dram_ctrl.cc revision 10209:ac71c857e1e1
1/* 2 * Copyright (c) 2010-2014 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2013 Amin Farmahini-Farahani 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Andreas Hansson 41 * Ani Udipi 42 * Neha Agarwal 43 */ 44 45#include "base/bitfield.hh" 46#include "base/trace.hh" 47#include "debug/DRAM.hh" 48#include "debug/DRAMState.hh" 49#include "debug/Drain.hh" 50#include "mem/dram_ctrl.hh" 51#include "sim/system.hh" 52 53using namespace std; 54 55DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) : 56 AbstractMemory(p), 57 port(name() + ".port", *this), 58 retryRdReq(false), retryWrReq(false), 59 rowHitFlag(false), busState(READ), 60 nextReqEvent(this), respondEvent(this), activateEvent(this), 61 prechargeEvent(this), refreshEvent(this), powerEvent(this), 62 drainManager(NULL), 63 deviceBusWidth(p->device_bus_width), burstLength(p->burst_length), 64 deviceRowBufferSize(p->device_rowbuffer_size), 65 devicesPerRank(p->devices_per_rank), 66 burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8), 67 rowBufferSize(devicesPerRank * deviceRowBufferSize), 68 columnsPerRowBuffer(rowBufferSize / burstSize), 69 ranksPerChannel(p->ranks_per_channel), 70 banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0), 71 readBufferSize(p->read_buffer_size), 72 writeBufferSize(p->write_buffer_size), 73 writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0), 74 writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0), 75 minWritesPerSwitch(p->min_writes_per_switch), 76 writesThisTime(0), readsThisTime(0), 77 tWTR(p->tWTR), tRTW(p->tRTW), tBURST(p->tBURST), 78 tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS), 79 tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD), 80 tXAW(p->tXAW), activationLimit(p->activation_limit), 81 memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping), 82 pageMgmt(p->page_policy), 83 maxAccessesPerRow(p->max_accesses_per_row), 84 frontendLatency(p->static_frontend_latency), 85 backendLatency(p->static_backend_latency), 86 busBusyUntil(0), refreshDueAt(0), refreshState(REF_IDLE), 87 pwrStateTrans(PWR_IDLE), pwrState(PWR_IDLE), prevArrival(0), 88 nextReqTime(0), pwrStateTick(0), numBanksActive(0) 89{ 90 // create the bank states based on the dimensions of the ranks and 91 // banks 92 banks.resize(ranksPerChannel); 93 actTicks.resize(ranksPerChannel); 94 for (size_t c = 0; c < ranksPerChannel; ++c) { 95 banks[c].resize(banksPerRank); 96 actTicks[c].resize(activationLimit, 0); 97 } 98 99 // perform a basic check of the write thresholds 100 if (p->write_low_thresh_perc >= p->write_high_thresh_perc) 101 fatal("Write buffer low threshold %d must be smaller than the " 102 "high threshold %d\n", p->write_low_thresh_perc, 103 p->write_high_thresh_perc); 104 105 // determine the rows per bank by looking at the total capacity 106 uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size()); 107 108 DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity, 109 AbstractMemory::size()); 110 111 DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n", 112 rowBufferSize, columnsPerRowBuffer); 113 114 rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel); 115 116 if (range.interleaved()) { 117 if (channels != range.stripes()) 118 fatal("%s has %d interleaved address stripes but %d channel(s)\n", 119 name(), range.stripes(), channels); 120 121 if (addrMapping == Enums::RoRaBaChCo) { 122 if (rowBufferSize != range.granularity()) { 123 fatal("Interleaving of %s doesn't match RoRaBaChCo " 124 "address map\n", name()); 125 } 126 } else if (addrMapping == Enums::RoRaBaCoCh) { 127 if (system()->cacheLineSize() != range.granularity()) { 128 fatal("Interleaving of %s doesn't match RoRaBaCoCh " 129 "address map\n", name()); 130 } 131 } else if (addrMapping == Enums::RoCoRaBaCh) { 132 if (system()->cacheLineSize() != range.granularity()) 133 fatal("Interleaving of %s doesn't match RoCoRaBaCh " 134 "address map\n", name()); 135 } 136 } 137 138 // some basic sanity checks 139 if (tREFI <= tRP || tREFI <= tRFC) { 140 fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n", 141 tREFI, tRP, tRFC); 142 } 143} 144 145void 146DRAMCtrl::init() 147{ 148 if (!port.isConnected()) { 149 fatal("DRAMCtrl %s is unconnected!\n", name()); 150 } else { 151 port.sendRangeChange(); 152 } 153} 154 155void 156DRAMCtrl::startup() 157{ 158 // update the start tick for the precharge accounting to the 159 // current tick 160 pwrStateTick = curTick(); 161 162 // shift the bus busy time sufficiently far ahead that we never 163 // have to worry about negative values when computing the time for 164 // the next request, this will add an insignificant bubble at the 165 // start of simulation 166 busBusyUntil = curTick() + tRP + tRCD + tCL; 167 168 // print the configuration of the controller 169 printParams(); 170 171 // kick off the refresh, and give ourselves enough time to 172 // precharge 173 schedule(refreshEvent, curTick() + tREFI - tRP); 174} 175 176Tick 177DRAMCtrl::recvAtomic(PacketPtr pkt) 178{ 179 DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr()); 180 181 // do the actual memory access and turn the packet into a response 182 access(pkt); 183 184 Tick latency = 0; 185 if (!pkt->memInhibitAsserted() && pkt->hasData()) { 186 // this value is not supposed to be accurate, just enough to 187 // keep things going, mimic a closed page 188 latency = tRP + tRCD + tCL; 189 } 190 return latency; 191} 192 193bool 194DRAMCtrl::readQueueFull(unsigned int neededEntries) const 195{ 196 DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n", 197 readBufferSize, readQueue.size() + respQueue.size(), 198 neededEntries); 199 200 return 201 (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize; 202} 203 204bool 205DRAMCtrl::writeQueueFull(unsigned int neededEntries) const 206{ 207 DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n", 208 writeBufferSize, writeQueue.size(), neededEntries); 209 return (writeQueue.size() + neededEntries) > writeBufferSize; 210} 211 212DRAMCtrl::DRAMPacket* 213DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size, 214 bool isRead) 215{ 216 // decode the address based on the address mapping scheme, with 217 // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and 218 // channel, respectively 219 uint8_t rank; 220 uint8_t bank; 221 uint16_t row; 222 223 // truncate the address to the access granularity 224 Addr addr = dramPktAddr / burstSize; 225 226 // we have removed the lowest order address bits that denote the 227 // position within the column 228 if (addrMapping == Enums::RoRaBaChCo) { 229 // the lowest order bits denote the column to ensure that 230 // sequential cache lines occupy the same row 231 addr = addr / columnsPerRowBuffer; 232 233 // take out the channel part of the address 234 addr = addr / channels; 235 236 // after the channel bits, get the bank bits to interleave 237 // over the banks 238 bank = addr % banksPerRank; 239 addr = addr / banksPerRank; 240 241 // after the bank, we get the rank bits which thus interleaves 242 // over the ranks 243 rank = addr % ranksPerChannel; 244 addr = addr / ranksPerChannel; 245 246 // lastly, get the row bits 247 row = addr % rowsPerBank; 248 addr = addr / rowsPerBank; 249 } else if (addrMapping == Enums::RoRaBaCoCh) { 250 // take out the channel part of the address 251 addr = addr / channels; 252 253 // next, the column 254 addr = addr / columnsPerRowBuffer; 255 256 // after the column bits, we get the bank bits to interleave 257 // over the banks 258 bank = addr % banksPerRank; 259 addr = addr / banksPerRank; 260 261 // after the bank, we get