dram_ctrl.cc revision 9352
1/*
2 * Copyright (c) 2010-2012 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Andreas Hansson
38 *          Ani Udipi
39 */
40
41#include "debug/Drain.hh"
42#include "debug/DRAM.hh"
43#include "debug/DRAMWR.hh"
44#include "mem/simple_dram.hh"
45#include "sim/stat_control.hh"
46
47using namespace std;
48
49SimpleDRAM::SimpleDRAM(const SimpleDRAMParams* p) :
50    AbstractMemory(p),
51    port(name() + ".port", *this),
52    retryRdReq(false), retryWrReq(false),
53    rowHitFlag(false), stopReads(false),
54    writeEvent(this), respondEvent(this),
55    refreshEvent(this), nextReqEvent(this), drainManager(NULL),
56    bytesPerCacheLine(0),
57    linesPerRowBuffer(p->lines_per_rowbuffer),
58    ranksPerChannel(p->ranks_per_channel),
59    banksPerRank(p->banks_per_rank), rowsPerBank(0),
60    readBufferSize(p->read_buffer_size),
61    writeBufferSize(p->write_buffer_size),
62    writeThresholdPerc(p->write_thresh_perc),
63    tWTR(p->tWTR), tBURST(p->tBURST),
64    tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP),
65    tRFC(p->tRFC), tREFI(p->tREFI),
66    memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
67    pageMgmt(p->page_policy),
68    busBusyUntil(0), prevdramaccess(0), writeStartTime(0),
69    prevArrival(0), numReqs(0)
70{
71    // create the bank states based on the dimensions of the ranks and
72    // banks
73    banks.resize(ranksPerChannel);
74    for (size_t c = 0; c < ranksPerChannel; ++c) {
75        banks[c].resize(banksPerRank);
76    }
77
78    // round the write threshold percent to a whole number of entries
79    // in the buffer
80    writeThreshold = writeBufferSize * writeThresholdPerc / 100.0;
81}
82
83void
84SimpleDRAM::init()
85{
86    if (!port.isConnected()) {
87        fatal("SimpleDRAM %s is unconnected!\n", name());
88    } else {
89        port.sendRangeChange();
90    }
91
92    // get the cache line size from the connected port
93    bytesPerCacheLine = port.peerBlockSize();
94
95    // we could deal with plenty options here, but for now do a quick
96    // sanity check
97    if (bytesPerCacheLine != 64 && bytesPerCacheLine != 32)
98        panic("Unexpected cache line size %d", bytesPerCacheLine);
99
100    // determine the rows per bank by looking at the total capacity
101    uint64_t capacity = AbstractMemory::size();
102    uint64_t i = 1;
103    while (i < 64 && capacity > ((1 << i))) {
104        ++i;
105    }
106
107    // rounded up to nearest power of two
108    DPRINTF(DRAM, "i is %lld\n", i);
109    capacity = 1 << i;
110
111    DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
112            AbstractMemory::size());
113    rowsPerBank = capacity / (bytesPerCacheLine * linesPerRowBuffer *
114                              banksPerRank * ranksPerChannel);
115
116}
117
118void
119SimpleDRAM::startup()
120{
121    // print the configuration of the controller
122    printParams();
123
124    // kick off the refresh
125    schedule(&refreshEvent, curTick() + tREFI);
126}
127
128
129Tick
130SimpleDRAM::recvAtomic(PacketPtr pkt)
131{
132    DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
133
134    // do the actual memory access and turn the packet into a response
135    access(pkt);
136
137    Tick latency = 0;
138    if (!pkt->memInhibitAsserted() && pkt->hasData()) {
139        // this value is not supposed to be accurate, just enough to
140        // keep things going, mimic a closed page
141        latency = tRP + tRCD + tCL;
142    }
143    return latency;
144}
145
146bool
147SimpleDRAM::readQueueFull() const
148{
149    DPRINTF(DRAM, "Read queue limit %d current size %d\n",
150            readBufferSize, dramReadQueue.size() + dramRespQueue.size());
151
152    return (dramReadQueue.size() + dramRespQueue.size()) == readBufferSize;
153}
154
155bool
156SimpleDRAM::writeQueueFull() const
157{
158    DPRINTF(DRAM, "Write queue limit %d current size %d\n",
159            writeBufferSize, dramWriteQueue.size());
160    return dramWriteQueue.size() == writeBufferSize;
161}
162
163
164SimpleDRAM::DRAMPacket*
165SimpleDRAM::decodeAddr(PacketPtr pkt)
166{
167    uint8_t rank;
168    uint16_t bank;
169    uint16_t row;
170
171    Addr addr = pkt->getAddr();
