dram_ctrl.cc revision 9356
1/*
2 * Copyright (c) 2010-2012 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Andreas Hansson
38 *          Ani Udipi
39 */
40
41#include "base/trace.hh"
42#include "debug/Drain.hh"
43#include "debug/DRAM.hh"
44#include "debug/DRAMWR.hh"
45#include "mem/simple_dram.hh"
46#include "sim/stat_control.hh"
47
48using namespace std;
49
50SimpleDRAM::SimpleDRAM(const SimpleDRAMParams* p) :
51    AbstractMemory(p),
52    port(name() + ".port", *this),
53    retryRdReq(false), retryWrReq(false),
54    rowHitFlag(false), stopReads(false),
55    writeEvent(this), respondEvent(this),
56    refreshEvent(this), nextReqEvent(this), drainManager(NULL),
57    bytesPerCacheLine(0),
58    linesPerRowBuffer(p->lines_per_rowbuffer),
59    ranksPerChannel(p->ranks_per_channel),
60    banksPerRank(p->banks_per_rank), rowsPerBank(0),
61    readBufferSize(p->read_buffer_size),
62    writeBufferSize(p->write_buffer_size),
63    writeThresholdPerc(p->write_thresh_perc),
64    tWTR(p->tWTR), tBURST(p->tBURST),
65    tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP),
66    tRFC(p->tRFC), tREFI(p->tREFI),
67    memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
68    pageMgmt(p->page_policy),
69    busBusyUntil(0), prevdramaccess(0), writeStartTime(0),
70    prevArrival(0), numReqs(0)
71{
72    // create the bank states based on the dimensions of the ranks and
73    // banks
74    banks.resize(ranksPerChannel);
75    for (size_t c = 0; c < ranksPerChannel; ++c) {
76        banks[c].resize(banksPerRank);
77    }
78
79    // round the write threshold percent to a whole number of entries
80    // in the buffer
81    writeThreshold = writeBufferSize * writeThresholdPerc / 100.0;
82}
83
84void
85SimpleDRAM::init()
86{
87    if (!port.isConnected()) {
88        fatal("SimpleDRAM %s is unconnected!\n", name());
89    } else {
90        port.sendRangeChange();
91    }
92
93    // get the cache line size from the connected port
94    bytesPerCacheLine = port.peerBlockSize();
95
96    // we could deal with plenty options here, but for now do a quick
97    // sanity check
98    if (bytesPerCacheLine != 64 && bytesPerCacheLine != 32)
99        panic("Unexpected cache line size %d", bytesPerCacheLine);
100
101    // determine the rows per bank by looking at the total capacity
102    uint64_t capacity = AbstractMemory::size();
103    uint64_t i = 1;
104    while (i < 64 && capacity > ((1 << i))) {
105        ++i;
106    }
107
108    // rounded up to nearest power of two
109    DPRINTF(DRAM, "i is %lld\n", i);
110    capacity = 1 << i;
111
112    DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
113            AbstractMemory::size());
114    rowsPerBank = capacity / (bytesPerCacheLine * linesPerRowBuffer *
115                              banksPerRank * ranksPerChannel);
116
117}
118
119void
120SimpleDRAM::startup()
121{
122    // print the configuration of the controller
123    printParams();
124
125    // kick off the refresh
126    schedule(&refreshEvent, curTick() + tREFI);
127}
128
129
130Tick
131SimpleDRAM::recvAtomic(PacketPtr pkt)
132{
133    DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
134
135    // do the actual memory access and turn the packet into a response
136    access(pkt);
137
138    Tick latency = 0;
139    if (!pkt->memInhibitAsserted() && pkt->hasData()) {
140        // this value is not supposed to be accurate, just enough to
141        // keep things going, mimic a closed page
142        latency = tRP + tRCD + tCL;
143    }
144    return latency;
145}
146
147bool
148SimpleDRAM::readQueueFull() const
149{
150    DPRINTF(DRAM, "Read queue limit %d current size %d\n",
151            readBufferSize, dramReadQueue.size() + dramRespQueue.size());
152
153    return (dramReadQueue.size() + dramRespQueue.size()) == readBufferSize;
154}
155
156bool
157SimpleDRAM::writeQueueFull() const
158{
159    DPRINTF(DRAM, "Write queue limit %d current size %d\n",
160            writeBufferSize, dramWriteQueue.size());
161    return dramWriteQueue.size() == writeBufferSize;
162}
163
164
165SimpleDRAM::DRAMPacket*
166SimpleDRAM::decodeAddr(PacketPtr pkt)
167{
168    uint8_t rank;
169    uint16_t bank;
170    uint16_t row;
171
172    Addr addr = pkt->getAddr();
173    Addr temp = addr;
174
175    // truncate the address to the access granularity
176    addr = addr / bytesPerCacheLine;
177
178    if (addrMapping == Enums::openmap) {
179        addr = addr / linesPerRowBuffer;
180
181        bank = addr % banksPerRank;
182        addr = addr / banksPerRank;
183
184        rank = addr % ranksPerChannel;
185        addr = addr / ranksPerChannel;
186
187        row = addr % rowsPerBank;
188        addr = addr / rowsPerBank;
