865}
866
867void
868DRAMCtrl::activateBank(Tick act_tick, uint8_t rank, uint8_t bank,
869                       uint16_t row, Bank& bank_ref)
870{
871    assert(0 <= rank && rank < ranksPerChannel);
872    assert(actTicks[rank].size() == activationLimit);
873
874    DPRINTF(DRAM, "Activate at tick %d\n", act_tick);
875
876    // update the open row
877    assert(bank_ref.openRow == Bank::NO_ROW);
878    bank_ref.openRow = row;
879
880    // start counting anew, this covers both the case when we
881    // auto-precharged, and when this access is forced to
882    // precharge
883    bank_ref.bytesAccessed = 0;
884    bank_ref.rowAccesses = 0;
885
886    ++numBanksActive;
887    assert(numBanksActive <= banksPerRank * ranksPerChannel);
888
889    DPRINTF(DRAM, "Activate bank at tick %lld, now got %d active\n",
890            act_tick, numBanksActive);
891
892    // start by enforcing tRRD
893    for(int i = 0; i < banksPerRank; i++) {
894        // next activate to any bank in this rank must not happen
895        // before tRRD
896        banks[rank][i].actAllowedAt = std::max(act_tick + tRRD,
897                                               banks[rank][i].actAllowedAt);
898    }
899
900    // next, we deal with tXAW, if the activation limit is disabled
901    // then we are done
902    if (actTicks[rank].empty())
903        return;
904
905    // sanity check
906    if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) {
907        panic("Got %d activates in window %d (%llu - %llu) which is smaller "
908              "than %llu\n", activationLimit, act_tick - actTicks[rank].back(),
909              act_tick, actTicks[rank].back(), tXAW);
910    }
911
912    // shift the times used for the book keeping, the last element
913    // (highest index) is the oldest one and hence the lowest value
914    actTicks[rank].pop_back();
915
916    // record an new activation (in the future)
917    actTicks[rank].push_front(act_tick);
918
919    // cannot activate more than X times in time window tXAW, push the
920    // next one (the X + 1'st activate) to be tXAW away from the
921    // oldest in our window of X
922    if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) {
923        DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate no earlier "
924                "than %llu\n", activationLimit, actTicks[rank].back() + tXAW);
925            for(int j = 0; j < banksPerRank; j++)
926                // next activate must not happen before end of window
927                banks[rank][j].actAllowedAt =
928                    std::max(actTicks[rank].back() + tXAW,
929                             banks[rank][j].actAllowedAt);
930    }
931
932    // at the point when this activate takes place, make sure we
933    // transition to the active power state
934    if (!activateEvent.scheduled())
935        schedule(activateEvent, act_tick);
936    else if (activateEvent.when() > act_tick)
937        // move it sooner in time
938        reschedule(activateEvent, act_tick);
939}
940
941void
942DRAMCtrl::processActivateEvent()
943{
944    // we should transition to the active state as soon as any bank is active
945    if (pwrState != PWR_ACT)
946        // note that at this point numBanksActive could be back at
947        // zero again due to a precharge scheduled in the future
948        schedulePowerEvent(PWR_ACT, curTick());
949}
950
951void
952DRAMCtrl::prechargeBank(Bank& bank, Tick free_at)
953{
954    // make sure the bank has an open row
955    assert(bank.openRow != Bank::NO_ROW);
956
957    // sample the bytes per activate here since we are closing
958    // the page
959    bytesPerActivate.sample(bank.bytesAccessed);
960
961    bank.openRow = Bank::NO_ROW;
962
963    bank.freeAt = free_at;
964
965    assert(numBanksActive != 0);
966    --numBanksActive;
967
968    DPRINTF(DRAM, "Precharged bank, done at tick %lld, now got %d active\n",
969            bank.freeAt, numBanksActive);
970
971    // if we look at the current number of active banks we might be
972    // tempted to think the DRAM is now idle, however this can be
973    // undone by an activate that is scheduled to happen before we
974    // would have reached the idle state, so schedule an event and
975    // rather check once we actually make it to the point in time when
976    // the (last) precharge takes place
977    if (!prechargeEvent.scheduled())
978        schedule(prechargeEvent, free_at);
979    else if (prechargeEvent.when() < free_at)
980        reschedule(prechargeEvent, free_at);
981}
982
983void
984DRAMCtrl::processPrechargeEvent()
985{
986    // if we reached zero, then special conditions apply as we track
987    // if all banks are precharged for the power models
988    if (numBanksActive == 0) {
989        // we should transition to the idle state when the last bank
990        // is precharged
991        schedulePowerEvent(PWR_IDLE, curTick());
992    }
993}
994
995void
996DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
997{
998
999    DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
1000            dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
1001
1002    // estimate the bank and access latency
1003    pair<Tick, Tick> lat = estimateLatency(dram_pkt, curTick());
1004    Tick bankLat = lat.first;
1005    Tick accessLat = lat.second;
1006    Tick actTick;
1007
1008    // This request was woken up at this time based on a prior call
1009    // to estimateLatency(). However, between then and now, both the
1010    // accessLatency and/or busBusyUntil may have changed. We need
1011    // to correct for that.
