dram_ctrl.cc revision 9491
1/*
2 * Copyright (c) 2010-2012 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Andreas Hansson
38 *          Ani Udipi
39 */
40
41#include "base/trace.hh"
42#include "debug/Drain.hh"
43#include "debug/DRAM.hh"
44#include "debug/DRAMWR.hh"
45#include "mem/simple_dram.hh"
46#include "sim/stat_control.hh"
47
48using namespace std;
49
50SimpleDRAM::SimpleDRAM(const SimpleDRAMParams* p) :
51    AbstractMemory(p),
52    port(name() + ".port", *this),
53    retryRdReq(false), retryWrReq(false),
54    rowHitFlag(false), stopReads(false), actTicks(p->activation_limit, 0),
55    writeEvent(this), respondEvent(this),
56    refreshEvent(this), nextReqEvent(this), drainManager(NULL),
57    bytesPerCacheLine(0),
58    linesPerRowBuffer(p->lines_per_rowbuffer),
59    ranksPerChannel(p->ranks_per_channel),
60    banksPerRank(p->banks_per_rank), rowsPerBank(0),
61    readBufferSize(p->read_buffer_size),
62    writeBufferSize(p->write_buffer_size),
63    writeThresholdPerc(p->write_thresh_perc),
64    tWTR(p->tWTR), tBURST(p->tBURST),
65    tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP),
66    tRFC(p->tRFC), tREFI(p->tREFI),
67    tXAW(p->tXAW), activationLimit(p->activation_limit),
68    memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
69    pageMgmt(p->page_policy),
70    busBusyUntil(0), prevdramaccess(0), writeStartTime(0),
71    prevArrival(0), numReqs(0)
72{
73    // create the bank states based on the dimensions of the ranks and
74    // banks
75    banks.resize(ranksPerChannel);
76    for (size_t c = 0; c < ranksPerChannel; ++c) {
77        banks[c].resize(banksPerRank);
78    }
79
80    // round the write threshold percent to a whole number of entries
81    // in the buffer
82    writeThreshold = writeBufferSize * writeThresholdPerc / 100.0;
83}
84
85void
86SimpleDRAM::init()
87{
88    if (!port.isConnected()) {
89        fatal("SimpleDRAM %s is unconnected!\n", name());
90    } else {
91        port.sendRangeChange();
92    }
93
94    // get the cache line size from the connected port
95    bytesPerCacheLine = port.peerBlockSize();
96
97    // we could deal with plenty options here, but for now do a quick
98    // sanity check
99    if (bytesPerCacheLine != 64 && bytesPerCacheLine != 32)
100        panic("Unexpected cache line size %d", bytesPerCacheLine);
101
102    // determine the rows per bank by looking at the total capacity
103    uint64_t capacity = AbstractMemory::size();
104    uint64_t i = 1;
105    while (i < 64 && capacity > ((1 << i))) {
106        ++i;
107    }
108
109    // rounded up to nearest power of two
110    DPRINTF(DRAM, "i is %lld\n", i);
111    capacity = 1 << i;
112
113    DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
114            AbstractMemory::size());
115    rowsPerBank = capacity / (bytesPerCacheLine * linesPerRowBuffer *
116                              banksPerRank * ranksPerChannel);
117
118}
119
120void
121SimpleDRAM::startup()
122{
123    // print the configuration of the controller
124    printParams();
125
126    // kick off the refresh
127    schedule(&refreshEvent, curTick() + tREFI);
128}
129
130
131Tick
132SimpleDRAM::recvAtomic(PacketPtr pkt)
133{
134    DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
135
136    // do the actual memory access and turn the packet into a response
137    access(pkt);
138
139    Tick latency = 0;
140    if (!pkt->memInhibitAsserted() && pkt->hasData()) {
141        // this value is not supposed to be accurate, just enough to
142        // keep things going, mimic a closed page
143        latency = tRP + tRCD + tCL;
144    }
145    return latency;
146}
147
148bool
149SimpleDRAM::readQueueFull() const
150{
151    DPRINTF(DRAM, "Read queue limit %d current size %d\n",
152            readBufferSize, dramReadQueue.size() + dramRespQueue.size());
153
154    return (dramReadQueue.size() + dramRespQueue.size()) == readBufferSize;
155}
156
157bool
158SimpleDRAM::writeQueueFull() const
159{
160    DPRINTF(DRAM, "Write queue limit %d current size %d\n",
161            writeBufferSize, dramWriteQueue.size());
162    return dramWriteQueue.size() == writeBufferSize;
163}
164
165
166SimpleDRAM::DRAMPacket*
167SimpleDRAM::decodeAddr(PacketPtr pkt)
168{
169    // decode the address based on the address mapping scheme
170    //
171    // with R, C, B and K denoting rank, column, bank and rank,
172    // respectively, and going from MSB to LSB, the two schemes are
173    // RKBC (openmap) and RCKB (closedmap)
174    uint8_t rank;
175    uint16_t bank;
176    uint16_t row;
177
178    Addr addr = pkt->getAddr();
179    Addr temp = addr;
180
181    // truncate the address to the access granularity
182    addr = addr / bytesPerCacheLine;
183
184    // we have removed the lowest order address bits that denote the
185    // position within the cache line, proceed and select the
186    // appropriate bits for bank, rank and row (no column address is