189    } else if (addrMapping == Enums::closemap) {
190        bank = addr % banksPerRank;
191        addr = addr / banksPerRank;
192
193        rank = addr % ranksPerChannel;
194        addr = addr / ranksPerChannel;
195
196        addr = addr / linesPerRowBuffer;
197
198        row = addr % rowsPerBank;
199        addr = addr / rowsPerBank;
200    } else
201        panic("Unknown address mapping policy chosen!");
202
203    assert(rank < ranksPerChannel);
204    assert(bank < banksPerRank);
205    assert(row < rowsPerBank);
206
207    DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
208            temp, rank, bank, row);
209
210    // create the corresponding DRAM packet with the entry time and
211    // ready time set to the current tick, they will be updated later
212    DRAMPacket* dram_pkt = new DRAMPacket(pkt, rank, bank, row, temp,
213                                          banks[rank][bank]);
214
215    return dram_pkt;
216}
217
218void
219SimpleDRAM::addToReadQueue(PacketPtr pkt)
220{
221    // only add to the read queue here. whenever the request is
222    // eventually done, set the readyTime, and call schedule()
223    assert(!pkt->isWrite());
224
225    // First check write buffer to see if the data is already at
226    // the controller
227    std::list<DRAMPacket*>::const_iterator i;
228    Addr addr = pkt->getAddr();
229
230    // @todo: add size check
231    for (i = dramWriteQueue.begin();  i != dramWriteQueue.end(); ++i) {
232        if ((*i)->addr == addr){
233            servicedByWrQ++;
234            DPRINTF(DRAM,"Serviced by write Q\n");
235            bytesRead += bytesPerCacheLine;
236            bytesConsumedRd += pkt->getSize();
237            accessAndRespond(pkt);
238            return;
239        }
240    }
241
242    DRAMPacket* dram_pkt = decodeAddr(pkt);
243
244    assert(dramReadQueue.size() + dramRespQueue.size() < readBufferSize);
245    rdQLenPdf[dramReadQueue.size() + dramRespQueue.size()]++;
246
247    DPRINTF(DRAM, "Adding to read queue\n");
248
249    dramReadQueue.push_back(dram_pkt);
250
251    // Update stats
252    uint32_t bank_id = banksPerRank * dram_pkt->rank + dram_pkt->bank;
253    assert(bank_id < ranksPerChannel * banksPerRank);
254    perBankRdReqs[bank_id]++;
255
256    avgRdQLen = dramReadQueue.size() + dramRespQueue.size();
257
258    // Special case where no arbitration is required between requests
259    if (!nextReqEvent.scheduled() && !stopReads) {
260        DPRINTF(DRAM, "Request %lld - need to schedule immediately");
261        schedule(&nextReqEvent, curTick() + 1);
262    }
263}
264
265void
266SimpleDRAM::processWriteEvent()
267{
268    assert(!dramWriteQueue.empty());
269    uint32_t numWritesThisTime = 0;
270
271    DPRINTF(DRAMWR, "Beginning DRAM Writes\n");
272    Tick temp1 M5_VAR_USED = std::max(curTick(), busBusyUntil);
273    Tick temp2 M5_VAR_USED = std::max(curTick(), maxBankFreeAt());
274
275    // @todo: are there any dangers with the untimed while loop?
276    while (!dramWriteQueue.empty()) {
277        if (numWritesThisTime > writeThreshold)
278            break;
279
280        chooseNextWrite();
281        DRAMPacket* dram_pkt = dramWriteQueue.front();
282        // What's the earlier the request can be put on the bus
283        Tick schedTime = std::max(curTick(), busBusyUntil);
284
285        DPRINTF(DRAMWR, "Asking for latency estimate at %lld\n",
286                schedTime + tBURST);
287
288        pair<Tick, Tick> lat = estimateLatency(dram_pkt, schedTime + tBURST);
289        Tick accessLat = lat.second;
290
291        // look at the rowHitFlag set by estimateLatency
292
293        // @todo: Race condition here where another packet gives rise
294        // to another call to estimateLatency in the meanwhile?
295        if (rowHitFlag)
296            writeRowHits++;
297
298        Bank& bank = dram_pkt->bank_ref;
299
300        if (pageMgmt == Enums::open) {
301            bank.openRow = dram_pkt->row;
302            bank.freeAt = schedTime + tBURST + accessLat;
303
304            if (!rowHitFlag)
305                bank.tRASDoneAt = bank.freeAt + tRP;
306
307        } else if (pageMgmt == Enums::close) {
308            bank.freeAt = schedTime + tBURST + accessLat + tRP + tRP;
309            DPRINTF(DRAMWR, "processWriteEvent::bank.freeAt for "
310                    "banks_id %d is %lld\n",
311                    dram_pkt->rank * banksPerRank + dram_pkt->bank,
312                    bank.freeAt);
313        } else
314            panic("Unknown page management policy chosen\n");
315
316        // @todo: As of now, write goes on the databus asap, maybe
317        // be held up at bank. May want to change it to delay the
318        // schedTime itself.