1012    Tick addDelay = (curTick() + accessLat < busBusyUntil) ?
1013        busBusyUntil - (curTick() + accessLat) : 0;
1014
1015    // Update request parameters
1016    dram_pkt->readyTime = curTick() + addDelay + accessLat + tBURST;
1017
1018    DPRINTF(DRAM, "Req %lld: curtick is %lld accessLat is %d " \
1019                  "readytime is %lld busbusyuntil is %lld. " \
1020                  "Scheduling at readyTime\n", dram_pkt->addr,
1021                   curTick(), accessLat, dram_pkt->readyTime, busBusyUntil);
1022
1023    // Make sure requests are not overlapping on the databus
1024    assert(dram_pkt->readyTime - busBusyUntil >= tBURST);
1025
1026    Bank& bank = dram_pkt->bankRef;
1027
1028    // Update bank state
1029    if (rowHitFlag) {
1030        bank.freeAt = curTick() + addDelay + accessLat;
1031    } else {
1032        // If there is a page open, precharge it.
1033        if (bank.openRow != Bank::NO_ROW) {
1034            prechargeBank(bank, std::max(std::max(bank.freeAt,
1035                                                  bank.preAllowedAt),
1036                                         curTick()) + tRP);
1037        }
1038
1039        // Any precharge is already part of the latency
1040        // estimation, so update the bank free time
1041        bank.freeAt = curTick() + addDelay + accessLat;
1042
1043        // any waiting for banks account for in freeAt
1044        actTick = bank.freeAt - tCL - tRCD;
1045
1046        // The next access has to respect tRAS for this bank
1047        bank.preAllowedAt = actTick + tRAS;
1048
1049        // Record the activation and deal with all the global timing
1050        // constraints caused be a new activation (tRRD and tXAW)
1051        activateBank(actTick, dram_pkt->rank, dram_pkt->bank,
1052                     dram_pkt->row, bank);
1053
1054    }
1055
1056    // If this is a write, we also need to respect the write
1057    // recovery time before a precharge
1058    if (!dram_pkt->isRead) {
1059        bank.preAllowedAt = std::max(bank.preAllowedAt,
1060                                     dram_pkt->readyTime + tWR);
1061    }
1062
1063    // We also have to respect tRP, and any constraints on when we may
1064    // precharge the bank, in the case of reads this is really only
1065    // going to cause any change if we did not have a row hit and are
1066    // now forced to respect tRAS
1067    bank.actAllowedAt = std::max(bank.actAllowedAt,
1068                                 bank.preAllowedAt + tRP);
1069
1070    // increment the bytes accessed and the accesses per row
1071    bank.bytesAccessed += burstSize;
1072    ++bank.rowAccesses;
1073
1074    // if we reached the max, then issue with an auto-precharge
1075    bool auto_precharge = pageMgmt == Enums::close ||
1076        bank.rowAccesses == maxAccessesPerRow;
1077
1078    // if we did not hit the limit, we might still want to
1079    // auto-precharge
1080    if (!auto_precharge &&
1081        (pageMgmt == Enums::open_adaptive ||
1082         pageMgmt == Enums::close_adaptive)) {
1083        // a twist on the open and close page policies:
1084        // 1) open_adaptive page policy does not blindly keep the
1085        // page open, but close it if there are no row hits, and there
1086        // are bank conflicts in the queue
1087        // 2) close_adaptive page policy does not blindly close the
1088        // page, but closes it only if there are no row hits in the queue.
