dram_ctrl.cc revision 10142
1/* 2 * Copyright (c) 2010-2013 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2013 Amin Farmahini-Farahani 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Andreas Hansson 41 * Ani Udipi 42 * Neha Agarwal 43 */ 44 45#include "base/trace.hh" 46#include "base/bitfield.hh" 47#include "debug/Drain.hh" 48#include "debug/DRAM.hh" 49#include "mem/simple_dram.hh" 50#include "sim/system.hh" 51 52using namespace std; 53 54SimpleDRAM::SimpleDRAM(const SimpleDRAMParams* p) : 55 AbstractMemory(p), 56 port(name() + ".port", *this), 57 retryRdReq(false), retryWrReq(false), 58 rowHitFlag(false), stopReads(false), 59 writeEvent(this), respondEvent(this), 60 refreshEvent(this), nextReqEvent(this), drainManager(NULL), 61 deviceBusWidth(p->device_bus_width), burstLength(p->burst_length), 62 deviceRowBufferSize(p->device_rowbuffer_size), 63 devicesPerRank(p->devices_per_rank), 64 burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8), 65 rowBufferSize(devicesPerRank * deviceRowBufferSize), 66 columnsPerRowBuffer(rowBufferSize / burstSize), 67 ranksPerChannel(p->ranks_per_channel), 68 banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0), 69 readBufferSize(p->read_buffer_size), 70 writeBufferSize(p->write_buffer_size), 71 writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0), 72 writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0), 73 minWritesPerSwitch(p->min_writes_per_switch), writesThisTime(0), 74 tWTR(p->tWTR), tBURST(p->tBURST), 75 tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS), 76 tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD), 77 tXAW(p->tXAW), activationLimit(p->activation_limit), 78 memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping), 79 pageMgmt(p->page_policy), 80 maxAccessesPerRow(p->max_accesses_per_row), 81 frontendLatency(p->static_frontend_latency), 82 backendLatency(p->static_backend_latency), 83 busBusyUntil(0), writeStartTime(0), 84 prevArrival(0), numReqs(0), 85 newTime(0), startTickPrechargeAll(0), numBanksActive(0) 86{ 87 // create the bank states based on the dimensions of the ranks and 88 // banks 89 banks.resize(ranksPerChannel); 90 actTicks.resize(ranksPerChannel); 91 for (size_t c = 0; c < ranksPerChannel; ++c) { 92 banks[c].resize(banksPerRank); 93 actTicks[c].resize(activationLimit, 0); 94 } 95 96 // perform a basic check of the write thresholds 97 if (p->write_low_thresh_perc >= p->write_high_thresh_perc) 98 fatal("Write buffer low threshold %d must be smaller than the " 99 "high threshold %d\n", p->write_low_thresh_perc, 100 p->write_high_thresh_perc); 101 102 // determine the rows per bank by looking at the total capacity 103 uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size()); 104 105 DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity, 106 AbstractMemory::size()); 107 108 DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n", 109 rowBufferSize, columnsPerRowBuffer); 110 111 rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel); 112 113 if (range.interleaved()) { 114 if (channels != range.stripes()) 115 panic("%s has %d interleaved address stripes but %d channel(s)\n", 116 name(), range.stripes(), channels); 117 118 if (addrMapping == Enums::RoRaBaChCo) { 119 if (rowBufferSize != range.granularity()) { 120 panic("Interleaving of %s doesn't match RoRaBaChCo " 121 "address map\n", name()); 122 } 123 } else if (addrMapping == Enums::RoRaBaCoCh) { 124 if (system()->cacheLineSize() != range.granularity()) { 125 panic("Interleaving of %s doesn't match RoRaBaCoCh " 126 "address map\n", name()); 127 } 128 } else if (addrMapping == Enums::RoCoRaBaCh) { 129 if (system()->cacheLineSize() != range.granularity()) 130 panic("Interleaving of %s doesn't match RoCoRaBaCh " 131 "address map\n", name()); 132 } 133 } 134} 135 136void 137SimpleDRAM::init() 138{ 139 if (!port.isConnected()) { 140 fatal("SimpleDRAM %s is unconnected!\n", name()); 141 } else { 142 port.sendRangeChange(); 143 } 144} 145 146void 147SimpleDRAM::startup() 148{ 149 // print the configuration of the controller 150 printParams(); 151 152 // kick off the refresh 153 schedule(refreshEvent, curTick() + tREFI); 154} 155 156Tick 157SimpleDRAM::recvAtomic(PacketPtr pkt) 158{ 159 DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr()); 160 161 // do the actual memory access and turn the packet into a response 162 access(pkt); 163 164 Tick latency = 0; 165 if (!pkt->memInhibitAsserted() && pkt->hasData()) { 166 // this value is not supposed to be accurate, just enough to 167 // keep things going, mimic a closed page 168 latency = tRP + tRCD + tCL; 169 } 170 return latency; 171} 172 173bool 174SimpleDRAM::readQueueFull(unsigned int neededEntries) const 175{ 176 DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n", 177 readBufferSize, readQueue.size() + respQueue.size(), 178 neededEntries); 179 180 return 181 (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize; 182} 183 184bool 185SimpleDRAM::writeQueueFull(unsigned int neededEntries) const 186{ 187 DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n", 188 writeBufferSize, writeQueue.size(), neededEntries); 189 return (writeQueue.size() + neededEntries) > writeBufferSize; 190} 191 192SimpleDRAM::DRAMPacket* 193SimpleDRAM::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size, bool isRead) 194{ 195 // decode the address based on the address mapping scheme, with 196 // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and 197 // channel, respectively 198 uint8_t rank; 199 uint8_t bank; 200 uint16_t row; 201 202 // truncate the address to the access granularity 203 Addr addr = dramPktAddr / burstSize; 204 205 // we have removed the lowest order address bits that denote the 206 // position within the column 207 if (addrMapping == Enums::RoRaBaChCo) { 208 // the lowest order bits denote the column to ensure that 209 // sequential cache lines occupy the same row 210 addr = addr / columnsPerRowBuffer; 211 212 // take out the channel part of the address 213 addr = addr / channels; 214 215 // after the channel bits, get the bank bits to interleave 216 // over the banks 217 bank = addr % banksPerRank; 218 addr = addr / banksPerRank; 219 220 // after the bank, we get the rank bits which thus interleaves 221 // over the ranks 222 rank = addr % ranksPerChannel; 223 addr = addr / ranksPerChannel; 224 225 // lastly, get the row bits 226 row = addr % rowsPerBank; 227 addr = addr / rowsPerBank; 228 } else if (addrMapping == Enums::RoRaBaCoCh) { 229 // take out the channel part of the address 230 addr = addr / channels; 231 232 // next, the column 233 addr = addr / columnsPerRowBuffer; 234 235 // after the column bits, we get the bank bits to interleave 236 // over the banks 237 bank = addr % banksPerRank; 238 addr = addr / banksPerRank; 239 240 // after the bank, we get the rank bits which thus interleaves 241 // over the ranks 242 rank = addr % ranksPerChannel; 243 addr = addr / ranksPerChannel; 244 245 // lastly, get the row bits 246 row = addr % rowsPerBank; 247 addr = addr / rowsPerBank; 248 } else if (addrMapping == Enums::RoCoRaBaCh) { 249 // optimise for closed page mode and utilise maximum 250 // parallelism of the DRAM (at the cost of power) 251 252 // take out the channel part of the address, not that this has 253 // to match with how accesses are interleaved between the 254 // controllers in the address mapping 255 addr = addr / channels; 256 257 // start with the bank bits, as this provides the maximum 258 // opportunity for parallelism between requests 259 bank = addr % banksPerRank; 260 addr = addr / banksPerRank; 261 262 // next get the rank bits 263 rank = addr % ranksPerChannel; 264 addr = addr / ranksPerChannel; 265 266 // next the column bits which we do not need to keep track of 267 // and simply skip past 268 addr = addr / columnsPerRowBuffer; 269 270 // lastly, get the row bits 271 row = addr % rowsPerBank; 272 addr = addr / rowsPerBank; 273 } else 274 panic("Unknown address mapping policy chosen!"); 275 276 assert(rank < ranksPerChannel); 277 assert(bank < banksPerRank); 278 assert(row < rowsPerBank); 279 280 DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n", 281 dramPktAddr, rank, bank, row); 282 283 // create the corresponding DRAM packet with the entry time and 284 // ready time set to the current tick, the latter will be updated 285 // later 286 uint16_t bank_id = banksPerRank * rank + bank; 287 return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr, 288 size, banks[rank][bank]); 289} 290 291void 292SimpleDRAM::addToReadQueue(PacketPtr pkt, unsigned int pktCount) 293{ 294 // only add to the read queue here. whenever the request is 295 // eventually done, set the readyTime, and call schedule() 296 assert(!pkt->isWrite()); 297 298 assert(pktCount != 0); 299 300 // if the request size is larger than burst size, the pkt is split into 301 // multiple DRAM packets 302 // Note if the pkt starting address is not aligened to burst size, the 303 // address of first DRAM packet is kept unaliged. Subsequent DRAM packets 304 // are aligned to burst size boundaries. This is to ensure we accurately 305 // check read packets against packets in write queue. 306 Addr addr = pkt->getAddr(); 307 unsigned pktsServicedByWrQ = 0; 308 BurstHelper* burst_helper = NULL; 309 for (int cnt = 0; cnt < pktCount; ++cnt) { 310 unsigned size = std::min((addr | (burstSize - 1)) + 1, 311 pkt->getAddr() + pkt->getSize()) - addr; 312 readPktSize[ceilLog2(size)]++; 313 readBursts++; 314 315 // First check write buffer to see if the data is already at 316 // the controller 317 bool foundInWrQ = false; 318 for (auto i = writeQueue.begin(); i != writeQueue.end(); ++i) { 319 // check if the read is subsumed in the write entry we are 320 // looking at 321 if ((*i)->addr <= addr && 322 (addr + size) <= ((*i)->addr + (*i)->size)) { 323 foundInWrQ = true; 324 servicedByWrQ++; 325 pktsServicedByWrQ++; 326 DPRINTF(DRAM, "Read to addr %lld with size %d serviced by " 327 "write queue\n", addr, size); 328 bytesReadWrQ += burstSize; 329 break; 330 } 331 } 332 333 // If not found in the write q, make a DRAM packet and 334 // push it onto the read queue 335 if (!foundInWrQ) { 336 337 // Make the burst helper for split packets 338 if (pktCount > 1 && burst_helper == NULL) { 339 DPRINTF(DRAM, "Read to addr %lld translates to %d " 340 "dram requests\n", pkt->getAddr(), pktCount); 341 burst_helper = new BurstHelper(pktCount); 342 } 343 344 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true); 345 dram_pkt->burstHelper = burst_helper; 346 347 assert(!readQueueFull(1)); 348 rdQLenPdf[readQueue.size() + respQueue.size()]++; 349 350 DPRINTF(DRAM, "Adding to read queue\n"); 351 352 readQueue.push_back(dram_pkt); 353 354 // Update stats 355 avgRdQLen = readQueue.size() + respQueue.size(); 356 } 357 358 // Starting address of next dram pkt (aligend to burstSize boundary) 359 addr = (addr | (burstSize - 1)) + 1; 360 } 361 362 // If all packets are serviced by write queue, we send the repsonse back 363 if (pktsServicedByWrQ == pktCount) { 364 accessAndRespond(pkt, frontendLatency); 365 return; 366 } 367 368 // Update how many split packets are serviced by write queue 369 if (burst_helper != NULL) 370 burst_helper->burstsServiced = pktsServicedByWrQ; 371 372 // If we are not already scheduled to get the read request out of 373 // the queue, do so now 374 if (!nextReqEvent.scheduled() && !stopReads) { 375 DPRINTF(DRAM, "Request scheduled immediately\n"); 376 schedule(nextReqEvent, curTick()); 377 } 378} 379 380void 381SimpleDRAM::processWriteEvent() 382{ 383 assert(!writeQueue.empty()); 384 385 DPRINTF(DRAM, "Beginning DRAM Write\n"); 386 Tick temp1 M5_VAR_USED = std::max(curTick(), busBusyUntil); 387 Tick temp2 M5_VAR_USED = std::max(curTick(), maxBankFreeAt()); 388 389 chooseNextWrite(); 390 DRAMPacket* dram_pkt = writeQueue.front(); 391 // sanity check 392 assert(dram_pkt->size <= burstSize); 393 doDRAMAccess(dram_pkt); 394 395 writeQueue.pop_front(); 396 delete dram_pkt; 397 398 ++writesThisTime; 399 400 DPRINTF(DRAM, "Writing, bus busy for %lld ticks, banks busy " 401 "for %lld ticks\n", busBusyUntil - temp1, maxBankFreeAt() - temp2); 402 403 // Update stats 404 avgWrQLen = writeQueue.size(); 405 406 // If we emptied the write queue, or got below the threshold and 407 // are not draining, or we have reads waiting and have done enough 408 // writes, then switch to reads. The retry above could already 409 // have caused it to be scheduled, so first check 410 if (writeQueue.empty() || 411 (writeQueue.size() < writeLowThreshold && !drainManager) || 412 (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) { 413 // turn the bus back around for reads again 414 busBusyUntil += tWTR; 415 stopReads = false; 416 writesThisTime = 0; 417 418 if (!nextReqEvent.scheduled()) 419 schedule(nextReqEvent, busBusyUntil); 420 } else { 421 assert(!writeEvent.scheduled()); 422 DPRINTF(DRAM, "Next write scheduled at %lld\n", newTime); 423 schedule(writeEvent, newTime); 424 } 425 426 if (retryWrReq) { 427 retryWrReq = false; 428 port.sendRetry(); 429 } 430 431 // if there is nothing left in any queue, signal a drain 432 if (writeQueue.empty() && readQueue.empty() && 433 respQueue.empty () && drainManager) { 434 drainManager->signalDrainDone(); 435 drainManager = NULL; 436 } 437} 438 439 440void 441SimpleDRAM::triggerWrites() 442{ 443 DPRINTF(DRAM, "Writes triggered at %lld\n", curTick()); 444 // Flag variable to stop any more read scheduling 