dram_ctrl.cc revision 10206:823f7fd1a82f
1/* 2 * Copyright (c) 2010-2014 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2013 Amin Farmahini-Farahani 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Andreas Hansson 41 * Ani Udipi 42 * Neha Agarwal 43 */ 44 45#include "base/bitfield.hh" 46#include "base/trace.hh" 47#include "debug/DRAM.hh" 48#include "debug/Drain.hh" 49#include "mem/dram_ctrl.hh" 50#include "sim/system.hh" 51 52using namespace std; 53 54DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) : 55 AbstractMemory(p), 56 port(name() + ".port", *this), 57 retryRdReq(false), retryWrReq(false), 58 rowHitFlag(false), busState(READ), 59 respondEvent(this), 60 refreshEvent(this), nextReqEvent(this), drainManager(NULL), 61 deviceBusWidth(p->device_bus_width), burstLength(p->burst_length), 62 deviceRowBufferSize(p->device_rowbuffer_size), 63 devicesPerRank(p->devices_per_rank), 64 burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8), 65 rowBufferSize(devicesPerRank * deviceRowBufferSize), 66 columnsPerRowBuffer(rowBufferSize / burstSize), 67 ranksPerChannel(p->ranks_per_channel), 68 banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0), 69 readBufferSize(p->read_buffer_size), 70 writeBufferSize(p->write_buffer_size), 71 writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0), 72 writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0), 73 minWritesPerSwitch(p->min_writes_per_switch), 74 writesThisTime(0), readsThisTime(0), 75 tWTR(p->tWTR), tRTW(p->tRTW), tBURST(p->tBURST), 76 tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS), 77 tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD), 78 tXAW(p->tXAW), activationLimit(p->activation_limit), 79 memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping), 80 pageMgmt(p->page_policy), 81 maxAccessesPerRow(p->max_accesses_per_row), 82 frontendLatency(p->static_frontend_latency), 83 backendLatency(p->static_backend_latency), 84 busBusyUntil(0), prevArrival(0), 85 nextReqTime(0), startTickPrechargeAll(0), numBanksActive(0) 86{ 87 // create the bank states based on the dimensions of the ranks and 88 // banks 89 banks.resize(ranksPerChannel); 90 actTicks.resize(ranksPerChannel); 91 for (size_t c = 0; c < ranksPerChannel; ++c) { 92 banks[c].resize(banksPerRank); 93 actTicks[c].resize(activationLimit, 0); 94 } 95 96 // perform a basic check of the write thresholds 97 if (p->write_low_thresh_perc >= p->write_high_thresh_perc) 98 fatal("Write buffer low threshold %d must be smaller than the " 99 "high threshold %d\n", p->write_low_thresh_perc, 100 p->write_high_thresh_perc); 101 102 // determine the rows per bank by looking at the total capacity 103 uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size()); 104 105 DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity, 106 AbstractMemory::size()); 107 108 DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n", 109 rowBufferSize, columnsPerRowBuffer); 110 111 rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel); 112 113 if (range.interleaved()) { 114 if (channels != range.stripes()) 115 fatal("%s has %d interleaved address stripes but %d channel(s)\n", 116 name(), range.stripes(), channels); 117 118 if (addrMapping == Enums::RoRaBaChCo) { 119 if (rowBufferSize != range.granularity()) { 120 fatal("Interleaving of %s doesn't match RoRaBaChCo " 121 "address map\n", name()); 122 } 123 } else if (addrMapping == Enums::RoRaBaCoCh) { 124 if (system()->cacheLineSize() != range.granularity()) { 125 fatal("Interleaving of %s doesn't match RoRaBaCoCh " 126 "address map\n", name()); 127 } 128 } else if (addrMapping == Enums::RoCoRaBaCh) { 129 if (system()->cacheLineSize() != range.granularity()) 130 fatal("Interleaving of %s doesn't match RoCoRaBaCh " 131 "address map\n", name()); 132 } 133 } 134} 135 136void 137DRAMCtrl::init() 138{ 139 if (!port.isConnected()) { 140 fatal("DRAMCtrl %s is unconnected!\n", name()); 141 } else { 142 port.sendRangeChange(); 143 } 144} 145 146void 147DRAMCtrl::startup() 148{ 149 // update the start tick for the precharge accounting to the 150 // current tick 151 startTickPrechargeAll = curTick(); 152 153 // shift the bus busy time sufficiently far ahead that we never 154 // have to worry about negative values when computing the time for 155 // the next request, this will add an insignificant bubble at the 156 // start of simulation 157 busBusyUntil = curTick() + tRP + tRCD + tCL; 158 159 // print the configuration of the controller 160 printParams(); 161 162 // kick off the refresh 163 schedule(refreshEvent, curTick() + tREFI); 164} 165 166Tick 167DRAMCtrl::recvAtomic(PacketPtr pkt) 168{ 169 DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr()); 170 171 // do the actual memory access and turn the packet into a response 172 access(pkt); 173 174 Tick latency = 0; 175 if (!pkt->memInhibitAsserted() && pkt->hasData()) { 176 // this value is not supposed to be accurate, just enough to 177 // keep things going, mimic a closed page 178 latency = tRP + tRCD + tCL; 179 } 180 return latency; 181} 182 183bool 184DRAMCtrl::readQueueFull(unsigned int neededEntries) const 185{ 186 DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n", 187 readBufferSize, readQueue.size() + respQueue.size(), 188 neededEntries); 189 190 return 191 (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize; 192} 193 194bool 195DRAMCtrl::writeQueueFull(unsigned int neededEntries) const 196{ 197 DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n", 198 writeBufferSize, writeQueue.size(), neededEntries); 199 return (writeQueue.size() + neededEntries) > writeBufferSize; 200} 201 202DRAMCtrl::DRAMPacket* 203DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size, 204 bool isRead) 205{ 206 // decode the address based on the address mapping scheme, with 207 // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and 208 // channel, respectively 209 uint8_t rank; 210 uint8_t bank; 211 uint16_t row; 212 213 // truncate the address to the access granularity 214 Addr addr = dramPktAddr / burstSize; 215 216 // we have removed the lowest order address bits that denote the 217 // position within the column 218 if (addrMapping == Enums::RoRaBaChCo) { 219 // the lowest order bits denote the column to ensure that 220 // sequential cache lines occupy the same row 221 addr = addr / columnsPerRowBuffer; 222 223 // take out the channel part of the address 224 addr = addr / channels; 225 226 // after the channel bits, get the bank bits to interleave 227 // over the banks 228 bank = addr % banksPerRank; 229 addr = addr / banksPerRank; 230 231 // after the bank, we get the rank bits which thus interleaves 232 // over the ranks 233 rank = addr % ranksPerChannel; 234 addr = addr / ranksPerChannel; 235 236 // lastly, get the row bits 237 row = addr % rowsPerBank; 238 addr = addr / rowsPerBank; 239 } else if (addrMapping == Enums::RoRaBaCoCh) { 240 // take out the channel part of the