187    // needed)
188    if (addrMapping == Enums::openmap) {
189        // the lowest order bits denote the column to ensure that
190        // sequential cache lines occupy the same row
191        addr = addr / linesPerRowBuffer;
192
193        // after the column bits, we get the bank bits to interleave
194        // over the banks
195        bank = addr % banksPerRank;
196        addr = addr / banksPerRank;
197
198        // after the bank, we get the rank bits which thus interleaves
199        // over the ranks
200        rank = addr % ranksPerChannel;
201        addr = addr / ranksPerChannel;
202
203        // lastly, get the row bits
204        row = addr % rowsPerBank;
205        addr = addr / rowsPerBank;
206    } else if (addrMapping == Enums::closemap) {
207        // optimise for closed page mode and utilise maximum
208        // parallelism of the DRAM (at the cost of power)
209
210        // start with the bank bits, as this provides the maximum
211        // opportunity for parallelism between requests
212        bank = addr % banksPerRank;
213        addr = addr / banksPerRank;
214
215        // next get the rank bits
216        rank = addr % ranksPerChannel;
217        addr = addr / ranksPerChannel;
218
219        // next the column bits which we do not need to keep track of
220        // and simply skip past
221        addr = addr / linesPerRowBuffer;
222
223        // lastly, get the row bits
224        row = addr % rowsPerBank;
225        addr = addr / rowsPerBank;
226    } else
227        panic("Unknown address mapping policy chosen!");
228
229    assert(rank < ranksPerChannel);
230    assert(bank < banksPerRank);
231    assert(row < rowsPerBank);
232
233    DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
234            temp, rank, bank, row);
235
236    // create the corresponding DRAM packet with the entry time and
237    // ready time set to the current tick, they will be updated later
238    DRAMPacket* dram_pkt = new DRAMPacket(pkt, rank, bank, row, temp,
239                                          banks[rank][bank]);
240
241    return dram_pkt;
242}
243
244void
245SimpleDRAM::addToReadQueue(PacketPtr pkt)
246{
247    // only add to the read queue here. whenever the request is
248    // eventually done, set the readyTime, and call schedule()
249    assert(!pkt->isWrite());
250
251    // First check write buffer to see if the data is already at
252    // the controller
253    std::list<DRAMPacket*>::const_iterator i;
254    Addr addr = pkt->getAddr();
255
256    // @todo: add size check
257    for (i = dramWriteQueue.begin();  i != dramWriteQueue.end(); ++i) {
258        if ((*i)->addr == addr){
259            servicedByWrQ++;
260            DPRINTF(DRAM,"Serviced by write Q\n");
261            bytesRead += bytesPerCacheLine;
262            bytesConsumedRd += pkt->getSize();
263            accessAndRespond(pkt);
264            return;
265        }
266    }
267
268    DRAMPacket* dram_pkt = decodeAddr(pkt);
269
270    assert(dramReadQueue.size() + dramRespQueue.size() < readBufferSize);
271    rdQLenPdf[dramReadQueue.size() + dramRespQueue.size()]++;
272
273    DPRINTF(DRAM, "Adding to read queue\n");
274
275    dramReadQueue.push_back(dram_pkt);
276
277    // Update stats
278    uint32_t bank_id = banksPerRank * dram_pkt->rank + dram_pkt->bank;
279    assert(bank_id < ranksPerChannel * banksPerRank);
280    perBankRdReqs[bank_id]++;
281
282    avgRdQLen = dramReadQueue.size() + dramRespQueue.size();
283
284    // Special case where no arbitration is required between requests
285    if (!nextReqEvent.scheduled() && !stopReads) {
286        DPRINTF(DRAM, "Request %lld - need to schedule immediately");
287        schedule(&nextReqEvent, curTick() + 1);
288    }
289}
290
291void
292SimpleDRAM::processWriteEvent()
293{
294    assert(!dramWriteQueue.empty());
295    uint32_t numWritesThisTime = 0;
296
297    DPRINTF(DRAMWR, "Beginning DRAM Writes\n");
298    Tick temp1 M5_VAR_USED = std::max(curTick(), busBusyUntil);
299    Tick temp2 M5_VAR_USED = std::max(curTick(), maxBankFreeAt());
300
301    // @todo: are there any dangers with the untimed while loop?
302    while (!dramWriteQueue.empty()) {
303        if (numWritesThisTime > writeThreshold)
304            break;
305
306        chooseNextWrite();
307        DRAMPacket* dram_pkt = dramWriteQueue.front();
308        // What's the earlier the request can be put on the bus
309        Tick schedTime = std::max(curTick(), busBusyUntil);
310
311        DPRINTF(DRAMWR, "Asking for latency estimate at %lld\n",
312                schedTime + tBURST);
313
314        pair<Tick, Tick> lat = estimateLatency(dram_pkt, schedTime + tBURST);
315        Tick accessLat = lat.second;
316
317        // look at the rowHitFlag set by estimateLatency
318
319        // @todo: Race condition here where another packet gives rise
320        // to another call to estimateLatency in the meanwhile?