1089        // In this case, only force an auto precharge when there
1090        // are no same page hits in the queue
1091        bool got_more_hits = false;
1092        bool got_bank_conflict = false;
1093
1094        // either look at the read queue or write queue
1095        const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue :
1096            writeQueue;
1097        auto p = queue.begin();
1098        // make sure we are not considering the packet that we are
1099        // currently dealing with (which is the head of the queue)
1100        ++p;
1101
1102        // keep on looking until we have found required condition or
1103        // reached the end
1104        while (!(got_more_hits &&
1105                 (got_bank_conflict || pageMgmt == Enums::close_adaptive)) &&
1106               p != queue.end()) {
1107            bool same_rank_bank = (dram_pkt->rank == (*p)->rank) &&
1108                (dram_pkt->bank == (*p)->bank);
1109            bool same_row = dram_pkt->row == (*p)->row;
1110            got_more_hits |= same_rank_bank && same_row;
1111            got_bank_conflict |= same_rank_bank && !same_row;
1112            ++p;
1113        }
1114
1115        // auto pre-charge when either
1116        // 1) open_adaptive policy, we have not got any more hits, and
1117        //    have a bank conflict
1118        // 2) close_adaptive policy and we have not got any more hits
1119        auto_precharge = !got_more_hits &&
1120            (got_bank_conflict || pageMgmt == Enums::close_adaptive);
1121    }
1122
1123    // if this access should use auto-precharge, then we are
1124    // closing the row
1125    if (auto_precharge) {
1126        prechargeBank(bank, std::max(bank.freeAt, bank.preAllowedAt) + tRP);
1127
1128        DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId);
1129    }
1130
1131    DPRINTF(DRAM, "doDRAMAccess::bank.freeAt is %lld\n", bank.freeAt);
1132
1133    // Update bus state
1134    busBusyUntil = dram_pkt->readyTime;
1135
1136    DPRINTF(DRAM,"Access time is %lld\n",
1137            dram_pkt->readyTime - dram_pkt->entryTime);
1138
1139    // Update the minimum timing between the requests, this is a
1140    // conservative estimate of when we have to schedule the next
1141    // request to not introduce any unecessary bubbles. In most cases
1142    // we will wake up sooner than we have to.
1143    nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
1144
1145    // Update the stats and schedule the next request
1146    if (dram_pkt->isRead) {
1147        ++readsThisTime;
1148        if (rowHitFlag)
1149            readRowHits++;
1150        bytesReadDRAM += burstSize;
1151        perBankRdBursts[dram_pkt->bankId]++;
1152
1153        // Update latency stats
1154        totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
1155        totBankLat += bankLat;
1156        totBusLat += tBURST;
1157        totQLat += dram_pkt->readyTime - dram_pkt->entryTime - bankLat -
1158            tBURST;
1159    } else {
1160        ++writesThisTime;
1161        if (rowHitFlag)
1162            writeRowHits++;
1163        bytesWritten += burstSize;
1164        perBankWrBursts[dram_pkt->bankId]++;
1165    }
1166}
1167
1168void
1169DRAMCtrl::moveToRespQ()
1170{
1171    // Remove from read queue
1172    DRAMPacket* dram_pkt = readQueue.front();
1173    readQueue.pop_front();
1174
1175    // sanity check
1176    assert(dram_pkt->size <= burstSize);
1177
1178    // Insert into response queue sorted by readyTime
1179    // It will be sent back to the requestor at its
1180    // readyTime
1181    if (respQueue.empty()) {
1182        respQueue.push_front(dram_pkt);
1183        assert(!respondEvent.scheduled());
1184        assert(dram_pkt->readyTime >= curTick());
1185        schedule(respondEvent, dram_pkt->readyTime);
1186    } else {
1187        bool done = false;
1188        auto i = respQueue.begin();
1189        while (!done && i != respQueue.end()) {
1190            if ((*i)->readyTime > dram_pkt->readyTime) {
1191                respQueue.insert(i, dram_pkt);
1192                done = true;
1193            }
1194            ++i;
1195        }
1196
1197        if (!done)
1198            respQueue.push_back(dram_pkt);
1199
1200        assert(respondEvent.scheduled());
1201
1202        if (respQueue.front()->readyTime < respondEvent.when()) {
1203            assert(respQueue.front()->readyTime >= curTick());
1204            reschedule(respondEvent, respQueue.front()->readyTime);
1205        }
1206    }
1207}
1208
1209void
1210DRAMCtrl::processNextReqEvent()
1211{
1212    if (busState == READ_TO_WRITE) {
1213        DPRINTF(DRAM, "Switching to writes after %d reads with %d reads "
1214                "waiting\n", readsThisTime, readQueue.size());
1215
1216        // sample and reset the read-related stats as we are now
1217        // transitioning to writes, and all reads are done
1218        rdPerTurnAround.sample(readsThisTime);
1219        readsThisTime = 0;
1220
1221        // now proceed to do the actual writes