address 241 addr = addr / channels; 242 243 // next, the column 244 addr = addr / columnsPerRowBuffer; 245 246 // after the column bits, we get the bank bits to interleave 247 // over the banks 248 bank = addr % banksPerRank; 249 addr = addr / banksPerRank; 250 251 // after the bank, we get the rank bits which thus interleaves 252 // over the ranks 253 rank = addr % ranksPerChannel; 254 addr = addr / ranksPerChannel; 255 256 // lastly, get the row bits 257 row = addr % rowsPerBank; 258 addr = addr / rowsPerBank; 259 } else if (addrMapping == Enums::RoCoRaBaCh) { 260 // optimise for closed page mode and utilise maximum 261 // parallelism of the DRAM (at the cost of power) 262 263 // take out the channel part of the address, not that this has 264 // to match with how accesses are interleaved between the 265 // controllers in the address mapping 266 addr = addr / channels; 267 268 // start with the bank bits, as this provides the maximum 269 // opportunity for parallelism between requests 270 bank = addr % banksPerRank; 271 addr = addr / banksPerRank; 272 273 // next get the rank bits 274 rank = addr % ranksPerChannel; 275 addr = addr / ranksPerChannel; 276 277 // next the column bits which we do not need to keep track of 278 // and simply skip past 279 addr = addr / columnsPerRowBuffer; 280 281 // lastly, get the row bits 282 row = addr % rowsPerBank; 283 addr = addr / rowsPerBank; 284 } else 285 panic("Unknown address mapping policy chosen!"); 286 287 assert(rank < ranksPerChannel); 288 assert(bank < banksPerRank); 289 assert(row < rowsPerBank); 290 291 DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n", 292 dramPktAddr, rank, bank, row); 293 294 // create the corresponding DRAM packet with the entry time and 295 // ready time set to the current tick, the latter will be updated 296 // later 297 uint16_t bank_id = banksPerRank * rank + bank; 298 return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr, 299 size, banks[rank][bank]); 300} 301 302void 303DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount) 304{ 305 // only add to the read queue here. whenever the request is 306 // eventually done, set the readyTime, and call schedule() 307 assert(!pkt->isWrite()); 308 309 assert(pktCount != 0); 310 311 // if the request size is larger than burst size, the pkt is split into 312 // multiple DRAM packets 313 // Note if the pkt starting address is not aligened to burst size, the 314 // address of first DRAM packet is kept unaliged. Subsequent DRAM packets 315 // are aligned to burst size boundaries. This is to ensure we accurately 316 // check read packets against packets in write queue. 317 Addr addr = pkt->getAddr(); 318 unsigned pktsServicedByWrQ = 0; 319 BurstHelper* burst_helper = NULL; 320 for (int cnt = 0; cnt < pktCount; ++cnt) { 321 unsigned size = std::min((addr | (burstSize - 1)) + 1, 322 pkt->getAddr() + pkt->getSize()) - addr; 323 readPktSize[ceilLog2(size)]++; 324 readBursts++; 325 326 // First check write buffer to see if the data is already at 327 // the controller 328 bool foundInWrQ = false; 329 for (auto i = writeQueue.begin(); i != writeQueue.end(); ++i) { 330 // check if the read is subsumed in the write entry we are 331 // looking at 332 if ((*i)->addr <= addr && 333 (addr + size) <= ((*i)->addr + (*i)->size)) { 334 foundInWrQ = true; 335 servicedByWrQ++; 336 pktsServicedByWrQ++; 337 DPRINTF(DRAM, "Read to addr %lld with size %d serviced by " 338 "write queue\n", addr, size); 339 bytesReadWrQ += burstSize; 340 break; 341 } 342 } 343 344 // If not found in the write q, make a DRAM packet and 345 // push it onto the read queue 346 if (!foundInWrQ) { 347 348 // Make the burst helper for split packets 349 if (pktCount > 1 && burst_helper == NULL) { 350 DPRINTF(DRAM, "Read to addr %lld translates to %d " 351 "dram requests\n", pkt->getAddr(), pktCount); 352 burst_helper = new BurstHelper(pktCount); 353 } 354 355 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true); 356 dram_pkt->burstHelper = burst_helper; 357 358 assert(!readQueueFull(1)); 359 rdQLenPdf[readQueue.size() + respQueue.size()]++; 360 361 DPRINTF(DRAM, "Adding to read queue\n"); 362 363 readQueue.push_back(dram_pkt); 364 365 // Update stats 366 avgRdQLen = readQueue.size() + respQueue.size(); 367 } 368 369 // Starting address of next dram pkt (aligend to burstSize boundary) 370 addr = (addr | (burstSize - 1)) + 1; 371 } 372 373 // If all packets are serviced by write queue, we send the repsonse back 374 if (pktsServicedByWrQ == pktCount) { 375 accessAndRespond(pkt, frontendLatency); 376 return; 377 } 378 379 // Update how many split packets are serviced by write queue 380 if (burst_helper != NULL) 381 burst_helper->burstsServiced = pktsServicedByWrQ; 382 383 // If we are not already scheduled to get a request out of the 384 // queue, do so now 385 if (!nextReqEvent.scheduled()) { 386 DPRINTF(DRAM, "Request scheduled immediately\n"); 387 schedule(nextReqEvent, curTick()); 388 } 389} 390 391void 392DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount) 393{ 394 // only add to the write queue here. whenever the request is 395 // eventually done, set the readyTime, and call schedule() 396 assert(pkt->isWrite()); 397 398 // if the request size is larger than burst size, the pkt is split into 399 // multiple DRAM packets 400 Addr addr = pkt->getAddr(); 401 for (int cnt = 0; cnt < pktCount; ++cnt) { 402 unsigned size = std::min((addr | (burstSize - 1)) + 1, 403 pkt->getAddr() + pkt->getSize()) - addr; 404 writePktSize[ceilLog2(size)]++; 405 writeBursts++; 406 407 // see if we can merge with an existing item in the write 408 // queue and keep track of whether we have merged or not so we 409 // can stop at that point and also avoid enqueueing a new 410 // request 411 bool merged = false; 412 auto w = writeQueue.begin(); 413 414 while(!merged && w != writeQueue.end()) { 415 // either of the two could be first, if they are the same 416 // it does not matter which way we go 417 if ((*w)->addr >= addr) { 418 // the existing one starts after the new one, figure 419 // out where the new one ends with respect to the 420 // existing one 421 if ((addr + size) >= ((*w)->addr + (*w)->size)) { 422 // check if the existing one is completely 423 // subsumed in the new one 424 DPRINTF(DRAM, "Merging write covering existing burst\n"); 425 merged = true; 426 // update both the address and the size 427 (*w)->addr = addr; 428 (*w)->size = size; 429 } else if ((addr + size) >= (*w)->addr && 430 ((*w)->addr + (*w)->size - addr) <= burstSize) { 431 // the new one is just before or partially 432 // overlapping with the existing one, and together 433 // they fit within a burst 434 DPRINTF(DRAM, "Merging write before existing burst\n"); 435 merged = true; 436 // the existing queue item needs to be adjusted with 437 // respect to both address and size 438 (*w)->size = (*w)->addr + (*w)->size - addr; 439 (*w)->addr = addr; 440 } 441 } else { 442 // the new one starts after the current one, figure 443 // out where the existing one ends with respect to the 444 // new one 445 if (((*w)->addr + (*w)->size) >= (addr + size)) { 446 // check if the new one is completely subsumed in the 447 // existing one 448 DPRINTF(DRAM, "Merging write into existing burst\n"); 449 merged = true; 450 // no adjustments necessary 451 } else if (((*w)->addr + (*w)->size) >= addr && 452 (addr + size - (*w)->addr) <= burstSize) { 453 // the existing one is just before or partially 454 // overlapping with the new one, and together 455 // they fit within a burst 456 DPRINTF(DRAM, "Merging write after existing burst\n"); 457 merged = true; 458 // the address is right, and only the size has 459 // to be adjusted 460 (*w)->size = addr + size - (*w)->addr; 461 } 462 } 463 ++w; 464 } 465 466 // if the item was not merged we need to create a new write 467 // and enqueue it 468 if (!merged) { 469 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false); 470 471 assert(writeQueue.size() < writeBufferSize); 472 wrQLenPdf[writeQueue.size()]++; 473 474 DPRINTF(DRAM, "Adding to write queue\n"); 475 476 writeQueue.push_back(dram_pkt); 477 478 // Update stats 479 avgWrQLen = writeQueue.size(); 480 } else { 481 // keep track of the fact that this burst effectively 482 // disappeared as it was merged with an existing one 483 mergedWrBursts++; 484 } 485 486 // Starting address of next dram pkt (aligend to burstSize boundary) 487 addr = (addr | (burstSize - 1)) + 1; 488 } 489 490 // we do not wait for the writes to be send to the actual memory, 491 // but instead take responsibility for the consistency here and 492 // snoop the write queue for any upcoming reads 493 // @todo, if a pkt size is larger than burst size, we might need a 494 // different front end latency 495 accessAndRespond(pkt, frontendLatency); 496 497 // If we are not already scheduled to get a request out of the 498 // queue, do so now 499 if (!nextReqEvent.scheduled()) { 500 DPRINTF(DRAM, "Request scheduled immediately\n"); 501 schedule(nextReqEvent, curTick()); 502 } 503} 504 505void 506DRAMCtrl::printParams() const 507{ 508 // Sanity check print of important parameters 509 DPRINTF(DRAM, 510 "Memory controller %s physical organization\n" \ 511 "Number of devices per rank %d\n" \ 512 "Device bus width (in bits) %d\n" \ 513 "DRAM data bus burst (bytes) %d\n" \ 514 "Row buffer size (bytes) %d\n" \ 515 "Columns per row buffer %d\n" \ 516 "Rows per bank %d\n" \ 517 "Banks per rank %d\n" \ 518 "Ranks per channel %d\n" \ 519 "Total mem capacity (bytes) %u\n", 520 name(), devicesPerRank, deviceBusWidth, burstSize, rowBufferSize, 521 columnsPerRowBuffer, rowsPerBank, banksPerRank, ranksPerChannel, 522 rowBufferSize * rowsPerBank * banksPerRank * ranksPerChannel); 523 524 string scheduler = memSchedPolicy == Enums::fcfs ? "FCFS" : "FR-FCFS"; 525 string address_mapping = addrMapping == Enums::RoRaBaChCo ? "RoRaBaChCo" : 526 (addrMapping == Enums::RoRaBaCoCh ? "RoRaBaCoCh" : "RoCoRaBaCh"); 527 string page_policy = pageMgmt == Enums::open ? "OPEN" : 528 (pageMgmt == Enums::open_adaptive ? "OPEN (adaptive)" : 529 (pageMgmt == Enums::close_adaptive ? "CLOSE (adaptive)" : "CLOSE")); 530 531 DPRINTF(DRAM, 532 "Memory controller %s characteristics\n" \ 533 "Read buffer size %d\n" \ 534 "Write buffer size %d\n" \ 535 "Write high thresh %d\n" \ 536 "Write low thresh %d\n" \ 537 "Scheduler %s\n" \ 538 "Address mapping %s\n" \ 539 "Page policy %s\n", 540 name(), readBufferSize, writeBufferSize, writeHighThreshold, 541 writeLowThreshold, scheduler, address_mapping, page_policy); 542 543 DPRINTF(DRAM, "Memory controller %s timing specs\n" \ 544 "tRCD %d ticks\n" \ 545 "tCL %d ticks\n" \ 546 "tRP %d ticks\n" \ 547 "tBURST %d ticks\n" \ 548 "tRFC %d ticks\n" \ 549 "tREFI %d ticks\n" \ 550 "tWTR %d ticks\n" \ 551 "tRTW %d ticks\n" \ 552 "tXAW (%d) %d ticks\n", 553 name(), tRCD, tCL, tRP, tBURST, tRFC, tREFI, tWTR, 554 tRTW, activationLimit, tXAW); 555} 556 557void 558DRAMCtrl::printQs() const { 559 DPRINTF(DRAM, "===READ QUEUE===\n\n"); 560 for (auto i = readQueue.begin() ; i != readQueue.end() ; ++i) { 561 DPRINTF(DRAM, "Read %lu\n", (*i)->addr); 562 } 563 DPRINTF(DRAM, "\n===RESP QUEUE===\n\n"); 564 for (auto i = respQueue.begin() ; i != respQueue.end() ; ++i) { 565 DPRINTF(DRAM, "Response %lu\n", (*i)->addr); 566 } 567 DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n"); 568 for (auto i = writeQueue.begin() ; i != writeQueue.end() ; ++i) { 569 DPRINTF(DRAM, "Write %lu\n", (*i)->addr); 570 } 571} 572 573bool 574DRAMCtrl::recvTimingReq(PacketPtr pkt) 575{ 576 /// @todo temporary hack to deal with memory corruption issues until 577 /// 4-phase transactions are complete 578 for (int x = 0; x < pendingDelete.size(); x++) 579 delete pendingDelete[x]; 580 pendingDelete.clear(); 581 582 // This is where we enter from the outside world 583 DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n", 584 pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 585 586 // simply drop inhibited packets for now 587 if (pkt->memInhibitAsserted()) { 588 DPRINTF(DRAM, "Inhibited packet -- Dropping it now\n"); 589 pendingDelete.push_back(pkt); 590 return true; 591 } 592 593 // Calc avg gap between requests 594 if (prevArrival != 0) { 595 totGap += curTick() - prevArrival; 596 } 597 prevArrival = curTick(); 598 599 600 // Find out how many dram packets a pkt translates to 601 // If the burst size is equal or larger than the pkt size, then a pkt 602 // translates to only one dram packet. Otherwise, a pkt translates to 603 // multiple dram packets 604 unsigned size = pkt->getSize(); 605 unsigned offset = pkt->getAddr() & (burstSize - 1); 606 unsigned int dram_pkt_count = divCeil(offset + size, burstSize); 607 608 // check local buffers and do not accept if full 609 if (pkt->isRead()) { 610 assert(size != 0); 611 if (readQueueFull(dram_pkt_count)) { 612 DPRINTF(DRAM, "Read queue full, not accepting\n"); 613 // remember that we have to retry this port 614 retryRdReq = true; 615 numRdRetry++; 616 return false; 617 } else { 618 addToReadQueue(pkt, dram_pkt_count); 619 readReqs++; 620 bytesReadSys += size; 621 } 622 } else if (pkt->isWrite()) { 623 assert(size != 0); 624 if (writeQueueFull(dram_pkt_count)) { 625 DPRINTF(DRAM, "Write queue full, not accepting\n"); 626 // remember that we have to retry this port 627 retryWrReq = true; 628 numWrRetry++; 629 return false; 630 } else { 631 addToWriteQueue(pkt, dram_pkt_count); 632 writeReqs++; 633 bytesWrittenSys += size; 634 } 635 } else { 636 DPRINTF(DRAM,"Neither read nor write, ignore timing\n"); 637 neitherReadNorWrite++; 638 accessAndRespond(pkt, 1); 639 } 640 641 return true; 642} 643 644void 645DRAMCtrl::processRespondEvent() 646{ 647 DPRINTF(DRAM, 648 "processRespondEvent(): Some req has reached its readyTime\n"); 649 650 DRAMPacket* dram_pkt = respQueue.front(); 651 652 if (dram_pkt->burstHelper) { 