445 stopReads = true; 446 447 writeStartTime = std::max(busBusyUntil, curTick()) + tWTR; 448 449 DPRINTF(DRAM, "Writes scheduled at %lld\n", writeStartTime); 450 451 assert(writeStartTime >= curTick()); 452 assert(!writeEvent.scheduled()); 453 schedule(writeEvent, writeStartTime); 454} 455 456void 457SimpleDRAM::addToWriteQueue(PacketPtr pkt, unsigned int pktCount) 458{ 459 // only add to the write queue here. whenever the request is 460 // eventually done, set the readyTime, and call schedule() 461 assert(pkt->isWrite()); 462 463 // if the request size is larger than burst size, the pkt is split into 464 // multiple DRAM packets 465 Addr addr = pkt->getAddr(); 466 for (int cnt = 0; cnt < pktCount; ++cnt) { 467 unsigned size = std::min((addr | (burstSize - 1)) + 1, 468 pkt->getAddr() + pkt->getSize()) - addr; 469 writePktSize[ceilLog2(size)]++; 470 writeBursts++; 471 472 // see if we can merge with an existing item in the write 473 // queue and keep track of whether we have merged or not so we 474 // can stop at that point and also avoid enqueueing a new 475 // request 476 bool merged = false; 477 auto w = writeQueue.begin(); 478 479 while(!merged && w != writeQueue.end()) { 480 // either of the two could be first, if they are the same 481 // it does not matter which way we go 482 if ((*w)->addr >= addr) { 483 // the existing one starts after the new one, figure 484 // out where the new one ends with respect to the 485 // existing one 486 if ((addr + size) >= ((*w)->addr + (*w)->size)) { 487 // check if the existing one is completely 488 // subsumed in the new one 489 DPRINTF(DRAM, "Merging write covering existing burst\n"); 490 merged = true; 491 // update both the address and the size 492 (*w)->addr = addr; 493 (*w)->size = size; 494 } else if ((addr + size) >= (*w)->addr && 495 ((*w)->addr + (*w)->size - addr) <= burstSize) { 496 // the new one is just before or partially 497 // overlapping with the existing one, and together 498 // they fit within a burst 499 DPRINTF(DRAM, "Merging write before existing burst\n"); 500 merged = true; 501 // the existing queue item needs to be adjusted with 502 // respect to both address and size 503 (*w)->size = (*w)->addr + (*w)->size - addr; 504 (*w)->addr = addr; 505 } 506 } else { 507 // the new one starts after the current one, figure 508 // out where the existing one ends with respect to the 509 // new one 510 if (((*w)->addr + (*w)->size) >= (addr + size)) { 511 // check if the new one is completely subsumed in the 512 // existing one 513 DPRINTF(DRAM, "Merging write into existing burst\n"); 514 merged = true; 515 // no adjustments necessary 516 } else if (((*w)->addr + (*w)->size) >= addr && 517 (addr + size - (*w)->addr) <= burstSize) { 518 // the existing one is just before or partially 519 // overlapping with the new one, and together 520 // they fit within a burst 521 DPRINTF(DRAM, "Merging write after existing burst\n"); 522 merged = true; 523 // the address is right, and only the size has 524 // to be adjusted 525 (*w)->size = addr + size - (*w)->addr; 526 } 527 } 528 ++w; 529 } 530 531 // if the item was not merged we need to create a new write 532 // and enqueue it 533 if (!merged) { 534 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false); 535 536 assert(writeQueue.size() < writeBufferSize); 537 wrQLenPdf[writeQueue.size()]++; 538 539 DPRINTF(DRAM, "Adding to write queue\n"); 540 541 writeQueue.push_back(dram_pkt); 542 543 // Update stats 544 avgWrQLen = writeQueue.size(); 545 } else { 546 // keep track of the fact that this burst effectively 547 // disappeared as it was merged with an existing one 548 mergedWrBursts++; 549 } 550 551 // Starting address of next dram pkt (aligend to burstSize boundary) 552 addr = (addr | (burstSize - 1)) + 1; 553 } 554 555 // we do not wait for the writes to be send to the actual memory, 556 // but instead take responsibility for the consistency here and 557 // snoop the write queue for any upcoming reads 558 // @todo, if a pkt size is larger than burst size, we might need a 559 // different front end latency 560 accessAndRespond(pkt, frontendLatency); 561 562 // If your write buffer is starting to fill up, drain it! 563 if (writeQueue.size() >= writeHighThreshold && !stopReads){ 564 triggerWrites(); 565 } 566} 567 568void 569SimpleDRAM::printParams() const 570{ 571 // Sanity check print of important parameters 572 DPRINTF(DRAM, 573 "Memory controller %s physical organization\n" \ 574 "Number of devices per rank %d\n" \ 575 "Device bus width (in bits) %d\n" \ 576 "DRAM data bus burst %d\n" \ 577 "Row buffer size %d\n" \ 578 "Columns per row buffer %d\n" \ 579 "Rows per bank %d\n" \ 580 "Banks per rank %d\n" \ 581 "Ranks per channel %d\n" \ 582 "Total mem capacity %u\n", 583 name(), devicesPerRank, deviceBusWidth, burstSize, rowBufferSize, 584 columnsPerRowBuffer, rowsPerBank, banksPerRank, ranksPerChannel, 585 rowBufferSize * rowsPerBank * banksPerRank * ranksPerChannel); 586 587 string scheduler = memSchedPolicy == Enums::fcfs ? "FCFS" : "FR-FCFS"; 588 string address_mapping = addrMapping == Enums::RoRaBaChCo ? "RoRaBaChCo" : 589 (addrMapping == Enums::RoRaBaCoCh ? "RoRaBaCoCh" : "RoCoRaBaCh"); 590 string page_policy = pageMgmt == Enums::open ? "OPEN" : 591 (pageMgmt == Enums::open_adaptive ? "OPEN (adaptive)" : "CLOSE"); 592 593 DPRINTF(DRAM, 594 "Memory controller %s characteristics\n" \ 595 "Read buffer size %d\n" \ 596 "Write buffer size %d\n" \ 597 "Write high thresh %d\n" \ 598 "Write low thresh %d\n" \ 599 "Scheduler %s\n" \ 600 "Address mapping %s\n" \ 601 "Page policy %s\n", 602 name(), readBufferSize, writeBufferSize, writeHighThreshold, 603 writeLowThreshold, scheduler, address_mapping, page_policy); 604 605 DPRINTF(DRAM, "Memory controller %s timing specs\n" \ 606 "tRCD %d ticks\n" \ 607 "tCL %d ticks\n" \ 608 "tRP %d ticks\n" \ 609 "tBURST %d ticks\n" \ 610 "tRFC %d ticks\n" \ 611 "tREFI %d ticks\n" \ 612 "tWTR %d ticks\n" \ 613 "tXAW (%d) %d ticks\n", 614 name(), tRCD, tCL, tRP, tBURST, tRFC, tREFI, tWTR, 615 activationLimit, tXAW); 616} 617 618void 619SimpleDRAM::printQs() const { 620 DPRINTF(DRAM, "===READ QUEUE===\n\n"); 621 for (auto i = readQueue.begin() ; i != readQueue.end() ; ++i) { 622 DPRINTF(DRAM, "Read %lu\n", (*i)->addr); 623 } 624 DPRINTF(DRAM, "\n===RESP QUEUE===\n\n"); 625 for (auto i = respQueue.begin() ; i != respQueue.end() ; ++i) { 626 DPRINTF(DRAM, "Response %lu\n", (*i)->addr); 627 } 628 DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n"); 629 for (auto i = writeQueue.begin() ; i != writeQueue.end() ; ++i) { 630 DPRINTF(DRAM, "Write %lu\n", (*i)->addr); 631 } 632} 633 634bool 635SimpleDRAM::recvTimingReq(PacketPtr pkt) 636{ 637 /// @todo temporary hack to deal with memory