1222        busState = WRITE;
1223    } else if (busState == WRITE_TO_READ) {
1224        DPRINTF(DRAM, "Switching to reads after %d writes with %d writes "
1225                "waiting\n", writesThisTime, writeQueue.size());
1226
1227        wrPerTurnAround.sample(writesThisTime);
1228        writesThisTime = 0;
1229
1230        busState = READ;
1231    }
1232
1233    if (refreshState != REF_IDLE) {
1234        // if a refresh waiting for this event loop to finish, then hand
1235        // over now, and do not schedule a new nextReqEvent
1236        if (refreshState == REF_DRAIN) {
1237            DPRINTF(DRAM, "Refresh drain done, now precharging\n");
1238
1239            refreshState = REF_PRE;
1240
1241            // hand control back to the refresh event loop
1242            schedule(refreshEvent, curTick());
1243        }
1244
1245        // let the refresh finish before issuing any further requests
1246        return;
1247    }
1248
1249    // when we get here it is either a read or a write
1250    if (busState == READ) {
1251
1252        // track if we should switch or not
1253        bool switch_to_writes = false;
1254
1255        if (readQueue.empty()) {
1256            // In the case there is no read request to go next,
1257            // trigger writes if we have passed the low threshold (or
1258            // if we are draining)
1259            if (!writeQueue.empty() &&
1260                (drainManager || writeQueue.size() > writeLowThreshold)) {
1261
1262                switch_to_writes = true;
1263            } else {
1264                // check if we are drained
1265                if (respQueue.empty () && drainManager) {
1266                    drainManager->signalDrainDone();
1267                    drainManager = NULL;
1268                }
1269
1270                // nothing to do, not even any point in scheduling an
1271                // event for the next request
1272                return;
1273            }
1274        } else {
1275            // Figure out which read request goes next, and move it to the
1276            // front of the read queue
1277            chooseNext(readQueue);
1278
1279            doDRAMAccess(readQueue.front());
1280
1281            // At this point we're done dealing with the request
1282            // It will be moved to a separate response queue with a
1283            // correct readyTime, and eventually be sent back at that
1284            // time
1285            moveToRespQ();
1286
1287            // we have so many writes that we have to transition
1288            if (writeQueue.size() > writeHighThreshold) {
1289                switch_to_writes = true;
1290            }
1291        }
1292
1293        // switching to writes, either because the read queue is empty
1294        // and the writes have passed the low threshold (or we are
1295        // draining), or because the writes hit the hight threshold
1296        if (switch_to_writes) {
1297            // transition to writing
1298            busState = READ_TO_WRITE;
1299
1300            // add a bubble to the data bus, as defined by the
1301            // tRTW parameter
1302            busBusyUntil += tRTW;
1303
1304            // update the minimum timing between the requests,
1305            // this shifts us back in time far enough to do any
1306            // bank preparation
1307            nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
1308        }
1309    } else {
1310        chooseNext(writeQueue);
1311        DRAMPacket* dram_pkt = writeQueue.front();
1312        // sanity check
1313        assert(dram_pkt->size <= burstSize);
1314        doDRAMAccess(dram_pkt);
1315
1316        writeQueue.pop_front();
1317        delete dram_pkt;
1318
1319        // If we emptied the write queue, or got sufficiently below the
1320        // threshold (using the minWritesPerSwitch as the hysteresis) and
1321        // are not draining, or we have reads waiting and have done enough
1322        // writes, then switch to reads.
1323        if (writeQueue.empty() ||
1324            (writeQueue.size() + minWritesPerSwitch < writeLowThreshold &&
1325             !drainManager) ||
1326            (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) {
1327            // turn the bus back around for reads again
1328            busState = WRITE_TO_READ;
1329
1330            // note that the we switch back to reads also in the idle
1331            // case, which eventually will check for any draining and
1332            // also pause any further scheduling if there is really
1333            // nothing to do
1334
1335            // here we get a bit creative and shift the bus busy time not
1336            // just the tWTR, but also a CAS latency to capture the fact
1337            // that we are allowed to prepare a new bank, but not issue a
1338            // read command until after tWTR, in essence we capture a
1339            // bubble on the data bus that is tWTR + tCL
1340            busBusyUntil += tWTR + tCL;
1341