653 // it is a split packet 654 dram_pkt->burstHelper->burstsServiced++; 655 if (dram_pkt->burstHelper->burstsServiced == 656 dram_pkt->burstHelper->burstCount) { 657 // we have now serviced all children packets of a system packet 658 // so we can now respond to the requester 659 // @todo we probably want to have a different front end and back 660 // end latency for split packets 661 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency); 662 delete dram_pkt->burstHelper; 663 dram_pkt->burstHelper = NULL; 664 } 665 } else { 666 // it is not a split packet 667 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency); 668 } 669 670 delete respQueue.front(); 671 respQueue.pop_front(); 672 673 if (!respQueue.empty()) { 674 assert(respQueue.front()->readyTime >= curTick()); 675 assert(!respondEvent.scheduled()); 676 schedule(respondEvent, respQueue.front()->readyTime); 677 } else { 678 // if there is nothing left in any queue, signal a drain 679 if (writeQueue.empty() && readQueue.empty() && 680 drainManager) { 681 drainManager->signalDrainDone(); 682 drainManager = NULL; 683 } 684 } 685 686 // We have made a location in the queue available at this point, 687 // so if there is a read that was forced to wait, retry now 688 if (retryRdReq) { 689 retryRdReq = false; 690 port.sendRetry(); 691 } 692} 693 694void 695DRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue) 696{ 697 // This method does the arbitration between requests. The chosen 698 // packet is simply moved to the head of the queue. The other 699 // methods know that this is the place to look. For example, with 700 // FCFS, this method does nothing 701 assert(!queue.empty()); 702 703 if (queue.size() == 1) { 704 DPRINTF(DRAM, "Single request, nothing to do\n"); 705 return; 706 } 707 708 if (memSchedPolicy == Enums::fcfs) { 709 // Do nothing, since the correct request is already head 710 } else if (memSchedPolicy == Enums::frfcfs) { 711 reorderQueue(queue); 712 } else 713 panic("No scheduling policy chosen\n"); 714} 715 716void 717DRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue) 718{ 719 // Only determine this when needed 720 uint64_t earliest_banks = 0; 721 722 // Search for row hits first, if no row hit is found then schedule the 723 // packet to one of the earliest banks available 724 bool found_earliest_pkt = false; 725 auto selected_pkt_it = queue.begin(); 726 727 for (auto i = queue.begin(); i != queue.end() ; ++i) { 728 DRAMPacket* dram_pkt = *i; 729 const Bank& bank = dram_pkt->bankRef; 730 // Check if it is a row hit 731 if (bank.openRow == dram_pkt->row) { 732 DPRINTF(DRAM, "Row buffer hit\n"); 733 selected_pkt_it = i; 734 break; 735 } else if (!found_earliest_pkt) { 736 // No row hit, go for first ready 737 if (earliest_banks == 0) 738 earliest_banks = minBankFreeAt(queue); 739 740 // Bank is ready or is the first available bank 741 if (bank.freeAt <= curTick() || 742 bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) { 743 // Remember the packet to be scheduled to one of the earliest 744 // banks available 745 selected_pkt_it = i; 746 found_earliest_pkt = true; 747 } 748 } 749 } 750 751 DRAMPacket* selected_pkt = *selected_pkt_it; 752 queue.erase(selected_pkt_it); 753 queue.push_front(selected_pkt); 754} 755 756void 757DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency) 758{ 759 DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr()); 760 761 bool needsResponse = pkt->needsResponse(); 762 // do the actual memory access which also turns the packet into a 763 // response 764 access(pkt); 765 766 // turn packet around to go back to requester if response expected 767 if (needsResponse) { 768 // access already turned the packet into a response 769 assert(pkt->isResponse()); 770 771 // @todo someone should pay for this 772 pkt->busFirstWordDelay = pkt->busLastWordDelay = 0; 773 774 // queue the packet in the response queue to be sent out after 775 // the static latency has passed 776 port.schedTimingResp(pkt, curTick() + static_latency); 777 } else { 778 // @todo the packet is going to be deleted, and the DRAMPacket 779 // is still having a pointer to it 780 pendingDelete.push_back(pkt); 781 } 782 783 DPRINTF(DRAM, "Done\n"); 784 785 return; 786} 787 788pair<Tick, Tick> 789DRAMCtrl::estimateLatency(DRAMPacket* dram_pkt, Tick inTime) 790{ 791 // If a request reaches a bank at tick 'inTime', how much time 792 // *after* that does it take to finish the request, depending 793 // on bank status and page open policy. Note that this method 794 // considers only the time taken for the actual read or write 795 // to complete, NOT any additional time thereafter for tRAS or 796 // tRP. 797 Tick accLat = 0; 798 Tick bankLat = 0; 799 rowHitFlag = false; 800 Tick potentialActTick; 801 802 const Bank& bank = dram_pkt->bankRef; 803 // open-page policy or close_adaptive policy 804 if (pageMgmt == Enums::open || pageMgmt == Enums::open_adaptive || 805 pageMgmt == Enums::close_adaptive) { 806 if (bank.openRow == dram_pkt->row) { 807 // When we have a row-buffer hit, 808 // we don't care about tRAS having expired or not, 809 // but do care about bank being free for access 810 rowHitFlag = true; 811 812 // When a series of requests arrive to the same row, 813 // DDR systems are capable of streaming data continuously 814 // at maximum bandwidth (subject to tCCD). Here, we approximate 815 // this condition, and assume that if whenever a bank is already 816 // busy and a new request comes in, it can be completed with no 817 // penalty beyond waiting for the existing read to complete. 818 if (bank.freeAt > inTime) { 819 accLat += bank.freeAt - inTime; 820 bankLat += 0; 821 } else { 822 // CAS latency only 823 accLat += tCL; 824 bankLat += tCL; 825 } 826 827 } else { 828 // Row-buffer miss, need to close existing row 829 // once tRAS has expired, then open the new one, 830 // then add cas latency. 831 Tick freeTime = std::max(bank.tRASDoneAt, bank.freeAt); 832 833 if (freeTime > inTime) 834 accLat += freeTime - inTime; 835 836 // If the there is no open row (open adaptive), then there 837 // is no precharge delay, otherwise go with tRP 838 Tick precharge_delay = bank.openRow == -1 ? 0 : tRP; 839 840 //The bank is free, and you may be able to activate 841 potentialActTick = inTime + accLat + precharge_delay; 842 if (potentialActTick < bank.actAllowedAt) 843 accLat += bank.actAllowedAt - potentialActTick; 844 845 accLat += precharge_delay + tRCD + tCL; 846 bankLat += precharge_delay + tRCD + tCL; 847 } 848 } else if (pageMgmt == Enums::close) { 849 // With a close page policy, no notion of 850 // bank.tRASDoneAt 851 if (bank.freeAt > inTime) 852 accLat += bank.freeAt - inTime; 853 854 //The bank is free, and you may be able to activate 855 potentialActTick = inTime + accLat; 856 if (potentialActTick < bank.actAllowedAt) 857 accLat += bank.actAllowedAt - potentialActTick; 858 859 // page already closed, simply open the row, and 860 // add cas latency 861 accLat += tRCD + tCL; 862 bankLat += tRCD + tCL; 863 } else 864 panic("No page management policy chosen\n"); 865 866 DPRINTF(DRAM, "Returning < %lld, %lld > from estimateLatency()\n", 867 bankLat, accLat); 868 869 return make_pair(bankLat, accLat); 870} 871 872void 873DRAMCtrl::recordActivate(Tick act_tick, uint8_t rank, uint8_t bank) 874{ 875 assert(0 <= rank && rank < ranksPerChannel); 876 assert(actTicks[rank].size() == activationLimit); 877 878 DPRINTF(DRAM, "Activate at tick %d\n", act_tick); 879 880 // Tracking accesses after all banks are precharged. 