172    Addr temp = addr;
173
174    // truncate the address to the access granularity
175    addr = addr / bytesPerCacheLine;
176
177    if (addrMapping == Enums::openmap) {
178        addr = addr / linesPerRowBuffer;
179
180        bank = addr % banksPerRank;
181        addr = addr / banksPerRank;
182
183        rank = addr % ranksPerChannel;
184        addr = addr / ranksPerChannel;
185
186        row = addr % rowsPerBank;
187        addr = addr / rowsPerBank;
188    } else if (addrMapping == Enums::closemap) {
189        bank = addr % banksPerRank;
190        addr = addr / banksPerRank;
191
192        rank = addr % ranksPerChannel;
193        addr = addr / ranksPerChannel;
194
195        addr = addr / linesPerRowBuffer;
196
197        row = addr % rowsPerBank;
198        addr = addr / rowsPerBank;
199    } else
200        panic("Unknown address mapping policy chosen!");
201
202    assert(rank < ranksPerChannel);
203    assert(bank < banksPerRank);
204    assert(row < rowsPerBank);
205
206    DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
207            temp, rank, bank, row);
208
209    // create the corresponding DRAM packet with the entry time and
210    // ready time set to the current tick, they will be updated later
211    DRAMPacket* dram_pkt = new DRAMPacket(pkt, rank, bank, row, temp,
212                                          banks[rank][bank]);
213
214    return dram_pkt;
215}
216
217void
218SimpleDRAM::addToReadQueue(PacketPtr pkt)
219{
220    // only add to the read queue here. whenever the request is
221    // eventually done, set the readyTime, and call schedule()
222    assert(!pkt->isWrite());
223
224    // First check write buffer to see if the data is already at
225    // the controller
226    std::list<DRAMPacket*>::const_iterator i;
227    Addr addr = pkt->getAddr();
228
229    // @todo: add size check
230    for (i = dramWriteQueue.begin();  i != dramWriteQueue.end(); ++i) {
231        if ((*i)->addr == addr){
232            servicedByWrQ++;
233            DPRINTF(DRAM,"Serviced by write Q\n");
234            bytesRead += bytesPerCacheLine;
235            bytesConsumedRd += pkt->getSize();
236            accessAndRespond(pkt);
237            return;
238        }
239    }
240
241    DRAMPacket* dram_pkt = decodeAddr(pkt);
242
243    assert(dramReadQueue.size() + dramRespQueue.size() < readBufferSize);
244    rdQLenPdf[dramReadQueue.size() + dramRespQueue.size()]++;
245
246    DPRINTF(DRAM, "Adding to read queue\n");
247
248    dramReadQueue.push_back(dram_pkt);
249
250    // Update stats
251    uint32_t bank_id = banksPerRank * dram_pkt->rank + dram_pkt->bank;
252    assert(bank_id < ranksPerChannel * banksPerRank);
253    perBankRdReqs[bank_id]++;
254
255    avgRdQLen = dramReadQueue.size() + dramRespQueue.size();
256
257    // Special case where no arbitration is required between requests
258    if (!nextReqEvent.scheduled() && !stopReads) {
259        DPRINTF(DRAM, "Request %lld - need to schedule immediately");
260        schedule(&nextReqEvent, curTick() + 1);
261    }
262}
263
264void
265SimpleDRAM::processWriteEvent()
266{
267    assert(!dramWriteQueue.empty());
268    uint32_t numWritesThisTime = 0;
269
270    DPRINTF(DRAMWR, "Beginning DRAM Writes\n");
271    Tick temp1 M5_VAR_USED = std::max(curTick(), busBusyUntil);
272    Tick temp2 M5_VAR_USED = std::max(curTick(), maxBankFreeAt());
273
274    // @todo: are there any dangers with the untimed while loop?
275    while (!dramWriteQueue.empty()) {
276        if (numWritesThisTime > writeThreshold)
277            break;
278
279        chooseNextWrite();
280        DRAMPacket* dram_pkt = dramWriteQueue.front();
281        // What's the earlier the request can be put on the bus
282        Tick schedTime = std::max(curTick(), busBusyUntil);
283
284        DPRINTF(DRAMWR, "Asking for latency estimate at %lld\n",
285                schedTime + tBURST);
286
287        pair<Tick, Tick> lat = estimateLatency(dram_pkt, schedTime + tBURST);
288        Tick accessLat = lat.second;
289
290        // look at the rowHitFlag set by estimateLatency
291
292        // @todo: Race condition here where another packet gives rise
293        // to another call to estimateLatency in the meanwhile?