1342            // update the minimum timing between the requests, this shifts
1343            // us back in time far enough to do any bank preparation
1344            nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
1345        }
1346    }
1347
1348    schedule(nextReqEvent, std::max(nextReqTime, curTick()));
1349
1350    // If there is space available and we have writes waiting then let
1351    // them retry. This is done here to ensure that the retry does not
1352    // cause a nextReqEvent to be scheduled before we do so as part of
1353    // the next request processing
1354    if (retryWrReq && writeQueue.size() < writeBufferSize) {
1355        retryWrReq = false;
1356        port.sendRetry();
1357    }
1358}
1359
1360uint64_t
1361DRAMCtrl::minBankFreeAt(const deque<DRAMPacket*>& queue) const
1362{
1363    uint64_t bank_mask = 0;
1364    Tick freeAt = MaxTick;
1365
1366    // detemrine if we have queued transactions targetting the
1367    // bank in question
1368    vector<bool> got_waiting(ranksPerChannel * banksPerRank, false);
1369    for (auto p = queue.begin(); p != queue.end(); ++p) {
1370        got_waiting[(*p)->bankId] = true;
1371    }
1372
1373    for (int i = 0; i < ranksPerChannel; i++) {
1374        for (int j = 0; j < banksPerRank; j++) {
1375            // if we have waiting requests for the bank, and it is
1376            // amongst the first available, update the mask
1377            if (got_waiting[i * banksPerRank + j] &&
1378                banks[i][j].freeAt <= freeAt) {
1379                // reset bank mask if new minimum is found
1380                if (banks[i][j].freeAt < freeAt)
1381                    bank_mask = 0;
1382                // set the bit corresponding to the available bank
1383                uint8_t bit_index = i * ranksPerChannel + j;
1384                replaceBits(bank_mask, bit_index, bit_index, 1);
1385                freeAt = banks[i][j].freeAt;
1386            }
1387        }
1388    }
1389    return bank_mask;
1390}
1391
1392void
1393DRAMCtrl::processRefreshEvent()
1394{
1395    // when first preparing the refresh, remember when it was due
1396    if (refreshState == REF_IDLE) {
1397        // remember when the refresh is due
1398        refreshDueAt = curTick();
1399
1400        // proceed to drain
1401        refreshState = REF_DRAIN;
1402
1403        DPRINTF(DRAM, "Refresh due\n");
1404    }
1405
1406    // let any scheduled read or write go ahead, after which it will
1407    // hand control back to this event loop
1408    if (refreshState == REF_DRAIN) {
1409        if (nextReqEvent.scheduled()) {
1410            // hand control over to the request loop until it is
1411            // evaluated next
1412            DPRINTF(DRAM, "Refresh awaiting draining\n");
1413
1414            return;
1415        } else {
1416            refreshState = REF_PRE;
1417        }
1418    }
1419
1420    // at this point, ensure that all banks are precharged
1421    if (refreshState == REF_PRE) {
1422        // precharge any active bank if we are not already in the idle
1423        // state
1424        if (pwrState != PWR_IDLE) {
1425            DPRINTF(DRAM, "Precharging all\n");
1426            for (int i = 0; i < ranksPerChannel; i++) {
1427                for (int j = 0; j < banksPerRank; j++) {
1428                    if (banks[i][j].openRow != Bank::NO_ROW) {
1429                        // respect both causality and any existing bank
1430                        // constraints
1431                        Tick free_at =
1432                            std::max(std::max(banks[i][j].freeAt,
1433                                              banks[i][j].preAllowedAt),
1434                                     curTick()) + tRP;
1435
1436                        prechargeBank(banks[i][j], free_at);
1437                    }
1438                }
1439            }
1440        } else {
1441            DPRINTF(DRAM, "All banks already precharged, starting refresh\n");
1442
1443            // go ahead and kick the power state machine into gear if
1444            // we are already idle
1445            schedulePowerEvent(PWR_REF, curTick());
1446        }
1447
1448        refreshState = REF_RUN;
1449        assert(numBanksActive == 0);
1450
1451        // wait for all banks to be precharged, at which point the
1452        // power state machine will transition to the idle state, and
1453        // automatically move to a refresh, at that point it will also
1454        // call this method to get the refresh event loop going again
1455        return;
1456    }
1457
1458    // last but not least we perform the actual refresh
1459    if (refreshState == REF_RUN) {
1460        // should never get here with any banks active
1461        assert(numBanksActive == 0);
1462        assert(pwrState == PWR_REF);
1463
1464        Tick banksFree = curTick() + tRFC;
1465
1466        for (int i = 0; i < ranksPerChannel; i++) {
1467            for (int j = 0; j < banksPerRank; j++) {
1468                banks[i][j].freeAt = banksFree;
1469            }
1470        }