881 // startTickPrechargeAll: is the tick when all the banks were again 882 // precharged. The difference between act_tick and startTickPrechargeAll 883 // gives the time for which DRAM doesn't get any accesses after refreshing 884 // or after a page is closed in closed-page or open-adaptive-page policy. 885 if ((numBanksActive == 0) && (act_tick > startTickPrechargeAll)) { 886 prechargeAllTime += act_tick - startTickPrechargeAll; 887 } 888 889 // No need to update number of active banks for closed-page policy as only 1 890 // bank will be activated at any given point, which will be instatntly 891 // precharged 892 if (pageMgmt == Enums::open || pageMgmt == Enums::open_adaptive || 893 pageMgmt == Enums::close_adaptive) 894 ++numBanksActive; 895 896 // start by enforcing tRRD 897 for(int i = 0; i < banksPerRank; i++) { 898 // next activate must not happen before tRRD 899 banks[rank][i].actAllowedAt = act_tick + tRRD; 900 } 901 // tRC should be added to activation tick of the bank currently accessed, 902 // where tRC = tRAS + tRP, this is just for a check as actAllowedAt for same 903 // bank is already captured by bank.freeAt and bank.tRASDoneAt 904 banks[rank][bank].actAllowedAt = act_tick + tRAS + tRP; 905 906 // next, we deal with tXAW, if the activation limit is disabled 907 // then we are done 908 if (actTicks[rank].empty()) 909 return; 910 911 // sanity check 912 if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) { 913 // @todo For now, stick with a warning 914 warn("Got %d activates in window %d (%d - %d) which is smaller " 915 "than %d\n", activationLimit, act_tick - actTicks[rank].back(), 916 act_tick, actTicks[rank].back(), tXAW); 917 } 918 919 // shift the times used for the book keeping, the last element 920 // (highest index) is the oldest one and hence the lowest value 921 actTicks[rank].pop_back(); 922 923 // record an new activation (in the future) 924 actTicks[rank].push_front(act_tick); 925 926 // cannot activate more than X times in time window tXAW, push the 927 // next one (the X + 1'st activate) to be tXAW away from the 928 // oldest in our window of X 929 if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) { 930 DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate no earlier " 931 "than %d\n", activationLimit, actTicks[rank].back() + tXAW); 932 for(int j = 0; j < banksPerRank; j++) 933 // next activate must not happen before end of window 934 banks[rank][j].actAllowedAt = actTicks[rank].back() + tXAW; 935 } 936} 937 938void 939DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt) 940{ 941 942 DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n", 943 dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row); 944 945 // estimate the bank and access latency 946 pair<Tick, Tick> lat = estimateLatency(dram_pkt, curTick()); 947 Tick bankLat = lat.first; 948 Tick accessLat = lat.second; 949 Tick actTick; 950 951 // This request was woken up at this time based on a prior call 952 // to estimateLatency(). However, between then and now, both the 953 // accessLatency and/or busBusyUntil may have changed. We need 954 // to correct for that. 955 956 Tick addDelay = (curTick() + accessLat < busBusyUntil) ? 957 busBusyUntil - (curTick() + accessLat) : 0; 958 959 Bank& bank = dram_pkt->bankRef; 960 961 // Update bank state 962 if (pageMgmt == Enums::open || pageMgmt == Enums::open_adaptive || 963 pageMgmt == Enums::close_adaptive) { 964 bank.freeAt = curTick() + addDelay + accessLat; 965 966 // If you activated a new row do to this access, the next access 967 // will have to respect tRAS for this bank. 968 if (!rowHitFlag) { 969 // any waiting for banks account for in freeAt 970 actTick = bank.freeAt - tCL - tRCD; 971 bank.tRASDoneAt = actTick + tRAS; 972 recordActivate(actTick, dram_pkt->rank, dram_pkt->bank); 973 974 // if we closed an open row as a result of this access, 975 // then sample the number of bytes accessed before 976 // resetting it 977 if (bank.openRow != -1) 978 bytesPerActivate.sample(bank.bytesAccessed); 979 980 // update the open row 981 bank.openRow = dram_pkt->row; 982 983 // start counting anew, this covers both the case when we 984 // auto-precharged, and when this access is forced to 985 // precharge 986 bank.bytesAccessed = 0; 987 bank.rowAccesses = 0; 988 } 989 990 // increment the bytes accessed and the accesses per row 991 bank.bytesAccessed += burstSize; 992 ++bank.rowAccesses; 993 994 // if we reached the max, then issue with an auto-precharge 995 bool auto_precharge = bank.rowAccesses == maxAccessesPerRow; 996 997 // if we did not hit the limit, we might still want to 998 // auto-precharge 999 if (!auto_precharge && 1000 (pageMgmt == Enums::open_adaptive || 1001 pageMgmt == Enums::close_adaptive)) { 1002 // a twist on the open and close page policies: 1003 // 1) open_adaptive page policy does not blindly keep the 1004 // page open, but close it if there are no row hits, and there 1005 // are bank conflicts in the queue 1006 // 2) close_adaptive page policy does not blindly close the 1007 // page, but closes it only if there are no row hits in the queue. 1008 // In this case, only force an auto precharge when there 1009 // are no same page hits in the queue 1010 bool got_more_hits = false; 1011 bool got_bank_conflict = false; 1012 1013 // either look at the read queue or write queue 1014 const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue : 1015 writeQueue; 1016 auto p = queue.begin(); 1017 // make sure we are not considering the packet that we are 1018 // currently dealing with (which is the head of the queue) 1019 ++p; 1020 1021 // keep on looking until we have found required condition or 1022 // reached the end 1023 while (!