294        if (rowHitFlag)
295            writeRowHits++;
296
297        Bank& bank = dram_pkt->bank_ref;
298
299        if (pageMgmt == Enums::open) {
300            bank.openRow = dram_pkt->row;
301            bank.freeAt = schedTime + tBURST + accessLat;
302
303            if (!rowHitFlag)
304                bank.tRASDoneAt = bank.freeAt + tRP;
305
306        } else if (pageMgmt == Enums::close) {
307            bank.freeAt = schedTime + tBURST + accessLat + tRP + tRP;
308            DPRINTF(DRAMWR, "processWriteEvent::bank.freeAt for "
309                    "banks_id %d is %lld\n",
310                    dram_pkt->rank * banksPerRank + dram_pkt->bank,
311                    bank.freeAt);
312        } else
313            panic("Unknown page management policy chosen\n");
314
315        // @todo: As of now, write goes on the databus asap, maybe
316        // be held up at bank. May want to change it to delay the
317        // schedTime itself.
318        busBusyUntil = schedTime + tBURST;
319        DPRINTF(DRAMWR,"Done writing to address %lld\n",dram_pkt->addr);
320
321
322        DPRINTF(DRAMWR,"schedtime is %lld, tBURST is %lld, "
323                "busbusyuntil is %lld\n",
324                schedTime, tBURST, busBusyUntil);
325
326        dramWriteQueue.pop_front();
327        delete dram_pkt;
328
329        numWritesThisTime++;
330    }
331
332    DPRINTF(DRAMWR, "Completed %d writes, bus busy for %lld ticks,"\
333            "banks busy for %lld ticks\n", numWritesThisTime,
334            busBusyUntil - temp1, maxBankFreeAt() - temp2);
335
336    // Update stats
337    avgWrQLen = dramWriteQueue.size();
338
339    // turn the bus back around for reads again
340    busBusyUntil += tWTR;
341    stopReads = false;
342
343    if (retryWrReq) {
344        retryWrReq = false;
345        port.sendRetry();
346    }
347
348    // if there is nothing left in any queue, signal a drain
349    if (dramWriteQueue.empty() && dramReadQueue.empty() &&
350        dramRespQueue.empty () && drainManager) {
351        drainManager->signalDrainDone();
352        drainManager = NULL;
353    }
354
355    // Once you're done emptying the write queue, check if there's
356    // anything in the read queue, and call schedule if required
357    schedule(&nextReqEvent, busBusyUntil);
358}
359
360void
361SimpleDRAM::triggerWrites()
362{
363    DPRINTF(DRAM, "Writes triggered at %lld\n", curTick());
364    // Flag variable to stop any more read scheduling
365    stopReads = true;
366
367    writeStartTime = std::max(busBusyUntil, curTick()) + tWTR;
368
369    DPRINTF(DRAM, "Writes scheduled at %lld\n", writeStartTime);
370
371    assert(writeStartTime >= curTick());
372    assert(!writeEvent.scheduled());
373    schedule(&writeEvent, writeStartTime);
374}
375
376void
377SimpleDRAM::addToWriteQueue(PacketPtr pkt)
378{
379    // only add to the write queue here. whenever the request is
380    // eventually done, set the readyTime, and call schedule()
381    assert(pkt->isWrite());
382
383    DRAMPacket* dram_pkt = decodeAddr(pkt);
384
385    assert(dramWriteQueue.size() < writeBufferSize);
386    wrQLenPdf[dramWriteQueue.size()]++;
387
388    DPRINTF(DRAM, "Adding to write queue\n");
389
390    dramWriteQueue.push_back(dram_pkt);
391
392    // Update stats
393    uint32_t bank_id = banksPerRank * dram_pkt->rank + dram_pkt->bank;
394    assert(bank_id < ranksPerChannel * banksPerRank);
395    perBankWrReqs[bank_id]++;
396
397    avgWrQLen = dramWriteQueue.size();
398
399    // we do not wait for the writes to be send to the actual memory,
400    // but instead take responsibility for the consistency here and
401    // snoop the write queue for any upcoming reads
402
403    bytesConsumedWr += pkt->getSize();
404    bytesWritten += bytesPerCacheLine;
405    accessAndRespond(pkt);
406
407    // If your write buffer is starting to fill up, drain it!
