dram_ctrl.cc revision 10147:3e51a30b8071
1/*
2 * Copyright (c) 2010-2013 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2013 Amin Farmahini-Farahani
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Andreas Hansson
41 *          Ani Udipi
42 *          Neha Agarwal
43 */
44
45#include "base/bitfield.hh"
46#include "base/trace.hh"
47#include "debug/DRAM.hh"
48#include "debug/Drain.hh"
49#include "mem/dram_ctrl.hh"
50#include "sim/system.hh"
51
52using namespace std;
53
54DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
55    AbstractMemory(p),
56    port(name() + ".port", *this),
57    retryRdReq(false), retryWrReq(false),
58    rowHitFlag(false), stopReads(false),
59    writeEvent(this), respondEvent(this),
60    refreshEvent(this), nextReqEvent(this), drainManager(NULL),
61    deviceBusWidth(p->device_bus_width), burstLength(p->burst_length),
62    deviceRowBufferSize(p->device_rowbuffer_size),
63    devicesPerRank(p->devices_per_rank),
64    burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8),
65    rowBufferSize(devicesPerRank * deviceRowBufferSize),
66    columnsPerRowBuffer(rowBufferSize / burstSize),
67    ranksPerChannel(p->ranks_per_channel),
68    banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0),
69    readBufferSize(p->read_buffer_size),
70    writeBufferSize(p->write_buffer_size),
71    writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0),
72    writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0),
73    minWritesPerSwitch(p->min_writes_per_switch),
74    writesThisTime(0), readsThisTime(0),
75    tWTR(p->tWTR), tBURST(p->tBURST),
76    tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS),
77    tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD),
78    tXAW(p->tXAW), activationLimit(p->activation_limit),
79    memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
80    pageMgmt(p->page_policy),
81    maxAccessesPerRow(p->max_accesses_per_row),
82    frontendLatency(p->static_frontend_latency),
83    backendLatency(p->static_backend_latency),
84    busBusyUntil(0),  prevArrival(0),
85    newTime(0), startTickPrechargeAll(0), numBanksActive(0)
86{
87    // create the bank states based on the dimensions of the ranks and
88    // banks
89    banks.resize(ranksPerChannel);
90    actTicks.resize(ranksPerChannel);
91    for (size_t c = 0; c < ranksPerChannel; ++c) {
92        banks[c].resize(banksPerRank);
93        actTicks[c].resize(activationLimit, 0);
94    }
95
96    // perform a basic check of the write thresholds
97    if (p->write_low_thresh_perc >= p->write_high_thresh_perc)
98        fatal("Write buffer low threshold %d must be smaller than the "
99              "high threshold %d\n", p->write_low_thresh_perc,
100              p->write_high_thresh_perc);
101
102    // determine the rows per bank by looking at the total capacity
103    uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size());
104
105    DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
106            AbstractMemory::size());
107
108    DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n",
109            rowBufferSize, columnsPerRowBuffer);
110
111    rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel);
112
113    if (range.interleaved()) {
114        if (channels != range.stripes())
115            fatal("%s has %d interleaved address stripes but %d channel(s)\n",
116                  name(), range.stripes(), channels);
117
118        if (addrMapping == Enums::RoRaBaChCo) {
119            if (rowBufferSize != range.granularity()) {
120                fatal("Interleaving of %s doesn't match RoRaBaChCo "
121                      "address map\n", name());
122            }
123        } else if (addrMapping == Enums::RoRaBaCoCh) {
124            if (system()->cacheLineSize() != range.granularity()) {
125                fatal("Interleaving of %s doesn't match RoRaBaCoCh "
126                      "address map\n", name());
127            }
128        } else if (addrMapping == Enums::RoCoRaBaCh) {
129            if (system()->cacheLineSize() != range.granularity())
130                fatal("Interleaving of %s doesn't match RoCoRaBaCh "
131                      "address map\n", name());
132        }
133    }
134}
135
136void
137DRAMCtrl::init()
138{
139    if (!port.isConnected()) {
140        fatal("DRAMCtrl %s is unconnected!\n", name());
141    } else {
142        port.sendRangeChange();
143    }
144}
145
146void
147DRAMCtrl::startup()
148{
149    // update the start tick for the precharge accounting to the
150    // current tick
151    startTickPrechargeAll = curTick();
152
153    // print the configuration of the controller
154    printParams();
155
156    // kick off the refresh
157    schedule(refreshEvent, curTick() + tREFI);
158}
159
160Tick
161DRAMCtrl::recvAtomic(PacketPtr pkt)
162{
163    DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
164
165    // do the actual memory access and turn the packet into a response
166    access(pkt);
167
168    Tick latency = 0;
169    if (!pkt->memInhibitAsserted() && pkt->hasData()) {
170        // this value is not supposed to be accurate, just enough to
171        // keep things going, mimic a closed page
172        latency = tRP + tRCD + tCL;
173    }
174    return latency;
175}
176
177bool
178DRAMCtrl::readQueueFull(unsigned int neededEntries) const
179{
180    DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n",
181            readBufferSize, readQueue.size() + respQueue.size(),
182            neededEntries);
183
184    return
185        (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize;
186}
187
188bool
189DRAMCtrl::writeQueueFull(unsigned int neededEntries) const
190{
191    DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n",
192            writeBufferSize, writeQueue.size(), neededEntries);
193    return (writeQueue.size() + neededEntries) > writeBufferSize;
194}
195
196DRAMCtrl::DRAMPacket*
197DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size,
198                       bool isRead)
199{
200    // decode the address based on the address mapping scheme, with
201    // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and
202    // channel, respectively
203    uint8_t rank;
204    uint8_t bank;
205    uint16_t row;
206
207    // truncate the address to the access granularity
208    Addr addr = dramPktAddr / burstSize;
209
210    // we have removed the lowest order address bits that denote the
211    // position within the column
212    if (addrMapping == Enums::RoRaBaChCo) {
213        // the lowest order bits denote the column to ensure that
214        // sequential cache lines occupy the same row
215        addr = addr / columnsPerRowBuffer;
216
217        // take out the channel part of the address
218        addr = addr / channels;
219
220        // after the channel bits, get the bank bits to interleave
221        // over the banks
222        bank = addr % banksPerRank;
223        addr = addr / banksPerRank;
224
225        // after the bank, we get the rank bits which thus interleaves
226        // over the ranks
227        rank = addr % ranksPerChannel;
228        addr = addr / ranksPerChannel;
229
230        // lastly, get the row bits
231        row = addr % rowsPerBank;
232        addr = addr / rowsPerBank;
233    } else if (addrMapping == Enums::RoRaBaCoCh) {
234        // take out the channel part of the address
235        addr = addr / channels;
236
237        // next, the column
238        addr = addr / columnsPerRowBuffer;
239
240        // after the column bits, we get the bank bits to interleave
241        // over the banks
242        bank = addr % banksPerRank;
243        addr = addr / banksPerRank;
244
245        // after the bank, we get the rank bits which thus interleaves
246        // over the ranks
247        rank = addr % ranksPerChannel;
248        addr = addr / ranksPerChannel;
249
250        // lastly, get the row bits
251        row = addr % rowsPerBank;
252        addr = addr / rowsPerBank;
253    } else if (addrMapping == Enums::RoCoRaBaCh) {
254        // optimise for closed page mode and utilise maximum
255        // parallelism of the DRAM (at the cost of power)
256
257        // take out the channel part of the address, not that this has
258        // to match with how accesses are interleaved between the
259        // controllers in the address mapping
260        addr = addr / channels;
261
262        // start with the bank bits, as this provides the maximum
263        // opportunity for parallelism between requests
264        bank = addr % banksPerRank;
265        addr = addr / banksPerRank;
266
267        // next get the rank bits
268        rank = addr % ranksPerChannel;
269        addr = addr / ranksPerChannel;
270
271        // next the column bits which we do not need to keep track of
272        // and simply skip past
273        addr = addr / columnsPerRowBuffer;
274
275        // lastly, get the row bits
276        row = addr % rowsPerBank;
277        addr = addr / rowsPerBank;
278    } else
279        panic("Unknown address mapping policy chosen!");
280
281    assert(rank < ranksPerChannel);
282    assert(bank < banksPerRank);
283    assert(row < rowsPerBank);
284
285    DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
286            dramPktAddr, rank, bank, row);
287
288    // create the corresponding DRAM packet with the entry time and
289    // ready time set to the current tick, the latter will be updated
290    // later
291    uint16_t bank_id = banksPerRank * rank + bank;
292    return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr,
293                          size, banks[rank][bank]);
294}
295
296void
297DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount)
298{
299    // only add to the read queue here. whenever the request is
300    // eventually done, set the readyTime, and call schedule()
301    assert(!pkt->isWrite());
302
303    assert(pktCount != 0);
304
305    // if the request size is larger than burst size, the pkt is split into
306    // multiple DRAM packets
307    // Note if the pkt starting address is not aligened to burst size, the
308    // address of first DRAM packet is kept unaliged. Subsequent DRAM packets
309    // are aligned to burst size boundaries. This is to ensure we accurately
310    // check read packets against packets in write queue.