321        if (rowHitFlag)
322            writeRowHits++;
323
324        Bank& bank = dram_pkt->bank_ref;
325
326        if (pageMgmt == Enums::open) {
327            bank.openRow = dram_pkt->row;
328            bank.freeAt = schedTime + tBURST + std::max(accessLat, tCL);
329            busBusyUntil = bank.freeAt - tCL;
330
331            if (!rowHitFlag) {
332                bank.tRASDoneAt = bank.freeAt + tRP;
333                recordActivate(bank.freeAt - tCL - tRCD);
334                busBusyUntil = bank.freeAt - tCL - tRCD;
335            }
336        } else if (pageMgmt == Enums::close) {
337            bank.freeAt = schedTime + tBURST + accessLat + tRP + tRP;
338            // Work backwards from bank.freeAt to determine activate time
339            recordActivate(bank.freeAt - tRP - tRP - tCL - tRCD);
340            busBusyUntil = bank.freeAt - tRP - tRP - tCL - tRCD;
341            DPRINTF(DRAMWR, "processWriteEvent::bank.freeAt for "
342                    "banks_id %d is %lld\n",
343                    dram_pkt->rank * banksPerRank + dram_pkt->bank,
344                    bank.freeAt);
345        } else
346            panic("Unknown page management policy chosen\n");
347
348        DPRINTF(DRAMWR,"Done writing to address %lld\n",dram_pkt->addr);
349
350        DPRINTF(DRAMWR,"schedtime is %lld, tBURST is %lld, "
351                "busbusyuntil is %lld\n",
352                schedTime, tBURST, busBusyUntil);
353
354        dramWriteQueue.pop_front();
355        delete dram_pkt;
356
357        numWritesThisTime++;
358    }
359
360    DPRINTF(DRAMWR, "Completed %d writes, bus busy for %lld ticks,"\
361            "banks busy for %lld ticks\n", numWritesThisTime,
362            busBusyUntil - temp1, maxBankFreeAt() - temp2);
363
364    // Update stats
365    avgWrQLen = dramWriteQueue.size();
366
367    // turn the bus back around for reads again
368    busBusyUntil += tWTR;
369    stopReads = false;
370
371    if (retryWrReq) {
372        retryWrReq = false;
373        port.sendRetry();
374    }
375
376    // if there is nothing left in any queue, signal a drain
377    if (dramWriteQueue.empty() && dramReadQueue.empty() &&
378        dramRespQueue.empty () && drainManager) {
379        drainManager->signalDrainDone();
380        drainManager = NULL;
381    }
382
383    // Once you're done emptying the write queue, check if there's
384    // anything in the read queue, and call schedule if required
385    schedule(&nextReqEvent, busBusyUntil);
386}
387
388void
389SimpleDRAM::triggerWrites()
390{
391    DPRINTF(DRAM, "Writes triggered at %lld\n", curTick());
392    // Flag variable to stop any more read scheduling
393    stopReads = true;
394
395    writeStartTime = std::max(busBusyUntil, curTick()) + tWTR;
396
397    DPRINTF(DRAM, "Writes scheduled at %lld\n", writeStartTime);
398
399    assert(writeStartTime >= curTick());
400    assert(!writeEvent.scheduled());
401    schedule(&writeEvent, writeStartTime);
402}
403
404void
405SimpleDRAM::addToWriteQueue(PacketPtr pkt)
406{
407    // only add to the write queue here. whenever the request is
408    // eventually done, set the readyTime, and call schedule()
409    assert(pkt->isWrite());
410
411    DRAMPacket* dram_pkt = decodeAddr(pkt);
412
413    assert(dramWriteQueue.size() < writeBufferSize);
414    wrQLenPdf[dramWriteQueue.size()]++;
415
416    DPRINTF(DRAM, "Adding to write queue\n");
417
418    dramWriteQueue.push_back(dram_pkt);
419
420    // Update stats
421    uint32_t bank_id = banksPerRank * dram_pkt->rank + dram_pkt->bank;
422    assert(bank_id < ranksPerChannel * banksPerRank);
423    perBankWrReqs[bank_id]++;
424
425    avgWrQLen = dramWriteQueue.size();
426
427    // we do not wait for the writes to be send to the actual memory,
428    // but instead take responsibility for the consistency here and
429    // snoop the write queue for any upcoming reads
430
431    bytesConsumedWr += pkt->getSize();
432    bytesWritten += bytesPerCacheLine;
433    accessAndRespond(pkt);
434
435    // If your write buffer is starting to fill up, drain it!
436    if (dramWriteQueue.size() > writeThreshold  && !stopReads){
437        triggerWrites();
438    }
439}
440
441void
442SimpleDRAM::printParams() const
443{
444    // Sanity check print of important parameters
445    DPRINTF(DRAM,
446            "Memory controller %s physical organization\n"      \
447            "Bytes per cacheline  %d\n"                         \
448            "Lines per row buffer %d\n"                         \
449            "Rows  per bank       %d\n"                         \
450            "Banks per rank       %d\n"                         \
451            "Ranks per channel    %d\n"                         \
452            "Total mem capacity   %u\n",
453            name(), bytesPerCacheLine ,linesPerRowBuffer, rowsPerBank,
454            banksPerRank, ranksPerChannel, bytesPerCacheLine *
455            linesPerRowBuffer * rowsPerBank * banksPerRank * ranksPerChannel);
456
457    string scheduler =  memSchedPolicy == Enums::fcfs ? "FCFS" : "FR-FCFS";
458    string address_mapping = addrMapping == Enums::openmap ? "OPENMAP" :
459        "CLOSEMAP";
460    string page_policy = pageMgmt == Enums::open ? "OPEN" : "CLOSE";
461
462    DPRINTF(DRAM,
463            "Memory controller %s characteristics\n"    \
464            "Read buffer size     %d\n"                 \
465            "Write buffer size    %d\n"                 \
466            "Write buffer thresh  %d\n"                 \
467            "Scheduler            %s\n"                 \
468            "Address mapping      %s\n"                 \
469            "Page policy          %s\n",
470            name(), readBufferSize, writeBufferSize, writeThreshold,
471            scheduler, address_mapping, page_policy);
472
473    DPRINTF(DRAM, "Memory controller %s timing specs\n" \
474            "tRCD    %d ticks\n"                        \
475            "tCL     %d ticks\n"                        \
476            "tRP     %d ticks\n"                        \
477            "tBURST  %d ticks\n"                        \
478            "tRFC    %d ticks\n"                        \
479            "tREFI   %d ticks\n"                        \
480            "tWTR    %d ticks\n",
481            name(), tRCD, tCL, tRP, tBURST, tRFC, tREFI, tWTR);
482}
483
484void
485SimpleDRAM::printQs() const {
486