(got_more_hits && 1024 (got_bank_conflict || pageMgmt == Enums::close_adaptive)) && 1025 p != queue.end()) { 1026 bool same_rank_bank = (dram_pkt->rank == (*p)->rank) && 1027 (dram_pkt->bank == (*p)->bank); 1028 bool same_row = dram_pkt->row == (*p)->row; 1029 got_more_hits |= same_rank_bank && same_row; 1030 got_bank_conflict |= same_rank_bank && !same_row; 1031 ++p; 1032 } 1033 1034 // auto pre-charge when either 1035 // 1) open_adaptive policy, we have not got any more hits, and 1036 // have a bank conflict 1037 // 2) close_adaptive policy and we have not got any more hits 1038 auto_precharge = !got_more_hits && 1039 (got_bank_conflict || pageMgmt == Enums::close_adaptive); 1040 } 1041 1042 // if this access should use auto-precharge, then we are 1043 // closing the row 1044 if (auto_precharge) { 1045 bank.openRow = -1; 1046 bank.freeAt = std::max(bank.freeAt, bank.tRASDoneAt) + tRP; 1047 --numBanksActive; 1048 if (numBanksActive == 0) { 1049 startTickPrechargeAll = std::max(startTickPrechargeAll, 1050 bank.freeAt); 1051 DPRINTF(DRAM, "All banks precharged at tick: %ld\n", 1052 startTickPrechargeAll); 1053 } 1054 1055 // sample the bytes per activate here since we are closing 1056 // the page 1057 bytesPerActivate.sample(bank.bytesAccessed); 1058 1059 DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId); 1060 } 1061 1062 DPRINTF(DRAM, "doDRAMAccess::bank.freeAt is %lld\n", bank.freeAt); 1063 } else if (pageMgmt == Enums::close) { 1064 actTick = curTick() + addDelay + accessLat - tRCD - tCL; 1065 recordActivate(actTick, dram_pkt->rank, dram_pkt->bank); 1066 1067 // If the DRAM has a very quick tRAS, bank can be made free 1068 // after consecutive tCL,tRCD,tRP times. In general, however, 1069 // an additional wait is required to respect tRAS. 1070 bank.freeAt = std::max(actTick + tRAS + tRP, 1071 actTick + tRCD + tCL + tRP); 1072 DPRINTF(DRAM, "doDRAMAccess::bank.freeAt is %lld\n", bank.freeAt); 1073 bytesPerActivate.sample(burstSize); 1074 startTickPrechargeAll = std::max(startTickPrechargeAll, bank.freeAt); 1075 } else 1076 panic("No page management policy chosen\n"); 1077 1078 // Update request parameters 1079 dram_pkt->readyTime = curTick() + addDelay + accessLat + tBURST; 1080 1081 1082 DPRINTF(DRAM, "Req %lld: curtick is %lld accessLat is %d " \ 1083 "readytime is %lld busbusyuntil is %lld. " \ 1084 "Scheduling at readyTime\n", dram_pkt->addr, 1085 curTick(), accessLat, dram_pkt->readyTime, busBusyUntil); 1086 1087 // Make sure requests are not overlapping on the databus 1088 assert(dram_pkt->readyTime - busBusyUntil >= tBURST); 1089 1090 // Update bus state 1091 busBusyUntil = dram_pkt->readyTime; 1092 1093 DPRINTF(DRAM,"Access time is %lld\n", 1094 dram_pkt->readyTime - dram_pkt->entryTime); 1095 1096 // Update the minimum timing between the requests, this is a 1097 // conservative estimate of when we have to schedule the next 1098 // request to not introduce any unecessary bubbles. In most cases 1099 // we will wake up sooner than we have to. 1100 nextReqTime = busBusyUntil - (tRP + tRCD + tCL); 1101 1102 // Update the stats and schedule the next request 1103 if (dram_pkt->isRead) { 1104 ++readsThisTime; 1105 if (rowHitFlag) 1106 readRowHits++; 1107 bytesReadDRAM += burstSize; 1108 perBankRdBursts[dram_pkt->bankId]++; 1109 1110 // Update latency stats 1111 totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime; 1112 totBankLat += bankLat; 1113 totBusLat += tBURST; 1114 totQLat += dram_pkt->readyTime - dram_pkt->entryTime - bankLat - 1115 tBURST; 1116 } else { 1117 ++writesThisTime; 1118 if (rowHitFlag) 1119 writeRowHits++; 1120 bytesWritten += burstSize; 1121 perBankWrBursts[dram_pkt->bankId]++; 1122 } 1123} 1124 1125void 1126DRAMCtrl::moveToRespQ() 1127{ 1128 // Remove from read queue 1129 DRAMPacket* dram_pkt = readQueue.front(); 1130 readQueue.pop_front(); 1131 1132 // sanity check 1133 assert(dram_pkt->size <= burstSize); 1134 1135 // Insert into response queue sorted by readyTime 1136 // It will be sent back to the requestor at its 1137 // readyTime 1138 if (respQueue.empty()) { 1139 respQueue.push_front(dram_pkt); 1140 assert(!respondEvent.scheduled()); 1141 assert(dram_pkt->readyTime >= curTick()); 1142 schedule(respondEvent, dram_pkt->readyTime); 1143 } else { 1144 bool done = false; 1145 auto i = respQueue.begin(); 1146 while (!done && i != respQueue.end()) { 1147 if ((*i)->readyTime > dram_pkt->readyTime) { 1148 respQueue.insert(i, dram_pkt); 1149 done = true; 1150 } 1151 ++i; 1152 } 1153 1154 if (!done) 1155 respQueue.push_back(dram_pkt); 1156 1157 assert(respondEvent.scheduled()); 1158 1159 if (respQueue.front()->readyTime < respondEvent.when()) { 1160 assert(respQueue.front()->readyTime >= curTick()); 1161 reschedule(respondEvent, respQueue.front()->readyTime); 1162 } 1163 } 1164} 1165 1166void 1167DRAMCtrl::processNextReqEvent() 1168{ 1169 if (busState == READ_TO_WRITE) { 1170 DPRINTF(DRAM, "Switching to writes after %d reads with %d reads " 1171 "waiting\n", readsThisTime, readQueue.size()); 1172 1173 // sample and reset the read-related stats as we are now 1174 // transitioning to writes, and all reads are done 1175 rdPerTurnAround.sample(readsThisTime); 1176 readsThisTime = 0; 1177 1178 // now proceed to do the actual writes 1179 busState = WRITE; 1180 } else if (busState == WRITE_TO_READ) { 1181 DPRINTF(DRAM, "Switching to reads after %d writes with %d writes " 1182 "waiting\n", writesThisTime, writeQueue.size()); 1183 1184 wrPerTurnAround.sample(writesThisTime); 1185 writesThisTime = 0; 1186 1187 busState = READ; 1188 } 1189 1190 // when we get here it is either a read or a write 1191 if (busState == READ) { 1192 1193 // track if we should switch or not 1194 bool switch_to_writes = false; 1195 1196 if (readQueue.empty()) { 1197 // In the case there is no read request to go next, 1198 // trigger writes if we have passed the low threshold (or 1199 // if we are draining) 1200 if (!writeQueue.empty() && 1201 (drainManager || writeQueue.size() > writeLowThreshold)) { 1202 1203 switch_to_writes = true; 1204 } else { 1205 // check if we are drained 1206 if (respQueue.empty () && drainManager) { 1207 drainManager->signalDrainDone(); 1208 drainManager = NULL; 1209 } 1210 1211 // nothing to do, not even any point in scheduling an 1212 // event for the next request 1213 return; 1214 } 1215 } else { 1216 // Figure out which read request goes next, and move it to the 1217 // front of the read queue 1218 chooseNext(readQueue); 1219 1220 doDRAMAccess(readQueue.front()); 1221 1222 // At this point we're done dealing with the request 1223 // It will be moved to a separate response queue with a 1224 // correct readyTime, and eventually be sent back at that 1225 // time 1226 moveToRespQ(); 1227 1228 // we have so many writes that we have to transition 1229 if (writeQueue.size() > writeHighThreshold) { 1230 switch_to_writes = true; 1231 } 1232 } 1233 1234 // switching to writes, either because the read queue is empty 1235 // and the writes have passed the low threshold (or we are 1236 // draining), or because the writes hit the hight threshold 1237 if (switch_to_writes) { 1238 // transition to writing 1239 busState = READ_TO_WRITE; 1240 1241 // add a bubble to the data bus, as defined by the 1242 // tRTW parameter 1243 busBusyUntil += tRTW; 1244 1245 // update the minimum timing between the requests, 1246 // this shifts us back in time far enough to do any 1247 // bank preparation 1248 nextReqTime = busBusyUntil - (tRP + tRCD + tCL); 1249 } 1250 } else { 1251 chooseNext(writeQueue); 1252 DRAMPacket* dram_pkt = writeQueue.front(); 1253 // sanity check 1254 assert(dram_pkt->size <= burstSize); 1255 doDRAMAccess(dram_pkt); 1256 1257 writeQueue.pop_front(); 1258 delete dram_pkt; 1259 1260 // If we emptied the write queue, or got sufficiently below the 1261 // threshold (using the minWritesPerSwitch as the hysteresis) and 1262 // are not draining, or we have reads waiting and have done enough 1263 // writes, then switch to reads. 