408    if (dramWriteQueue.size() > writeThreshold  && !stopReads){
409        triggerWrites();
410    }
411}
412
413void
414SimpleDRAM::printParams() const
415{
416    // Sanity check print of important parameters
417    DPRINTF(DRAM,
418            "Memory controller %s physical organization\n"      \
419            "Bytes per cacheline  %d\n"                         \
420            "Lines per row buffer %d\n"                         \
421            "Rows  per bank       %d\n"                         \
422            "Banks per rank       %d\n"                         \
423            "Ranks per channel    %d\n"                         \
424            "Total mem capacity   %u\n",
425            name(), bytesPerCacheLine ,linesPerRowBuffer, rowsPerBank,
426            banksPerRank, ranksPerChannel, bytesPerCacheLine *
427            linesPerRowBuffer * rowsPerBank * banksPerRank * ranksPerChannel);
428
429    string scheduler =  memSchedPolicy == Enums::fcfs ? "FCFS" : "FR-FCFS";
430    string address_mapping = addrMapping == Enums::openmap ? "OPENMAP" :
431        "CLOSEMAP";
432    string page_policy = pageMgmt == Enums::open ? "OPEN" : "CLOSE";
433
434    DPRINTF(DRAM,
435            "Memory controller %s characteristics\n"    \
436            "Read buffer size     %d\n"                 \
437            "Write buffer size    %d\n"                 \
438            "Write buffer thresh  %d\n"                 \
439            "Scheduler            %s\n"                 \
440            "Address mapping      %s\n"                 \
441            "Page policy          %s\n",
442            name(), readBufferSize, writeBufferSize, writeThreshold,
443            scheduler, address_mapping, page_policy);
444
445    DPRINTF(DRAM, "Memory controller %s timing specs\n" \
446            "tRCD    %d ticks\n"                        \
447            "tCL     %d ticks\n"                        \
448            "tRP     %d ticks\n"                        \
449            "tBURST  %d ticks\n"                        \
450            "tRFC    %d ticks\n"                        \
451            "tREFI   %d ticks\n"                        \
452            "tWTR    %d ticks\n",
453            name(), tRCD, tCL, tRP, tBURST, tRFC, tREFI, tWTR);
454}
455
456void
457SimpleDRAM::printQs() const {
458
459    list<DRAMPacket*>::const_iterator i;
460
461    DPRINTF(DRAM, "===READ QUEUE===\n\n");
462    for (i = dramReadQueue.begin() ;  i != dramReadQueue.end() ; ++i) {
463        DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
464    }
465    DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
466    for (i = dramRespQueue.begin() ;  i != dramRespQueue.end() ; ++i) {
467        DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
468    }
469    DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
470    for (i = dramWriteQueue.begin() ;  i != dramWriteQueue.end() ; ++i) {
471        DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
472    }
473}
474
475bool
476SimpleDRAM::recvTimingReq(PacketPtr pkt)
477{
478    /// @todo temporary hack to deal with memory corruption issues until
479    /// 4-phase transactions are complete
480    for (int x = 0; x < pendingDelete.size(); x++)
481        delete pendingDelete[x];
482    pendingDelete.clear();
483
484
485    // This is where we enter from the outside world
486    DPRINTF(DRAM, "Inside recvTimingReq: request %s addr %lld size %d\n",
487            pkt->cmdString(),pkt->getAddr(), pkt->getSize());
488
489   int index;
490
491   if (pkt->getSize() == bytesPerCacheLine)
492       cpuReqs++;
493
494   if (numReqs % 1000000 == 0)
495       printQs();
496
497    // Calc avg gap between requests
498    if (prevArrival != 0) {
499        totGap += curTick() - prevArrival;
500    }
501    prevArrival = curTick();
502
503    // simply drop inhibited packets for now
504    if (pkt->memInhibitAsserted()) {
505        DPRINTF(DRAM,"Inhibited packet -- Dropping it now\n");
506        pendingDelete.push_back(pkt);
507        return true;
508    }
509
510    unsigned size = pkt->getSize();
511    if (size > bytesPerCacheLine)
512        panic("Request size %d is greater than cache line size %d",
513              size, bytesPerCacheLine);
514
515    if (size == 0)
516        index = log2(bytesPerCacheLine) + 1;
517    else
518        index = log2(size);
519
520    if (size != 0 && (1 << index) != size)
521        index = log2(bytesPerCacheLine) + 2;
522
523    // @todo: Do we really want to do all this before the packet is
524    // actually accepted?
525
526    /* Index 0 - Size 1 byte
527       Index 1 - Size 2 bytes
528       Index 2 - Size 4 bytes
529         .
530         .