487    list<DRAMPacket*>::const_iterator i;
488
489    DPRINTF(DRAM, "===READ QUEUE===\n\n");
490    for (i = dramReadQueue.begin() ;  i != dramReadQueue.end() ; ++i) {
491        DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
492    }
493    DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
494    for (i = dramRespQueue.begin() ;  i != dramRespQueue.end() ; ++i) {
495        DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
496    }
497    DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
498    for (i = dramWriteQueue.begin() ;  i != dramWriteQueue.end() ; ++i) {
499        DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
500    }
501}
502
503bool
504SimpleDRAM::recvTimingReq(PacketPtr pkt)
505{
506    /// @todo temporary hack to deal with memory corruption issues until
507    /// 4-phase transactions are complete
508    for (int x = 0; x < pendingDelete.size(); x++)
509        delete pendingDelete[x];
510    pendingDelete.clear();
511
512
513    // This is where we enter from the outside world
514    DPRINTF(DRAM, "Inside recvTimingReq: request %s addr %lld size %d\n",
515            pkt->cmdString(),pkt->getAddr(), pkt->getSize());
516
517   int index;
518
519   if (pkt->getSize() == bytesPerCacheLine)
520       cpuReqs++;
521
522   if (numReqs % 1000000 == 0)
523       printQs();
524
525    // Calc avg gap between requests
526    if (prevArrival != 0) {
527        totGap += curTick() - prevArrival;
528    }
529    prevArrival = curTick();
530
531    // simply drop inhibited packets for now
532    if (pkt->memInhibitAsserted()) {
533        DPRINTF(DRAM,"Inhibited packet -- Dropping it now\n");
534        pendingDelete.push_back(pkt);
535        return true;
536    }
537
538    unsigned size = pkt->getSize();
539    if (size > bytesPerCacheLine)
540        panic("Request size %d is greater than cache line size %d",
541              size, bytesPerCacheLine);
542
543    if (size == 0)
544        index = log2(bytesPerCacheLine) + 1;
545    else
546        index = log2(size);
547
548    if (size != 0 && (1 << index) != size)
549        index = log2(bytesPerCacheLine) + 2;
550
551    // @todo: Do we really want to do all this before the packet is
552    // actually accepted?
553
554    /* Index 0 - Size 1 byte
555       Index 1 - Size 2 bytes
556       Index 2 - Size 4 bytes
557         .
558         .
559       Index 6 - Size 64 bytes
560       Index 7 - Size 0 bytes
561       Index 8 - Non-power-of-2 size */
562
563    if (pkt->isRead())
564        readPktSize[index]++;
565    else if (pkt->isWrite())
566        writePktSize[index]++;
567    else
568        neitherPktSize[index]++;
569
570    // check local buffers and do not accept if full
571    if (pkt->isRead()) {
572        if (readQueueFull()) {
573            DPRINTF(DRAM,"Read queue full, not accepting\n");
574            // remember that we have to retry this port
575            retryRdReq = true;
576            numRdRetry++;
577            return false;
578        } else {
579            addToReadQueue(pkt);
580            readReqs++;
581            numReqs++;
582        }
583    } else if (pkt->isWrite()) {
584        if (writeQueueFull()) {
585            DPRINTF(DRAM,"Write queue full, not accepting\n");
586            // remember that we have to retry this port
587            retryWrReq = true;
588            numWrRetry++;
589            return false;
590        } else {
591            addToWriteQueue(pkt);
592            writeReqs++;
593            numReqs++;
594        }
595    } else {
596        DPRINTF(DRAM,"Neither read nor write, ignore timing\n");
597        neitherReadNorWrite++;
598        accessAndRespond(pkt);
599    }
600
601
602    retryRdReq = false;
603    retryWrReq = false;
604    return true;
605}
606
607void
608SimpleDRAM::processRespondEvent()
609{
610    DPRINTF(DRAM,
611            "processRespondEvent(): Some req has reached its readyTime\n");
612
613     PacketPtr pkt = dramRespQueue.front()->pkt;
614
615     // Actually responds to the requestor
616     bytesConsumedRd += pkt->getSize();
617     bytesRead += bytesPerCacheLine;
618     accessAndRespond(pkt);
619
620     DRAMPacket* dram_pkt = dramRespQueue.front();
621     dramRespQueue.pop_front();
622     delete dram_pkt;
623
624     // Update stats
625     avgRdQLen = dramReadQueue.size() + dramRespQueue.size();
626
627     if (!dramRespQueue.empty()){
628         assert(dramRespQueue.front()->readyTime >= curTick());
629         assert(!respondEvent.scheduled());
630         schedule(&respondEvent, dramRespQueue.front()->readyTime);
631     } else {
632         // if there is nothing left in any queue, signal a drain
633         if (dramWriteQueue.empty() && dramReadQueue.empty() &&
634             drainManager) {
635             drainManager->signalDrainDone();
636             drainManager = NULL;
637         }
638     }
639}
640
641void
642SimpleDRAM::chooseNextWrite()
643{
644    // This method does the arbitration between requests. The chosen
645    // packet is simply moved to the head of the queue. The other
646    // methods know that this is the place to look. For example, with
647    // FCFS, this method does nothing
648    assert(!dramWriteQueue.empty());
649
650    if (dramWriteQueue.size() == 1) {
651        DPRINTF(DRAMWR, "chooseNextWrite(): Single element, nothing to do\n");
652        return;
653    }
654
655    if (memSchedPolicy == Enums::fcfs) {
656
657        // Do nothing, since the correct request is already head
658
659    } else if (memSchedPolicy == Enums::frfcfs) {
660
661        list<DRAMPacket*>::iterator i = dramWriteQueue.begin();
662        bool foundRowHit = false;
663        while (!foundRowHit && i != dramWriteQueue.end()) {
664            DRAMPacket* dram_pkt = *i;
665            const Bank& bank = dram_pkt->bank_ref;
666            if (bank.openRow == dram_pkt->row) { //FR part
667                DPRINTF(DRAMWR,"Row buffer hit\n");
668                dramWriteQueue.erase(i);
669                dramWriteQueue.push_front(dram_pkt);
670                foundRowHit = true;
671            } else { //FCFS part
672                ;
673            }
674            ++i;
675        }
676
677    } else
678        panic("No scheduling policy chosen\n");
679
680    DPRINTF(DRAMWR, "chooseNextWrite(): Something chosen\n");
681}
682
683bool
684SimpleDRAM::chooseNextReq()
685{
686    // This method does the arbitration between requests.