1264 if (writeQueue.empty() || 1265 (writeQueue.size() + minWritesPerSwitch < writeLowThreshold && 1266 !drainManager) || 1267 (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) { 1268 // turn the bus back around for reads again 1269 busState = WRITE_TO_READ; 1270 1271 // note that the we switch back to reads also in the idle 1272 // case, which eventually will check for any draining and 1273 // also pause any further scheduling if there is really 1274 // nothing to do 1275 1276 // here we get a bit creative and shift the bus busy time not 1277 // just the tWTR, but also a CAS latency to capture the fact 1278 // that we are allowed to prepare a new bank, but not issue a 1279 // read command until after tWTR, in essence we capture a 1280 // bubble on the data bus that is tWTR + tCL 1281 busBusyUntil += tWTR + tCL; 1282 1283 // update the minimum timing between the requests, this shifts 1284 // us back in time far enough to do any bank preparation 1285 nextReqTime = busBusyUntil - (tRP + tRCD + tCL); 1286 } 1287 } 1288 1289 schedule(nextReqEvent, std::max(nextReqTime, curTick())); 1290 1291 // If there is space available and we have writes waiting then let 1292 // them retry. This is done here to ensure that the retry does not 1293 // cause a nextReqEvent to be scheduled before we do so as part of 1294 // the next request processing 1295 if (retryWrReq && writeQueue.size() < writeBufferSize) { 1296 retryWrReq = false; 1297 port.sendRetry(); 1298 } 1299} 1300 1301Tick 1302DRAMCtrl::maxBankFreeAt() const 1303{ 1304 Tick banksFree = 0; 1305 1306 for(int i = 0; i < ranksPerChannel; i++) 1307 for(int j = 0; j < banksPerRank; j++) 1308 banksFree = std::max(banks[i][j].freeAt, banksFree); 1309 1310 return banksFree; 1311} 1312 1313uint64_t 1314DRAMCtrl::minBankFreeAt(const deque<DRAMPacket*>& queue) const 1315{ 1316 uint64_t bank_mask = 0; 1317 Tick freeAt = MaxTick; 1318 1319 // detemrine if we have queued transactions targetting the 1320 // bank in question 1321 vector<bool> got_waiting(ranksPerChannel * banksPerRank, false); 1322 for (auto p = queue.begin(); p != queue.end(); ++p) { 1323 got_waiting[(*p)->bankId] = true; 1324 } 1325 1326 for (int i = 0; i < ranksPerChannel; i++) { 1327 for (int j = 0; j < banksPerRank; j++) { 1328 // if we have waiting requests for the bank, and it is 1329 // amongst the first available, update the mask 1330 if (got_waiting[i * banksPerRank + j] && 1331 banks[i][j].freeAt <= freeAt) { 1332 // reset bank mask if new minimum is found 1333 if (banks[i][j].freeAt < freeAt) 1334 bank_mask = 0; 1335 // set the bit corresponding to the available bank 1336 uint8_t bit_index = i * ranksPerChannel + j; 1337 replaceBits(bank_mask, bit_index, bit_index, 1); 1338 freeAt = banks[i][j].freeAt; 1339 } 1340 } 1341 } 1342 return bank_mask; 1343} 1344 1345void 1346DRAMCtrl::processRefreshEvent() 1347{ 1348 DPRINTF(DRAM, "Refreshing at tick %ld\n", curTick()); 1349 1350 Tick banksFree = std::max(curTick(), maxBankFreeAt()) + tRFC; 1351 1352 for(int i = 0; i < ranksPerChannel; i++) 1353 for(int j = 0; j < banksPerRank; j++) { 1354 banks[i][j].freeAt = banksFree; 1355 banks[i][j].openRow = -1; 1356 } 1357 1358 // updating startTickPrechargeAll, isprechargeAll 1359 numBanksActive = 0; 1360 startTickPrechargeAll = banksFree; 1361 1362 schedule(refreshEvent, curTick() + tREFI); 1363} 1364 1365void 1366DRAMCtrl::regStats() 1367{ 1368 using namespace Stats; 1369 1370 AbstractMemory::regStats(); 1371 1372 readReqs 1373 .name(name() + ".readReqs") 1374 .desc("Number of read requests accepted"); 1375 1376 writeReqs 1377 .name(name() + ".writeReqs") 1378 .desc("Number of write requests accepted"); 1379 1380 readBursts 1381 .name(name() + ".readBursts") 1382 .desc("Number of DRAM read bursts, " 1383 "including those serviced by the write queue"); 1384 1385 writeBursts 1386 .name(name() + ".writeBursts") 1387 .desc("Number of DRAM write bursts, " 1388 "including those merged in the write queue"); 1389 1390 servicedByWrQ 1391 .name(name() + ".servicedByWrQ") 1392 .desc("Number of DRAM read bursts serviced by the write queue"); 1393 1394 mergedWrBursts 1395 .name(name() + ".mergedWrBursts") 1396 .desc("Number of DRAM write bursts merged with an existing one"); 1397 1398 neitherReadNorWrite 1399 .name(name() + ".neitherReadNorWriteReqs") 1400 .desc("Number of requests that are neither read nor write"); 1401 1402 perBankRdBursts 1403 .init(banksPerRank * ranksPerChannel) 1404 .name(name() + ".perBankRdBursts") 1405 .desc("Per bank write bursts"); 1406 1407 perBankWrBursts 1408 .init(banksPerRank * ranksPerChannel) 1409 .name(name() + ".perBankWrBursts") 1410 .desc("Per bank write bursts"); 1411 1412 avgRdQLen 1413 .name(name() + ".avgRdQLen") 1414 .desc("Average read queue length when enqueuing") 1415 .precision(2); 1416 1417 avgWrQLen 1418 .name(name() + ".avgWrQLen") 1419 .desc("Average write queue length when enqueuing") 1420 .precision(2); 1421 1422 totQLat 1423 .name(name() + ".totQLat") 1424 .desc("Total ticks spent queuing"); 1425 1426 totBankLat 1427 .name(name() + ".totBankLat") 1428 .desc("Total ticks spent accessing banks"); 1429 1430 totBusLat 1431 .name(name() + ".totBusLat") 1432 .desc("Total ticks spent in databus transfers"); 1433 1434 totMemAccLat 1435 .name(name() + ".totMemAccLat") 1436 .desc("Total ticks spent from burst creation until serviced " 1437 "by the DRAM"); 1438 1439 avgQLat 1440 .name(name() + ".avgQLat") 1441 .desc("Average queueing delay per DRAM burst") 1442 .precision(2); 1443 1444 avgQLat = totQLat / (readBursts - servicedByWrQ); 1445 1446 avgBankLat 1447 .name(name() + ".avgBankLat") 1448 .desc("Average bank access latency per DRAM burst") 1449 .precision(2); 1450 1451 avgBankLat = totBankLat / (readBursts - servicedByWrQ); 1452 1453 avgBusLat 1454 .name(name() + ".avgBusLat") 1455 .desc("Average bus latency per DRAM burst") 1456 .precision(2); 1457 1458 avgBusLat = totBusLat / (readBursts - servicedByWrQ); 1459 1460 avgMemAccLat 1461 .name(name() + ".avgMemAccLat") 1462 .desc("Average memory access latency per DRAM burst") 1463 .precision(2); 1464 1465 avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ); 1466 1467 numRdRetry 1468 .name(name() + ".numRdRetry") 1469 .desc("Number of times read queue was full causing retry"); 1470 1471 numWrRetry 1472 .name(name() + ".numWrRetry") 1473 .desc("Number of times write queue was full causing retry"); 1474 1475 readRowHits 1476 .name(name() + ".readRowHits") 1477 .desc("Number of row buffer hits