311    Addr addr = pkt->getAddr();
312    unsigned pktsServicedByWrQ = 0;
313    BurstHelper* burst_helper = NULL;
314    for (int cnt = 0; cnt < pktCount; ++cnt) {
315        unsigned size = std::min((addr | (burstSize - 1)) + 1,
316                        pkt->getAddr() + pkt->getSize()) - addr;
317        readPktSize[ceilLog2(size)]++;
318        readBursts++;
319
320        // First check write buffer to see if the data is already at
321        // the controller
322        bool foundInWrQ = false;
323        for (auto i = writeQueue.begin(); i != writeQueue.end(); ++i) {
324            // check if the read is subsumed in the write entry we are
325            // looking at
326            if ((*i)->addr <= addr &&
327                (addr + size) <= ((*i)->addr + (*i)->size)) {
328                foundInWrQ = true;
329                servicedByWrQ++;
330                pktsServicedByWrQ++;
331                DPRINTF(DRAM, "Read to addr %lld with size %d serviced by "
332                        "write queue\n", addr, size);
333                bytesReadWrQ += burstSize;
334                break;
335            }
336        }
337
338        // If not found in the write q, make a DRAM packet and
339        // push it onto the read queue
340        if (!foundInWrQ) {
341
342            // Make the burst helper for split packets
343            if (pktCount > 1 && burst_helper == NULL) {
344                DPRINTF(DRAM, "Read to addr %lld translates to %d "
345                        "dram requests\n", pkt->getAddr(), pktCount);
346                burst_helper = new BurstHelper(pktCount);
347            }
348
349            DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true);
350            dram_pkt->burstHelper = burst_helper;
351
352            assert(!readQueueFull(1));
353            rdQLenPdf[readQueue.size() + respQueue.size()]++;
354
355            DPRINTF(DRAM, "Adding to read queue\n");
356
357            readQueue.push_back(dram_pkt);
358
359            // Update stats
360            avgRdQLen = readQueue.size() + respQueue.size();
361        }
362
363        // Starting address of next dram pkt (aligend to burstSize boundary)
364        addr = (addr | (burstSize - 1)) + 1;
365    }
366
367    // If all packets are serviced by write queue, we send the repsonse back
368    if (pktsServicedByWrQ == pktCount) {
369        accessAndRespond(pkt, frontendLatency);
370        return;
371    }
372
373    // Update how many split packets are serviced by write queue
374    if (burst_helper != NULL)
375        burst_helper->burstsServiced = pktsServicedByWrQ;
376
377    // If we are not already scheduled to get the read request out of
378    // the queue, do so now
379    if (!nextReqEvent.scheduled() && !stopReads) {
380        DPRINTF(DRAM, "Request scheduled immediately\n");
381        schedule(nextReqEvent, curTick());
382    }
383}
384
385void
386DRAMCtrl::processWriteEvent()
387{
388    assert(!writeQueue.empty());
389
390    DPRINTF(DRAM, "Beginning DRAM Write\n");
391    Tick temp1 M5_VAR_USED = std::max(curTick(), busBusyUntil);
392    Tick temp2 M5_VAR_USED = std::max(curTick(), maxBankFreeAt());
393
394    chooseNextWrite();
395    DRAMPacket* dram_pkt = writeQueue.front();
396    // sanity check
397    assert(dram_pkt->size <= burstSize);
398    doDRAMAccess(dram_pkt);
399
400    writeQueue.pop_front();
401    delete dram_pkt;
402
403    DPRINTF(DRAM, "Writing, bus busy for %lld ticks, banks busy "
404            "for %lld ticks\n", busBusyUntil - temp1, maxBankFreeAt() - temp2);
405
406    // If we emptied the write queue, or got sufficiently below the
407    // threshold (using the minWritesPerSwitch as the hysteresis) and
408    // are not draining, or we have reads waiting and have done enough
409    // writes, then switch to reads. The retry above could already
410    // have caused it to be scheduled, so first check
411    if (writeQueue.empty() ||
412        (writeQueue.size() + minWritesPerSwitch < writeLowThreshold &&
413         !drainManager) ||
414        (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) {
415        // turn the bus back around for reads again
416        busBusyUntil += tWTR;
417        stopReads = false;
418
419        DPRINTF(DRAM, "Switching to reads after %d writes with %d writes "
420                "waiting\n", writesThisTime, writeQueue.size());
421
422        wrPerTurnAround.sample(writesThisTime);
423        writesThisTime = 0;
424
425        if (!nextReqEvent.scheduled())
426            schedule(nextReqEvent, busBusyUntil);
427    } else {
428        assert(!writeEvent.scheduled());
429        DPRINTF(DRAM, "Next write scheduled at %lld\n", newTime);
430        schedule(writeEvent, newTime);
431    }
432
433    if (retryWrReq) {
434        retryWrReq = false;
435        port.sendRetry();
436    }
437
438    // if there is nothing left in any queue, signal a drain
439    if (writeQueue.empty() && readQueue.empty() &&
440        respQueue.empty () && drainManager) {
441        drainManager->signalDrainDone();
442        drainManager = NULL;
443    }
444}
445
446
447void
448DRAMCtrl::triggerWrites()
449{
450    DPRINTF(DRAM, "Switching to writes after %d reads with %d reads "
451            "waiting\n", readsThisTime, readQueue.size());
452
453    // Flag variable to stop any more read scheduling
454    stopReads = true;
455
456    Tick write_start_time = std::max(busBusyUntil, curTick()) + tWTR;
457
458    DPRINTF(DRAM, "Writes scheduled at %lld\n", write_start_time);
459
460    // there is some danger here as there might still be reads
461    // happening before the switch actually takes place
462    rdPerTurnAround.sample(readsThisTime);
463    readsThisTime = 0;
464
465    assert(write_start_time >= curTick());
466    assert(!writeEvent.scheduled());
467    schedule(writeEvent, write_start_time);
468}
469
470void
471DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount)
472{
473    // only add to the write queue here. whenever the request is
474    // eventually done, set the readyTime, and call schedule()
475    assert(pkt->isWrite());
476
477    // if the request size is larger than burst size, the pkt is split into
478    // multiple DRAM packets
479    Addr addr = pkt->getAddr();
480    for (int cnt = 0; cnt < pktCount; ++cnt) {
481        unsigned size = std::min((addr | (burstSize - 1)) + 1,
482                        pkt->getAddr() + pkt->getSize()) - addr;
483        writePktSize[ceilLog2(size)]++;
484        writeBursts++;
485
486        // see if we can merge with an existing item in the write
487        // queue and keep track of whether we have merged or not so we
488        // can stop at that point and also avoid enqueueing a new
489        // request
490        bool merged = false;
491        auto w = writeQueue.begin();
492
493        while(!merged && w != writeQueue.end()) {
494            // either of the two could be first, if they are the same
495            // it does not matter which way we go
496            if ((*w)->addr >= addr) {
497                // the existing one starts after the new one, figure
498                // out where the new one ends with respect to the
499                // existing one
500                if ((addr + size) >= ((*w)->addr + (*w)->size)) {
501                    // check if the existing one is completely
502                    // subsumed in the new one
503                    DPRINTF(DRAM, "Merging write covering existing burst\n");
504                    merged = true;
505                    // update both the address and the size
506                    (*w)->addr = addr;
507                    (*w)->size = size;
508                } else if ((addr + size) >= (*w)->addr &&
509                           ((*w)->addr + (*w)->size - addr) <= burstSize) {
510                    // the new one is just before or partially