687    // The chosen packet is simply moved to the head of the
688    // queue. The other methods know that this is the place
689    // to look. For example, with FCFS, this method does nothing
690    list<DRAMPacket*>::iterator i;
691    DRAMPacket* dram_pkt;
692
693    if (dramReadQueue.empty()){
694        DPRINTF(DRAM, "chooseNextReq(): Returning False\n");
695        return false;
696    }
697
698    if (dramReadQueue.size() == 1)
699        return true;
700
701    if (memSchedPolicy == Enums::fcfs) {
702
703        // Do nothing, since the correct request is already head
704
705    } else if (memSchedPolicy == Enums::frfcfs) {
706
707        for (i = dramReadQueue.begin() ; i != dramReadQueue.end() ; ++i) {
708            dram_pkt = *i;
709            const Bank& bank = dram_pkt->bank_ref;
710            if (bank.openRow == dram_pkt->row) { //FR part
711                DPRINTF(DRAM, "Row buffer hit\n");
712                dramReadQueue.erase(i);
713                dramReadQueue.push_front(dram_pkt);
714                break;
715            } else { //FCFS part
716                ;
717            }
718
719        }
720
721    } else
722        panic("No scheduling policy chosen!\n");
723
724
725    DPRINTF(DRAM,"chooseNextReq(): Chosen something, returning True\n");
726    return true;
727}
728
729void
730SimpleDRAM::accessAndRespond(PacketPtr pkt)
731{
732    DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
733
734    bool needsResponse = pkt->needsResponse();
735    // do the actual memory access which also turns the packet into a
736    // response
737    access(pkt);
738
739    // turn packet around to go back to requester if response expected
740    if (needsResponse) {
741        // access already turned the packet into a response
742        assert(pkt->isResponse());
743
744        // queue the packet in the response queue to be sent out the
745        // next tick
746        port.schedTimingResp(pkt, curTick() + 1);
747    } else {
748    }
749
750    DPRINTF(DRAM, "Done\n");
751
752    return;
753}
754
755pair<Tick, Tick>
756SimpleDRAM::estimateLatency(DRAMPacket* dram_pkt, Tick inTime)
757{
758    // If a request reaches a bank at tick 'inTime', how much time
759    // *after* that does it take to finish the request, depending
760    // on bank status and page open policy. Note that this method
761    // considers only the time taken for the actual read or write
762    // to complete, NOT any additional time thereafter for tRAS or
763    // tRP.
764    Tick accLat = 0;
765    Tick bankLat = 0;
766    rowHitFlag = false;
767
768    const Bank& bank = dram_pkt->bank_ref;
769    if (pageMgmt == Enums::open) { // open-page policy
770        if (bank.openRow == dram_pkt->row) {
771            // When we have a row-buffer hit,
772            // we don't care about tRAS having expired or not,
773            // but do care about bank being free for access
774            rowHitFlag = true;
775
776            if (bank.freeAt < inTime) {
777               // CAS latency only
778               accLat += tCL;
779               bankLat += tCL;
780            } else {
781                accLat += 0;
782                bankLat += 0;
783            }
784
785        } else {
786            // Row-buffer miss, need to close existing row
787            // once tRAS has expired, then open the new one,
788            // then add cas latency.
789            Tick freeTime = std::max(bank.tRASDoneAt, bank.freeAt);
790
791            if (freeTime > inTime)
792               accLat += freeTime - inTime;
793
794            accLat += tRP + tRCD + tCL;
795            bankLat += tRP + tRCD + tCL;
796        }
797    } else if (pageMgmt == Enums::close) {
798
799        // With a close page policy, no notion of
800        // bank.tRASDoneAt
801        if (bank.freeAt > inTime)
802            accLat += bank.freeAt - inTime;
803
804        // page already closed, simply open the row, and
805        // add cas latency
806        accLat += tRCD + tCL;
807        bankLat += tRCD + tCL;
808    } else
809        panic("No page management policy chosen\n");
810
811    DPRINTF(DRAM, "Returning < %lld, %lld > from estimateLatency()\n",
812            bankLat, accLat);
813
814    return make_pair(bankLat, accLat);
815}
816
817void
818SimpleDRAM::processNextReqEvent()
819{
820    scheduleNextReq();
821}
822
823void
824SimpleDRAM::recordActivate(Tick act_tick)
825{
826    assert(actTicks.size() == activationLimit);
827
828    DPRINTF(DRAM, "Activate at tick %d\n", act_tick);
829
830    // sanity check
831    if (actTicks.back() && (act_tick - actTicks.back()) < tXAW) {
832        panic("Got %d activates in window %d (%d - %d) which is smaller "
833              "than %d\n", activationLimit, act_tick - actTicks.back(),
834              act_tick, actTicks.back(), tXAW);
835    }
836
837    // shift the times used for the book keeping, the last element
838    // (highest index) is the oldest one and hence the lowest value
839    actTicks.pop_back();
840
841    // record an new activation (in the future)
842    actTicks.push_front(act_tick);
843
844    // cannot activate more than X times in time window tXAW, push the
845    // next one (the X + 1'st activate) to be tXAW away from the
846    // oldest in our window of X
847    if (actTicks.back() && (act_tick - actTicks.back()) < tXAW) {
848        DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate no earlier "
849                "than %d\n", activationLimit, actTicks.back() + tXAW);
850        for(int i = 0; i < ranksPerChannel; i++)
851            for(int j = 0; j < banksPerRank; j++)
852                // next activate must not happen before end of window
853                banks[i][j].freeAt = std::max(banks[i][j].freeAt,
854                                              actTicks.back() + tXAW);
855    }
856}
857
858void
859SimpleDRAM::doDRAMAccess(DRAMPacket* dram_pkt)
860{
861
862    DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
863            dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
864
865    assert(curTick() >= prevdramaccess);
866    prevdramaccess = curTick();
867
868    // estimate the bank and access latency
869    pair<Tick, Tick> lat = estimateLatency(dram_pkt, curTick());
870    Tick bankLat = lat.first;
871    Tick accessLat = lat.second;
872
873    // This request was woken up at this time based on a prior call
874    // to estimateLatency(). However, between then and now, both the
875    // accessLatency and/or busBusyUntil may have changed. We need
876    // to correct for that.