1471
1472        // make sure we did not wait so long that we cannot make up
1473        // for it
1474        if (refreshDueAt + tREFI < banksFree) {
1475            fatal("Refresh was delayed so long we cannot catch up\n");
1476        }
1477
1478        // compensate for the delay in actually performing the refresh
1479        // when scheduling the next one
1480        schedule(refreshEvent, refreshDueAt + tREFI - tRP);
1481
1482        assert(!powerEvent.scheduled());
1483
1484        // move to the idle power state once the refresh is done, this
1485        // will also move the refresh state machine to the refresh
1486        // idle state
1487        schedulePowerEvent(PWR_IDLE, banksFree);
1488
1489        DPRINTF(DRAMState, "Refresh done at %llu and next refresh at %llu\n",
1490                banksFree, refreshDueAt + tREFI);
1491    }
1492}
1493
1494void
1495DRAMCtrl::schedulePowerEvent(PowerState pwr_state, Tick tick)
1496{
1497    // respect causality
1498    assert(tick >= curTick());
1499
1500    if (!powerEvent.scheduled()) {
1501        DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n",
1502                tick, pwr_state);
1503
1504        // insert the new transition
1505        pwrStateTrans = pwr_state;
1506
1507        schedule(powerEvent, tick);
1508    } else {
1509        panic("Scheduled power event at %llu to state %d, "
1510              "with scheduled event at %llu to %d\n", tick, pwr_state,
1511              powerEvent.when(), pwrStateTrans);
1512    }
1513}
1514
1515void
1516DRAMCtrl::processPowerEvent()
1517{
1518    // remember where we were, and for how long
1519    Tick duration = curTick() - pwrStateTick;
1520    PowerState prev_state = pwrState;
1521
1522    // update the accounting
1523    pwrStateTime[prev_state] += duration;
1524
1525    pwrState = pwrStateTrans;
1526    pwrStateTick = curTick();
1527
1528    if (pwrState == PWR_IDLE) {
1529        DPRINTF(DRAMState, "All banks precharged\n");
1530
1531        // if we were refreshing, make sure we start scheduling requests again
1532        if (prev_state == PWR_REF) {
1533            DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration);
1534            assert(pwrState == PWR_IDLE);
1535
1536            // kick things into action again
1537            refreshState = REF_IDLE;
1538            assert(!nextReqEvent.scheduled());
1539            schedule(nextReqEvent, curTick());
1540        } else {
1541            assert(prev_state == PWR_ACT);
1542
1543            // if we have a pending refresh, and are now moving to
1544            // the idle state, direclty transition to a refresh
1545            if (refreshState == REF_RUN) {
1546                // there should be nothing waiting at this point
1547                assert(!powerEvent.scheduled());
1548
1549                // update the state in zero time and proceed below
1550                pwrState = PWR_REF;
1551            }
1552        }
1553    }
1554
1555    // we transition to the refresh state, let the refresh state
1556    // machine know of this state update and let it deal with the
1557    // scheduling of the next power state transition as well as the
1558    // following refresh
1559    if (pwrState == PWR_REF) {
1560        DPRINTF(DRAMState, "Refreshing\n");
1561        // kick the refresh event loop into action again, and that
1562        // in turn will schedule a transition to the idle power
1563        // state once the refresh is done
1564        assert(refreshState == REF_RUN);
1565        processRefreshEvent();
1566    }
1567}
1568
1569void
1570DRAMCtrl::regStats()
1571{
1572    using namespace Stats;
1573
1574    AbstractMemory::regStats();
1575
1576    readReqs
1577        .name(name() + ".readReqs")
1578        .desc("Number of read requests accepted");
1579
1580    writeReqs
1581        .name(name() + ".writeReqs")
1582        .desc("Number of write requests accepted");
1583
1584    readBursts
1585        .name(name() + ".readBursts")
1586        .desc("Number of DRAM read bursts, "
1587              "including those serviced by the write queue");
1588
1589    writeBursts
1590        .name(name() + ".writeBursts")
1591        .desc("Number of DRAM write bursts, "
1592              "including those merged in the write queue");
1593
1594    servicedByWrQ
1595        .name(name() + ".servicedByWrQ")
1596        .desc("Number of DRAM read bursts serviced by the write queue");
1597
1598    mergedWrBursts
1599        .name(name() + ".mergedWrBursts")
1600        .desc("Number of DRAM write bursts merged with an existing one");
1601
1602    neitherReadNorWrite
1603        .name(name() + ".neitherReadNorWriteReqs")
1604        .desc("Number of requests that are neither read nor write");
1605
1606    perBankRdBursts
1607        .init(banksPerRank * ranksPerChannel)
1608        .name(name() + ".perBankRdBursts")
1609        .desc("Per bank write bursts");
1610
1611    perBankWrBursts
1612        .init(banksPerRank * ranksPerChannel)
1613        .name(name() + ".perBankWrBursts")