511                    // overlapping with the existing one, and together
512                    // they fit within a burst
513                    DPRINTF(DRAM, "Merging write before existing burst\n");
514                    merged = true;
515                    // the existing queue item needs to be adjusted with
516                    // respect to both address and size
517                    (*w)->size = (*w)->addr + (*w)->size - addr;
518                    (*w)->addr = addr;
519                }
520            } else {
521                // the new one starts after the current one, figure
522                // out where the existing one ends with respect to the
523                // new one
524                if (((*w)->addr + (*w)->size) >= (addr + size)) {
525                    // check if the new one is completely subsumed in the
526                    // existing one
527                    DPRINTF(DRAM, "Merging write into existing burst\n");
528                    merged = true;
529                    // no adjustments necessary
530                } else if (((*w)->addr + (*w)->size) >= addr &&
531                           (addr + size - (*w)->addr) <= burstSize) {
532                    // the existing one is just before or partially
533                    // overlapping with the new one, and together
534                    // they fit within a burst
535                    DPRINTF(DRAM, "Merging write after existing burst\n");
536                    merged = true;
537                    // the address is right, and only the size has
538                    // to be adjusted
539                    (*w)->size = addr + size - (*w)->addr;
540                }
541            }
542            ++w;
543        }
544
545        // if the item was not merged we need to create a new write
546        // and enqueue it
547        if (!merged) {
548            DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false);
549
550            assert(writeQueue.size() < writeBufferSize);
551            wrQLenPdf[writeQueue.size()]++;
552
553            DPRINTF(DRAM, "Adding to write queue\n");
554
555            writeQueue.push_back(dram_pkt);
556
557            // Update stats
558            avgWrQLen = writeQueue.size();
559        } else {
560            // keep track of the fact that this burst effectively
561            // disappeared as it was merged with an existing one
562            mergedWrBursts++;
563        }
564
565        // Starting address of next dram pkt (aligend to burstSize boundary)
566        addr = (addr | (burstSize - 1)) + 1;
567    }
568
569    // we do not wait for the writes to be send to the actual memory,
570    // but instead take responsibility for the consistency here and
571    // snoop the write queue for any upcoming reads
572    // @todo, if a pkt size is larger than burst size, we might need a
573    // different front end latency
574    accessAndRespond(pkt, frontendLatency);
575
576    // If your write buffer is starting to fill up, drain it!
577    if (writeQueue.size() >= writeHighThreshold && !stopReads){
578        triggerWrites();
579    }
580}
581
582void
583DRAMCtrl::printParams() const
584{
585    // Sanity check print of important parameters
586    DPRINTF(DRAM,
587            "Memory controller %s physical organization\n"      \
588            "Number of devices per rank   %d\n"                 \
589            "Device bus width (in bits)   %d\n"                 \
590            "DRAM data bus burst (bytes)  %d\n"                 \
591            "Row buffer size (bytes)      %d\n"                 \
592            "Columns per row buffer       %d\n"                 \
593            "Rows    per bank             %d\n"                 \
594            "Banks   per rank             %d\n"                 \
595            "Ranks   per channel          %d\n"                 \
596            "Total mem capacity (bytes)   %u\n",
597            name(), devicesPerRank, deviceBusWidth, burstSize, rowBufferSize,
598            columnsPerRowBuffer, rowsPerBank, banksPerRank, ranksPerChannel,
599            rowBufferSize * rowsPerBank * banksPerRank * ranksPerChannel);
600
601    string scheduler =  memSchedPolicy == Enums::fcfs ? "FCFS" : "FR-FCFS";
602    string address_mapping = addrMapping == Enums::RoRaBaChCo ? "RoRaBaChCo" :
603        (addrMapping == Enums::RoRaBaCoCh ? "RoRaBaCoCh" : "RoCoRaBaCh");
604    string page_policy = pageMgmt == Enums::open ? "OPEN" :
605        (pageMgmt == Enums::open_adaptive ? "OPEN (adaptive)" :
606        (pageMgmt == Enums::close_adaptive ? "CLOSE (adaptive)" : "CLOSE"));
607
608    DPRINTF(DRAM,
609            "Memory controller %s characteristics\n"    \
610            "Read buffer size     %d\n"                 \
611            "Write buffer size    %d\n"                 \
612            "Write high thresh    %d\n"                 \
613            "Write low thresh     %d\n"                 \
614            "Scheduler            %s\n"                 \
615            "Address mapping      %s\n"                 \
616            "Page policy          %s\n",
617            name(), readBufferSize, writeBufferSize, writeHighThreshold,
618            writeLowThreshold, scheduler, address_mapping, page_policy);
619
620    DPRINTF(DRAM, "Memory controller %s timing specs\n" \
621            "tRCD      %d ticks\n"                        \
622            "tCL       %d ticks\n"                        \
623            "tRP       %d ticks\n"                        \
624            "tBURST    %d ticks\n"                        \
625            "tRFC      %d ticks\n"                        \
626            "tREFI     %d ticks\n"                        \
627            "tWTR      %d ticks\n"                        \
628            "tXAW (%d) %d ticks\n",
629            name(), tRCD, tCL, tRP, tBURST, tRFC, tREFI, tWTR,
630            activationLimit, tXAW);
631}
632
633void
634DRAMCtrl::printQs() const {
635    DPRINTF(DRAM, "===READ QUEUE===\n\n");
636    for (auto i = readQueue.begin() ;  i != readQueue.end() ; ++i) {
637        DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
638    }
639    DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
640    for (auto i = respQueue.begin() ;  i != respQueue.end() ; ++i) {
641        DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
642    }
643    DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
644    for (auto i = writeQueue.begin() ;  i != writeQueue.end() ; ++i) {
645        DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
646    }
647}
648
649bool
650DRAMCtrl::recvTimingReq(PacketPtr pkt)
651{
652    /// @todo temporary hack to deal with memory corruption issues until
653    /// 4-phase transactions are complete
654    for (int x = 0; x < pendingDelete.size(); x++)
655        delete pendingDelete[x];
656    pendingDelete.clear();
657
658    // This is where we enter from the outside world
659    DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n",
660            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
661
662    // simply drop inhibited packets for now
663    if (pkt->memInhibitAsserted()) {
664        DPRINTF(DRAM, "Inhibited packet -- Dropping it now\n");
665        pendingDelete.push_back(pkt);
666        return true;
667    }
668
669    // Calc avg gap between requests
670    if (prevArrival != 0) {
671        totGap += curTick() - prevArrival;
672    }
673    prevArrival = curTick();
674
675
676    // Find out how many dram packets a pkt translates to
677    // If the burst size is equal or larger than the pkt size, then a pkt
678    // translates to only one dram packet. Otherwise, a pkt translates to
679    // multiple dram packets
680    unsigned size = pkt->getSize();
681    unsigned offset = pkt->getAddr() & (burstSize - 1);