the rank bits which thus interleaves 262 // over the ranks 263 rank = addr % ranksPerChannel; 264 addr = addr / ranksPerChannel; 265 266 // lastly, get the row bits 267 row = addr % rowsPerBank; 268 addr = addr / rowsPerBank; 269 } else if (addrMapping == Enums::RoCoRaBaCh) { 270 // optimise for closed page mode and utilise maximum 271 // parallelism of the DRAM (at the cost of power) 272 273 // take out the channel part of the address, not that this has 274 // to match with how accesses are interleaved between the 275 // controllers in the address mapping 276 addr = addr / channels; 277 278 // start with the bank bits, as this provides the maximum 279 // opportunity for parallelism between requests 280 bank = addr % banksPerRank; 281 addr = addr / banksPerRank; 282 283 // next get the rank bits 284 rank = addr % ranksPerChannel; 285 addr = addr / ranksPerChannel; 286 287 // next the column bits which we do not need to keep track of 288 // and simply skip past 289 addr = addr / columnsPerRowBuffer; 290 291 // lastly, get the row bits 292 row = addr % rowsPerBank; 293 addr = addr / rowsPerBank; 294 } else 295 panic("Unknown address mapping policy chosen!"); 296 297 assert(rank < ranksPerChannel); 298 assert(bank < banksPerRank); 299 assert(row < rowsPerBank); 300 301 DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n", 302 dramPktAddr, rank, bank, row); 303 304 // create the corresponding DRAM packet with the entry time and 305 // ready time set to the current tick, the latter will be updated 306 // later 307 uint16_t bank_id = banksPerRank * rank + bank; 308 return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr, 309 size, banks[rank][bank]); 310} 311 312void 313DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount) 314{ 315 // only add to the read queue here. whenever the request is 316 // eventually done, set the readyTime, and call schedule() 317 assert(!pkt->isWrite()); 318 319 assert(pktCount != 0); 320 321 // if the request size is larger than burst size, the pkt is split into 322 // multiple DRAM packets 323 // Note if the pkt starting address is not aligened to burst size, the 324 // address of first DRAM packet is kept unaliged. Subsequent DRAM packets 325 // are aligned to burst size boundaries. This is to ensure we accurately 326 // check read packets against packets in write queue. 327 Addr addr = pkt->getAddr(); 328 unsigned pktsServicedByWrQ = 0; 329 BurstHelper* burst_helper = NULL; 330 for (int cnt = 0; cnt < pktCount; ++cnt) { 331 unsigned size = std::min((addr | (burstSize - 1)) + 1, 332 pkt->getAddr() + pkt->getSize()) - addr; 333 readPktSize[ceilLog2(size)]++; 334 readBursts++; 335 336 // First check write buffer to see if the data is already at 337 // the controller 338 bool foundInWrQ = false; 339 for (auto i = writeQueue.begin(); i != writeQueue.end(); ++i) { 340 // check if the read is subsumed in the write entry we are 341 // looking at 342 if ((*i)->addr <= addr && 343 (addr + size) <= ((*i)->addr + (*i)->size)) { 344 foundInWrQ = true; 345 servicedByWrQ++; 346 pktsServicedByWrQ++; 347 DPRINTF(DRAM, "Read to addr %lld with size %d serviced by " 348 "write queue\n", addr, size); 349 bytesReadWrQ += burstSize; 350 break; 351 } 352 } 353 354 // If not found in the write q, make a DRAM packet and 355 // push it onto the read queue 356 if (!foundInWrQ) { 357 358 // Make the burst helper for split packets 359 if (pktCount > 1 && burst_helper == NULL) { 360 DPRINTF(DRAM, "Read to addr %lld translates to %d " 361 "dram requests\n", pkt->getAddr(), pktCount); 362 burst_helper = new BurstHelper(pktCount); 363 } 364 365 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true); 366 dram_pkt->burstHelper = burst_helper; 367 368 assert(!readQueueFull(1)); 369 rdQLenPdf[readQueue.size() + respQueue.size()]++; 370 371 DPRINTF(DRAM, "Adding to read queue\n"); 372 373 readQueue.push_back(dram_pkt); 374 375 // Update stats 376 avgRdQLen = readQueue.size() + respQueue.size(); 377 } 378 379 // Starting address of next dram pkt (aligend to burstSize boundary) 380 addr = (addr | (burstSize - 1)) + 1; 381 } 382 383 // If all packets are serviced by write queue, we send the repsonse back 384 if (pktsServicedByWrQ == pktCount) { 385 accessAndRespond(pkt, frontendLatency); 386 return; 387 } 388 389 // Update how many split packets are serviced by write queue 390 if (burst_helper != NULL) 391 burst_helper->burstsServiced = pktsServicedByWrQ; 392 393 // If we are not already scheduled to get a request out of the 394 // queue, do so now 395 if (!nextReqEvent.scheduled()) { 396 DPRINTF(DRAM, "Request scheduled immediately\n"); 397 schedule(nextReqEvent, curTick()); 398 } 399} 400 401void 402DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount) 403{ 404 // only add to the write queue here. whenever the request is 405 // eventually done, set the readyTime, and call schedule() 406 assert(pkt->isWrite()); 407 408 // if the request size is larger than burst size, the pkt is split into 409 // multiple DRAM packets 410 Addr addr = pkt->getAddr(); 411 for (int cnt = 0; cnt < pktCount; ++cnt) { 412 unsigned size = std::min((addr | (burstSize - 1)) + 1, 413 pkt->getAddr() + pkt->getSize()) - addr; 414 writePktSize[ceilLog2(size)]++; 415 writeBursts++; 416 417 // see if we can merge with an existing item in the write 418 // queue and keep track of whether we have merged or not so we 419 // can stop at that point and also avoid enqueueing a new 420 // request 421 bool merged = false; 422 auto w = writeQueue.begin(); 423 424 while(!merged && w != writeQueue.end()) { 425 // either of the two could be first, if they are the same 426 // it does not matter which way we go 427 if ((*w)->addr >= addr) { 428 // the existing one starts after the new one, figure 429 // out where the new one ends with respect to the 430 // existing one 431 if ((addr + size) >= ((*w)->addr + (*w)->size)) { 432 // check if the existing one is completely 433 // subsumed in the new one 434 DPRINTF(DRAM, "Merging write covering existing burst\n"); 435 merged = true; 436 // update both the address and the size 437 (*w)->addr = addr; 438 (*w)->size = size; 439 } else if ((addr + size) >= (*w)->addr && 440 ((*w)->addr + (*w)->size - addr) <= burstSize) { 441 // the new one is just before or partially 442 // overlapping with the existing one, and together 443 // they fit within a burst 444 DPRINTF(DRAM, "Merging write before existing burst\n"); 445 merged = true; 446 // the existing queue item needs to be adjusted with 447 // respect to both address and size 448 (*w)->size = (*w)->addr + (*w)->size - addr; 449 (*w)->addr = addr; 450 } 451 } else { 452 // the new one starts after the current one, figure 453 // out where the existing one ends with respect to the 454 // new one 455 if (((*w)->addr + (*w)->size) >= (addr + size)) { 456 // check if the new one is completely subsumed in the 457 // existing one 458 DPRINTF(DRAM, "Merging write into existing burst\n"); 459 merged = true; 460 // no adjustments necessary 461 } else if (((*w)->addr + (*w)->size) >= addr && 462 (addr + size - (*w)->addr) <= burstSize) { 463 // the existing one is just before or partially 464 // overlapping with the new one, and together 465 // they fit within a burst 466 DPRINTF(DRAM, "Merging write after existing burst\n"); 467 merged = true; 468 // the address is right, and only the size has 469 // to be adjusted 470 (*w)->size = addr + size - (*w)->addr; 471 } 472 } 473 ++w; 474 } 475 476 // if the item was not merged we need to create a new write 477 // and enqueue it 478 if (!merged) { 479 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false); 