1614        .desc("Per bank write bursts");
1615
1616    avgRdQLen
1617        .name(name() + ".avgRdQLen")
1618        .desc("Average read queue length when enqueuing")
1619        .precision(2);
1620
1621    avgWrQLen
1622        .name(name() + ".avgWrQLen")
1623        .desc("Average write queue length when enqueuing")
1624        .precision(2);
1625
1626    totQLat
1627        .name(name() + ".totQLat")
1628        .desc("Total ticks spent queuing");
1629
1630    totBankLat
1631        .name(name() + ".totBankLat")
1632        .desc("Total ticks spent accessing banks");
1633
1634    totBusLat
1635        .name(name() + ".totBusLat")
1636        .desc("Total ticks spent in databus transfers");
1637
1638    totMemAccLat
1639        .name(name() + ".totMemAccLat")
1640        .desc("Total ticks spent from burst creation until serviced "
1641              "by the DRAM");
1642
1643    avgQLat
1644        .name(name() + ".avgQLat")
1645        .desc("Average queueing delay per DRAM burst")
1646        .precision(2);
1647
1648    avgQLat = totQLat / (readBursts - servicedByWrQ);
1649
1650    avgBankLat
1651        .name(name() + ".avgBankLat")
1652        .desc("Average bank access latency per DRAM burst")
1653        .precision(2);
1654
1655    avgBankLat = totBankLat / (readBursts - servicedByWrQ);
1656
1657    avgBusLat
1658        .name(name() + ".avgBusLat")
1659        .desc("Average bus latency per DRAM burst")
1660        .precision(2);
1661
1662    avgBusLat = totBusLat / (readBursts - servicedByWrQ);
1663
1664    avgMemAccLat
1665        .name(name() + ".avgMemAccLat")
1666        .desc("Average memory access latency per DRAM burst")
1667        .precision(2);
1668
1669    avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ);
1670
1671    numRdRetry
1672        .name(name() + ".numRdRetry")
1673        .desc("Number of times read queue was full causing retry");
1674
1675    numWrRetry
1676        .name(name() + ".numWrRetry")
1677        .desc("Number of times write queue was full causing retry");
1678
1679    readRowHits
1680        .name(name() + ".readRowHits")
1681        .desc("Number of row buffer hits during reads");
1682
1683    writeRowHits
1684        .name(name() + ".writeRowHits")
1685        .desc("Number of row buffer hits during writes");
1686
1687    readRowHitRate
1688        .name(name() + ".readRowHitRate")
1689        .desc("Row buffer hit rate for reads")
1690        .precision(2);
1691
1692    readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100;
1693
1694    writeRowHitRate
1695        .name(name() + ".writeRowHitRate")
1696        .desc("Row buffer hit rate for writes")
1697        .precision(2);
1698
1699    writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100;
1700
1701    readPktSize
1702        .init(ceilLog2(burstSize) + 1)
1703        .name(name() + ".readPktSize")
1704        .desc("Read request sizes (log2)");
1705
1706     writePktSize
1707        .init(ceilLog2(burstSize) + 1)
1708        .name(name() + ".writePktSize")
1709        .desc("Write request sizes (log2)");
1710
1711     rdQLenPdf
1712        .init(readBufferSize)
1713        .name(name() + ".rdQLenPdf")
1714        .desc("What read queue length does an incoming req see");
1715
1716     wrQLenPdf
1717        .init(writeBufferSize)
1718        .name(name() + ".wrQLenPdf")
1719        .desc("What write queue length does an incoming req see");
1720
1721     bytesPerActivate
1722         .init(maxAccessesPerRow)
1723         .name(name() + ".bytesPerActivate")
1724         .desc("Bytes accessed per row activation")
1725         .flags(nozero);
1726
1727     rdPerTurnAround
1728         .init(readBufferSize)
1729         .name(name() + ".rdPerTurnAround")
1730         .desc("Reads before turning the bus around for writes")
1731         .flags(nozero);
1732
1733     wrPerTurnAround
1734         .init(writeBufferSize)
1735         .name(name() + ".wrPerTurnAround")
1736         .desc("Writes before turning the bus around for reads")
1737         .flags(nozero);
1738
1739    bytesReadDRAM
1740        .name(name() + ".bytesReadDRAM")
1741        .desc("Total number of bytes read from DRAM");
1742
1743    bytesReadWrQ
1744        .name(name() + ".bytesReadWrQ")
1745        .desc("Total number of bytes read from write queue");
1746
1747    bytesWritten
1748        .name(name() + ".bytesWritten")
1749        .desc("Total number of bytes written to DRAM");
1750
1751    bytesReadSys
1752        .name(name() + ".bytesReadSys")
1753        .desc("Total read bytes from the system interface side");
1754
1755    bytesWrittenSys
1756        .name(name() + ".bytesWrittenSys")
1757        .desc("Total written bytes from the system interface side");
1758
1759    avgRdBW
1760        .name(name() + ".avgRdBW")
1761        .desc("Average DRAM read bandwidth in MiByte/s")
1762        .precision(2);
1763
1764    avgRdBW = (bytesReadDRAM / 1000000) / simSeconds;
1765
1766    avgWrBW
1767        .name(name() + ".avgWrBW")