682    unsigned int dram_pkt_count = divCeil(offset + size, burstSize);
683
684    // check local buffers and do not accept if full
685    if (pkt->isRead()) {
686        assert(size != 0);
687        if (readQueueFull(dram_pkt_count)) {
688            DPRINTF(DRAM, "Read queue full, not accepting\n");
689            // remember that we have to retry this port
690            retryRdReq = true;
691            numRdRetry++;
692            return false;
693        } else {
694            addToReadQueue(pkt, dram_pkt_count);
695            readReqs++;
696            bytesReadSys += size;
697        }
698    } else if (pkt->isWrite()) {
699        assert(size != 0);
700        if (writeQueueFull(dram_pkt_count)) {
701            DPRINTF(DRAM, "Write queue full, not accepting\n");
702            // remember that we have to retry this port
703            retryWrReq = true;
704            numWrRetry++;
705            return false;
706        } else {
707            addToWriteQueue(pkt, dram_pkt_count);
708            writeReqs++;
709            bytesWrittenSys += size;
710        }
711    } else {
712        DPRINTF(DRAM,"Neither read nor write, ignore timing\n");
713        neitherReadNorWrite++;
714        accessAndRespond(pkt, 1);
715    }
716
717    return true;
718}
719
720void
721DRAMCtrl::processRespondEvent()
722{
723    DPRINTF(DRAM,
724            "processRespondEvent(): Some req has reached its readyTime\n");
725
726    DRAMPacket* dram_pkt = respQueue.front();
727
728    if (dram_pkt->burstHelper) {
729        // it is a split packet
730        dram_pkt->burstHelper->burstsServiced++;
731        if (dram_pkt->burstHelper->burstsServiced ==
732            dram_pkt->burstHelper->burstCount) {
733            // we have now serviced all children packets of a system packet
734            // so we can now respond to the requester
735            // @todo we probably want to have a different front end and back
736            // end latency for split packets
737            accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
738            delete dram_pkt->burstHelper;
739            dram_pkt->burstHelper = NULL;
740        }
741    } else {
742        // it is not a split packet
743        accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
744    }
745
746    delete respQueue.front();
747    respQueue.pop_front();
748
749    if (!respQueue.empty()) {
750        assert(respQueue.front()->readyTime >= curTick());
751        assert(!respondEvent.scheduled());
752        schedule(respondEvent, respQueue.front()->readyTime);
753    } else {
754        // if there is nothing left in any queue, signal a drain
755        if (writeQueue.empty() && readQueue.empty() &&
756            drainManager) {
757            drainManager->signalDrainDone();
758            drainManager = NULL;
759        }
760    }
761
762    // We have made a location in the queue available at this point,
763    // so if there is a read that was forced to wait, retry now
764    if (retryRdReq) {
765        retryRdReq = false;
766        port.sendRetry();
767    }
768}
769
770void
771DRAMCtrl::chooseNextWrite()
772{
773    // This method does the arbitration between write requests. The
774    // chosen packet is simply moved to the head of the write
775    // queue. The other methods know that this is the place to
776    // look. For example, with FCFS, this method does nothing
777    assert(!writeQueue.empty());
778
779    if (writeQueue.size() == 1) {
780        DPRINTF(DRAM, "Single write request, nothing to do\n");
781        return;
782    }
783
784    if (memSchedPolicy == Enums::fcfs) {
785        // Do nothing, since the correct request is already head
786    } else if (memSchedPolicy == Enums::frfcfs) {
787        reorderQueue(writeQueue);
788    } else
789        panic("No scheduling policy chosen\n");
790
791    DPRINTF(DRAM, "Selected next write request\n");
792}
793
794bool
795DRAMCtrl::chooseNextRead()
796{
797    // This method does the arbitration between read requests. The
798    // chosen packet is simply moved to the head of the queue. The
799    // other methods know that this is the place to look. For example,
800    // with FCFS, this method does nothing
801    if (readQueue.empty()) {
802        DPRINTF(DRAM, "No read request to select\n");
803        return false;
804    }
805
806    // If there is only one request then there is nothing left to do
807    if (readQueue.size() == 1)
808        return true;
809
810    if (memSchedPolicy == Enums::fcfs) {
811        // Do nothing, since the request to serve is already the first
812        // one in the read queue
813    } else if (memSchedPolicy == Enums::frfcfs) {
814        reorderQueue(readQueue);
815    } else
816        panic("No scheduling policy chosen!\n");
817
818    DPRINTF(DRAM, "Selected next read request\n");
819    return true;
820}
821
822void
823DRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue)
824{
825    // Only determine this when needed
826    uint64_t earliest_banks = 0;
827
828    // Search for row hits first, if no row hit is found then schedule the
829    // packet to one of the earliest banks available
830    bool found_earliest_pkt = false;
831    auto selected_pkt_it = queue.begin();
832
833    for (auto i = queue.begin(); i != queue.end() ; ++i) {
834        DRAMPacket* dram_pkt = *i;
835        const Bank& bank = dram_pkt->bankRef;
836        // Check if it is a row hit
837        if (bank.openRow == dram_pkt->row) {
838            DPRINTF(DRAM, "Row buffer hit\n");
839            selected_pkt_it = i;
840            break;
841        } else if (!found_earliest_pkt) {
842            // No row hit, go for first ready
843            if (earliest_banks == 0)
844                earliest_banks = minBankFreeAt(queue);
845
846            // Bank is ready or is the first available bank
847            if (bank.freeAt <= curTick() ||
848                bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) {
849                // Remember the packet to be scheduled to one of the earliest
850                // banks available
851                selected_pkt_it = i;
852                found_earliest_pkt = true;
853            }
854        }
855    }
856
857    DRAMPacket* selected_pkt = *selected_pkt_it;
858    queue.erase(selected_pkt_it);
859    queue.push_front(selected_pkt);
860}
861
862void
863DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency)
864{
865    DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
866
867    bool needsResponse = pkt->needsResponse();
868    // do the actual memory access which also turns the packet into a
869    // response
870    access(pkt);
871
872    // turn packet around to go back to requester if response expected
873    if (needsResponse) {
874        // access already turned the packet into a response
875        assert(pkt->isResponse());
876
877        // @todo someone should pay for this
878        pkt->busFirstWordDelay = pkt->busLastWordDelay = 0;
879
880        // queue the packet in the response queue to be sent out after
881        // the static latency has passed
882        port.schedTimingResp(pkt, curTick() + static_latency);
883    } else {
884        // @todo the packet is going to be deleted, and the DRAMPacket
885        // is still having a pointer to it
886        pendingDelete.push_back(pkt);
887    }
888
889    DPRINTF(DRAM, "Done\n");
890
891    return;
892}
893
894pair<Tick, Tick>
895DRAMCtrl::estimateLatency(DRAMPacket* dram_pkt, Tick inTime)
896{
897    // If a request reaches a bank at tick 'inTime', how much time
898    // *after* that does it take to finish the request, depending
899    // on bank status and page open policy. Note that this method
900    // considers only the time taken for the actual read or write
901    // to complete, NOT any additional time thereafter for tRAS or
902    // tRP.