319        busBusyUntil = schedTime + tBURST;
320        DPRINTF(DRAMWR,"Done writing to address %lld\n",dram_pkt->addr);
321
322
323        DPRINTF(DRAMWR,"schedtime is %lld, tBURST is %lld, "
324                "busbusyuntil is %lld\n",
325                schedTime, tBURST, busBusyUntil);
326
327        dramWriteQueue.pop_front();
328        delete dram_pkt;
329
330        numWritesThisTime++;
331    }
332
333    DPRINTF(DRAMWR, "Completed %d writes, bus busy for %lld ticks,"\
334            "banks busy for %lld ticks\n", numWritesThisTime,
335            busBusyUntil - temp1, maxBankFreeAt() - temp2);
336
337    // Update stats
338    avgWrQLen = dramWriteQueue.size();
339
340    // turn the bus back around for reads again
341    busBusyUntil += tWTR;
342    stopReads = false;
343
344    if (retryWrReq) {
345        retryWrReq = false;
346        port.sendRetry();
347    }
348
349    // if there is nothing left in any queue, signal a drain
350    if (dramWriteQueue.empty() && dramReadQueue.empty() &&
351        dramRespQueue.empty () && drainManager) {
352        drainManager->signalDrainDone();
353        drainManager = NULL;
354    }
355
356    // Once you're done emptying the write queue, check if there's
357    // anything in the read queue, and call schedule if required
358    schedule(&nextReqEvent, busBusyUntil);
359}
360
361void
362SimpleDRAM::triggerWrites()
363{
364    DPRINTF(DRAM, "Writes triggered at %lld\n", curTick());
365    // Flag variable to stop any more read scheduling
366    stopReads = true;
367
368    writeStartTime = std::max(busBusyUntil, curTick()) + tWTR;
369
370    DPRINTF(DRAM, "Writes scheduled at %lld\n", writeStartTime);
371
372    assert(writeStartTime >= curTick());
373    assert(!writeEvent.scheduled());
374    schedule(&writeEvent, writeStartTime);
375}
376
377void
378SimpleDRAM::addToWriteQueue(PacketPtr pkt)
379{
380    // only add to the write queue here. whenever the request is
381    // eventually done, set the readyTime, and call schedule()
382    assert(pkt->isWrite());
383
384    DRAMPacket* dram_pkt = decodeAddr(pkt);
385
386    assert(dramWriteQueue.size() < writeBufferSize);
387    wrQLenPdf[dramWriteQueue.size()]++;
388
389    DPRINTF(DRAM, "Adding to write queue\n");
390
391    dramWriteQueue.push_back(dram_pkt);
392
393    // Update stats
394    uint32_t bank_id = banksPerRank * dram_pkt->rank + dram_pkt->bank;
395    assert(bank_id < ranksPerChannel * banksPerRank);
396    perBankWrReqs[bank_id]++;
397
398    avgWrQLen = dramWriteQueue.size();
399
400    // we do not wait for the writes to be send to the actual memory,
401    // but instead take responsibility for the consistency here and
402    // snoop the write queue for any upcoming reads
403
404    bytesConsumedWr += pkt->getSize();
405    bytesWritten += bytesPerCacheLine;
406    accessAndRespond(pkt);
407
408    // If your write buffer is starting to fill up, drain it!
409    if (dramWriteQueue.size() > writeThreshold  && !stopReads){
410        triggerWrites();
411    }
412}
413
414void
415SimpleDRAM::printParams() const
416{
417    // Sanity check print of important parameters
418    DPRINTF(DRAM,
419            "Memory controller %s physical organization\n"      \
420            "Bytes per cacheline  %d\n"                         \
421            "Lines per row buffer %d\n"                         \
422            "Rows  per bank       %d\n"                         \
423            "Banks per rank       %d\n"                         \
424            "Ranks per channel    %d\n"                         \
425            "Total mem capacity   %u\n",
426            name(), bytesPerCacheLine ,linesPerRowBuffer, rowsPerBank,
427            banksPerRank, ranksPerChannel, bytesPerCacheLine *
428            linesPerRowBuffer * rowsPerBank * banksPerRank * ranksPerChannel);
429
430    string scheduler =  memSchedPolicy == Enums::fcfs ? "FCFS" : "FR-FCFS";
431    string address_mapping = addrMapping == Enums::openmap ? "OPENMAP" :
432        "CLOSEMAP";
433    string page_policy = pageMgmt == Enums::open ? "OPEN" : "CLOSE";
434
435    DPRINTF(DRAM,
436            "Memory controller %s characteristics\n"    \
437            "Read buffer size     %d\n"                 \
438            "Write buffer size    %d\n"                 \
439            "Write buffer thresh  %d\n"                 \
440            "Scheduler            %s\n"                 \
441            "Address mapping      %s\n"                 \
442            "Page policy          %s\n",
443            name(), readBufferSize, writeBufferSize, writeThreshold,
444            scheduler, address_mapping, page_policy);
445
446    DPRINTF(DRAM, "Memory controller %s timing specs\n" \
447            "tRCD    %d ticks\n"                        \
448            "tCL     %d ticks\n"                        \
449            "tRP     %d ticks\n"                        \
450            "tBURST  %d ticks\n"                        \
451            "tRFC    %d ticks\n"                        \
452            "tREFI   %d ticks\n"                        \
453            "tWTR    %d ticks\n",
454            name(), tRCD, tCL, tRP, tBURST, tRFC, tREFI, tWTR);
455}
456
457void
458SimpleDRAM::printQs() const {
459
460    list<DRAMPacket*>::const_iterator i;
461
462    DPRINTF(DRAM, "===READ QUEUE===\n\n");
463    for (i = dramReadQueue.begin() ;  i != dramReadQueue.end() ; ++i) {
464        DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
465    }
466    DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
467    for (i = dramRespQueue.begin() ;  i != dramRespQueue.end() ; ++i) {
468        DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
469    }
470    DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
471    for (i = dramWriteQueue.begin() ;  i != dramWriteQueue.end() ; ++i) {