877
878    Tick addDelay = (curTick() + accessLat < busBusyUntil) ?
879        busBusyUntil - (curTick() + accessLat) : 0;
880
881    Bank& bank = dram_pkt->bank_ref;
882
883    // Update bank state
884    if (pageMgmt == Enums::open) {
885        bank.openRow = dram_pkt->row;
886        bank.freeAt = curTick() + addDelay + accessLat;
887        // If you activated a new row do to this access, the next access
888        // will have to respect tRAS for this bank. Assume tRAS ~= 3 * tRP.
889        // Also need to account for t_XAW
890        if (!rowHitFlag) {
891            bank.tRASDoneAt = bank.freeAt + tRP;
892            recordActivate(bank.freeAt - tCL - tRCD); //since this is open page,
893                                                      //no tRP by default
894        }
895    } else if (pageMgmt == Enums::close) { // accounting for tRAS also
896        // assuming that tRAS ~= 3 * tRP, and tRC ~= 4 * tRP, as is common
897        // (refer Jacob/Ng/Wang and Micron datasheets)
898        bank.freeAt = curTick() + addDelay + accessLat + tRP + tRP;
899        recordActivate(bank.freeAt - tRP - tRP - tCL - tRCD); //essentially (freeAt - tRC)
900        DPRINTF(DRAM,"doDRAMAccess::bank.freeAt is %lld\n",bank.freeAt);
901    } else
902        panic("No page management policy chosen\n");
903
904    // Update request parameters
905    dram_pkt->readyTime = curTick() + addDelay + accessLat + tBURST;
906
907
908    DPRINTF(DRAM, "Req %lld: curtick is %lld accessLat is %d " \
909                  "readytime is %lld busbusyuntil is %lld. " \
910                  "Scheduling at readyTime\n", dram_pkt->addr,
911                   curTick(), accessLat, dram_pkt->readyTime, busBusyUntil);
912
913    // Make sure requests are not overlapping on the databus
914    assert (dram_pkt->readyTime - busBusyUntil >= tBURST);
915
916    // Update bus state
917    busBusyUntil = dram_pkt->readyTime;
918
919    DPRINTF(DRAM,"Access time is %lld\n",
920            dram_pkt->readyTime - dram_pkt->entryTime);
921
922    // Update stats
923    totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
924    totBankLat += bankLat;
925    totBusLat += tBURST;
926    totQLat += dram_pkt->readyTime - dram_pkt->entryTime - bankLat - tBURST;
927
928    if (rowHitFlag)
929        readRowHits++;
930
931    // At this point we're done dealing with the request
932    // It will be moved to a separate response queue with a
933    // correct readyTime, and eventually be sent back at that
934    //time
935    moveToRespQ();
936
937    // The absolute soonest you have to start thinking about the
938    // next request is the longest access time that can occur before
939    // busBusyUntil. Assuming you need to meet tRAS, then precharge,
940    // open a new row, and access, it is ~4*tRCD.
941
942
943    Tick newTime = (busBusyUntil > 4 * tRCD) ?
944                   std::max(busBusyUntil - 4 * tRCD, curTick()) :
945                   curTick();
946
947    if (!nextReqEvent.scheduled() && !stopReads){
948        schedule(&nextReqEvent, newTime);
949    } else {
950        if (newTime < nextReqEvent.when())
951            reschedule(&nextReqEvent, newTime);
952    }
953
954
955}
956
957void
958SimpleDRAM::moveToRespQ()
959{
960    // Remove from read queue
961    DRAMPacket* dram_pkt = dramReadQueue.front();
962    dramReadQueue.pop_front();
963
964    // Insert into response queue sorted by readyTime
965    // It will be sent back to the requestor at its
966    // readyTime
967    if (dramRespQueue.empty()) {
968        dramRespQueue.push_front(dram_pkt);
969        assert(!respondEvent.scheduled());
970        assert(dram_pkt->readyTime >= curTick());
971        schedule(&respondEvent, dram_pkt->readyTime);
972    } else {
973        bool done = false;
974        std::list<DRAMPacket*>::iterator i = dramRespQueue.begin();
975        while (!done && i != dramRespQueue.end()) {
976            if ((*i)->readyTime > dram_pkt->readyTime) {
977                dramRespQueue.insert(i, dram_pkt);
978                done = true;
979            }
980            ++i;
981        }
982
983        if (!done)
984            dramRespQueue.push_back(dram_pkt);
985
986        assert(respondEvent.scheduled());
987
988        if (dramRespQueue.front()->readyTime < respondEvent.when()) {
989            assert(dramRespQueue.front()->readyTime >= curTick());
990            reschedule(&respondEvent, dramRespQueue.front()->readyTime);
991        }
992    }
993
994    if (retryRdReq) {
995         retryRdReq = false;
996         port.sendRetry();
997     }
998}
999
1000void
1001SimpleDRAM::scheduleNextReq()
1002{
1003    DPRINTF(DRAM, "Reached scheduleNextReq()\n");
1004
1005    // Figure out which request goes next, and move it to front()
1006    if (!chooseNextReq()) {
1007        // In the case there is no read request to go next, see if we
1008        // are asked to drain, and if so trigger writes, this also
1009        // ensures that if we hit the write limit we will do this
1010        // multiple times until we are completely drained
1011        if (drainManager && !dramWriteQueue.empty() && !writeEvent.scheduled())