903    Tick accLat = 0;
904    Tick bankLat = 0;
905    rowHitFlag = false;
906    Tick potentialActTick;
907
908    const Bank& bank = dram_pkt->bankRef;
909     // open-page policy or close_adaptive policy
910    if (pageMgmt == Enums::open || pageMgmt == Enums::open_adaptive ||
911        pageMgmt == Enums::close_adaptive) {
912        if (bank.openRow == dram_pkt->row) {
913            // When we have a row-buffer hit,
914            // we don't care about tRAS having expired or not,
915            // but do care about bank being free for access
916            rowHitFlag = true;
917
918            // When a series of requests arrive to the same row,
919            // DDR systems are capable of streaming data continuously
920            // at maximum bandwidth (subject to tCCD). Here, we approximate
921            // this condition, and assume that if whenever a bank is already
922            // busy and a new request comes in, it can be completed with no
923            // penalty beyond waiting for the existing read to complete.
924            if (bank.freeAt > inTime) {
925                accLat += bank.freeAt - inTime;
926                bankLat += 0;
927            } else {
928               // CAS latency only
929               accLat += tCL;
930               bankLat += tCL;
931            }
932
933        } else {
934            // Row-buffer miss, need to close existing row
935            // once tRAS has expired, then open the new one,
936            // then add cas latency.
937            Tick freeTime = std::max(bank.tRASDoneAt, bank.freeAt);
938
939            if (freeTime > inTime)
940               accLat += freeTime - inTime;
941
942            // If the there is no open row (open adaptive), then there
943            // is no precharge delay, otherwise go with tRP
944            Tick precharge_delay = bank.openRow == -1 ? 0 : tRP;
945
946            //The bank is free, and you may be able to activate
947            potentialActTick = inTime + accLat + precharge_delay;
948            if (potentialActTick < bank.actAllowedAt)
949                accLat += bank.actAllowedAt - potentialActTick;
950
951            accLat += precharge_delay + tRCD + tCL;
952            bankLat += precharge_delay + tRCD + tCL;
953        }
954    } else if (pageMgmt == Enums::close) {
955        // With a close page policy, no notion of
956        // bank.tRASDoneAt
957        if (bank.freeAt > inTime)
958            accLat += bank.freeAt - inTime;
959
960        //The bank is free, and you may be able to activate
961        potentialActTick = inTime + accLat;
962        if (potentialActTick < bank.actAllowedAt)
963            accLat += bank.actAllowedAt - potentialActTick;
964
965        // page already closed, simply open the row, and
966        // add cas latency
967        accLat += tRCD + tCL;
968        bankLat += tRCD + tCL;
969    } else
970        panic("No page management policy chosen\n");
971
972    DPRINTF(DRAM, "Returning < %lld, %lld > from estimateLatency()\n",
973            bankLat, accLat);
974
975    return make_pair(bankLat, accLat);
976}
977
978void
979DRAMCtrl::processNextReqEvent()
980{
981    scheduleNextReq();
982}
983
984void
985DRAMCtrl::recordActivate(Tick act_tick, uint8_t rank, uint8_t bank)
986{
987    assert(0 <= rank && rank < ranksPerChannel);
988    assert(actTicks[rank].size() == activationLimit);
989
990    DPRINTF(DRAM, "Activate at tick %d\n", act_tick);
991
992    // Tracking accesses after all banks are precharged.
993    // startTickPrechargeAll: is the tick when all the banks were again
994    // precharged. The difference between act_tick and startTickPrechargeAll
995    // gives the time for which DRAM doesn't get any accesses after refreshing
996    // or after a page is closed in closed-page or open-adaptive-page policy.
997    if ((numBanksActive == 0) && (act_tick > startTickPrechargeAll)) {
998        prechargeAllTime += act_tick - startTickPrechargeAll;
999    }
1000
1001    // No need to update number of active banks for closed-page policy as only 1
1002    // bank will be activated at any given point, which will be instatntly
1003    // precharged
1004    if (pageMgmt == Enums::open || pageMgmt == Enums::open_adaptive ||
1005        pageMgmt == Enums::close_adaptive)
1006        ++numBanksActive;
1007
1008    // start by enforcing tRRD
1009    for(int i = 0; i < banksPerRank; i++) {
1010        // next activate must not happen before tRRD
1011        banks[rank][i].actAllowedAt = act_tick + tRRD;
1012    }
1013    // tRC should be added to activation tick of the bank currently accessed,
1014    // where tRC = tRAS + tRP, this is just for a check as actAllowedAt for same
1015    // bank is already captured by bank.freeAt and bank.tRASDoneAt
1016    banks[rank][bank].actAllowedAt = act_tick + tRAS + tRP;
1017
1018    // next, we deal with tXAW, if the activation limit is disabled
1019    // then we are done
1020    if (actTicks[rank].empty())
1021        return;
1022
1023    // sanity check
1024    if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) {
1025        // @todo For now, stick with a warning
1026        warn("Got %d activates in window %d (%d - %d) which is smaller "
1027             "than %d\n", activationLimit, act_tick - actTicks[rank].back(),
1028             act_tick, actTicks[rank].back(), tXAW);
1029    }
1030
1031    // shift the times used for the book keeping, the last element
1032    // (highest index) is the oldest one and hence the lowest value
1033    actTicks[rank].pop_back();
1034
1035    // record an new activation (in the future)
1036    actTicks[rank].push_front(act_tick);
1037
1038    // cannot activate more than X times in time window tXAW, push the
1039    // next one (the X + 1'st activate) to be tXAW away from the
1040    // oldest in our window of X
1041    if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) {
1042        DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate no earlier "
1043                "than %d\n", activationLimit, actTicks[rank].back() + tXAW);
1044            for(int j = 0; j < banksPerRank; j++)
1045                // next activate must not happen before end of window
1046                banks[rank][j].actAllowedAt = actTicks[rank].back() + tXAW;
1047    }
1048}
1049
1050void
1051DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
1052{
1053
1054    DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
1055            dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
1056
1057    // estimate the bank and access latency
1058    pair<Tick, Tick> lat = estimateLatency(dram_pkt, curTick());
1059    Tick bankLat = lat.first;
1060    Tick accessLat = lat.second;
1061    Tick actTick;
1062
1063    // This request was woken up at this time based on a prior call
1064    // to estimateLatency(). However, between then and now, both the
1065    // accessLatency and/or busBusyUntil may have changed. We need
1066    // to correct for that.
1067
1068    Tick addDelay = (curTick() + accessLat < busBusyUntil) ?
1069        busBusyUntil - (curTick() + accessLat) : 0;
1070
1071    Bank& bank = dram_pkt->bankRef;
1072
1073    // Update bank state
1074    if (pageMgmt == Enums::open || pageMgmt == Enums::open_adaptive ||
1075        pageMgmt == Enums::close_adaptive) {
1076        bank.freeAt = curTick() + addDelay + accessLat;
1077
1078        // If you activated a new row do to this access, the next access
1079        // will have to respect tRAS for this bank.