480 481 assert(writeQueue.size() < writeBufferSize); 482 wrQLenPdf[writeQueue.size()]++; 483 484 DPRINTF(DRAM, "Adding to write queue\n"); 485 486 writeQueue.push_back(dram_pkt); 487 488 // Update stats 489 avgWrQLen = writeQueue.size(); 490 } else { 491 // keep track of the fact that this burst effectively 492 // disappeared as it was merged with an existing one 493 mergedWrBursts++; 494 } 495 496 // Starting address of next dram pkt (aligend to burstSize boundary) 497 addr = (addr | (burstSize - 1)) + 1; 498 } 499 500 // we do not wait for the writes to be send to the actual memory, 501 // but instead take responsibility for the consistency here and 502 // snoop the write queue for any upcoming reads 503 // @todo, if a pkt size is larger than burst size, we might need a 504 // different front end latency 505 accessAndRespond(pkt, frontendLatency); 506 507 // If we are not already scheduled to get a request out of the 508 // queue, do so now 509 if (!nextReqEvent.scheduled()) { 510 DPRINTF(DRAM, "Request scheduled immediately\n"); 511 schedule(nextReqEvent, curTick()); 512 } 513} 514 515void 516DRAMCtrl::printParams() const 517{ 518 // Sanity check print of important parameters 519 DPRINTF(DRAM, 520 "Memory controller %s physical organization\n" \ 521 "Number of devices per rank %d\n" \ 522 "Device bus width (in bits) %d\n" \ 523 "DRAM data bus burst (bytes) %d\n" \ 524 "Row buffer size (bytes) %d\n" \ 525 "Columns per row buffer %d\n" \ 526 "Rows per bank %d\n" \ 527 "Banks per rank %d\n" \ 528 "Ranks per channel %d\n" \ 529 "Total mem capacity (bytes) %u\n", 530 name(), devicesPerRank, deviceBusWidth, burstSize, rowBufferSize, 531 columnsPerRowBuffer, rowsPerBank, banksPerRank, ranksPerChannel, 532 rowBufferSize * rowsPerBank * banksPerRank * ranksPerChannel); 533 534 string scheduler = memSchedPolicy == Enums::fcfs ? "FCFS" : "FR-FCFS"; 535 string address_mapping = addrMapping == Enums::RoRaBaChCo ? "RoRaBaChCo" : 536 (addrMapping == Enums::RoRaBaCoCh ? "RoRaBaCoCh" : "RoCoRaBaCh"); 537 string page_policy = pageMgmt == Enums::open ? "OPEN" : 538 (pageMgmt == Enums::open_adaptive ? "OPEN (adaptive)" : 539 (pageMgmt == Enums::close_adaptive ? "CLOSE (adaptive)" : "CLOSE")); 540 541 DPRINTF(DRAM, 542 "Memory controller %s characteristics\n" \ 543 "Read buffer size %d\n" \ 544 "Write buffer size %d\n" \ 545 "Write high thresh %d\n" \ 546 "Write low thresh %d\n" \ 547 "Scheduler %s\n" \ 548 "Address mapping %s\n" \ 549 "Page policy %s\n", 550 name(), readBufferSize, writeBufferSize, writeHighThreshold, 551 writeLowThreshold, scheduler, address_mapping, page_policy); 552 553 DPRINTF(DRAM, "Memory controller %s timing specs\n" \ 554 "tRCD %d ticks\n" \ 555 "tCL %d ticks\n" \ 556 "tRP %d ticks\n" \ 557 "tBURST %d ticks\n" \ 558 "tRFC %d ticks\n" \ 559 "tREFI %d ticks\n" \ 560 "tWTR %d ticks\n" \ 561 "tRTW %d ticks\n" \ 562 "tXAW (%d) %d ticks\n", 563 name(), tRCD, tCL, tRP, tBURST, tRFC, tREFI, tWTR, 564 tRTW, activationLimit, tXAW); 565} 566 567void 568DRAMCtrl::printQs() const { 569 DPRINTF(DRAM, "===READ QUEUE===\n\n"); 570 for (auto i = readQueue.begin() ; i != readQueue.end() ; ++i) { 571 DPRINTF(DRAM, "Read %lu\n", (*i)->addr); 572 } 573 DPRINTF(DRAM, "\n===RESP QUEUE===\n\n"); 574 for (auto i = respQueue.begin() ; i != respQueue.end() ; ++i) { 575 DPRINTF(DRAM, "Response %lu\n", (*i)->addr); 576 } 577 DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n"); 578 for (auto i = writeQueue.begin() ; i != writeQueue.end() ; ++i) { 579 DPRINTF(DRAM, "Write %lu\n", (*i)->addr); 580 } 581} 582 583bool 584DRAMCtrl::recvTimingReq(PacketPtr pkt) 585{ 586 /// @todo temporary hack to deal with memory corruption issues until 587 /// 4-phase transactions are complete 588 for (int x = 0; x < pendingDelete.size(); x++) 589 delete pendingDelete[x]; 590 pendingDelete.clear(); 591 592 // This is where we enter from the outside world 593 DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n", 594 pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 595 596 // simply drop inhibited packets for now 597 if (pkt->memInhibitAsserted()) { 598 DPRINTF(DRAM, "Inhibited packet -- Dropping it now\n"); 599 pendingDelete.push_back(pkt); 600 return true; 601 } 602 603 // Calc avg gap between requests 604 if (prevArrival != 0) { 605 totGap += curTick() - prevArrival; 606 } 607 prevArrival = curTick(); 608 609 610 // Find out how many dram packets a pkt translates to 611 // If the burst size is equal or larger than the pkt size, then a pkt 612 // translates to only one dram packet. Otherwise, a pkt translates to 613 // multiple dram packets 614 unsigned size = pkt->getSize(); 615 unsigned offset = pkt->getAddr() & (burstSize - 1); 616 unsigned int dram_pkt_count = divCeil(offset + size, burstSize); 617 618 // check local buffers and do not accept if full 619 if (pkt->isRead()) { 620 assert(size != 0); 621 if (readQueueFull(dram_pkt_count)) { 622 DPRINTF(DRAM, "Read queue full, not accepting\n"); 623 // remember that we have to retry this port 624 retryRdReq = true; 625 numRdRetry++; 626 return false; 627 } else { 628 addToReadQueue(pkt, dram_pkt_count); 629 readReqs++; 630 bytesReadSys += size; 631 } 632 } else if (pkt->isWrite()) { 633 assert(size != 0); 634 if (writeQueueFull(dram_pkt_count)) { 635 DPRINTF(DRAM, "Write queue full, not accepting\n"); 636 // remember that we have to retry this port 637 retryWrReq = true; 638 numWrRetry++; 639 return false; 640 } else { 641 addToWriteQueue(pkt, dram_pkt_count); 642 writeReqs++; 643 bytesWrittenSys += size; 644 } 645 } else { 646 DPRINTF(DRAM,"Neither read nor write, ignore timing\n"); 647 neitherReadNorWrite++; 648 accessAndRespond(pkt, 1); 649 } 650 651 return true; 652} 653 654void 655DRAMCtrl::processRespondEvent() 656{ 657 DPRINTF(DRAM, 658 "processRespondEvent(): Some req has reached its readyTime\n"); 659 660 DRAMPacket* dram_pkt = respQueue.front(); 661 662 if (dram_pkt->burstHelper) { 663 // it is a split packet 664 dram_pkt->burstHelper->burstsServiced++; 665 if (dram_pkt->burstHelper->burstsServiced == 666 dram_pkt->burstHelper->burstCount) { 667 // we have now serviced all children packets of a system packet 668 // so we can now respond to the requester 669 // @todo we probably want to have a different front end and back 670 // end latency for split packets 671 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency); 672 delete dram_pkt->burstHelper; 673 dram_pkt->burstHelper = NULL; 674 } 675 } else { 676 // it is not a split packet 677 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency); 678 } 679 680 delete respQueue.front(); 681 respQueue.pop_front(); 682 683 if (!respQueue.empty()) { 684 assert(respQueue.front()->readyTime >= curTick()); 685 assert(!respondEvent.scheduled()); 686 schedule(respondEvent, respQueue.front()->readyTime); 687 } else { 688 // if there is nothing left in any queue, signal a drain 689 if (writeQueue.empty() && readQueue.empty() && 690 drainManager) { 691 drainManager->signalDrainDone(); 692 drainManager = NULL; 693 } 694 } 695 696 // We have made a location in the queue available at this point, 697 // so if there is a read that was forced to wait, retry now 698 if (retryRdReq) { 699 retryRdReq = false; 700 port.sendRetry(); 701 } 702} 703 704void 705DRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue) 706{ 707 // This method does the arbitration between requests. The chosen 708 // packet is simply moved to the head of the queue. The other 709 // methods know that this is the place to look. For example, with 710 // FCFS, this method does nothing 711 assert(!queue.empty()); 