corruption issues until 638 /// 4-phase transactions are complete 639 for (int x = 0; x < pendingDelete.size(); x++) 640 delete pendingDelete[x]; 641 pendingDelete.clear(); 642 643 // This is where we enter from the outside world 644 DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n", 645 pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 646 647 // simply drop inhibited packets for now 648 if (pkt->memInhibitAsserted()) { 649 DPRINTF(DRAM,"Inhibited packet -- Dropping it now\n"); 650 pendingDelete.push_back(pkt); 651 return true; 652 } 653 654 // Every million accesses, print the state of the queues 655 if (numReqs % 1000000 == 0) 656 printQs(); 657 658 // Calc avg gap between requests 659 if (prevArrival != 0) { 660 totGap += curTick() - prevArrival; 661 } 662 prevArrival = curTick(); 663 664 665 // Find out how many dram packets a pkt translates to 666 // If the burst size is equal or larger than the pkt size, then a pkt 667 // translates to only one dram packet. Otherwise, a pkt translates to 668 // multiple dram packets 669 unsigned size = pkt->getSize(); 670 unsigned offset = pkt->getAddr() & (burstSize - 1); 671 unsigned int dram_pkt_count = divCeil(offset + size, burstSize); 672 673 // check local buffers and do not accept if full 674 if (pkt->isRead()) { 675 assert(size != 0); 676 if (readQueueFull(dram_pkt_count)) { 677 DPRINTF(DRAM, "Read queue full, not accepting\n"); 678 // remember that we have to retry this port 679 retryRdReq = true; 680 numRdRetry++; 681 return false; 682 } else { 683 addToReadQueue(pkt, dram_pkt_count); 684 readReqs++; 685 numReqs++; 686 bytesReadSys += size; 687 } 688 } else if (pkt->isWrite()) { 689 assert(size != 0); 690 if (writeQueueFull(dram_pkt_count)) { 691 DPRINTF(DRAM, "Write queue full, not accepting\n"); 692 // remember that we have to retry this port 693 retryWrReq = true; 694 numWrRetry++; 695 return false; 696 } else { 697 addToWriteQueue(pkt, dram_pkt_count); 698 writeReqs++; 699 numReqs++; 700 bytesWrittenSys += size; 701 } 702 } else { 703 DPRINTF(DRAM,"Neither read nor write, ignore timing\n"); 704 neitherReadNorWrite++; 705 accessAndRespond(pkt, 1); 706 } 707 708 retryRdReq = false; 709 retryWrReq = false; 710 return true; 711} 712 713void 714SimpleDRAM::processRespondEvent() 715{ 716 DPRINTF(DRAM, 717 "processRespondEvent(): Some req has reached its readyTime\n"); 718 719 DRAMPacket* dram_pkt = respQueue.front(); 720 721 if (dram_pkt->burstHelper) { 722 // it is a split packet 723 dram_pkt->burstHelper->burstsServiced++; 724 if (dram_pkt->burstHelper->burstsServiced == 725 dram_pkt->burstHelper->burstCount) { 726 // we have now serviced all children packets of a system packet 727 // so we can now respond to the requester 728 // @todo we probably want to have a different front end and back 729 // end latency for split packets 730 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency); 731 delete dram_pkt->burstHelper; 732 dram_pkt->burstHelper = NULL; 733 } 734 } else { 735 // it is not a split packet 736 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency); 737 } 738 739 delete respQueue.front(); 740 respQueue.pop_front(); 741 742 // Update stats 743 avgRdQLen = readQueue.size() + respQueue.size(); 744 745 if (!respQueue.empty()) { 746 assert(respQueue.front()->readyTime >= curTick()); 747 assert(!respondEvent.scheduled()); 748 schedule(respondEvent, respQueue.front()->readyTime); 749 } else { 750 // if there is nothing left in any queue, signal a drain 751 if (writeQueue.empty() && readQueue.empty() && 752 drainManager) { 753 drainManager->signalDrainDone(); 754 drainManager = NULL; 755 } 756 } 757 758 // We have made a location in the queue available at this point, 759 // so if there is a read that was forced to wait, retry now 760 if (retryRdReq) { 761 retryRdReq = false; 762 port.sendRetry(); 763 } 764} 765 766void 767SimpleDRAM::chooseNextWrite() 768{ 769 // This method does the arbitration between write requests. The 770 // chosen packet is simply moved to the head of the write 771 // queue. The other methods know that this is the place to 772 // look. For example, with FCFS, this method does nothing 773 assert(!writeQueue.empty()); 774 775 if (writeQueue.size() == 1) { 776 DPRINTF(DRAM, "Single write request, nothing to do\n"); 777 return; 778 } 779 780 if (memSchedPolicy == Enums::fcfs) { 781 // Do nothing, since the correct request is already head 782 } else if (memSchedPolicy == Enums::frfcfs) { 783 reorderQueue(writeQueue); 784 } else 785 panic("No scheduling policy chosen\n"); 786 787 DPRINTF(DRAM, "Selected next write request\n"); 788} 789 790bool 791SimpleDRAM::chooseNextRead() 792{ 793 // This method does the arbitration between read requests. The 794 // chosen packet is simply moved to the head of the queue. The 795 // other methods know that this is the place to look. For example, 796 // with FCFS, this method does nothing 797 if (readQueue.empty()) { 798 DPRINTF(DRAM, "No read request to select\n"); 799 return false; 800 } 801 802 // If there is only one request then there is nothing left to do 803 if (readQueue.size() == 1) 804 return true; 805 806 if (memSchedPolicy == Enums::fcfs) { 807 // Do nothing, since the request to serve is already the first 808 // one in the read queue 809 } else if (memSchedPolicy == Enums::frfcfs) { 810 reorderQueue(readQueue); 811 } else 812 panic("No scheduling policy chosen!\n"); 813 814 DPRINTF(DRAM, "Selected next read request\n"); 815 return true; 816} 817 818void 819SimpleDRAM::reorderQueue(std::deque<DRAMPacket*>& queue) 820{ 821 // Only determine this when needed 822 uint64_t earliest_banks = 0; 823 824 // Search for row hits first, if no row hit is found then schedule the 825 // packet to one of the earliest banks available 826 bool found_earliest_pkt = false; 827 auto selected_pkt_it = queue.begin(); 828 829 for (auto i = queue.begin(); i != queue.end() ; ++i) { 830 DRAMPacket* dram_pkt = *i; 831 const Bank& bank = dram_pkt->bankRef; 832 // Check if it is a row hit 833 if (bank.openRow == dram_pkt->row) { 834 DPRINTF(DRAM, "Row buffer hit\n"); 835 selected_pkt_it = i; 836 break; 837 } else if (!found_earliest_pkt) { 838 // No row hit, go for first ready 839 if (earliest_banks == 0) 840 earliest_banks = minBankFreeAt(queue); 841 842 // Bank is ready or is the first available bank 843 if (bank.freeAt <= curTick() || 844 bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) { 845 // Remember the packet to be scheduled to one of the earliest 846 // banks available 847 selected_pkt_it = i; 848 found_earliest_pkt = true; 849 } 850 } 851 } 852 853 DRAMPacket* selected_pkt = *selected_pkt_it; 854 queue.erase(selected_pkt_it); 855 queue.push_front(selected_pkt); 856} 857 858void 