1080        if (!rowHitFlag) {
1081            // any waiting for banks account for in freeAt
1082            actTick = bank.freeAt - tCL - tRCD;
1083            bank.tRASDoneAt = actTick + tRAS;
1084            recordActivate(actTick, dram_pkt->rank, dram_pkt->bank);
1085
1086            // if we closed an open row as a result of this access,
1087            // then sample the number of bytes accessed before
1088            // resetting it
1089            if (bank.openRow != -1)
1090                bytesPerActivate.sample(bank.bytesAccessed);
1091
1092            // update the open row
1093            bank.openRow = dram_pkt->row;
1094
1095            // start counting anew, this covers both the case when we
1096            // auto-precharged, and when this access is forced to
1097            // precharge
1098            bank.bytesAccessed = 0;
1099            bank.rowAccesses = 0;
1100        }
1101
1102        // increment the bytes accessed and the accesses per row
1103        bank.bytesAccessed += burstSize;
1104        ++bank.rowAccesses;
1105
1106        // if we reached the max, then issue with an auto-precharge
1107        bool auto_precharge = bank.rowAccesses == maxAccessesPerRow;
1108
1109        // if we did not hit the limit, we might still want to
1110        // auto-precharge
1111        if (!auto_precharge &&
1112            (pageMgmt == Enums::open_adaptive ||
1113             pageMgmt == Enums::close_adaptive)) {
1114            // a twist on the open and close page policies:
1115            // 1) open_adaptive page policy does not blindly keep the
1116            // page open, but close it if there are no row hits, and there
1117            // are bank conflicts in the queue
1118            // 2) close_adaptive page policy does not blindly close the
1119            // page, but closes it only if there are no row hits in the queue.
1120            // In this case, only force an auto precharge when there
1121            // are no same page hits in the queue
1122            bool got_more_hits = false;
1123            bool got_bank_conflict = false;
1124
1125            // either look at the read queue or write queue
1126            const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue :
1127                writeQueue;
1128            auto p = queue.begin();
1129            // make sure we are not considering the packet that we are
1130            // currently dealing with (which is the head of the queue)
1131            ++p;
1132
1133            // keep on looking until we have found required condition or
1134            // reached the end
1135            while (!(got_more_hits &&
1136                    (got_bank_conflict || pageMgmt == Enums::close_adaptive)) &&
1137                   p != queue.end()) {
1138                bool same_rank_bank = (dram_pkt->rank == (*p)->rank) &&
1139                    (dram_pkt->bank == (*p)->bank);
1140                bool same_row = dram_pkt->row == (*p)->row;
1141                got_more_hits |= same_rank_bank && same_row;
1142                got_bank_conflict |= same_rank_bank && !same_row;
1143                ++p;
1144            }
1145
1146            // auto pre-charge when either
1147            // 1) open_adaptive policy, we have not got any more hits, and
1148            //    have a bank conflict
1149            // 2) close_adaptive policy and we have not got any more hits
1150            auto_precharge = !got_more_hits &&
1151                (got_bank_conflict || pageMgmt == Enums::close_adaptive);
1152        }
1153
1154        // if this access should use auto-precharge, then we are
1155        // closing the row
1156        if (auto_precharge) {
1157            bank.openRow = -1;
1158            bank.freeAt = std::max(bank.freeAt, bank.tRASDoneAt) + tRP;
1159            --numBanksActive;
1160            if (numBanksActive == 0) {
1161                startTickPrechargeAll = std::max(startTickPrechargeAll,
1162                                                 bank.freeAt);
1163                DPRINTF(DRAM, "All banks precharged at tick: %ld\n",
1164                        startTickPrechargeAll);
1165            }
1166
1167            // sample the bytes per activate here since we are closing
1168            // the page
1169            bytesPerActivate.sample(bank.bytesAccessed);
1170
1171            DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId);
1172        }
1173
1174        DPRINTF(DRAM, "doDRAMAccess::bank.freeAt is %lld\n", bank.freeAt);
1175    } else if (pageMgmt == Enums::close) {
1176        actTick = curTick() + addDelay + accessLat - tRCD - tCL;
1177        recordActivate(actTick, dram_pkt->rank, dram_pkt->bank);
1178
1179        // If the DRAM has a very quick tRAS, bank can be made free
1180        // after consecutive tCL,tRCD,tRP times. In general, however,
1181        // an additional wait is required to respect tRAS.
1182        bank.freeAt = std::max(actTick + tRAS + tRP,
1183                actTick + tRCD + tCL + tRP);
1184        DPRINTF(DRAM, "doDRAMAccess::bank.freeAt is %lld\n", bank.freeAt);
1185        bytesPerActivate.sample(burstSize);
1186        startTickPrechargeAll = std::max(startTickPrechargeAll, bank.freeAt);
1187    } else
1188        panic("No page management policy chosen\n");
1189
1190    // Update request parameters
1191    dram_pkt->readyTime = curTick() + addDelay + accessLat + tBURST;
1192
1193
1194    DPRINTF(DRAM, "Req %lld: curtick is %lld accessLat is %d " \
1195                  "readytime is %lld busbusyuntil is %lld. " \
1196                  "Scheduling at readyTime\n", dram_pkt->addr,
1197                   curTick(), accessLat, dram_pkt->readyTime, busBusyUntil);
1198
1199    // Make sure requests are not overlapping on the databus
1200    assert (dram_pkt->readyTime - busBusyUntil >= tBURST);
1201
1202    // Update bus state
1203    busBusyUntil = dram_pkt->readyTime;
1204
1205    DPRINTF(DRAM,"Access time is %lld\n",
1206            dram_pkt->readyTime - dram_pkt->entryTime);
1207
1208    // Update the minimum timing between the requests
1209    newTime = (busBusyUntil > tRP + tRCD + tCL) ?
1210        std::max(busBusyUntil - (tRP + tRCD + tCL), curTick()) : curTick();
1211
1212    // Update the access related stats
1213    if (dram_pkt->isRead) {
1214        ++readsThisTime;
1215        if (rowHitFlag)
1216            readRowHits++;
1217        bytesReadDRAM += burstSize;
1218        perBankRdBursts[dram_pkt->bankId]++;
1219    } else {
1220        ++writesThisTime;
1221        if (rowHitFlag)
1222            writeRowHits++;
1223        bytesWritten += burstSize;
1224        perBankWrBursts[dram_pkt->bankId]++;
1225
1226        // At this point, commonality between reads and writes ends.
1227        // For writes, we are done since we long ago responded to the
1228        // requestor.