712 713 if (queue.size() == 1) { 714 DPRINTF(DRAM, "Single request, nothing to do\n"); 715 return; 716 } 717 718 if (memSchedPolicy == Enums::fcfs) { 719 // Do nothing, since the correct request is already head 720 } else if (memSchedPolicy == Enums::frfcfs) { 721 reorderQueue(queue); 722 } else 723 panic("No scheduling policy chosen\n"); 724} 725 726void 727DRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue) 728{ 729 // Only determine this when needed 730 uint64_t earliest_banks = 0; 731 732 // Search for row hits first, if no row hit is found then schedule the 733 // packet to one of the earliest banks available 734 bool found_earliest_pkt = false; 735 auto selected_pkt_it = queue.begin(); 736 737 for (auto i = queue.begin(); i != queue.end() ; ++i) { 738 DRAMPacket* dram_pkt = *i; 739 const Bank& bank = dram_pkt->bankRef; 740 // Check if it is a row hit 741 if (bank.openRow == dram_pkt->row) { 742 DPRINTF(DRAM, "Row buffer hit\n"); 743 selected_pkt_it = i; 744 break; 745 } else if (!found_earliest_pkt) { 746 // No row hit, go for first ready 747 if (earliest_banks == 0) 748 earliest_banks = minBankFreeAt(queue); 749 750 // Bank is ready or is the first available bank 751 if (bank.freeAt <= curTick() || 752 bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) { 753 // Remember the packet to be scheduled to one of the earliest 754 // banks available 755 selected_pkt_it = i; 756 found_earliest_pkt = true; 757 } 758 } 759 } 760 761 DRAMPacket* selected_pkt = *selected_pkt_it; 762 queue.erase(selected_pkt_it); 763 queue.push_front(selected_pkt); 764} 765 766void 767DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency) 768{ 769 DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr()); 770 771 bool needsResponse = pkt->needsResponse(); 772 // do the actual memory access which also turns the packet into a 773 // response 774 access(pkt); 775 776 // turn packet around to go back to requester if response expected 777 if (needsResponse) { 778 // access already turned the packet into a response 779 assert(pkt->isResponse()); 780 781 // @todo someone should pay for this 782 pkt->busFirstWordDelay = pkt->busLastWordDelay = 0; 783 784 // queue the packet in the response queue to be sent out after 785 // the static latency has passed 786 port.schedTimingResp(pkt, curTick() + static_latency); 787 } else { 788 // @todo the packet is going to be deleted, and the DRAMPacket 789 // is still having a pointer to it 790 pendingDelete.push_back(pkt); 791 } 792 793 DPRINTF(DRAM, "Done\n"); 794 795 return; 796} 797 798pair<Tick, Tick> 799DRAMCtrl::estimateLatency(DRAMPacket* dram_pkt, Tick inTime) 800{ 801 // If a request reaches a bank at tick 'inTime', how much time 802 // *after* that does it take to finish the request, depending 803 // on bank status and page open policy. Note that this method 804 // considers only the time taken for the actual read or write 805 // to complete, NOT any additional time thereafter for tRAS or 806 // tRP. 807 Tick accLat = 0; 808 Tick bankLat = 0; 809 rowHitFlag = false; 810 Tick potentialActTick; 811 812 const Bank& bank = dram_pkt->bankRef; 813 814 if (bank.openRow == dram_pkt->row) { 815 // When we have a row-buffer hit, 816 // we don't care about tRAS having expired or not, 817 // but do care about bank being free for access 818 rowHitFlag = true; 819 820 // When a series of requests arrive to the same row, 821 // DDR systems are capable of streaming data continuously 822 // at maximum bandwidth (subject to tCCD). Here, we approximate 823 // this condition, and assume that if whenever a bank is already 824 // busy and a new request comes in, it can be completed with no 825 // penalty beyond waiting for the existing read to complete. 826 if (bank.freeAt > inTime) { 827 accLat += bank.freeAt - inTime; 828 bankLat += 0; 829 } else { 830 // CAS latency only 831 accLat += tCL; 832 bankLat += tCL; 833 } 834 } else { 835 // Row-buffer miss, need to close existing row 836 // once tRAS has expired, then open the new one, 837 // then add cas latency. 838 Tick freeTime = std::max(bank.tRASDoneAt, bank.freeAt); 839 840 if (freeTime > inTime) 841 accLat += freeTime - inTime; 842 843 // If the there is no open row, then there is no precharge 844 // delay, otherwise go with tRP 845 Tick precharge_delay = bank.openRow == Bank::NO_ROW ? 0 : tRP; 846 847 //The bank is free, and you may be able to activate 848 potentialActTick = inTime + accLat + precharge_delay; 849 if (potentialActTick < bank.actAllowedAt) 850 accLat += bank.actAllowedAt - potentialActTick; 851 852 accLat += precharge_delay + tRCD + tCL; 853 bankLat += precharge_delay + tRCD + tCL; 854 } 855 856 DPRINTF(DRAM, "Returning < %lld, %lld > from estimateLatency()\n", 857 bankLat, accLat); 858 859 return make_pair(bankLat, accLat); 860} 861 862void 863DRAMCtrl::recordActivate(Tick act_tick, uint8_t rank, uint8_t bank, 864 uint16_t row) 865{ 866 assert(0 <= rank && rank < ranksPerChannel); 867 assert(actTicks[rank].size() == activationLimit); 868 869 DPRINTF(DRAM, "Activate at tick %d\n", act_tick); 870 871 // update the open row 872 assert(banks[rank][bank].openRow == Bank::NO_ROW); 873 banks[rank][bank].openRow = row; 874 875 // start counting anew, this covers both the case when we 876 // auto-precharged, and when this access is forced to 877 // precharge 878 banks[rank][bank].bytesAccessed = 0; 879 banks[rank][bank].rowAccesses = 0; 880 881 ++numBanksActive; 882 assert(numBanksActive <= banksPerRank * ranksPerChannel); 883 884 DPRINTF(DRAM, "Activate bank at tick %lld, now got %d active\n", 885 act_tick, numBanksActive); 886 887 // start by enforcing tRRD 888 for(int i = 0; i < banksPerRank; i++) { 889 // next activate must not happen before tRRD 890 banks[rank][i].actAllowedAt = act_tick + tRRD; 891 } 892 893 // tRC should be added to activation tick of the bank currently accessed, 894 // where tRC = tRAS + tRP, this is just for a check as actAllowedAt for same 895 // bank is already captured by bank.freeAt and bank.tRASDoneAt 896 banks[rank][bank].actAllowedAt = act_tick + tRAS + tRP; 897 898 // next, we deal with tXAW, if the activation limit is disabled 899 // then we are done 900 if (actTicks[rank].empty()) 901 return; 902 903 // sanity check 904 if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) { 905 // @todo For now, stick with a warning 906 warn("Got %d activates in window %d (%d - %d) which is smaller " 907 "than %d\n", activationLimit, act_tick - actTicks[rank].back(), 908 act_tick, actTicks[rank].back(), tXAW); 909 } 910 911 // shift the times used for the book keeping, the last element 912 // (highest index) is the oldest one and hence the lowest value 913 actTicks[rank].pop_back(); 914 915 // record an new activation (in the future) 916 actTicks[rank].push_front(act_tick); 917 918 // cannot activate more than X times in time window tXAW, push the 919 // next one (the X + 1'st activate) to be tXAW away from the 920 // oldest in our window of X 921 if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) { 922 DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate no earlier " 923 "than %d\n", activationLimit, actTicks[rank].back() + tXAW); 924 for(int j = 0; j < banksPerRank; j++) 925 // next activate must not happen before end of window 926 banks[rank][j].actAllowedAt = actTicks[rank].back() + tXAW; 927 } 928 929 // at the point when this activate takes place, make sure we 930 // transition to the active power state 931 if (!activateEvent.scheduled()) 932 schedule(activateEvent, act_tick); 933 else if (activateEvent.when() > act_tick) 934 // move it sooner in time 