472        DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
473    }
474}
475
476bool
477SimpleDRAM::recvTimingReq(PacketPtr pkt)
478{
479    /// @todo temporary hack to deal with memory corruption issues until
480    /// 4-phase transactions are complete
481    for (int x = 0; x < pendingDelete.size(); x++)
482        delete pendingDelete[x];
483    pendingDelete.clear();
484
485
486    // This is where we enter from the outside world
487    DPRINTF(DRAM, "Inside recvTimingReq: request %s addr %lld size %d\n",
488            pkt->cmdString(),pkt->getAddr(), pkt->getSize());
489
490   int index;
491
492   if (pkt->getSize() == bytesPerCacheLine)
493       cpuReqs++;
494
495   if (numReqs % 1000000 == 0)
496       printQs();
497
498    // Calc avg gap between requests
499    if (prevArrival != 0) {
500        totGap += curTick() - prevArrival;
501    }
502    prevArrival = curTick();
503
504    // simply drop inhibited packets for now
505    if (pkt->memInhibitAsserted()) {
506        DPRINTF(DRAM,"Inhibited packet -- Dropping it now\n");
507        pendingDelete.push_back(pkt);
508        return true;
509    }
510
511    unsigned size = pkt->getSize();
512    if (size > bytesPerCacheLine)
513        panic("Request size %d is greater than cache line size %d",
514              size, bytesPerCacheLine);
515
516    if (size == 0)
517        index = log2(bytesPerCacheLine) + 1;
518    else
519        index = log2(size);
520
521    if (size != 0 && (1 << index) != size)
522        index = log2(bytesPerCacheLine) + 2;
523
524    // @todo: Do we really want to do all this before the packet is
525    // actually accepted?
526
527    /* Index 0 - Size 1 byte
528       Index 1 - Size 2 bytes
529       Index 2 - Size 4 bytes
530         .
531         .
532       Index 6 - Size 64 bytes
533       Index 7 - Size 0 bytes
534       Index 8 - Non-power-of-2 size */
535
536    if (pkt->isRead())
537        readPktSize[index]++;
538    else if (pkt->isWrite())
539        writePktSize[index]++;
540    else
541        neitherPktSize[index]++;
542
543    // check local buffers and do not accept if full
544    if (pkt->isRead()) {
545        if (readQueueFull()) {
546            DPRINTF(DRAM,"Read queue full, not accepting\n");
547            // remember that we have to retry this port
548            retryRdReq = true;
549            numRdRetry++;
550            return false;
551        } else {
552            addToReadQueue(pkt);
553            readReqs++;
554            numReqs++;
555        }
556    } else if (pkt->isWrite()) {
557        if (writeQueueFull()) {
558            DPRINTF(DRAM,"Write queue full, not accepting\n");
559            // remember that we have to retry this port
560            retryWrReq = true;
561            numWrRetry++;
562            return false;
563        } else {
564            addToWriteQueue(pkt);
565            writeReqs++;
566            numReqs++;
567        }
568    } else {
569        DPRINTF(DRAM,"Neither read nor write, ignore timing\n");
570        neitherReadNorWrite++;
571        accessAndRespond(pkt);
572    }
573
574
575    retryRdReq = false;
576    retryWrReq = false;
577    return true;
578}
579
580void
581SimpleDRAM::processRespondEvent()
582{
583    DPRINTF(DRAM,
584            "processRespondEvent(): Some req has reached its readyTime\n");
585
586     PacketPtr pkt = dramRespQueue.front()->pkt;
587
588     // Actually responds to the requestor
589     bytesConsumedRd += pkt->getSize();
590     bytesRead += bytesPerCacheLine;
591     accessAndRespond(pkt);
592
593     DRAMPacket* dram_pkt = dramRespQueue.front();
594     dramRespQueue.pop_front();
595     delete dram_pkt;
596
597     // Update stats
598     avgRdQLen = dramReadQueue.size() + dramRespQueue.size();
599
600     if (!dramRespQueue.empty()){
601         assert(dramRespQueue.front()->readyTime >= curTick());
602         assert(!respondEvent.scheduled());
603         schedule(&respondEvent, dramRespQueue.front()->readyTime);
604     } else {
605         // if there is nothing left in any queue, signal a drain
606         if (dramWriteQueue.empty() && dramReadQueue.empty() &&
607             drainManager) {
608             drainManager->signalDrainDone();
609             drainManager = NULL;
610         }
611     }
612}
613
614void
615SimpleDRAM::chooseNextWrite()
616{
617    // This method does the arbitration between requests. The chosen
618    // packet is simply moved to the head of the queue. The other
619    // methods know that this is the place to look. For example, with
620    // FCFS, this method does nothing
621    assert(!dramWriteQueue.empty());
622
623    if (dramWriteQueue.size() == 1) {
624        DPRINTF(DRAMWR, "chooseNextWrite(): Single element, nothing to do\n");
625        return;
626    }
627
628    if (memSchedPolicy == Enums::fcfs) {
629
630        // Do nothing, since the correct request is already head
631
632    } else if (memSchedPolicy == Enums::frfcfs) {
633
634        list<DRAMPacket*>::iterator i = dramWriteQueue.begin();
635        bool foundRowHit = false;
636        while (!foundRowHit && i != dramWriteQueue.end()) {
637            DRAMPacket* dram_pkt = *i;
638            const Bank& bank = dram_pkt->bank_ref;
639            if (bank.openRow == dram_pkt->row) { //FR part
640                DPRINTF(DRAMWR,"Row buffer hit\n");
641                dramWriteQueue.erase(i);
642                dramWriteQueue.push_front(dram_pkt);
643                foundRowHit = true;
644            } else { //FCFS part
645                ;
646            }
647            ++i;
648        }
649
650    } else
651        panic("No scheduling policy chosen\n");
652
653    DPRINTF(DRAMWR, "chooseNextWrite(): Something chosen\n");
654}
655
656bool
657SimpleDRAM::chooseNextReq()
658{
659    // This method does the arbitration between requests.