during reads"); 1478 1479 writeRowHits 1480 .name(name() + ".writeRowHits") 1481 .desc("Number of row buffer hits during writes"); 1482 1483 readRowHitRate 1484 .name(name() + ".readRowHitRate") 1485 .desc("Row buffer hit rate for reads") 1486 .precision(2); 1487 1488 readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100; 1489 1490 writeRowHitRate 1491 .name(name() + ".writeRowHitRate") 1492 .desc("Row buffer hit rate for writes") 1493 .precision(2); 1494 1495 writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100; 1496 1497 readPktSize 1498 .init(ceilLog2(burstSize) + 1) 1499 .name(name() + ".readPktSize") 1500 .desc("Read request sizes (log2)"); 1501 1502 writePktSize 1503 .init(ceilLog2(burstSize) + 1) 1504 .name(name() + ".writePktSize") 1505 .desc("Write request sizes (log2)"); 1506 1507 rdQLenPdf 1508 .init(readBufferSize) 1509 .name(name() + ".rdQLenPdf") 1510 .desc("What read queue length does an incoming req see"); 1511 1512 wrQLenPdf 1513 .init(writeBufferSize) 1514 .name(name() + ".wrQLenPdf") 1515 .desc("What write queue length does an incoming req see"); 1516 1517 bytesPerActivate 1518 .init(maxAccessesPerRow) 1519 .name(name() + ".bytesPerActivate") 1520 .desc("Bytes accessed per row activation") 1521 .flags(nozero); 1522 1523 rdPerTurnAround 1524 .init(readBufferSize) 1525 .name(name() + ".rdPerTurnAround") 1526 .desc("Reads before turning the bus around for writes") 1527 .flags(nozero); 1528 1529 wrPerTurnAround 1530 .init(writeBufferSize) 1531 .name(name() + ".wrPerTurnAround") 1532 .desc("Writes before turning the bus around for reads") 1533 .flags(nozero); 1534 1535 bytesReadDRAM 1536 .name(name() + ".bytesReadDRAM") 1537 .desc("Total number of bytes read from DRAM"); 1538 1539 bytesReadWrQ 1540 .name(name() + ".bytesReadWrQ") 1541 .desc("Total number of bytes read from write queue"); 1542 1543 bytesWritten 1544 .name(name() + ".bytesWritten") 1545 .desc("Total number of bytes written to DRAM"); 1546 1547 bytesReadSys 1548 .name(name() + ".bytesReadSys") 1549 .desc("Total read bytes from the system interface side"); 1550 1551 bytesWrittenSys 1552 .name(name() + ".bytesWrittenSys") 1553 .desc("Total written bytes from the system interface side"); 1554 1555 avgRdBW 1556 .name(name() + ".avgRdBW") 1557 .desc("Average DRAM read bandwidth in MiByte/s") 1558 .precision(2); 1559 1560 avgRdBW = (bytesReadDRAM / 1000000) / simSeconds; 1561 1562 avgWrBW 1563 .name(name() + ".avgWrBW") 1564 .desc("Average achieved write bandwidth in MiByte/s") 1565 .precision(2); 1566 1567 avgWrBW = (bytesWritten / 1000000) / simSeconds; 1568 1569 avgRdBWSys 1570 .name(name() + ".avgRdBWSys") 1571 .desc("Average system read bandwidth in MiByte/s") 1572 .precision(2); 1573 1574 avgRdBWSys = (bytesReadSys / 1000000) / simSeconds; 1575 1576 avgWrBWSys 1577 .name(name() + ".avgWrBWSys") 1578 .desc("Average system write bandwidth in MiByte/s") 1579 .precision(2); 1580 1581 avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds; 1582 1583 peakBW 1584 .name(name() + ".peakBW") 1585 .desc("Theoretical peak bandwidth in MiByte/s") 1586 .precision(2); 1587 1588 peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000; 1589 1590 busUtil 1591 .name(name() + ".busUtil") 1592 .desc("Data bus utilization in percentage") 1593 .precision(2); 1594 1595 busUtil = (avgRdBW + avgWrBW) / peakBW * 100; 1596 1597 totGap 1598 .name(name() + ".totGap") 1599 .desc("Total gap between requests"); 1600 1601 avgGap 1602 .name(name() + ".avgGap") 1603 .desc("Average gap between requests") 1604 .precision(2); 1605 1606 avgGap = totGap / (readReqs + writeReqs); 1607 1608 // Stats for DRAM Power calculation based on Micron datasheet 1609 busUtilRead 1610 .name(name() + ".busUtilRead") 1611 .desc("Data bus utilization in percentage for reads") 1612 .precision(2); 1613 1614 busUtilRead = avgRdBW / peakBW * 100; 1615 1616 busUtilWrite 1617 .name(name() + ".busUtilWrite") 1618 .desc("Data bus utilization in percentage for writes") 1619 .precision(2); 1620 1621 busUtilWrite = avgWrBW / peakBW * 100; 1622 1623 pageHitRate 1624 .name(name() + ".pageHitRate") 1625 .desc("Row buffer hit rate, read and write combined") 1626 .precision(2); 1627 1628 pageHitRate = (writeRowHits + readRowHits) / 1629 (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100; 1630 1631 prechargeAllPercent 1632 .name(name() + ".prechargeAllPercent") 1633 .desc("Percentage of time for which DRAM has all the banks in " 1634 "precharge state") 1635 .precision(2); 1636 1637 prechargeAllPercent = prechargeAllTime / simTicks * 100; 1638} 1639 1640void 1641DRAMCtrl::recvFunctional(PacketPtr pkt) 1642{ 1643 // rely on the abstract memory 1644 functionalAccess(pkt); 1645} 1646 1647BaseSlavePort& 1648DRAMCtrl::getSlavePort(const string &if_name, PortID idx) 1649{ 1650 if (if_name != "port") { 1651 return MemObject::getSlavePort(if_name, idx); 1652 } else { 1653 return port; 1654 } 1655} 1656 1657unsigned int 1658DRAMCtrl::drain(DrainManager *dm) 1659{ 1660 unsigned int count = port.drain(dm); 1661 1662 // if there is anything in any of our internal queues, keep track 1663 // of that as well 1664 if (!(writeQueue.empty() && readQueue.empty() && 1665 respQueue.empty())) { 1666 DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d," 1667 " resp: %d\n", writeQueue.size(), readQueue.size(), 1668 respQueue.size()); 1669 ++count; 1670 drainManager = dm; 1671 1672 // the only part that is not drained automatically over time 1673 // is the write queue, thus kick things into action if needed 1674 if (!writeQueue.empty() && !nextReqEvent.scheduled()) { 1675 schedule(nextReqEvent, curTick()); 1676 } 1677 } 1678 1679 if (count) 1680 setDrainState(Drainable::Draining); 1681 else 1682 setDrainState(Drainable::Drained); 1683 return count; 1684} 1685 1686DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory) 1687 : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this), 1688 memory(_memory) 1689{ } 1690 1691AddrRangeList 1692DRAMCtrl::MemoryPort::getAddrRanges() const 1693{ 1694 AddrRangeList ranges; 1695 ranges.push_back(memory.getAddrRange()); 1696 return ranges; 1697} 1698 1699void 1700DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt) 1701{ 1702 pkt->pushLabel(memory.name()); 1703 1704 if (!queue.checkFunctional(pkt)) { 1705 // Default implementation of SimpleTimingPort::recvFunctional() 1706 // calls recvAtomic() and throws away the latency; we can save a 1707 // little here by just not calculating the latency. 1708 memory.recvFunctional(pkt); 1709 } 1710 1711 pkt->popLabel(); 1712} 1713 1714Tick 1715DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt) 1716{ 1717 return memory.recvAtomic(pkt); 1718} 1719 1720bool 1721DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt) 1722{ 1723 // pass it to the memory controller 1724 return memory.recvTimingReq(pkt); 1725} 1726 1727DRAMCtrl* 1728DRAMCtrlParams::create() 1729{ 1730 return new DRAMCtrl(this); 1731} 1732