859SimpleDRAM::accessAndRespond(PacketPtr pkt, Tick static_latency) 860{ 861 DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr()); 862 863 bool needsResponse = pkt->needsResponse(); 864 // do the actual memory access which also turns the packet into a 865 // response 866 access(pkt); 867 868 // turn packet around to go back to requester if response expected 869 if (needsResponse) { 870 // access already turned the packet into a response 871 assert(pkt->isResponse()); 872 873 // @todo someone should pay for this 874 pkt->busFirstWordDelay = pkt->busLastWordDelay = 0; 875 876 // queue the packet in the response queue to be sent out after 877 // the static latency has passed 878 port.schedTimingResp(pkt, curTick() + static_latency); 879 } else { 880 // @todo the packet is going to be deleted, and the DRAMPacket 881 // is still having a pointer to it 882 pendingDelete.push_back(pkt); 883 } 884 885 DPRINTF(DRAM, "Done\n"); 886 887 return; 888} 889 890pair<Tick, Tick> 891SimpleDRAM::estimateLatency(DRAMPacket* dram_pkt, Tick inTime) 892{ 893 // If a request reaches a bank at tick 'inTime', how much time 894 // *after* that does it take to finish the request, depending 895 // on bank status and page open policy. Note that this method 896 // considers only the time taken for the actual read or write 897 // to complete, NOT any additional time thereafter for tRAS or 898 // tRP. 899 Tick accLat = 0; 900 Tick bankLat = 0; 901 rowHitFlag = false; 902 Tick potentialActTick; 903 904 const Bank& bank = dram_pkt->bankRef; 905 // open-page policy 906 if (pageMgmt == Enums::open || pageMgmt == Enums::open_adaptive) { 907 if (bank.openRow == dram_pkt->row) { 908 // When we have a row-buffer hit, 909 // we don't care about tRAS having expired or not, 910 // but do care about bank being free for access 911 rowHitFlag = true; 912 913 // When a series of requests arrive to the same row, 914 // DDR systems are capable of streaming data continuously 915 // at maximum bandwidth (subject to tCCD). Here, we approximate 916 // this condition, and assume that if whenever a bank is already 917 // busy and a new request comes in, it can be completed with no 918 // penalty beyond waiting for the existing read to complete. 919 if (bank.freeAt > inTime) { 920 accLat += bank.freeAt - inTime; 921 bankLat += 0; 922 } else { 923 // CAS latency only 924 accLat += tCL; 925 bankLat += tCL; 926 } 927 928 } else { 929 // Row-buffer miss, need to close existing row 930 // once tRAS has expired, then open the new one, 931 // then add cas latency. 932 Tick freeTime = std::max(bank.tRASDoneAt, bank.freeAt); 933 934 if (freeTime > inTime) 935 accLat += freeTime - inTime; 936 937 // If the there is no open row (open adaptive), then there 938 // is no precharge delay, otherwise go with tRP 939 Tick precharge_delay = bank.openRow == -1 ? 0 : tRP; 940 941 //The bank is free, and you may be able to activate 942 potentialActTick = inTime + accLat + precharge_delay; 943 if (potentialActTick < bank.actAllowedAt) 944 accLat += bank.actAllowedAt - potentialActTick; 945 946 accLat += precharge_delay + tRCD + tCL; 947 bankLat += precharge_delay + tRCD + tCL; 948 } 949 } else if (pageMgmt == Enums::close) { 950 // With a close page policy, no notion of 951 // bank.tRASDoneAt 952 if (bank.freeAt > inTime) 953 accLat += bank.freeAt - inTime; 954 955 //The bank is free, and you may be able to activate 956 potentialActTick = inTime + accLat; 957 if (potentialActTick < bank.actAllowedAt) 958 accLat += bank.actAllowedAt - potentialActTick; 959 960 // page already closed, simply open the row, and 961 // add cas latency 962 accLat += tRCD + tCL; 963 bankLat += tRCD + tCL; 964 } else 965 panic("No page management policy chosen\n"); 966 967 DPRINTF(DRAM, "Returning < %lld, %lld > from estimateLatency()\n", 968 bankLat, accLat); 969 970 return make_pair(bankLat, accLat); 971} 972 973void 974SimpleDRAM::processNextReqEvent() 975{ 976 scheduleNextReq(); 977} 978 979void 980SimpleDRAM::recordActivate(Tick act_tick, uint8_t rank, uint8_t bank) 981{ 982 assert(0 <= rank && rank < ranksPerChannel); 983 assert(actTicks[rank].size() == activationLimit); 984 985 DPRINTF(DRAM, "Activate at tick %d\n", act_tick); 986 987 // Tracking accesses after all banks are precharged. 988 // startTickPrechargeAll: is the tick when all the banks were again 989 // precharged. The difference between act_tick and startTickPrechargeAll 990 // gives the time for which DRAM doesn't get any accesses after refreshing 991 // or after a page is closed in closed-page or open-adaptive-page policy. 992 if ((numBanksActive == 0) && (act_tick > startTickPrechargeAll)) { 993 prechargeAllTime += act_tick - startTickPrechargeAll; 994 } 995 996 // No need to update number of active banks for closed-page policy as only 1 997 // bank will be activated at any given point, which will be instatntly 998 // precharged 999 if (pageMgmt == Enums::open || pageMgmt == Enums::open_adaptive) 1000 ++numBanksActive; 1001 1002 // start by enforcing tRRD 1003 for(int i = 0; i < banksPerRank; i++) { 1004 // next activate must not happen before tRRD 1005 banks[rank][i].actAllowedAt = act_tick + tRRD; 1006 } 1007 // tRC should be added to activation tick of the bank currently accessed, 1008 // where tRC = tRAS + tRP, this is just for a check as actAllowedAt for same 1009 // bank is already captured by bank.freeAt and bank.tRASDoneAt 1010 banks[rank][bank].actAllowedAt = act_tick + tRAS + tRP; 1011 1012 // next, we deal with tXAW, if the activation limit is disabled 1013 // then we are done 1014 if (actTicks[rank].empty()) 1015 return; 1016 1017 // sanity check 1018 if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) { 1019 // @todo For now, stick with a warning 1020 warn("Got %d activates in window %d (%d - %d) which is smaller " 1021 "than %d\n", activationLimit, act_tick - actTicks[rank].back(), 1022 act_tick, actTicks[rank].back(), tXAW); 1023 } 1024 1025 // shift the times used for the book keeping, the last element 1026 // (highest index) is the oldest one and hence the lowest value 1027 actTicks[rank].pop_back(); 1028 1029 // record an new activation (in the future) 1030 actTicks[rank].push_front(act_tick); 1031 1032 // cannot activate more than X times in time window tXAW, push the 1033 // next one (the X + 1'st activate) to be tXAW away from the 1034 // oldest in our window of X 1035 if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) { 1036 DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate no earlier " 1037 "than %d\n", activationLimit, actTicks[rank].back() + tXAW); 1038 for(int j = 0; j < banksPerRank; j++) 1039 // next activate must not happen before end of window 1040 banks[rank][j].actAllowedAt = actTicks[rank].back() + tXAW; 1041 } 1042} 1043 1044void 1045SimpleDRAM::doDRAMAccess(DRAMPacket* dram_pkt) 1046{ 1047 1048 DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n", 1049 dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row); 1050 1051 // estimate the bank and access latency 1052 pair<Tick, Tick> lat = estimateLatency(dram_pkt, curTick()); 1053 Tick bankLat = lat.first; 1054 Tick accessLat = lat.second; 1055 Tick actTick; 1056 1057 // This request was woken up at this time based on a prior call 1058 // to estimateLatency(). However, between then and now, both the 1059 // accessLatency and/or busBusyUntil may have changed. We need 1060 // to correct for that. 1061 1062 Tick addDelay = (curTick() + accessLat < busBusyUntil) ? 