660    // The chosen packet is simply moved to the head of the
661    // queue. The other methods know that this is the place
662    // to look. For example, with FCFS, this method does nothing
663    list<DRAMPacket*>::iterator i;
664    DRAMPacket* dram_pkt;
665
666    if (dramReadQueue.empty()){
667        DPRINTF(DRAM, "chooseNextReq(): Returning False\n");
668        return false;
669    }
670
671    if (dramReadQueue.size() == 1)
672        return true;
673
674    if (memSchedPolicy == Enums::fcfs) {
675
676        // Do nothing, since the correct request is already head
677
678    } else if (memSchedPolicy == Enums::frfcfs) {
679
680        for (i = dramReadQueue.begin() ; i != dramReadQueue.end() ; ++i) {
681            dram_pkt = *i;
682            const Bank& bank = dram_pkt->bank_ref;
683            if (bank.openRow == dram_pkt->row) { //FR part
684                DPRINTF(DRAM, "Row buffer hit\n");
685                dramReadQueue.erase(i);
686                dramReadQueue.push_front(dram_pkt);
687                break;
688            } else { //FCFS part
689                ;
690            }
691
692        }
693
694    } else
695        panic("No scheduling policy chosen!\n");
696
697
698    DPRINTF(DRAM,"chooseNextReq(): Chosen something, returning True\n");
699    return true;
700}
701
702void
703SimpleDRAM::accessAndRespond(PacketPtr pkt)
704{
705    DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
706
707    bool needsResponse = pkt->needsResponse();
708    // do the actual memory access which also turns the packet into a
709    // response
710    access(pkt);
711
712    // turn packet around to go back to requester if response expected
713    if (needsResponse) {
714        // access already turned the packet into a response
715        assert(pkt->isResponse());
716
717        // queue the packet in the response queue to be sent out the
718        // next tick
719        port.schedTimingResp(pkt, curTick() + 1);
720    } else {
721    }
722
723    DPRINTF(DRAM, "Done\n");
724
725    return;
726}
727
728pair<Tick, Tick>
729SimpleDRAM::estimateLatency(DRAMPacket* dram_pkt, Tick inTime)
730{
731    // If a request reaches a bank at tick 'inTime', how much time
732    // *after* that does it take to finish the request, depending
733    // on bank status and page open policy. Note that this method
734    // considers only the time taken for the actual read or write
735    // to complete, NOT any additional time thereafter for tRAS or
736    // tRP.
737    Tick accLat = 0;
738    Tick bankLat = 0;
739    rowHitFlag = false;
740
741    const Bank& bank = dram_pkt->bank_ref;
742    if (pageMgmt == Enums::open) { // open-page policy
743        if (bank.openRow == dram_pkt->row) {
744            // When we have a row-buffer hit,
745            // we don't care about tRAS having expired or not,
746            // but do care about bank being free for access
747            rowHitFlag = true;
748
749            if (bank.freeAt < inTime) {
750               // CAS latency only
751               accLat += tCL;
752               bankLat += tCL;
753            } else {
754                accLat += 0;
755                bankLat += 0;
756            }
757
758        } else {
759            // Row-buffer miss, need to close existing row
760            // once tRAS has expired, then open the new one,
761            // then add cas latency.
762            Tick freeTime = std::max(bank.tRASDoneAt, bank.freeAt);
763
764            if (freeTime > inTime)
765               accLat += freeTime - inTime;
766
767            accLat += tRP + tRCD + tCL;
768            bankLat += tRP + tRCD + tCL;
769        }
770    } else if (pageMgmt == Enums::close) {
771
772        // With a close page policy, no notion of
773        // bank.tRASDoneAt
774        if (bank.freeAt > inTime)
775            accLat += bank.freeAt - inTime;
776
777        // page already closed, simply open the row, and
778        // add cas latency
779        accLat += tRCD + tCL;
780        bankLat += tRCD + tCL;
781    } else
782        panic("No page management policy chosen\n");
783
784    DPRINTF(DRAM, "Returning %lld from estimateLatency()\n",accLat);
785
786    return make_pair(bankLat, accLat);
787}
788
789void
790SimpleDRAM::processNextReqEvent()
791{
792    scheduleNextReq();
793}
794
795void
796SimpleDRAM::doDRAMAccess(DRAMPacket* dram_pkt)
797{
798
799    DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
800            dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
801
802    assert(curTick() >= prevdramaccess);
803    prevdramaccess = curTick();
804
805    // estimate the bank and access latency
806    pair<Tick, Tick> lat = estimateLatency(dram_pkt, curTick());
807    Tick bankLat = lat.first;
808    Tick accessLat = lat.second;
809
810    // This request was woken up at this time based on a prior call
811    // to estimateLatency(). However, between then and now, both the
812    // accessLatency and/or busBusyUntil may have changed. We need
813    // to correct for that.