1012            triggerWrites();
1013    } else {
1014        doDRAMAccess(dramReadQueue.front());
1015    }
1016}
1017
1018Tick
1019SimpleDRAM::maxBankFreeAt() const
1020{
1021    Tick banksFree = 0;
1022
1023    for(int i = 0; i < ranksPerChannel; i++)
1024        for(int j = 0; j < banksPerRank; j++)
1025            banksFree = std::max(banks[i][j].freeAt, banksFree);
1026
1027    return banksFree;
1028}
1029
1030void
1031SimpleDRAM::processRefreshEvent()
1032{
1033    DPRINTF(DRAM, "Refreshing at tick %ld\n", curTick());
1034
1035    Tick banksFree = std::max(curTick(), maxBankFreeAt()) + tRFC;
1036
1037    for(int i = 0; i < ranksPerChannel; i++)
1038        for(int j = 0; j < banksPerRank; j++)
1039            banks[i][j].freeAt = banksFree;
1040
1041    schedule(&refreshEvent, curTick() + tREFI);
1042}
1043
1044void
1045SimpleDRAM::regStats()
1046{
1047    using namespace Stats;
1048
1049    AbstractMemory::regStats();
1050
1051    readReqs
1052        .name(name() + ".readReqs")
1053        .desc("Total number of read requests seen");
1054
1055    writeReqs
1056        .name(name() + ".writeReqs")
1057        .desc("Total number of write requests seen");
1058
1059    servicedByWrQ
1060        .name(name() + ".servicedByWrQ")
1061        .desc("Number of read reqs serviced by write Q");
1062
1063    cpuReqs
1064        .name(name() + ".cpureqs")
1065        .desc("Reqs generatd by CPU via cache - shady");
1066
1067    neitherReadNorWrite
1068        .name(name() + ".neitherReadNorWrite")
1069        .desc("Reqs where no action is needed");
1070
1071    perBankRdReqs
1072        .init(banksPerRank * ranksPerChannel)
1073        .name(name() + ".perBankRdReqs")
1074        .desc("Track reads on a per bank basis");
1075
1076    perBankWrReqs
1077        .init(banksPerRank * ranksPerChannel)
1078        .name(name() + ".perBankWrReqs")
1079        .desc("Track writes on a per bank basis");
1080
1081    avgRdQLen
1082        .name(name() + ".avgRdQLen")
1083        .desc("Average read queue length over time")
1084        .precision(2);
1085
1086    avgWrQLen
1087        .name(name() + ".avgWrQLen")
1088        .desc("Average write queue length over time")
1089        .precision(2);
1090
1091    totQLat
1092        .name(name() + ".totQLat")
1093        .desc("Total cycles spent in queuing delays");
1094
1095    totBankLat
1096        .name(name() + ".totBankLat")
1097        .desc("Total cycles spent in bank access");
1098
1099    totBusLat
1100        .name(name() + ".totBusLat")
1101        .desc("Total cycles spent in databus access");
1102
1103    totMemAccLat
1104        .name(name() + ".totMemAccLat")
1105        .desc("Sum of mem lat for all requests");
1106
1107    avgQLat
1108        .name(name() + ".avgQLat")
1109        .desc("Average queueing delay per request")
1110        .precision(2);
1111
1112    avgQLat = totQLat / (readReqs - servicedByWrQ);
1113
1114    avgBankLat
1115        .name(name() + ".avgBankLat")
1116        .desc("Average bank access latency per request")
1117        .precision(2);
1118
1119    avgBankLat = totBankLat / (readReqs - servicedByWrQ);
1120
1121    avgBusLat
1122        .name(name() + ".avgBusLat")
1123        .desc("Average bus latency per request")
1124        .precision(2);
1125
1126    avgBusLat = totBusLat / (readReqs - servicedByWrQ);
1127
1128    avgMemAccLat
1129        .name(name() + ".avgMemAccLat")
1130        .desc("Average memory access latency")
1131        .precision(2);
1132
1133    avgMemAccLat = totMemAccLat / (readReqs - servicedByWrQ);
1134
1135    numRdRetry
1136        .name(name() + ".numRdRetry")
1137        .desc("Number of times rd buffer was full causing retry");
1138
1139    numWrRetry
1140        .name(name() + ".numWrRetry")
1141        .desc("Number of times wr buffer was full causing retry");
1142
1143    readRowHits
1144        .name(name() + ".readRowHits")
1145        .desc("Number of row buffer hits during reads");
1146
1147    writeRowHits
1148        .name(name() + ".writeRowHits")
1149        .desc("Number of row buffer hits during writes");
1150
1151    readRowHitRate
1152        .name(name() + ".readRowHitRate")
1153        .desc("Row buffer hit rate for reads")
1154        .precision(2);
1155
1156    readRowHitRate = (readRowHits / (readReqs - servicedByWrQ)) * 100;
1157
1158    writeRowHitRate
1159        .name(name() + ".writeRowHitRate")
1160        .desc("Row buffer hit rate for writes")
1161        .precision(2);
1162
1163    writeRowHitRate = (writeRowHits / writeReqs) * 100;
1164
1165    readPktSize
1166        .init(log2(bytesPerCacheLine)+3)
1167        .name(name() + ".readPktSize")
1168        .desc("Categorize read packet sizes");
1169
1170     writePktSize
1171        .init(log2(bytesPerCacheLine)+3)
1172        .name(name() + ".writePktSize")
1173        .desc("categorize write packet sizes");
1174
1175     neitherPktSize
1176        .init(log2(bytesPerCacheLine)+3)
1177        .name(name() + ".neitherpktsize")
1178        .desc("categorize neither packet sizes");
1179
1180     rdQLenPdf
1181        .init(readBufferSize + 1)
1182        .name(name() + ".rdQLenPdf")