1768        .desc("Average achieved write bandwidth in MiByte/s")
1769        .precision(2);
1770
1771    avgWrBW = (bytesWritten / 1000000) / simSeconds;
1772
1773    avgRdBWSys
1774        .name(name() + ".avgRdBWSys")
1775        .desc("Average system read bandwidth in MiByte/s")
1776        .precision(2);
1777
1778    avgRdBWSys = (bytesReadSys / 1000000) / simSeconds;
1779
1780    avgWrBWSys
1781        .name(name() + ".avgWrBWSys")
1782        .desc("Average system write bandwidth in MiByte/s")
1783        .precision(2);
1784
1785    avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds;
1786
1787    peakBW
1788        .name(name() + ".peakBW")
1789        .desc("Theoretical peak bandwidth in MiByte/s")
1790        .precision(2);
1791
1792    peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000;
1793
1794    busUtil
1795        .name(name() + ".busUtil")
1796        .desc("Data bus utilization in percentage")
1797        .precision(2);
1798
1799    busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
1800
1801    totGap
1802        .name(name() + ".totGap")
1803        .desc("Total gap between requests");
1804
1805    avgGap
1806        .name(name() + ".avgGap")
1807        .desc("Average gap between requests")
1808        .precision(2);
1809
1810    avgGap = totGap / (readReqs + writeReqs);
1811
1812    // Stats for DRAM Power calculation based on Micron datasheet
1813    busUtilRead
1814        .name(name() + ".busUtilRead")
1815        .desc("Data bus utilization in percentage for reads")
1816        .precision(2);
1817
1818    busUtilRead = avgRdBW / peakBW * 100;
1819
1820    busUtilWrite
1821        .name(name() + ".busUtilWrite")
1822        .desc("Data bus utilization in percentage for writes")
1823        .precision(2);
1824
1825    busUtilWrite = avgWrBW / peakBW * 100;
1826
1827    pageHitRate
1828        .name(name() + ".pageHitRate")
1829        .desc("Row buffer hit rate, read and write combined")
1830        .precision(2);
1831
1832    pageHitRate = (writeRowHits + readRowHits) /
1833        (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100;
1834
1835    pwrStateTime
1836        .init(5)
1837        .name(name() + ".memoryStateTime")
1838        .desc("Time in different power states");
1839    pwrStateTime.subname(0, "IDLE");
1840    pwrStateTime.subname(1, "REF");
1841    pwrStateTime.subname(2, "PRE_PDN");
1842    pwrStateTime.subname(3, "ACT");
1843    pwrStateTime.subname(4, "ACT_PDN");
1844}
1845
1846void
1847DRAMCtrl::recvFunctional(PacketPtr pkt)
1848{
1849    // rely on the abstract memory
1850    functionalAccess(pkt);
1851}
1852
1853BaseSlavePort&
1854DRAMCtrl::getSlavePort(const string &if_name, PortID idx)
1855{
1856    if (if_name != "port") {
1857        return MemObject::getSlavePort(if_name, idx);
1858    } else {
1859        return port;
1860    }
1861}
1862
1863unsigned int
1864DRAMCtrl::drain(DrainManager *dm)
1865{
1866    unsigned int count = port.drain(dm);
1867
1868    // if there is anything in any of our internal queues, keep track
1869    // of that as well
1870    if (!(writeQueue.empty() && readQueue.empty() &&
1871          respQueue.empty())) {
1872        DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
1873                " resp: %d\n", writeQueue.size(), readQueue.size(),
1874                respQueue.size());
1875        ++count;
1876        drainManager = dm;
1877
1878        // the only part that is not drained automatically over time
1879        // is the write queue, thus kick things into action if needed
1880        if (!writeQueue.empty() && !nextReqEvent.scheduled()) {
1881            schedule(nextReqEvent, curTick());
1882        }
1883    }
1884
1885    if (count)
1886        setDrainState(Drainable::Draining);
1887    else
1888        setDrainState(Drainable::Drained);
1889    return count;
1890}
1891
1892DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory)
1893    : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
1894      memory(_memory)
1895{ }
1896
1897AddrRangeList
1898DRAMCtrl::MemoryPort::getAddrRanges() const
1899{
1900    AddrRangeList ranges;
1901    ranges.push_back(memory.getAddrRange());
1902    return ranges;
1903}
1904
1905void
1906DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt)
1907{
1908    pkt->pushLabel(memory.name());
1909
1910    if (!queue.checkFunctional(pkt)) {
1911        // Default implementation of SimpleTimingPort::recvFunctional()
1912        // calls recvAtomic() and throws away the latency; we can save a
1913        // little here by just not calculating the latency.
1914        memory.recvFunctional(pkt);
1915    }
1916
1917    pkt->popLabel();
1918}
1919
1920Tick
1921DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt)
1922{
1923    return memory.recvAtomic(pkt);
1924}
1925
1926bool
1927DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt)
1928{
1929    // pass it to the memory controller
1930    return memory.recvTimingReq(pkt);
1931}
1932
1933DRAMCtrl*
1934DRAMCtrlParams::create()
1935{
1936    return new DRAMCtrl(this);
1937}
1938