935 reschedule(activateEvent, act_tick); 936} 937 938void 939DRAMCtrl::processActivateEvent() 940{ 941 // we should transition to the active state as soon as any bank is active 942 if (pwrState != PWR_ACT) 943 // note that at this point numBanksActive could be back at 944 // zero again due to a precharge scheduled in the future 945 schedulePowerEvent(PWR_ACT, curTick()); 946} 947 948void 949DRAMCtrl::prechargeBank(Bank& bank, Tick free_at) 950{ 951 // make sure the bank has an open row 952 assert(bank.openRow != Bank::NO_ROW); 953 954 // sample the bytes per activate here since we are closing 955 // the page 956 bytesPerActivate.sample(bank.bytesAccessed); 957 958 bank.openRow = Bank::NO_ROW; 959 960 bank.freeAt = free_at; 961 962 assert(numBanksActive != 0); 963 --numBanksActive; 964 965 DPRINTF(DRAM, "Precharged bank, done at tick %lld, now got %d active\n", 966 bank.freeAt, numBanksActive); 967 968 // if we look at the current number of active banks we might be 969 // tempted to think the DRAM is now idle, however this can be 970 // undone by an activate that is scheduled to happen before we 971 // would have reached the idle state, so schedule an event and 972 // rather check once we actually make it to the point in time when 973 // the (last) precharge takes place 974 if (!prechargeEvent.scheduled()) 975 schedule(prechargeEvent, free_at); 976 else if (prechargeEvent.when() < free_at) 977 reschedule(prechargeEvent, free_at); 978} 979 980void 981DRAMCtrl::processPrechargeEvent() 982{ 983 // if we reached zero, then special conditions apply as we track 984 // if all banks are precharged for the power models 985 if (numBanksActive == 0) { 986 // we should transition to the idle state when the last bank 987 // is precharged 988 schedulePowerEvent(PWR_IDLE, curTick()); 989 } 990} 991 992void 993DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt) 994{ 995 996 DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n", 997 dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row); 998 999 // estimate the bank and access latency 1000 pair<Tick, Tick> lat = estimateLatency(dram_pkt, curTick()); 1001 Tick bankLat = lat.first; 1002 Tick accessLat = lat.second; 1003 Tick actTick; 1004 1005 // This request was woken up at this time based on a prior call 1006 // to estimateLatency(). However, between then and now, both the 1007 // accessLatency and/or busBusyUntil may have changed. We need 1008 // to correct for that. 1009 1010 Tick addDelay = (curTick() + accessLat < busBusyUntil) ? 1011 busBusyUntil - (curTick() + accessLat) : 0; 1012 1013 Bank& bank = dram_pkt->bankRef; 1014 1015 // Update bank state 1016 if (rowHitFlag) { 1017 bank.freeAt = curTick() + addDelay + accessLat; 1018 } else { 1019 // If there is a page open, precharge it. 1020 if (bank.openRow != Bank::NO_ROW) { 1021 prechargeBank(bank, std::max(std::max(bank.freeAt, 1022 bank.tRASDoneAt), 1023 curTick()) + tRP); 1024 } 1025 1026 // Any precharge is already part of the latency 1027 // estimation, so update the bank free time 1028 bank.freeAt = curTick() + addDelay + accessLat; 1029 1030 // any waiting for banks account for in freeAt 1031 actTick = bank.freeAt - tCL - tRCD; 1032 1033 // If you activated a new row do to this access, the next access 1034 // will have to respect tRAS for this bank 1035 bank.tRASDoneAt = actTick + tRAS; 1036 1037 recordActivate(actTick, dram_pkt->rank, dram_pkt->bank, 1038 dram_pkt->row); 1039 } 1040 1041 // increment the bytes accessed and the accesses per row 1042 bank.bytesAccessed += burstSize; 1043 ++bank.rowAccesses; 1044 1045 // if we reached the max, then issue with an auto-precharge 1046 bool auto_precharge = pageMgmt == Enums::close || 1047 bank.rowAccesses == maxAccessesPerRow; 1048 1049 // if we did not hit the limit, we might still want to 1050 // auto-precharge 1051 if (!auto_precharge && 1052 (pageMgmt == Enums::open_adaptive || 1053 pageMgmt == Enums::close_adaptive)) { 1054 // a twist on the open and close page policies: 1055 // 1) open_adaptive page policy does not blindly keep the 1056 // page open, but close it if there are no row hits, and there 1057 // are bank conflicts in the queue 1058 // 2) close_adaptive page policy does not blindly close the 1059 // page, but closes it only if there are no row hits in the queue. 1060 // In this case, only force an auto precharge when there 1061 // are no same page hits in the queue 1062 bool got_more_hits = false; 1063 bool got_bank_conflict = false; 1064 1065 // either look at the read queue or write queue 1066 const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue : 1067 writeQueue; 1068 auto p = queue.begin(); 1069 // make sure we are not considering the packet that we are 1070 // currently dealing with (which is the head of the queue) 1071 ++p; 1072 1073 // keep on looking until we have found required condition or 1074 // reached the end 1075 while (!(got_more_hits && 1076 (got_bank_conflict || pageMgmt == Enums::close_adaptive)) && 1077 p != queue.end()) { 1078 bool same_rank_bank = (dram_pkt->rank == (*p)->rank) && 1079 (dram_pkt->bank == (*p)->bank); 1080 bool same_row = dram_pkt->row == (*p)->row; 1081 got_more_hits |= same_rank_bank && same_row; 1082 got_bank_conflict |= same_rank_bank && !same_row; 1083 ++p; 1084 } 1085 1086 // auto pre-charge when either 1087 // 1) open_adaptive policy, we have not got any more hits, and 1088 // have a bank conflict 1089 // 2) close_adaptive policy and we have not got any more hits 1090 auto_precharge = !got_more_hits && 1091 (got_bank_conflict || pageMgmt == Enums::close_adaptive); 1092 } 1093 1094 // if this access should use auto-precharge, then we are 1095 // closing the row 1096 if (auto_precharge) { 1097 prechargeBank(bank, std::max(bank.freeAt, bank.tRASDoneAt) + tRP); 1098 1099 DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId); 1100 } 1101 1102 DPRINTF(DRAM, "doDRAMAccess::bank.freeAt is %lld\n", bank.freeAt); 1103 1104 // Update request parameters 1105 dram_pkt->readyTime = curTick() + addDelay + accessLat + tBURST; 1106 1107 DPRINTF(DRAM, "Req %lld: curtick is %lld accessLat is %d " \ 1108 "readytime is %lld busbusyuntil is %lld. " \ 1109 "Scheduling at readyTime\n", dram_pkt->addr, 1110 curTick(), accessLat, dram_pkt->readyTime, busBusyUntil); 1111 1112 // Make sure requests are not overlapping on the databus 1113 assert(dram_pkt->readyTime - busBusyUntil >= tBURST); 1114 1115 // Update bus state 1116 busBusyUntil = dram_pkt->readyTime; 1117 1118 DPRINTF(DRAM,"Access time is %lld\n", 1119 dram_pkt->readyTime - dram_pkt->entryTime); 1120 1121 // Update the minimum timing between the requests, this is a 1122 // conservative estimate of when we have to schedule the next 1123 // request to not introduce any unecessary bubbles. In most cases 1124 // we will wake up sooner than we have to. 1125 nextReqTime = busBusyUntil - (tRP + tRCD + tCL); 1126 1127 // Update the stats and schedule the next request 1128 if (dram_pkt->isRead) { 1129 ++readsThisTime; 1130 if (rowHitFlag) 1131 readRowHits++; 1132 bytesReadDRAM += burstSize; 1133 perBankRdBursts[dram_pkt->bankId]++; 1134 1135 // Update latency stats 1136 totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime; 1137 totBankLat += bankLat; 1138 totBusLat += tBURST; 1139 totQLat += dram_pkt->readyTime - dram_pkt->entryTime - bankLat - 1140 tBURST; 1141 } else { 1142 ++writesThisTime; 1143 if (rowHitFlag) 1144 writeRowHits++; 1145 bytesWritten += burstSize; 1146 perBankWrBursts[dram_pkt->bankId]++; 1147 } 1148} 1149 1150void 1151DRAMCtrl::moveToRespQ() 1152{ 1153 // Remove from read queue 1154 DRAMPacket* dram_pkt = readQueue.front(); 1155 readQueue.pop_front(); 1156 1157 // sanity check 1158 assert(dram_pkt->size <= burstSize); 1159 1160 // Insert into response queue sorted by readyTime 1161 // It will be sent back to the requestor at its 1162 // readyTime 1163 if (respQueue.empty()) { 1164 respQueue.push_front(dram_pkt); 1165 assert(!respondEvent.scheduled()); 1166 assert(dram_pkt->readyTime >= curTick()); 1167 schedule(respondEvent, dram_pkt->readyTime); 1168 } else { 1169 bool done = false; 1170 auto i = respQueue.begin(); 1171 while (!done && i != respQueue.end()) { 1172 if ((*i)->readyTime > dram_pkt->readyTime) { 1173 respQueue.insert(i, dram_pkt); 1174 done = true; 1175 } 1176 ++i; 1177 } 1178 1179 if (!done) 1180 respQueue.push_back(dram_pkt); 1181 1182 assert(respondEvent.scheduled()); 1183 1184 if (respQueue.front()->readyTime < respondEvent.when()) { 1185 assert(respQueue.front()->readyTime >= curTick()); 1186 reschedule(respondEvent, respQueue.front()->readyTime); 1187 } 1188 } 1189} 1190 1191void 1192DRAMCtrl::processNextReqEvent() 1193{ 1194 if (busState == READ_TO_WRITE) { 1195 DPRINTF(DRAM, "Switching to writes after %d reads with %d reads " 1196 "waiting\n", readsThisTime, readQueue.size()); 1197 1198 // sample and reset the read-related stats as we are now 1199 // transitioning to writes, and all reads are done 1200 rdPerTurnAround.sample(readsThisTime); 1201 readsThisTime = 0; 1202 1203 // now proceed to do the actual writes 1204 busState = WRITE; 1205 } else if (busState == WRITE_TO_READ) { 1206 DPRINTF(DRAM, "Switching to reads after %d writes with %d writes " 1207 "waiting\n", writesThisTime, writeQueue.size()); 1208 1209 wrPerTurnAround.sample(writesThisTime); 1210 writesThisTime = 0; 1211 1212 busState = READ; 1213 } 1214 1215 if (refreshState != REF_IDLE) { 1216 // if a refresh waiting for this event loop to finish, then hand 1217 // over now, and do not schedule a new nextReqEvent 1218 if (refreshState == REF_DRAIN) { 1219 DPRINTF(DRAM, "Refresh drain done, now precharging\n"); 1220 1221 refreshState = REF_PRE; 1222 1223 // hand control back to the refresh event loop 1224 schedule(refreshEvent, curTick()); 1225 } 1226 1227 // let the refresh finish before issuing any further requests 1228 return; 1229 } 1230 1231 // when we get here it is either a read or a write 1232 if (busState == READ) { 1233 1234 // track if we should switch or not 1235 bool switch_to_writes = false; 1236 1237 if (readQueue.empty()) { 1238 // In the case there is no read request to go next, 1239 // trigger writes if we have passed the low threshold (or 1240 // if we are draining) 1241 if (!writeQueue.empty() && 1242 (drainManager || writeQueue.size() > writeLowThreshold)) { 1243 1244 switch_to_writes = true; 1245 } else { 1246 // check if we are drained 1247 if (respQueue.empty () && drainManager) { 1248 drainManager->signalDrainDone(); 1249 drainManager = NULL; 1250 } 1251 1252 // nothing to do, not even any point in scheduling an 1253 // event for the next request 1254 return; 1255 } 1256 } else { 1257 // Figure out which read request goes next, and move it to the 1258 // front of the read queue 1259 chooseNext(readQueue); 1260 1261 doDRAMAccess(readQueue.front()); 1262 1263 // At this point we're done dealing with the request 1264 // It will be moved to a separate response queue with a 1265 // correct readyTime, and eventually be sent back at that 1266 // time 1267 moveToRespQ(); 1268 1269 // we have so many writes that we have to transition 1270 if (writeQueue.size() > writeHighThreshold) { 1271 switch_to_writes = true; 1272 } 1273 } 1274 1275 // switching to writes, either because the read queue is empty 1276 // and the writes have passed the low threshold (or we are 1277 // draining), or because the writes hit the hight threshold 1278 if (switch_to_writes) { 1279 // transition to writing 1280 busState = READ_TO_WRITE; 1281 1282 // add a bubble to the data bus, as defined by the 1283 // tRTW parameter 1284 busBusyUntil += tRTW; 1285 1286 // update the minimum timing between the requests, 1287 // this shifts us back in time far enough to do any 1288 // bank preparation 1289 nextReqTime = busBusyUntil - (tRP + tRCD + tCL); 1290 } 1291 } else { 1292 chooseNext(writeQueue); 1293 DRAMPacket* dram_pkt = writeQueue.front(); 1294 // sanity check 1295 assert(dram_pkt->size <= burstSize); 1296 doDRAMAccess(dram_pkt); 1297 1298 writeQueue.pop_front(); 1299 delete dram_pkt; 1300 1301 // If we emptied the write queue, or got sufficiently below the 1302 // threshold (using the minWritesPerSwitch as the hysteresis) and 1303 // are not draining, or we have reads waiting and have done enough 1304 // writes, then switch to reads. 1305 if (writeQueue.empty() || 1306 (writeQueue.size() + minWritesPerSwitch < writeLowThreshold && 1307 !drainManager) || 1308 (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) { 1309 // turn the bus back around for reads again 1310 busState = WRITE_TO_READ; 1311 1312 // note that the we switch back to reads also in the idle 1313 // case, which eventually will check for any draining and 1314 // also pause any further scheduling if there is really 1315 // nothing to do 1316 1317 // here we get a bit creative and shift the bus busy time not 1318 // just the tWTR, but also a CAS latency to capture the fact 1319 // that we are allowed to prepare a new bank, but not issue a 1320 // read command until after tWTR, in essence we capture a 1321 // bubble on the data bus that is tWTR + tCL 1322 busBusyUntil += tWTR + tCL; 1323 1324 // update the minimum timing between the requests, this shifts 1325 // us back in time far enough to do any bank preparation 1326 nextReqTime = busBusyUntil - (tRP + tRCD + tCL); 1327 } 1328 } 1329 1330 schedule(nextReqEvent, std::max(nextReqTime, curTick())); 1331 1332 // If there is space available and we have writes waiting then let 1333 // them retry. This is done here to ensure that the retry does not 1334 // cause a nextReqEvent to be scheduled before we do so as part of 1335 // the next request processing 1336 if (retryWrReq && writeQueue.size() < writeBufferSize) { 1337 retryWrReq = false; 1338 port.sendRetry(); 1339 } 1340} 1341 1342uint64_t 1343DRAMCtrl::minBankFreeAt(const deque<DRAMPacket*>& queue) const 1344{ 1345 uint64_t bank_mask = 0; 1346 Tick freeAt = MaxTick; 1347 1348 // detemrine if we have queued transactions targetting the 1349 // bank in question 1350 vector<bool> got_waiting(ranksPerChannel * banksPerRank, false); 1351 for (auto p = queue.begin(); p != queue.end(); ++p) { 1352 got_waiting[(*p)->bankId] = true; 1353 } 1354 1355 for (int i = 0; i < ranksPerChannel; i++) { 1356 for (int j = 0; j < banksPerRank; j++) { 1357 // if we have waiting requests for the bank, and it is 1358 // amongst the first available, update the mask 1359 if (got_waiting[i * banksPerRank + j] && 1360 banks[i][j].freeAt <= freeAt) { 1361 // reset bank mask if new minimum is found 1362 if (banks[i][j].freeAt < freeAt) 1363 bank_mask = 0; 1364 // set the bit corresponding to the available bank 1365 uint8_t bit_index = i * ranksPerChannel + j; 1366 replaceBits(bank_mask, bit_index, bit_index, 1); 1367 freeAt = banks[i][j].freeAt; 1368 } 1369 } 1370 } 1371 return bank_mask; 1372} 1373 1374void 1375DRAMCtrl::processRefreshEvent() 1376{ 1377 // when first preparing the refresh, remember when it was due 1378 if (refreshState == REF_IDLE) { 1379 // remember when the refresh is due 1380 refreshDueAt = curTick(); 1381 1382 // proceed to drain 1383 refreshState = REF_DRAIN; 1384 1385 DPRINTF(DRAM, "Refresh due\n"); 1386 } 1387 1388 // let any scheduled