1229        return;
1230    }
1231
1232    // Update latency stats
1233    totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
1234    totBankLat += bankLat;
1235    totBusLat += tBURST;
1236    totQLat += dram_pkt->readyTime - dram_pkt->entryTime - bankLat - tBURST;
1237
1238
1239    // At this point we're done dealing with the request
1240    // It will be moved to a separate response queue with a
1241    // correct readyTime, and eventually be sent back at that
1242    //time
1243    moveToRespQ();
1244
1245    // Schedule the next read event
1246    if (!nextReqEvent.scheduled() && !stopReads) {
1247        schedule(nextReqEvent, newTime);
1248    } else {
1249        if (newTime < nextReqEvent.when())
1250            reschedule(nextReqEvent, newTime);
1251    }
1252}
1253
1254void
1255DRAMCtrl::moveToRespQ()
1256{
1257    // Remove from read queue
1258    DRAMPacket* dram_pkt = readQueue.front();
1259    readQueue.pop_front();
1260
1261    // sanity check
1262    assert(dram_pkt->size <= burstSize);
1263
1264    // Insert into response queue sorted by readyTime
1265    // It will be sent back to the requestor at its
1266    // readyTime
1267    if (respQueue.empty()) {
1268        respQueue.push_front(dram_pkt);
1269        assert(!respondEvent.scheduled());
1270        assert(dram_pkt->readyTime >= curTick());
1271        schedule(respondEvent, dram_pkt->readyTime);
1272    } else {
1273        bool done = false;
1274        auto i = respQueue.begin();
1275        while (!done && i != respQueue.end()) {
1276            if ((*i)->readyTime > dram_pkt->readyTime) {
1277                respQueue.insert(i, dram_pkt);
1278                done = true;
1279            }
1280            ++i;
1281        }
1282
1283        if (!done)
1284            respQueue.push_back(dram_pkt);
1285
1286        assert(respondEvent.scheduled());
1287
1288        if (respQueue.front()->readyTime < respondEvent.when()) {
1289            assert(respQueue.front()->readyTime >= curTick());
1290            reschedule(respondEvent, respQueue.front()->readyTime);
1291        }
1292    }
1293}
1294
1295void
1296DRAMCtrl::scheduleNextReq()
1297{
1298    DPRINTF(DRAM, "Reached scheduleNextReq()\n");
1299
1300    // Figure out which read request goes next, and move it to the
1301    // front of the read queue
1302    if (!chooseNextRead()) {
1303        // In the case there is no read request to go next, trigger
1304        // writes if we have passed the low threshold (or if we are
1305        // draining)
1306        if (!writeQueue.empty() && !writeEvent.scheduled() &&
1307            (writeQueue.size() > writeLowThreshold || drainManager))
1308            triggerWrites();
1309    } else {
1310        doDRAMAccess(readQueue.front());
1311    }
1312}
1313
1314Tick
1315DRAMCtrl::maxBankFreeAt() const
1316{
1317    Tick banksFree = 0;
1318
1319    for(int i = 0; i < ranksPerChannel; i++)
1320        for(int j = 0; j < banksPerRank; j++)
1321            banksFree = std::max(banks[i][j].freeAt, banksFree);
1322
1323    return banksFree;
1324}
1325
1326uint64_t
1327DRAMCtrl::minBankFreeAt(const deque<DRAMPacket*>& queue) const
1328{
1329    uint64_t bank_mask = 0;
1330    Tick freeAt = MaxTick;
1331
1332    // detemrine if we have queued transactions targetting the
1333    // bank in question
1334    vector<bool> got_waiting(ranksPerChannel * banksPerRank, false);
1335    for (auto p = queue.begin(); p != queue.end(); ++p) {
1336        got_waiting[(*p)->bankId] = true;
1337    }
1338
1339    for (int i = 0; i < ranksPerChannel; i++) {
1340        for (int j = 0; j < banksPerRank; j++) {
1341            // if we have waiting requests for the bank, and it is
1342            // amongst the first available, update the mask
1343            if (got_waiting[i * banksPerRank + j] &&
1344                banks[i][j].freeAt <= freeAt) {
1345                // reset bank mask if new minimum is found
1346                if (banks[i][j].freeAt < freeAt)
1347                    bank_mask = 0;
1348                // set the bit corresponding to the available bank
1349                uint8_t bit_index = i * ranksPerChannel + j;
1350                replaceBits(bank_mask, bit_index, bit_index, 1);
1351                freeAt = banks[i][j].freeAt;
1352            }
1353        }
1354    }
1355    return bank_mask;
1356}
1357
1358void
1359DRAMCtrl::processRefreshEvent()
1360{
1361    DPRINTF(DRAM, "Refreshing at tick %ld\n", curTick());
1362
1363    Tick banksFree = std::max(curTick(), maxBankFreeAt()) + tRFC;
1364
1365    for(int i = 0; i < ranksPerChannel; i++)
1366        for(int j = 0; j < banksPerRank; j++) {
1367            banks[i][j].freeAt = banksFree;
1368            banks[i][j].openRow = -1;
1369        }
1370
1371    // updating startTickPrechargeAll, isprechargeAll
1372    numBanksActive = 0;
1373    startTickPrechargeAll = banksFree;
1374
1375    schedule(refreshEvent, curTick() + tREFI);
1376}
1377
1378void
1379DRAMCtrl::regStats()
1380{
1381    using namespace Stats;
1382
1383    AbstractMemory::regStats();
1384
1385    readReqs
1386        .name(name() + ".readReqs")
1387        .desc("Number of read requests accepted");
1388
1389    writeReqs
1390        .name(name() + ".writeReqs")
1391        .desc("Number of write requests accepted");
1392
1393    readBursts
1394        .name(name() + ".readBursts")
1395        .desc("Number of DRAM read bursts, "
1396              "including those serviced by the write queue");
1397
1398    writeBursts
1399        .name(name() + ".writeBursts")
1400        .desc("Number of DRAM write bursts, "
1401              "including those merged in the write queue");
1402
1403    servicedByWrQ
1404        .name(name() + ".servicedByWrQ")
1405        .desc("Number of DRAM read bursts serviced by the write queue");
1406
1407    mergedWrBursts
1408        .name(name() + ".mergedWrBursts")
1409        .desc("Number of DRAM write bursts merged with an existing one");
1410
1411    neitherReadNorWrite
1412        .name(name() + ".neitherReadNorWriteReqs")
1413        .desc("Number of requests that are neither read nor write");
1414
1415    perBankRdBursts
1416        .init(banksPerRank * ranksPerChannel)
1417        .name(name() + ".perBankRdBursts")
1418        .desc("Per bank write bursts");
1419
1420    perBankWrBursts
1421        .init(banksPerRank * ranksPerChannel)
1422        .name(name() + ".perBankWrBursts")
1423        .desc("Per bank write bursts");
1424
1425    avgRdQLen
1426        .name(name() + ".avgRdQLen")
1427        .desc("Average read queue length when enqueuing")
1428        .precision(2);
1429
1430    avgWrQLen
1431        .name(name() + ".avgWrQLen")
1432        .desc("Average write queue length when enqueuing")
1433        .precision(2);
1434
1435    totQLat
1436        .name(name() + ".totQLat")
1437        .desc("Total ticks spent queuing");
1438
1439    totBankLat
1440        .name(name() + ".totBankLat")
1441        .desc("Total ticks spent accessing banks");
1442
1443    totBusLat
1444        .name(name() + ".totBusLat")
1445        .desc("Total ticks spent in databus transfers");
1446
1447    totMemAccLat
1448        .name(name() + ".totMemAccLat")
1449        .desc("Total ticks spent from burst creation until serviced "
1450              "by the DRAM");
1451
1452    avgQLat
1453        .name(name() + ".avgQLat")
1454        .desc("Average queueing delay per DRAM burst")
1455        .precision(2);
1456
1457    avgQLat = totQLat / (readBursts - servicedByWrQ);
1458
1459    avgBankLat
1460        .name(name() + ".avgBankLat")
1461        .desc("Average bank access latency per DRAM burst")
1462        .precision(2);
1463
1464    avgBankLat = totBankLat / (readBursts - servicedByWrQ);
1465
1466    avgBusLat
1467        .name(name() + ".avgBusLat")
1468        .desc("Average bus latency per DRAM burst")
1469        .precision(2);
1470
1471    avgBusLat = totBusLat / (readBursts - servicedByWrQ);
1472
1473    avgMemAccLat
1474        .name(name() + ".avgMemAccLat")
1475        .desc("Average memory access latency per DRAM burst")
1476        .precision(2);
1477
1478    avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ);
1479
1480    numRdRetry
1481        .name(name() + ".numRdRetry")