814
815    Tick addDelay = (curTick() + accessLat < busBusyUntil) ?
816        busBusyUntil - (curTick() + accessLat) : 0;
817
818    Bank& bank = dram_pkt->bank_ref;
819
820    // Update bank state
821    if (pageMgmt == Enums::open) {
822        bank.openRow = dram_pkt->row;
823        bank.freeAt = curTick() + addDelay + accessLat;
824        // If you activated a new row do to this access, the next access
825        // will have to respect tRAS for this bank. Assume tRAS ~= 3 * tRP
826        if (!rowHitFlag)
827            bank.tRASDoneAt = bank.freeAt + tRP;
828
829    } else if (pageMgmt == Enums::close) { // accounting for tRAS also
830        // assuming that tRAS ~= 3 * tRP, and tRAS ~= 4 * tRP, as is common
831        // (refer Jacob/Ng/Wang and Micron datasheets)
832        bank.freeAt = curTick() + addDelay + accessLat + tRP + tRP;
833        DPRINTF(DRAM,"doDRAMAccess::bank.freeAt is %lld\n",bank.freeAt);
834    } else
835        panic("No page management policy chosen\n");
836
837    // Update request parameters
838    dram_pkt->readyTime = curTick() + addDelay + accessLat + tBURST;
839
840
841    DPRINTF(DRAM, "Req %lld: curtick is %lld accessLat is %d " \
842                  "readytime is %lld busbusyuntil is %lld. " \
843                  "Scheduling at readyTime\n", dram_pkt->addr,
844                   curTick(), accessLat, dram_pkt->readyTime, busBusyUntil);
845
846    // Make sure requests are not overlapping on the databus
847    assert (dram_pkt->readyTime - busBusyUntil >= tBURST);
848
849    // Update bus state
850    busBusyUntil = dram_pkt->readyTime;
851
852    DPRINTF(DRAM,"Access time is %lld\n",
853            dram_pkt->readyTime - dram_pkt->entryTime);
854
855    // Update stats
856    totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
857    totBankLat += bankLat;
858    totBusLat += tBURST;
859    totQLat += dram_pkt->readyTime - dram_pkt->entryTime - bankLat - tBURST;
860
861    if (rowHitFlag)
862        readRowHits++;
863
864    // At this point we're done dealing with the request
865    // It will be moved to a separate response queue with a
866    // correct readyTime, and eventually be sent back at that
867    //time
868    moveToRespQ();
869
870    // The absolute soonest you have to start thinking about the
871    // next request is the longest access time that can occur before
872    // busBusyUntil. Assuming you need to meet tRAS, then precharge,
873    // open a new row, and access, it is ~4*tRCD.
874
875
876    Tick newTime = (busBusyUntil > 4 * tRCD) ?
877                   std::max(busBusyUntil - 4 * tRCD, curTick()) :
878                   curTick();
879
880    if (!nextReqEvent.scheduled() && !stopReads){
881        schedule(&nextReqEvent, newTime);
882    } else {
883        if (newTime < nextReqEvent.when())
884            reschedule(&nextReqEvent, newTime);
885    }
886
887
888}
889
890void
891SimpleDRAM::moveToRespQ()
892{
893    // Remove from read queue
894    DRAMPacket* dram_pkt = dramReadQueue.front();
895    dramReadQueue.pop_front();
896
897    // Insert into response queue sorted by readyTime
898    // It will be sent back to the requestor at its
899    // readyTime
900    if (dramRespQueue.empty()) {
901        dramRespQueue.push_front(dram_pkt);
902        assert(!respondEvent.scheduled());
903        assert(dram_pkt->readyTime >= curTick());
904        schedule(&respondEvent, dram_pkt->readyTime);
905    } else {
906        bool done = false;
907        std::list<DRAMPacket*>::iterator i = dramRespQueue.begin();
908        while (!done && i != dramRespQueue.end()) {
909            if ((*i)->readyTime > dram_pkt->readyTime) {
910                dramRespQueue.insert(i, dram_pkt);
911                done = true;
912            }
913            ++i;
914        }
915
916        if (!done)
917            dramRespQueue.push_back(dram_pkt);
918
919        assert(respondEvent.scheduled());
920
921        if (dramRespQueue.front()->readyTime < respondEvent.when()) {
922            assert(dramRespQueue.front()->readyTime >= curTick());
923            reschedule(&respondEvent, dramRespQueue.front()->readyTime);
924        }
925    }
926
927    if (retryRdReq) {
928         retryRdReq = false;
929         port.sendRetry();
930     }
931}
932
933void
934SimpleDRAM::scheduleNextReq()
935{
936    DPRINTF(DRAM, "Reached scheduleNextReq()\n");
937
938    // Figure out which request goes next, and move it to front()
939    if (!chooseNextReq()) {
940        // In the case there is no read request to go next, see if we
941        // are asked to drain, and if so trigger writes, this also
942        // ensures that if we hit the write limit we will do this
943        // multiple times until we are completely drained
944        if (drainManager && !dramWriteQueue.empty() && !writeEvent.scheduled())
945            triggerWrites();
946    } else {
947        doDRAMAccess(dramReadQueue.front());
948    }
949}
950
951Tick
952SimpleDRAM::maxBankFreeAt() const
953{
954    Tick banksFree = 0;
955