1063 busBusyUntil - (curTick() + accessLat) : 0; 1064 1065 Bank& bank = dram_pkt->bankRef; 1066 1067 // Update bank state 1068 if (pageMgmt == Enums::open || pageMgmt == Enums::open_adaptive) { 1069 bank.freeAt = curTick() + addDelay + accessLat; 1070 1071 // If you activated a new row do to this access, the next access 1072 // will have to respect tRAS for this bank. 1073 if (!rowHitFlag) { 1074 // any waiting for banks account for in freeAt 1075 actTick = bank.freeAt - tCL - tRCD; 1076 bank.tRASDoneAt = actTick + tRAS; 1077 recordActivate(actTick, dram_pkt->rank, dram_pkt->bank); 1078 1079 // if we closed an open row as a result of this access, 1080 // then sample the number of bytes accessed before 1081 // resetting it 1082 if (bank.openRow != -1) 1083 bytesPerActivate.sample(bank.bytesAccessed); 1084 1085 // update the open row 1086 bank.openRow = dram_pkt->row; 1087 1088 // start counting anew, this covers both the case when we 1089 // auto-precharged, and when this access is forced to 1090 // precharge 1091 bank.bytesAccessed = 0; 1092 bank.rowAccesses = 0; 1093 } 1094 1095 // increment the bytes accessed and the accesses per row 1096 bank.bytesAccessed += burstSize; 1097 ++bank.rowAccesses; 1098 1099 // if we reached the max, then issue with an auto-precharge 1100 bool auto_precharge = bank.rowAccesses == maxAccessesPerRow; 1101 1102 // if we did not hit the limit, we might still want to 1103 // auto-precharge 1104 if (!auto_precharge && pageMgmt == Enums::open_adaptive) { 1105 // a twist on the open page policy is to not blindly keep the 1106 // page open, but close it if there are no row hits, and there 1107 // are bank conflicts in the queue 1108 bool got_more_hits = false; 1109 bool got_bank_conflict = false; 1110 1111 // either look at the read queue or write queue 1112 const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue : 1113 writeQueue; 1114 auto p = queue.begin(); 1115 // make sure we are not considering the packet that we are 1116 // currently dealing with (which is the head of the queue) 1117 ++p; 1118 1119 // keep on looking until we have found both or reached 1120 // the end 1121 while (!(got_more_hits && got_bank_conflict) && 1122 p != queue.end()) { 1123 bool same_rank_bank = (dram_pkt->rank == (*p)->rank) && 1124 (dram_pkt->bank == (*p)->bank); 1125 bool same_row = dram_pkt->row == (*p)->row; 1126 got_more_hits |= same_rank_bank && same_row; 1127 got_bank_conflict |= same_rank_bank && !same_row; 1128 ++p; 1129 } 1130 1131 // auto pre-charge if we have not got any more hits, and 1132 // have a bank conflict 1133 auto_precharge = !got_more_hits && got_bank_conflict; 1134 } 1135 1136 // if this access should use auto-precharge, then we are 1137 // closing the row 1138 if (auto_precharge) { 1139 bank.openRow = -1; 1140 bank.freeAt = std::max(bank.freeAt, bank.tRASDoneAt) + tRP; 1141 --numBanksActive; 1142 if (numBanksActive == 0) { 1143 startTickPrechargeAll = std::max(startTickPrechargeAll, 1144 bank.freeAt); 1145 DPRINTF(DRAM, "All banks precharged at tick: %ld\n", 1146 startTickPrechargeAll); 1147 } 1148 1149 // sample the bytes per activate here since we are closing 1150 // the page 1151 bytesPerActivate.sample(bank.bytesAccessed); 1152 1153 DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId); 1154 } 1155 1156 DPRINTF(DRAM, "doDRAMAccess::bank.freeAt is %lld\n", bank.freeAt); 1157 } else if (pageMgmt == Enums::close) { 1158 actTick = curTick() + addDelay + accessLat - tRCD - tCL; 1159 recordActivate(actTick, dram_pkt->rank, dram_pkt->bank); 1160 1161 // If the DRAM has a very quick tRAS, bank can be made free 1162 // after consecutive tCL,tRCD,tRP times. In general, however, 1163 // an additional wait is required to respect tRAS. 1164 bank.freeAt = std::max(actTick + tRAS + tRP, 1165 actTick + tRCD + tCL + tRP); 1166 DPRINTF(DRAM, "doDRAMAccess::bank.freeAt is %lld\n", bank.freeAt); 1167 bytesPerActivate.sample(burstSize); 1168 startTickPrechargeAll = std::max(startTickPrechargeAll, bank.freeAt); 1169 } else 1170 panic("No page management policy chosen\n"); 1171 1172 // Update request parameters 1173 dram_pkt->readyTime = curTick() + addDelay + accessLat + tBURST; 1174 1175 1176 DPRINTF(DRAM, "Req %lld: curtick is %lld accessLat is %d " \ 1177 "readytime is %lld busbusyuntil is %lld. " \ 1178 "Scheduling at readyTime\n", dram_pkt->addr, 1179 curTick(), accessLat, dram_pkt->readyTime, busBusyUntil); 1180 1181 // Make sure requests are not overlapping on the databus 1182 assert (dram_pkt->readyTime - busBusyUntil >= tBURST); 1183 1184 // Update bus state 1185 busBusyUntil = dram_pkt->readyTime; 1186 1187 DPRINTF(DRAM,"Access time is %lld\n", 1188 dram_pkt->readyTime - dram_pkt->entryTime); 1189 1190 // Update the minimum timing between the requests 1191 newTime = (busBusyUntil > tRP + tRCD + tCL) ? 1192 std::max(busBusyUntil - (tRP + tRCD + tCL), curTick()) : curTick(); 1193 1194 // Update the access related stats 1195 if (dram_pkt->isRead) { 1196 if (rowHitFlag) 1197 readRowHits++; 1198 bytesReadDRAM += burstSize; 1199 perBankRdBursts[dram_pkt->bankId]++; 1200 } else { 1201 if (rowHitFlag) 1202 writeRowHits++; 1203 bytesWritten += burstSize; 1204 perBankWrBursts[dram_pkt->bankId]++; 1205 1206 // At this point, commonality between reads and writes ends. 1207 // For writes, we are done since we long ago responded to the 1208 // requestor. 