1183        .desc("What read queue length does an incoming req see");
1184
1185     wrQLenPdf
1186        .init(writeBufferSize + 1)
1187        .name(name() + ".wrQLenPdf")
1188        .desc("What write queue length does an incoming req see");
1189
1190
1191    bytesRead
1192        .name(name() + ".bytesRead")
1193        .desc("Total number of bytes read from memory");
1194
1195    bytesWritten
1196        .name(name() + ".bytesWritten")
1197        .desc("Total number of bytes written to memory");
1198
1199    bytesConsumedRd
1200        .name(name() + ".bytesConsumedRd")
1201        .desc("bytesRead derated as per pkt->getSize()");
1202
1203    bytesConsumedWr
1204        .name(name() + ".bytesConsumedWr")
1205        .desc("bytesWritten derated as per pkt->getSize()");
1206
1207    avgRdBW
1208        .name(name() + ".avgRdBW")
1209        .desc("Average achieved read bandwidth in MB/s")
1210        .precision(2);
1211
1212    avgRdBW = (bytesRead / 1000000) / simSeconds;
1213
1214    avgWrBW
1215        .name(name() + ".avgWrBW")
1216        .desc("Average achieved write bandwidth in MB/s")
1217        .precision(2);
1218
1219    avgWrBW = (bytesWritten / 1000000) / simSeconds;
1220
1221    avgConsumedRdBW
1222        .name(name() + ".avgConsumedRdBW")
1223        .desc("Average consumed read bandwidth in MB/s")
1224        .precision(2);
1225
1226    avgConsumedRdBW = (bytesConsumedRd / 1000000) / simSeconds;
1227
1228    avgConsumedWrBW
1229        .name(name() + ".avgConsumedWrBW")
1230        .desc("Average consumed write bandwidth in MB/s")
1231        .precision(2);
1232
1233    avgConsumedWrBW = (bytesConsumedWr / 1000000) / simSeconds;
1234
1235    peakBW
1236        .name(name() + ".peakBW")
1237        .desc("Theoretical peak bandwidth in MB/s")
1238        .precision(2);
1239
1240    peakBW = (SimClock::Frequency / tBURST) * bytesPerCacheLine / 1000000;
1241
1242    busUtil
1243        .name(name() + ".busUtil")
1244        .desc("Data bus utilization in percentage")
1245        .precision(2);
1246
1247    busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
1248
1249    totGap
1250        .name(name() + ".totGap")
1251        .desc("Total gap between requests");
1252
1253    avgGap
1254        .name(name() + ".avgGap")
1255        .desc("Average gap between requests")
1256        .precision(2);
1257
1258    avgGap = totGap / (readReqs + writeReqs);
1259}
1260
1261void
1262SimpleDRAM::recvFunctional(PacketPtr pkt)
1263{
1264    // rely on the abstract memory
1265    functionalAccess(pkt);
1266}
1267
1268BaseSlavePort&
1269SimpleDRAM::getSlavePort(const string &if_name, PortID idx)
1270{
1271    if (if_name != "port") {
1272        return MemObject::getSlavePort(if_name, idx);
1273    } else {
1274        return port;
1275    }
1276}
1277
1278unsigned int
1279SimpleDRAM::drain(DrainManager *dm)
1280{
1281    unsigned int count = port.drain(dm);
1282
1283    // if there is anything in any of our internal queues, keep track
1284    // of that as well
1285    if (!(dramWriteQueue.empty() && dramReadQueue.empty() &&
1286          dramRespQueue.empty())) {
1287        DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
1288                " resp: %d\n", dramWriteQueue.size(), dramReadQueue.size(),
1289                dramRespQueue.size());
1290        ++count;
1291        drainManager = dm;
1292        // the only part that is not drained automatically over time
1293        // is the write queue, thus trigger writes if there are any
1294        // waiting and no reads waiting, otherwise wait until the
1295        // reads are done
1296        if (dramReadQueue.empty() && !dramWriteQueue.empty() &&
1297            !writeEvent.scheduled())
1298            triggerWrites();
1299    }
1300
1301    if (count)
1302        setDrainState(Drainable::Draining);
1303    else
1304        setDrainState(Drainable::Drained);
1305    return count;
1306}
1307
1308SimpleDRAM::MemoryPort::MemoryPort(const std::string& name, SimpleDRAM& _memory)
1309    : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
1310      memory(_memory)
1311{ }
1312
1313AddrRangeList
1314SimpleDRAM::MemoryPort::getAddrRanges() const
1315{
1316    AddrRangeList ranges;
1317    ranges.push_back(memory.getAddrRange());
1318    return ranges;
1319}
1320
1321void
1322SimpleDRAM::MemoryPort::recvFunctional(PacketPtr pkt)
1323{
1324    pkt->pushLabel(memory.name());
1325
1326    if (!queue.checkFunctional(pkt)) {
1327        // Default implementation of SimpleTimingPort::recvFunctional()
1328        // calls recvAtomic() and throws away the latency; we can save a
1329        // little here by just not calculating the latency.
1330        memory.recvFunctional(pkt);
1331    }
1332
1333    pkt->popLabel();
1334}
1335
1336Tick
1337SimpleDRAM::MemoryPort::recvAtomic(PacketPtr pkt)
1338{
1339    return memory.recvAtomic(pkt);
1340}
1341
1342bool
1343SimpleDRAM::MemoryPort::recvTimingReq(PacketPtr pkt)
1344{
1345    // pass it to the memory controller
1346    return memory.recvTimingReq(pkt);
1347}
1348
1349SimpleDRAM*
1350SimpleDRAMParams::create()
1351{
1352    return new SimpleDRAM(this);
1353}
1354