956    for(int i = 0; i < ranksPerChannel; i++)
957        for(int j = 0; j < banksPerRank; j++)
958            banksFree = std::max(banks[i][j].freeAt, banksFree);
959
960    return banksFree;
961}
962
963void
964SimpleDRAM::processRefreshEvent()
965{
966    DPRINTF(DRAM, "Refreshing at tick %ld\n", curTick());
967
968    Tick banksFree = std::max(curTick(), maxBankFreeAt()) + tRFC;
969
970    for(int i = 0; i < ranksPerChannel; i++)
971        for(int j = 0; j < banksPerRank; j++)
972            banks[i][j].freeAt = banksFree;
973
974    schedule(&refreshEvent, curTick() + tREFI);
975}
976
977void
978SimpleDRAM::regStats()
979{
980    using namespace Stats;
981
982    AbstractMemory::regStats();
983
984    readReqs
985        .name(name() + ".readReqs")
986        .desc("Total number of read requests seen");
987
988    writeReqs
989        .name(name() + ".writeReqs")
990        .desc("Total number of write requests seen");
991
992    servicedByWrQ
993        .name(name() + ".servicedByWrQ")
994        .desc("Number of read reqs serviced by write Q");
995
996    cpuReqs
997        .name(name() + ".cpureqs")
998        .desc("Reqs generatd by CPU via cache - shady");
999
1000    neitherReadNorWrite
1001        .name(name() + ".neitherReadNorWrite")
1002        .desc("Reqs where no action is needed");
1003
1004    perBankRdReqs
1005        .init(banksPerRank * ranksPerChannel)
1006        .name(name() + ".perBankRdReqs")
1007        .desc("Track reads on a per bank basis");
1008
1009    perBankWrReqs
1010        .init(banksPerRank * ranksPerChannel)
1011        .name(name() + ".perBankWrReqs")
1012        .desc("Track writes on a per bank basis");
1013
1014    avgRdQLen
1015        .name(name() + ".avgRdQLen")
1016        .desc("Average read queue length over time")
1017        .precision(2);
1018
1019    avgWrQLen
1020        .name(name() + ".avgWrQLen")
1021        .desc("Average write queue length over time")
1022        .precision(2);
1023
1024    totQLat
1025        .name(name() + ".totQLat")
1026        .desc("Total cycles spent in queuing delays");
1027
1028    totBankLat
1029        .name(name() + ".totBankLat")
1030        .desc("Total cycles spent in bank access");
1031
1032    totBusLat
1033        .name(name() + ".totBusLat")
1034        .desc("Total cycles spent in databus access");
1035
1036    totMemAccLat
1037        .name(name() + ".totMemAccLat")
1038        .desc("Sum of mem lat for all requests");
1039
1040    avgQLat
1041        .name(name() + ".avgQLat")
1042        .desc("Average queueing delay per request")
1043        .precision(2);
1044
1045    avgQLat = totQLat / (readReqs - servicedByWrQ);
1046
1047    avgBankLat
1048        .name(name() + ".avgBankLat")
1049        .desc("Average bank access latency per request")
1050        .precision(2);
1051
1052    avgBankLat = totBankLat / (readReqs - servicedByWrQ);
1053
1054    avgBusLat
1055        .name(name() + ".avgBusLat")
1056        .desc("Average bus latency per request")
1057        .precision(2);
1058
1059    avgBusLat = totBusLat / (readReqs - servicedByWrQ);
1060
1061    avgMemAccLat
1062        .name(name() + ".avgMemAccLat")
1063        .desc("Average memory access latency")
1064        .precision(2);
1065
1066    avgMemAccLat = totMemAccLat / (readReqs - servicedByWrQ);
1067
1068    numRdRetry
1069        .name(name() + ".numRdRetry")
1070        .desc("Number of times rd buffer was full causing retry");
1071
1072    numWrRetry
1073        .name(name() + ".numWrRetry")
1074        .desc("Number of times wr buffer was full causing retry");
1075
1076    readRowHits
1077        .name(name() + ".readRowHits")
1078        .desc("Number of row buffer hits during reads");
1079
1080    writeRowHits
1081        .name(name() + ".writeRowHits")
1082        .desc("Number of row buffer hits during writes");
1083
1084    readRowHitRate
1085        .name(name() + ".readRowHitRate")
1086        .desc("Row buffer hit rate for reads")
1087        .precision(2);
1088
1089    readRowHitRate = (readRowHits / (readReqs - servicedByWrQ)) * 100;
1090
1091    writeRowHitRate
1092        .name(name() + ".writeRowHitRate")
1093        .desc("Row buffer hit rate for writes")
1094        .precision(2);
1095
1096    writeRowHitRate = (writeRowHits / writeReqs) * 100;
1097
1098    readPktSize
1099        .init(log2(bytesPerCacheLine)+3)
1100        .name(name() + ".readPktSize")
1101        .desc("Categorize read packet sizes");
1102
1103     writePktSize
1104        .init(log2(bytesPerCacheLine)+3)
1105        .name(name() + ".writePktSize")
1106        .desc("categorize write packet sizes");
1107
1108     neitherPktSize
1109        .init(log2(bytesPerCacheLine)+3)
1110        .name(name() + ".neitherpktsize")
1111        .desc("categorize neither packet sizes");
1112
1113     rdQLenPdf
1114        .init(readBufferSize + 1)
1115        .name(name() + ".rdQLenPdf")
1116        .desc("What read queue length does an incoming req see");
1117
1118     wrQLenPdf
1119        .init(writeBufferSize + 1)