1482        .desc("Number of times read queue was full causing retry");
1483
1484    numWrRetry
1485        .name(name() + ".numWrRetry")
1486        .desc("Number of times write queue was full causing retry");
1487
1488    readRowHits
1489        .name(name() + ".readRowHits")
1490        .desc("Number of row buffer hits during reads");
1491
1492    writeRowHits
1493        .name(name() + ".writeRowHits")
1494        .desc("Number of row buffer hits during writes");
1495
1496    readRowHitRate
1497        .name(name() + ".readRowHitRate")
1498        .desc("Row buffer hit rate for reads")
1499        .precision(2);
1500
1501    readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100;
1502
1503    writeRowHitRate
1504        .name(name() + ".writeRowHitRate")
1505        .desc("Row buffer hit rate for writes")
1506        .precision(2);
1507
1508    writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100;
1509
1510    readPktSize
1511        .init(ceilLog2(burstSize) + 1)
1512        .name(name() + ".readPktSize")
1513        .desc("Read request sizes (log2)");
1514
1515     writePktSize
1516        .init(ceilLog2(burstSize) + 1)
1517        .name(name() + ".writePktSize")
1518        .desc("Write request sizes (log2)");
1519
1520     rdQLenPdf
1521        .init(readBufferSize)
1522        .name(name() + ".rdQLenPdf")
1523        .desc("What read queue length does an incoming req see");
1524
1525     wrQLenPdf
1526        .init(writeBufferSize)
1527        .name(name() + ".wrQLenPdf")
1528        .desc("What write queue length does an incoming req see");
1529
1530     bytesPerActivate
1531         .init(maxAccessesPerRow)
1532         .name(name() + ".bytesPerActivate")
1533         .desc("Bytes accessed per row activation")
1534         .flags(nozero);
1535
1536     rdPerTurnAround
1537         .init(readBufferSize)
1538         .name(name() + ".rdPerTurnAround")
1539         .desc("Reads before turning the bus around for writes")
1540         .flags(nozero);
1541
1542     wrPerTurnAround
1543         .init(writeBufferSize)
1544         .name(name() + ".wrPerTurnAround")
1545         .desc("Writes before turning the bus around for reads")
1546         .flags(nozero);
1547
1548    bytesReadDRAM
1549        .name(name() + ".bytesReadDRAM")
1550        .desc("Total number of bytes read from DRAM");
1551
1552    bytesReadWrQ
1553        .name(name() + ".bytesReadWrQ")
1554        .desc("Total number of bytes read from write queue");
1555
1556    bytesWritten
1557        .name(name() + ".bytesWritten")
1558        .desc("Total number of bytes written to DRAM");
1559
1560    bytesReadSys
1561        .name(name() + ".bytesReadSys")
1562        .desc("Total read bytes from the system interface side");
1563
1564    bytesWrittenSys
1565        .name(name() + ".bytesWrittenSys")
1566        .desc("Total written bytes from the system interface side");
1567
1568    avgRdBW
1569        .name(name() + ".avgRdBW")
1570        .desc("Average DRAM read bandwidth in MiByte/s")
1571        .precision(2);
1572
1573    avgRdBW = (bytesReadDRAM / 1000000) / simSeconds;
1574
1575    avgWrBW
1576        .name(name() + ".avgWrBW")
1577        .desc("Average achieved write bandwidth in MiByte/s")
1578        .precision(2);
1579
1580    avgWrBW = (bytesWritten / 1000000) / simSeconds;
1581
1582    avgRdBWSys
1583        .name(name() + ".avgRdBWSys")
1584        .desc("Average system read bandwidth in MiByte/s")
1585        .precision(2);
1586
1587    avgRdBWSys = (bytesReadSys / 1000000) / simSeconds;
1588
1589    avgWrBWSys
1590        .name(name() + ".avgWrBWSys")
1591        .desc("Average system write bandwidth in MiByte/s")
1592        .precision(2);
1593
1594    avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds;
1595
1596    peakBW
1597        .name(name() + ".peakBW")
1598        .desc("Theoretical peak bandwidth in MiByte/s")
1599        .precision(2);
1600
1601    peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000;
1602
1603    busUtil
1604        .name(name() + ".busUtil")
1605        .desc("Data bus utilization in percentage")
1606        .precision(2);
1607
1608    busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
1609
1610    totGap
1611        .name(name() + ".totGap")
1612        .desc("Total gap between requests");
1613
1614    avgGap
1615        .name(name() + ".avgGap")
1616        .desc("Average gap between requests")
1617        .precision(2);
1618
1619    avgGap = totGap / (readReqs + writeReqs);
1620
1621    // Stats for DRAM Power calculation based on Micron datasheet
1622    busUtilRead
1623        .name(name() + ".busUtilRead")
1624        .desc("Data bus utilization in percentage for reads")
1625        .precision(2);
1626
1627    busUtilRead = avgRdBW / peakBW * 100;
1628
1629    busUtilWrite
1630        .name(name() + ".busUtilWrite")
1631        .desc("Data bus utilization in percentage for writes")
1632        .precision(2);
1633
1634    busUtilWrite = avgWrBW / peakBW * 100;
1635
1636    pageHitRate
1637        .name(name() + ".pageHitRate")
1638        .desc("Row buffer hit rate, read and write combined")
1639        .precision(2);
1640
1641    pageHitRate = (writeRowHits + readRowHits) /
1642        (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100;
1643
1644    prechargeAllPercent
1645        .name(name() + ".prechargeAllPercent")
1646        .desc("Percentage of time for which DRAM has all the banks in "
1647              "precharge state")
1648        .precision(2);
1649
1650    prechargeAllPercent = prechargeAllTime / simTicks * 100;
1651}
1652
1653void
1654DRAMCtrl::recvFunctional(PacketPtr pkt)
1655{
1656    // rely on the abstract memory
1657    functionalAccess(pkt);
1658}
1659
1660BaseSlavePort&
1661DRAMCtrl::getSlavePort(const string &if_name, PortID idx)
1662{
1663    if (if_name != "port") {
1664        return MemObject::getSlavePort(if_name, idx);
1665    } else {
1666        return port;
1667    }
1668}
1669
1670unsigned int
1671DRAMCtrl::drain(DrainManager *dm)
1672{
1673    unsigned int count = port.drain(dm);
1674
1675    // if there is anything in any of our internal queues, keep track
1676    // of that as well
1677    if (!(writeQueue.empty() && readQueue.empty() &&
1678          respQueue.empty())) {
1679        DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
1680                " resp: %d\n", writeQueue.size(), readQueue.size(),
1681                respQueue.size());
1682        ++count;
1683        drainManager = dm;
1684        // the only part that is not drained automatically over time
1685        // is the write queue, thus trigger writes if there are any
1686        // waiting and no reads waiting, otherwise wait until the
1687        // reads are done
1688        if (readQueue.empty() && !writeQueue.empty() &&
1689            !writeEvent.scheduled())
1690            triggerWrites();
1691    }
1692
1693    if (count)
1694        setDrainState(Drainable::Draining);
1695    else
1696        setDrainState(Drainable::Drained);
1697    return count;
1698}
1699
1700DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory)
1701    : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
1702      memory(_memory)
1703{ }
1704
1705AddrRangeList
1706DRAMCtrl::MemoryPort::getAddrRanges() const
1707{
1708    AddrRangeList ranges;
1709    ranges.push_back(memory.getAddrRange());
1710    return ranges;
1711}
1712
1713void
1714DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt)
1715{
1716    pkt->pushLabel(memory.name());
1717
1718    if (!queue.checkFunctional(pkt)) {
1719        // Default implementation of SimpleTimingPort::recvFunctional()
1720        // calls recvAtomic() and throws away the latency; we can save a
1721        // little here by just not calculating the latency.
1722        memory.recvFunctional(pkt);
1723    }
1724
1725    pkt->popLabel();
1726}
1727
1728Tick
1729DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt)
1730{
1731    return memory.recvAtomic(pkt);
1732}
1733
1734bool
1735DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt)
1736{
1737    // pass it to the memory controller
1738    return memory.recvTimingReq(pkt);
1739}
1740
1741DRAMCtrl*
1742DRAMCtrlParams::create()
1743{
1744    return new DRAMCtrl(this);
1745}
1746