read or write go ahead, after which it will 1389 // hand control back to this event loop 1390 if (refreshState == REF_DRAIN) { 1391 if (nextReqEvent.scheduled()) { 1392 // hand control over to the request loop until it is 1393 // evaluated next 1394 DPRINTF(DRAM, "Refresh awaiting draining\n"); 1395 1396 return; 1397 } else { 1398 refreshState = REF_PRE; 1399 } 1400 } 1401 1402 // at this point, ensure that all banks are precharged 1403 if (refreshState == REF_PRE) { 1404 // precharge any active bank if we are not already in the idle 1405 // state 1406 if (pwrState != PWR_IDLE) { 1407 DPRINTF(DRAM, "Precharging all\n"); 1408 for (int i = 0; i < ranksPerChannel; i++) { 1409 for (int j = 0; j < banksPerRank; j++) { 1410 if (banks[i][j].openRow != Bank::NO_ROW) { 1411 // respect both causality and any existing bank 1412 // constraints 1413 Tick free_at = 1414 std::max(std::max(banks[i][j].freeAt, 1415 banks[i][j].tRASDoneAt), 1416 curTick()) + tRP; 1417 1418 prechargeBank(banks[i][j], free_at); 1419 } 1420 } 1421 } 1422 } else { 1423 DPRINTF(DRAM, "All banks already precharged, starting refresh\n"); 1424 1425 // go ahead and kick the power state machine into gear if 1426 // we are already idle 1427 schedulePowerEvent(PWR_REF, curTick()); 1428 } 1429 1430 refreshState = REF_RUN; 1431 assert(numBanksActive == 0); 1432 1433 // wait for all banks to be precharged, at which point the 1434 // power state machine will transition to the idle state, and 1435 // automatically move to a refresh, at that point it will also 1436 // call this method to get the refresh event loop going again 1437 return; 1438 } 1439 1440 // last but not least we perform the actual refresh 1441 if (refreshState == REF_RUN) { 1442 // should never get here with any banks active 1443 assert(numBanksActive == 0); 1444 assert(pwrState == PWR_REF); 1445 1446 Tick banksFree = curTick() + tRFC; 1447 1448 for (int i = 0; i < ranksPerChannel; i++) { 1449 for (int j = 0; j < banksPerRank; j++) { 1450 banks[i][j].freeAt = banksFree; 1451 } 1452 } 1453 1454 // make sure we did not wait so long that we cannot make up 1455 // for it 1456 if (refreshDueAt + tREFI < banksFree) { 1457 fatal("Refresh was delayed so long we cannot catch up\n"); 1458 } 1459 1460 // compensate for the delay in actually performing the refresh 1461 // when scheduling the next one 1462 schedule(refreshEvent, refreshDueAt + tREFI - tRP); 1463 1464 assert(!powerEvent.scheduled()); 1465 1466 // move to the idle power state once the refresh is done, this 1467 // will also move the refresh state machine to the refresh 1468 // idle state 1469 schedulePowerEvent(PWR_IDLE, banksFree); 1470 1471 DPRINTF(DRAMState, "Refresh done at %llu and next refresh at %llu\n", 1472 banksFree, refreshDueAt + tREFI); 1473 } 1474} 1475 1476void 1477DRAMCtrl::schedulePowerEvent(PowerState pwr_state, Tick tick) 1478{ 1479 // respect causality 1480 assert(tick >= curTick()); 1481 1482 if (!powerEvent.scheduled()) { 1483 DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n", 1484 tick, pwr_state); 1485 1486 // insert the new transition 1487 pwrStateTrans = pwr_state; 1488 1489 schedule(powerEvent, tick); 1490 } else { 1491 panic("Scheduled power event at %llu to state %d, " 1492 "with scheduled event at %llu to %d\n", tick, pwr_state, 1493 powerEvent.when(), pwrStateTrans); 1494 } 1495} 1496 1497void 1498DRAMCtrl::processPowerEvent() 1499{ 1500 // remember where we were, and for how long 1501 Tick duration = curTick() - pwrStateTick; 1502 PowerState prev_state = pwrState; 1503 1504 // update the accounting 1505 pwrStateTime[prev_state] += duration; 1506 1507 pwrState = pwrStateTrans; 1508 pwrStateTick = curTick(); 1509 1510 if (pwrState == PWR_IDLE) { 1511 DPRINTF(DRAMState, "All banks precharged\n"); 1512 1513 // if we were refreshing, make sure we start scheduling requests again 1514 if (prev_state == PWR_REF) { 1515 DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration); 1516 assert(pwrState == PWR_IDLE); 1517 1518 // kick things into action again 1519 refreshState = REF_IDLE; 1520 assert(!nextReqEvent.scheduled()); 1521 schedule(nextReqEvent, curTick()); 1522 } else { 1523 assert(prev_state == PWR_ACT); 1524 1525 // if we have a pending refresh, and are now moving to 1526 // the idle state, direclty transition to a refresh 1527 if (refreshState == REF_RUN) { 1528 // there should be nothing waiting at this point 1529 assert(!powerEvent.scheduled()); 1530 1531 // update the state in zero time and proceed below 1532 pwrState = PWR_REF; 1533 } 1534 } 1535 } 1536 1537 // we transition to the refresh state, let the refresh state 1538 // machine know of this state update and let it deal with the 1539 // scheduling of the next power state transition as well as the 1540 // following refresh 1541 if (pwrState == PWR_REF) { 1542 DPRINTF(DRAMState, "Refreshing\n"); 1543 // kick the refresh event loop into action again, and that 1544 // in turn will schedule a transition to the idle power 1545 // state once the refresh is done 1546 assert(refreshState == REF_RUN); 1547 processRefreshEvent(); 1548 } 1549} 1550 1551void 1552DRAMCtrl::regStats() 1553{ 1554 using namespace Stats; 1555 1556 AbstractMemory::regStats(); 1557 1558 readReqs 1559 .name(name() + ".readReqs") 1560 .desc("Number of read requests accepted"); 1561 1562 writeReqs 1563 .name(name() + ".writeReqs") 1564 .desc("Number of write requests accepted"); 1565 1566 readBursts 1567 .name(name() + ".readBursts") 1568 .desc("Number of DRAM read bursts, " 1569 "including those serviced by the write queue"); 1570 1571 writeBursts 1572 .name(name() + ".writeBursts") 1573 .desc("Number of DRAM write bursts, " 1574 "including those merged in the write queue"); 1575 1576 servicedByWrQ 1577 .name(name() + ".servicedByWrQ") 1578 .desc("Number of DRAM read bursts serviced by the write queue"); 1579 1580 mergedWrBursts 1581 .name(name() + ".mergedWrBursts") 1582 .desc("Number of DRAM write bursts merged with an existing one"); 1583 1584 neitherReadNorWrite 1585 .name(name() + ".neitherReadNorWriteReqs") 1586 .desc("Number of requests that are neither read nor write"); 1587 1588 perBankRdBursts 1589 .init(banksPerRank * ranksPerChannel) 1590 .name(name() + ".perBankRdBursts") 1591 .desc("Per bank write bursts"); 1592 1593 perBankWrBursts 1594 .init(banksPerRank * ranksPerChannel) 1595 .name(name() + ".perBankWrBursts") 1596 .desc("Per bank write bursts"); 1597 1598 avgRdQLen 1599 .name(name() + ".avgRdQLen") 1600 .desc("Average read queue length when enqueuing") 1601 .precision(2); 1602 1603 avgWrQLen 1604 .name(name() + ".avgWrQLen") 1605 .desc("Average write queue length when enqueuing") 1606 .precision(2); 1607 1608 totQLat 1609 .name(name() + ".totQLat") 1610 .desc("Total ticks spent queuing"); 1611 1612 totBankLat 1613 .name(name() + ".totBankLat") 1614 .desc("Total ticks spent accessing banks"); 1615 1616 totBusLat 1617 .name(name() + ".totBusLat") 1618 .desc("Total ticks spent in databus transfers"); 1619 1620 totMemAccLat 1621 .name(name() + ".totMemAccLat") 1622 .desc("Total ticks spent from burst creation until serviced " 1623 "by the DRAM"); 1624 1625 avgQLat 1626 .name(name() + ".avgQLat") 1627 .desc("Average queueing delay per DRAM burst") 1628 .precision(2); 1629 1630 avgQLat = totQLat / (readBursts - servicedByWrQ); 1631 1632 avgBankLat 1633 .name(name() + ".avgBankLat") 1634 .desc("Average bank access latency per DRAM burst") 1635 .precision(2); 1636 1637 avgBankLat = totBankLat / (readBursts - servicedByWrQ); 1638 1639 avgBusLat 1640 .name(name() + ".avgBusLat") 1641 .desc("Average bus latency per DRAM burst") 1642 .precision(2); 1643 1644 avgBusLat = totBusLat / (readBursts - servicedByWrQ); 1645 1646 avgMemAccLat 1647 .name(name() + ".avgMemAccLat") 1648 .desc("Average memory access latency per DRAM burst") 1649 .precision(2); 1650 1651 avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ); 1652 1653 numRdRetry 1654 .name(name() + ".numRdRetry") 1655 .desc("Number of times read queue was full causing retry"); 1656 1657 numWrRetry 1658 .name(name() + ".numWrRetry") 1659 .desc("Number of times write queue was full causing retry"); 1660 1661 readRowHits 1662 .name(name() + ".readRowHits") 1663 .desc("Number of row buffer hits during reads"); 1664 1665 writeRowHits 1666 .name(name() + ".writeRowHits") 1667 .desc("Number of row buffer hits during writes"); 1668 1669 readRowHitRate 1670 .name(name() + ".readRowHitRate") 1671 .desc("Row buffer hit rate for reads") 1672 .precision(2); 1673 1674 readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100; 1675 1676 writeRowHitRate 1677 .name(name() + ".writeRowHitRate") 1678 .desc("Row buffer hit rate for writes") 1679 .precision(2); 1680 1681 writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100; 1682 1683 readPktSize 1684 .init(ceilLog2(burstSize) + 1) 1685 .name(name() + ".readPktSize") 1686 .desc("Read request sizes (log2)"); 1687 1688 writePktSize 1689 .init(ceilLog2(burstSize) + 1) 1690 .name(name() + ".writePktSize") 1691 .desc("Write request sizes (log2)"); 1692 1693 rdQLenPdf 1694 .init(readBufferSize) 1695 .name(name() + ".rdQLenPdf") 1696 .desc("What read queue length does an incoming req see"); 1697 1698 wrQLenPdf 1699 .init(writeBufferSize) 1700 .name(name() + ".wrQLenPdf") 1701 .desc("What write queue length does an incoming req see"); 1702 1703 bytesPerActivate 1704 .init(maxAccessesPerRow) 1705 .name(name() + ".bytesPerActivate") 1706 .desc("Bytes accessed per row activation") 1707 .flags(nozero); 1708 1709 rdPerTurnAround 1710 .init(readBufferSize) 1711 .name(name() + ".rdPerTurnAround") 1712 .desc("Reads before turning the bus around for writes") 1713 .flags(nozero); 1714 1715 wrPerTurnAround 1716 .init(writeBufferSize) 1717 .name(name() + ".wrPerTurnAround") 1718 .desc("Writes before turning the bus around for reads") 1719 .flags(nozero); 1720 1721 bytesReadDRAM 1722 .name(name() + ".bytesReadDRAM") 1723 .desc("Total number of bytes read from DRAM"); 1724 1725 bytesReadWrQ 1726 .name(name() + ".bytesReadWrQ") 1727 .desc("Total number of bytes read from write queue"); 1728 1729 bytesWritten 1730 .name(name() + ".bytesWritten") 1731 .desc("Total number of bytes written to DRAM"); 1732 1733 bytesReadSys 1734 .name(name() + ".bytesReadSys") 1735 .desc("Total read bytes from the system interface side"); 1736 1737 bytesWrittenSys 1738 .name(name() + ".bytesWrittenSys") 1739 .desc("Total written bytes from the system interface side"); 1740 1741 avgRdBW 1742 .name(name() + ".avgRdBW") 1743 .desc("Average DRAM read bandwidth in MiByte/s") 1744 .precision(2); 1745 1746 avgRdBW = (bytesReadDRAM / 1000000) / simSeconds; 1747 1748 avgWrBW 1749 .name(name() + ".avgWrBW") 1750 .desc("Average achieved write bandwidth in MiByte/s") 1751 .precision(2); 1752 1753 avgWrBW = (bytesWritten / 1000000) / simSeconds; 1754 1755 avgRdBWSys 1756 .name(name() + ".avgRdBWSys") 1757 .desc("Average system read bandwidth in MiByte/s") 1758 .precision(2); 1759 1760 avgRdBWSys = (bytesReadSys / 1000000) / simSeconds; 1761 1762 avgWrBWSys 1763 .name(name() + ".avgWrBWSys") 1764 .desc("Average system write bandwidth in MiByte/s") 1765 .precision(2); 1766 1767 avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds; 1768 1769 peakBW 1770 .name(name() + ".peakBW") 1771 .desc("Theoretical peak bandwidth in MiByte/s") 1772 .precision(2); 1773 1774 peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000; 1775 1776 busUtil 1777 .name(name() + ".busUtil") 1778 .desc("Data bus utilization in percentage") 1779 .precision(2); 1780 1781 busUtil = (avgRdBW + avgWrBW) / peakBW * 100; 1782 1783 totGap 1784 .name(name() + ".totGap") 1785 .desc("Total gap between requests"); 1786 1787 avgGap 1788 .name(name() + ".avgGap") 1789 .desc("Average gap between requests") 1790 .precision(2); 1791 1792 avgGap = totGap / (readReqs + writeReqs); 1793 1794 // Stats for DRAM Power calculation based on Micron datasheet 1795 busUtilRead 1796 .name(name() + ".busUtilRead") 1797 .desc("Data bus utilization in percentage for reads") 1798 .precision(2); 1799 1800 busUtilRead = avgRdBW / peakBW * 100; 1801 1802 busUtilWrite 1803 .name(name() + ".busUtilWrite") 1804 .desc("Data bus utilization in percentage for writes") 1805 .precision(2); 1806 1807 busUtilWrite = avgWrBW / peakBW * 100; 1808 1809 pageHitRate 1810 .name(name() + ".pageHitRate") 1811 .desc("Row buffer hit rate, read and write combined") 1812 .precision(2); 1813 1814 pageHitRate = (writeRowHits + readRowHits) / 1815 (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100; 1816 1817 pwrStateTime 1818 .init(5) 1819 .name(name() + ".memoryStateTime") 1820 .desc("Time in different power states"); 1821 pwrStateTime.subname(0, "IDLE"); 1822 pwrStateTime.subname(1, "REF"); 1823 pwrStateTime.subname(2, "PRE_PDN"); 1824 pwrStateTime.subname(3, "ACT"); 1825 pwrStateTime.subname(4, "ACT_PDN"); 1826} 1827 1828void 1829DRAMCtrl::recvFunctional(PacketPtr pkt) 1830{ 1831 // rely on the abstract memory 1832 functionalAccess(pkt); 1833} 1834 1835BaseSlavePort& 1836DRAMCtrl::getSlavePort(const string &if_name, PortID idx) 1837{ 1838 if (if_name != "port") { 1839 return MemObject::getSlavePort(if_name, idx); 1840 } else { 1841 return port; 1842 } 1843} 1844 1845unsigned int 1846DRAMCtrl::drain(DrainManager *dm) 1847{ 1848 unsigned int count = port.drain(dm); 1849 1850 // if there is anything in any of our internal queues, keep track 1851 // of that as well 1852 if (!(writeQueue.empty() && readQueue.empty() && 1853 respQueue.empty())) { 1854 DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d," 1855 " resp: %d\n", writeQueue.size(), readQueue.size(), 1856 respQueue.size()); 1857 ++count; 1858 drainManager = dm; 1859 1860 // the only part that is not drained automatically over time 1861 // is the write queue, thus kick things into action if needed 1862 if (!writeQueue.empty() && !nextReqEvent.scheduled()) { 1863 schedule(nextReqEvent, curTick()); 1864 } 1865 } 1866 1867 if (count) 1868 setDrainState(Drainable::Draining); 1869 else 1870 setDrainState(Drainable::Drained); 1871 return count; 1872} 1873 1874DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory) 1875 : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this), 1876 memory(_memory) 1877{ } 1878 1879AddrRangeList 1880DRAMCtrl::MemoryPort::getAddrRanges() const 1881{ 1882 AddrRangeList ranges; 1883 ranges.push_back(memory.getAddrRange()); 1884 return ranges; 1885} 1886 1887void 1888DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt) 1889{ 1890 pkt->pushLabel(memory.name()); 1891 1892 if (!queue.checkFunctional(pkt)) { 1893 // Default implementation of SimpleTimingPort::recvFunctional() 1894 // calls recvAtomic() and throws away the latency; we can save a 1895 // little here by just not calculating the latency. 1896 memory.recvFunctional(pkt); 1897 } 1898 1899 pkt->popLabel(); 1900} 1901 1902Tick 1903DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt) 1904{ 1905 return memory.recvAtomic(pkt); 1906} 1907 1908bool 1909DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt) 1910{ 1911 // pass it to the memory controller 1912 return memory.recvTimingReq(pkt); 1913} 1914 1915DRAMCtrl* 1916DRAMCtrlParams::create() 1917{ 1918 return new DRAMCtrl(this); 1919} 1920