1120        .name(name() + ".wrQLenPdf")
1121        .desc("What write queue length does an incoming req see");
1122
1123
1124    bytesRead
1125        .name(name() + ".bytesRead")
1126        .desc("Total number of bytes read from memory");
1127
1128    bytesWritten
1129        .name(name() + ".bytesWritten")
1130        .desc("Total number of bytes written to memory");
1131
1132    bytesConsumedRd
1133        .name(name() + ".bytesConsumedRd")
1134        .desc("bytesRead derated as per pkt->getSize()");
1135
1136    bytesConsumedWr
1137        .name(name() + ".bytesConsumedWr")
1138        .desc("bytesWritten derated as per pkt->getSize()");
1139
1140    avgRdBW
1141        .name(name() + ".avgRdBW")
1142        .desc("Average achieved read bandwidth in MB/s")
1143        .precision(2);
1144
1145    avgRdBW = (bytesRead / 1000000) / simSeconds;
1146
1147    avgWrBW
1148        .name(name() + ".avgWrBW")
1149        .desc("Average achieved write bandwidth in MB/s")
1150        .precision(2);
1151
1152    avgWrBW = (bytesWritten / 1000000) / simSeconds;
1153
1154    avgConsumedRdBW
1155        .name(name() + ".avgConsumedRdBW")
1156        .desc("Average consumed read bandwidth in MB/s")
1157        .precision(2);
1158
1159    avgConsumedRdBW = (bytesConsumedRd / 1000000) / simSeconds;
1160
1161    avgConsumedWrBW
1162        .name(name() + ".avgConsumedWrBW")
1163        .desc("Average consumed write bandwidth in MB/s")
1164        .precision(2);
1165
1166    avgConsumedWrBW = (bytesConsumedWr / 1000000) / simSeconds;
1167
1168    peakBW
1169        .name(name() + ".peakBW")
1170        .desc("Theoretical peak bandwidth in MB/s")
1171        .precision(2);
1172
1173    peakBW = (SimClock::Frequency / tBURST) * bytesPerCacheLine / 1000000;
1174
1175    busUtil
1176        .name(name() + ".busUtil")
1177        .desc("Data bus utilization in percentage")
1178        .precision(2);
1179
1180    busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
1181
1182    totGap
1183        .name(name() + ".totGap")
1184        .desc("Total gap between requests");
1185
1186    avgGap
1187        .name(name() + ".avgGap")
1188        .desc("Average gap between requests")
1189        .precision(2);
1190
1191    avgGap = totGap / (readReqs + writeReqs);
1192}
1193
1194void
1195SimpleDRAM::recvFunctional(PacketPtr pkt)
1196{
1197    // rely on the abstract memory
1198    functionalAccess(pkt);
1199}
1200
1201BaseSlavePort&
1202SimpleDRAM::getSlavePort(const string &if_name, PortID idx)
1203{
1204    if (if_name != "port") {
1205        return MemObject::getSlavePort(if_name, idx);
1206    } else {
1207        return port;
1208    }
1209}
1210
1211unsigned int
1212SimpleDRAM::drain(DrainManager *dm)
1213{
1214    unsigned int count = port.drain(dm);
1215
1216    // if there is anything in any of our internal queues, keep track
1217    // of that as well
1218    if (!(dramWriteQueue.empty() && dramReadQueue.empty() &&
1219          dramRespQueue.empty())) {
1220        DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
1221                " resp: %d\n", dramWriteQueue.size(), dramReadQueue.size(),
1222                dramRespQueue.size());
1223        ++count;
1224        drainManager = dm;
1225        // the only part that is not drained automatically over time
1226        // is the write queue, thus trigger writes if there are any
1227        // waiting and no reads waiting, otherwise wait until the
1228        // reads are done
1229        if (dramReadQueue.empty() && !dramWriteQueue.empty() &&
1230            !writeEvent.scheduled())
1231            triggerWrites();
1232    }
1233
1234    if (count)
1235        setDrainState(Drainable::Draining);
1236    else
1237        setDrainState(Drainable::Drained);
1238    return count;
1239}
1240
1241SimpleDRAM::MemoryPort::MemoryPort(const std::string& name, SimpleDRAM& _memory)
1242    : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
1243      memory(_memory)
1244{ }
1245
1246AddrRangeList
1247SimpleDRAM::MemoryPort::getAddrRanges() const
1248{
1249    AddrRangeList ranges;
1250    ranges.push_back(memory.getAddrRange());
1251    return ranges;
1252}
1253
1254void
1255SimpleDRAM::MemoryPort::recvFunctional(PacketPtr pkt)
1256{
1257    pkt->pushLabel(memory.name());
1258
1259    if (!queue.checkFunctional(pkt)) {
1260        // Default implementation of SimpleTimingPort::recvFunctional()
1261        // calls recvAtomic() and throws away the latency; we can save a
1262        // little here by just not calculating the latency.
1263        memory.recvFunctional(pkt);
1264    }
1265
1266    pkt->popLabel();
1267}
1268
1269Tick
1270SimpleDRAM::MemoryPort::recvAtomic(PacketPtr pkt)
1271{
1272    return memory.recvAtomic(pkt);
1273}
1274
1275bool
1276SimpleDRAM::MemoryPort::recvTimingReq(PacketPtr pkt)
1277{
1278    // pass it to the memory controller
1279    return memory.recvTimingReq(pkt);
1280}
1281
1282SimpleDRAM*
1283SimpleDRAMParams::create()
1284{
1285    return new SimpleDRAM(this);
1286}
1287