1209 return; 1210 } 1211 1212 // Update latency stats 1213 totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime; 1214 totBankLat += bankLat; 1215 totBusLat += tBURST; 1216 totQLat += dram_pkt->readyTime - dram_pkt->entryTime - bankLat - tBURST; 1217 1218 1219 // At this point we're done dealing with the request 1220 // It will be moved to a separate response queue with a 1221 // correct readyTime, and eventually be sent back at that 1222 //time 1223 moveToRespQ(); 1224 1225 // Schedule the next read event 1226 if (!nextReqEvent.scheduled() && !stopReads){ 1227 schedule(nextReqEvent, newTime); 1228 } else { 1229 if (newTime < nextReqEvent.when()) 1230 reschedule(nextReqEvent, newTime); 1231 } 1232} 1233 1234void 1235SimpleDRAM::moveToRespQ() 1236{ 1237 // Remove from read queue 1238 DRAMPacket* dram_pkt = readQueue.front(); 1239 readQueue.pop_front(); 1240 1241 // sanity check 1242 assert(dram_pkt->size <= burstSize); 1243 1244 // Insert into response queue sorted by readyTime 1245 // It will be sent back to the requestor at its 1246 // readyTime 1247 if (respQueue.empty()) { 1248 respQueue.push_front(dram_pkt); 1249 assert(!respondEvent.scheduled()); 1250 assert(dram_pkt->readyTime >= curTick()); 1251 schedule(respondEvent, dram_pkt->readyTime); 1252 } else { 1253 bool done = false; 1254 auto i = respQueue.begin(); 1255 while (!done && i != respQueue.end()) { 1256 if ((*i)->readyTime > dram_pkt->readyTime) { 1257 respQueue.insert(i, dram_pkt); 1258 done = true; 1259 } 1260 ++i; 1261 } 1262 1263 if (!done) 1264 respQueue.push_back(dram_pkt); 1265 1266 assert(respondEvent.scheduled()); 1267 1268 if (respQueue.front()->readyTime < respondEvent.when()) { 1269 assert(respQueue.front()->readyTime >= curTick()); 1270 reschedule(respondEvent, respQueue.front()->readyTime); 1271 } 1272 } 1273} 1274 1275void 1276SimpleDRAM::scheduleNextReq() 1277{ 1278 DPRINTF(DRAM, "Reached scheduleNextReq()\n"); 1279 1280 // Figure out which read request goes next, and move it to the 1281 // front of the read queue 1282 if (!chooseNextRead()) { 1283 // In the case there is no read request to go next, trigger 1284 // writes if we have passed the low threshold (or if we are 1285 // draining) 1286 if (!writeQueue.empty() && !writeEvent.scheduled() && 1287 (writeQueue.size() > writeLowThreshold || drainManager)) 1288 triggerWrites(); 1289 } else { 1290 doDRAMAccess(readQueue.front()); 1291 } 1292} 1293 1294Tick 1295SimpleDRAM::maxBankFreeAt() const 1296{ 1297 Tick banksFree = 0; 1298 1299 for(int i = 0; i < ranksPerChannel; i++) 1300 for(int j = 0; j < banksPerRank; j++) 1301 banksFree = std::max(banks[i][j].freeAt, banksFree); 1302 1303 return banksFree; 1304} 1305 1306uint64_t 1307SimpleDRAM::minBankFreeAt(const deque<DRAMPacket*>& queue) const 1308{ 1309 uint64_t bank_mask = 0; 1310 Tick freeAt = MaxTick; 1311 1312 // detemrine if we have queued transactions targetting the 1313 // bank in question 1314 vector<bool> got_waiting(ranksPerChannel * banksPerRank, false); 1315 for (auto p = queue.begin(); p != queue.end(); ++p) { 1316 got_waiting[(*p)->bankId] = true; 1317 } 1318 1319 for (int i = 0; i < ranksPerChannel; i++) { 1320 for (int j = 0; j < banksPerRank; j++) { 1321 // if we have waiting requests for the bank, and it is 1322 // amongst the first available, update the mask 1323 if (got_waiting[i * banksPerRank + j] && 1324 banks[i][j].freeAt <= freeAt) { 1325 // reset bank mask if new minimum is found 1326 if (banks[i][j].freeAt < freeAt) 1327 bank_mask = 0; 1328 // set the bit corresponding to the available bank 1329 uint8_t bit_index = i * ranksPerChannel + j; 1330 replaceBits(bank_mask, bit_index, bit_index, 1); 1331 freeAt = banks[i][j].freeAt; 1332 } 1333 } 1334 } 1335 return bank_mask; 1336} 1337 1338void 1339SimpleDRAM::processRefreshEvent() 1340{ 1341 DPRINTF(DRAM, "Refreshing at tick %ld\n", curTick()); 1342 1343 Tick banksFree = std::max(curTick(), maxBankFreeAt()) + tRFC; 1344 1345 for(int i = 0; i < ranksPerChannel; i++) 1346 for(int j = 0; j < banksPerRank; j++) { 1347 banks[i][j].freeAt = banksFree; 1348 banks[i][j].openRow = -1; 1349 } 1350 1351 // updating startTickPrechargeAll, isprechargeAll 1352 numBanksActive = 0; 1353 startTickPrechargeAll = banksFree; 1354 1355 schedule(refreshEvent, curTick() + tREFI); 1356} 1357 1358void 1359SimpleDRAM::regStats() 1360{ 1361 using namespace Stats; 1362 1363 AbstractMemory::regStats(); 1364 1365 readReqs 1366 .name(name() + ".readReqs") 1367 .desc("Number of read requests accepted"); 1368 1369 writeReqs 1370 .name(name() + ".writeReqs") 1371 .desc("Number of write requests accepted"); 1372 1373 readBursts 1374 .name(name() + ".readBursts") 1375 .desc("Number of DRAM read bursts, " 1376 "including those serviced by the write queue"); 1377 1378 writeBursts 1379 .name(name() + ".writeBursts") 1380 .desc("Number of DRAM write bursts, " 1381 "including those merged in the write queue"); 1382 1383 servicedByWrQ 1384 .name(name() + ".servicedByWrQ") 1385 .desc("Number of DRAM read bursts serviced by the write queue"); 1386 1387 mergedWrBursts 1388 .name(name() + ".mergedWrBursts") 1389 .desc("Number of DRAM write bursts merged with an existing one"); 1390 1391 neitherReadNorWrite 1392 .name(name() + ".neitherReadNorWriteReqs") 1393 .desc("Number of requests that are neither read nor write"); 1394 1395 perBankRdBursts 1396 .init(banksPerRank * ranksPerChannel) 1397 .name(name() + ".perBankRdBursts") 1398 .desc("Per bank write bursts"); 1399 1400 perBankWrBursts 1401 .init(banksPerRank * ranksPerChannel) 1402 .name(name() + ".perBankWrBursts") 1403 .desc("Per bank write bursts"); 1404 1405 avgRdQLen 1406 .name(name() + ".avgRdQLen") 1407 .desc("Average read queue length when enqueuing") 1408 .precision(2); 1409 1410 avgWrQLen 1411 .name(name() + ".avgWrQLen") 1412 .desc("Average write queue length when enqueuing") 1413 .precision(2); 1414 1415 totQLat 1416 .name(name() + ".totQLat") 1417 .desc("Total ticks spent queuing"); 1418 1419 totBankLat 1420 .name(name() + ".totBankLat") 1421 .desc("Total ticks spent accessing banks"); 1422 1423 totBusLat 1424 .name(name() + ".totBusLat") 1425 .desc("Total ticks spent in databus transfers"); 1426 1427 totMemAccLat 1428 .name(name() + ".totMemAccLat") 1429 .desc("Total ticks spent from burst creation until serviced " 1430 "by the DRAM"); 1431 1432 avgQLat 1433 .name(name() + ".avgQLat") 1434 .desc("Average queueing delay per DRAM burst") 1435 .precision(2); 1436 1437 avgQLat = totQLat / (readBursts - servicedByWrQ); 1438 1439 avgBankLat 1440 .name(name() + ".avgBankLat") 1441 .desc("Average bank access latency per DRAM burst") 1442 .precision(2); 1443 1444 avgBankLat = totBankLat / (readBursts - servicedByWrQ); 1445 1446 avgBusLat 1447 .name(name() + ".avgBusLat") 1448 .desc("Average bus latency per DRAM burst") 1449 .precision(2); 1450 1451 avgBusLat = totBusLat / (readBursts - servicedByWrQ); 1452 1453 avgMemAccLat 1454 .name(name() + ".avgMemAccLat") 1455 .desc("Average memory access latency per DRAM burst") 1456 .precision(2); 1457 1458 avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ); 1459 1460 numRdRetry 1461 .name(name() + ".numRdRetry") 1462 .desc("Number of times read queue was full causing retry"); 1463 1464 numWrRetry 1465 .name(name() + ".numWrRetry") 1466 .desc("Number of times write queue was full causing retry"); 1467 1468 readRowHits 1469 .name(name() + ".readRowHits") 1470 .desc("Number of row buffer hits during reads"); 1471 1472 writeRowHits 1473 .name(name() + ".writeRowHits") 1474 .desc("Number of row buffer hits during writes"); 1475 1476 readRowHitRate 1477 .name(name() + ".readRowHitRate") 1478 .desc("Row buffer hit rate for reads") 1479 .precision(2); 1480 1481 readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100; 1482 1483 writeRowHitRate 1484 .name(name() + ".writeRowHitRate") 1485 .desc("Row buffer hit rate for writes") 1486 .precision(2); 1487 1488 writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100; 1489 1490 readPktSize 1491 .init(ceilLog2(burstSize) + 1) 1492 .name(name() + ".readPktSize") 1493 .desc("Read request sizes (log2)"); 1494 1495 writePktSize 1496 .init(ceilLog2(burstSize) + 1) 1497 .name(name() + ".writePktSize") 1498 .desc("Write request sizes (log2)"); 1499 1500 rdQLenPdf 1501 .init(readBufferSize) 1502 .name(name() + ".rdQLenPdf") 1503 .desc("What read queue length does an incoming req see"); 1504 1505 wrQLenPdf 1506 .init(writeBufferSize) 1507 .name(name() + ".wrQLenPdf") 1508 .desc("What write queue length does an incoming req see"); 1509 1510 bytesPerActivate 1511 .init(maxAccessesPerRow) 1512 .name(name() + ".bytesPerActivate") 1513 .desc("Bytes accessed per row activation") 1514 .flags(nozero); 1515 1516 bytesReadDRAM 1517 .name(name() + ".bytesReadDRAM") 1518 .desc("Total number of bytes read from DRAM"); 1519 1520 bytesReadWrQ 1521 .name(name() + ".bytesReadWrQ") 1522 .desc("Total number of bytes read from write queue"); 1523 1524 bytesWritten 1525 .name(name() + ".bytesWritten") 1526 .desc("Total number of bytes written to DRAM"); 1527 1528 bytesReadSys 1529 .name(name() + ".bytesReadSys") 1530 .desc("Total read bytes from the system interface side"); 1531 1532 bytesWrittenSys 1533 .name(name() + ".bytesWrittenSys") 1534 .desc("Total written bytes from the system interface side"); 1535 1536 avgRdBW 1537 .name(name() + ".avgRdBW") 1538 .desc("Average DRAM read bandwidth in MiByte/s") 1539 .precision(2); 1540 1541 avgRdBW = (bytesReadDRAM / 1000000) / simSeconds; 1542 1543 avgWrBW 1544 .name(name() + ".avgWrBW") 1545 .desc("Average achieved write bandwidth in MiByte/s") 1546 .precision(2); 1547 1548 avgWrBW = (bytesWritten / 1000000) / simSeconds; 1549 1550 avgRdBWSys 1551 .name(name() + ".avgRdBWSys") 1552 .desc("Average system read bandwidth in MiByte/s") 1553 .precision(2); 1554 1555 avgRdBWSys = (bytesReadSys / 1000000) / simSeconds; 1556 1557 avgWrBWSys 1558 .name(name() + ".avgWrBWSys") 1559 .desc("Average system write bandwidth in MiByte/s") 1560 .precision(2); 1561 1562 avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds; 1563 1564 peakBW 1565 .name(name() + ".peakBW") 1566 .desc("Theoretical peak bandwidth in MiByte/s") 1567 .precision(2); 1568 1569 peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000; 1570 1571 busUtil 1572 .name(name() + ".busUtil") 1573 .desc("Data bus utilization in percentage") 1574 .precision(2); 1575 1576 busUtil = (avgRdBW + avgWrBW) / peakBW * 100; 1577 1578 totGap 1579 .name(name() + ".totGap") 1580 .desc("Total gap between requests"); 1581 1582 avgGap 1583 .name(name() + ".avgGap") 1584 .desc("Average gap between requests") 1585 .precision(2); 1586 1587 avgGap = totGap / (readReqs + writeReqs); 1588 1589 // Stats for DRAM Power calculation based on Micron datasheet 1590 busUtilRead 1591 .name(name() + ".busUtilRead") 1592 .desc("Data bus utilization in percentage for reads") 1593 .precision(2); 1594 1595 busUtilRead = avgRdBW / peakBW * 100; 1596 1597 busUtilWrite 1598 .name(name() + ".busUtilWrite") 1599 .desc("Data bus utilization in percentage for writes") 1600 .precision(2); 1601 1602 busUtilWrite = avgWrBW / peakBW * 100; 1603 1604 pageHitRate 1605 .name(name() + ".pageHitRate") 1606 .desc("Row buffer hit rate, read and write combined") 1607 .precision(2); 1608 1609 pageHitRate = (writeRowHits + readRowHits) / 1610 (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100; 1611 1612 prechargeAllPercent 1613 .name(name() + ".prechargeAllPercent") 1614 .desc("Percentage of time for which DRAM has all the banks in " 1615 "precharge state") 1616 .precision(2); 1617 1618 prechargeAllPercent = prechargeAllTime / simTicks * 100; 1619} 1620 1621void 1622SimpleDRAM::recvFunctional(PacketPtr pkt) 1623{ 1624 // rely on the abstract memory 1625 functionalAccess(pkt); 1626} 1627 1628BaseSlavePort& 1629SimpleDRAM::getSlavePort(const string &if_name, PortID idx) 1630{ 1631 if (if_name != "port") { 1632 return MemObject::getSlavePort(if_name, idx); 1633 } else { 1634 return port; 1635 } 1636} 1637 1638unsigned int 1639SimpleDRAM::drain(DrainManager *dm) 1640{ 1641 unsigned int count = port.drain(dm); 1642 1643 // if there is anything in any of our internal queues, keep track 1644 // of that as well 1645 if (!(writeQueue.empty() && readQueue.empty() && 1646 respQueue.empty())) { 1647 DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d," 1648 " resp: %d\n", writeQueue.size(), readQueue.size(), 1649 respQueue.size()); 1650 ++count; 1651 drainManager = dm; 1652 // the only part that is not drained automatically over time 1653 // is the write queue, thus trigger writes if there are any 1654 // waiting and no reads waiting, otherwise wait until the 1655 // reads are done 1656 if (readQueue.empty() && !writeQueue.empty() && 1657 !writeEvent.scheduled()) 1658 triggerWrites(); 1659 } 1660 1661 if (count) 1662 setDrainState(Drainable::Draining); 1663 else 1664 setDrainState(Drainable::Drained); 1665 return count; 1666} 1667 1668SimpleDRAM::MemoryPort::MemoryPort(const std::string& name, SimpleDRAM& _memory) 1669 : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this), 1670 memory(_memory) 1671{ } 1672 1673AddrRangeList 1674SimpleDRAM::MemoryPort::getAddrRanges() const 1675{ 1676 AddrRangeList ranges; 1677 ranges.push_back(memory.getAddrRange()); 1678 return ranges; 1679} 1680 1681void 1682SimpleDRAM::MemoryPort::recvFunctional(PacketPtr pkt) 1683{ 1684 pkt->pushLabel(memory.name()); 1685 1686 if (!queue.checkFunctional(pkt)) { 1687 // Default implementation of SimpleTimingPort::recvFunctional() 1688 // calls recvAtomic() and throws away the latency; we can save a 1689 // little here by just not calculating the latency. 1690 memory.recvFunctional(pkt); 1691 } 1692 1693 pkt->popLabel(); 1694} 1695 1696Tick 1697SimpleDRAM::MemoryPort::recvAtomic(PacketPtr pkt) 1698{ 1699 return memory.recvAtomic(pkt); 1700} 1701 1702bool 1703SimpleDRAM::MemoryPort::recvTimingReq(PacketPtr pkt) 1704{ 1705 // pass it to the memory controller 1706 return memory.recvTimingReq(pkt); 1707} 1708 1709SimpleDRAM* 1710SimpleDRAMParams::create() 1711{ 1712 return new SimpleDRAM(this); 1713} 1714