531       Index 6 - Size 64 bytes
532       Index 7 - Size 0 bytes
533       Index 8 - Non-power-of-2 size */
534
535    if (pkt->isRead())
536        readPktSize[index]++;
537    else if (pkt->isWrite())
538        writePktSize[index]++;
539    else
540        neitherPktSize[index]++;
541
542    // check local buffers and do not accept if full
543    if (pkt->isRead()) {
544        if (readQueueFull()) {
545            DPRINTF(DRAM,"Read queue full, not accepting\n");
546            // remember that we have to retry this port
547            retryRdReq = true;
548            numRdRetry++;
549            return false;
550        } else {
551            addToReadQueue(pkt);
552            readReqs++;
553            numReqs++;
554        }
555    } else if (pkt->isWrite()) {
556        if (writeQueueFull()) {
557            DPRINTF(DRAM,"Write queue full, not accepting\n");
558            // remember that we have to retry this port
559            retryWrReq = true;
560            numWrRetry++;
561            return false;
562        } else {
563            addToWriteQueue(pkt);
564            writeReqs++;
565            numReqs++;
566        }
567    } else {
568        DPRINTF(DRAM,"Neither read nor write, ignore timing\n");
569        neitherReadNorWrite++;
570        accessAndRespond(pkt);
571    }
572
573
574    retryRdReq = false;
575    retryWrReq = false;
576    return true;
577}
578
579void
580SimpleDRAM::processRespondEvent()
581{
582    DPRINTF(DRAM,
583            "processRespondEvent(): Some req has reached its readyTime\n");
584
585     PacketPtr pkt = dramRespQueue.front()->pkt;
586
587     // Actually responds to the requestor
588     bytesConsumedRd += pkt->getSize();
589     bytesRead += bytesPerCacheLine;
590     accessAndRespond(pkt);
591
592     DRAMPacket* dram_pkt = dramRespQueue.front();
593     dramRespQueue.pop_front();
594     delete dram_pkt;
595
596     // Update stats
597     avgRdQLen = dramReadQueue.size() + dramRespQueue.size();
598
599     if (!dramRespQueue.empty()){
600         assert(dramRespQueue.front()->readyTime >= curTick());
601         assert(!respondEvent.scheduled());
602         schedule(&respondEvent, dramRespQueue.front()->readyTime);
603     } else {
604         // if there is nothing left in any queue, signal a drain
605         if (dramWriteQueue.empty() && dramReadQueue.empty() &&
606             drainManager) {
607             drainManager->signalDrainDone();
608             drainManager = NULL;
609         }
610     }
611}
612
613void
614SimpleDRAM::chooseNextWrite()
615{
616    // This method does the arbitration between requests. The chosen
617    // packet is simply moved to the head of the queue. The other
618    // methods know that this is the place to look. For example, with
619    // FCFS, this method does nothing
620    assert(!dramWriteQueue.empty());
621
622    if (dramWriteQueue.size() == 1) {
623        DPRINTF(DRAMWR, "chooseNextWrite(): Single element, nothing to do\n");
624        return;
625    }
626
627    if (memSchedPolicy == Enums::fcfs) {
628
629        // Do nothing, since the correct request is already head
630
631    } else if (memSchedPolicy == Enums::frfcfs) {
632
633        list<DRAMPacket*>::iterator i = dramWriteQueue.begin();
634        bool foundRowHit = false;
635        while (!foundRowHit && i != dramWriteQueue.end()) {
636            DRAMPacket* dram_pkt = *i;
637            const Bank& bank = dram_pkt->bank_ref;
638            if (bank.openRow == dram_pkt->row) { //FR part
639                DPRINTF(DRAMWR,"Row buffer hit\n");
640                dramWriteQueue.erase(i);
641                dramWriteQueue.push_front(dram_pkt);
642                foundRowHit = true;
643            } else { //FCFS part
644                ;
645            }
646            ++i;
647        }
648
649    } else
650        panic("No scheduling policy chosen\n");
651
652    DPRINTF(DRAMWR, "chooseNextWrite(): Something chosen\n");
653}
654
655bool
656SimpleDRAM::chooseNextReq()
657{
658    // This method does the arbitration between requests.
659    // The chosen packet is simply moved to the head of the
660    // queue. The other methods know that this is the place
661    // to look. For example, with FCFS, this method does nothing
662    list<DRAMPacket*>::iterator i;
663    DRAMPacket* dram_pkt;
664
665    if (dramReadQueue.empty()){
666        DPRINTF(DRAM, "chooseNextReq(): Returning False\n");
667        return false;
668    }
669
670    if (dramReadQueue.size() == 1)
671        return true;
672
673    if (memSchedPolicy == Enums::fcfs) {
674
675        // Do nothing, since the correct request is already head
676
677    } else if (memSchedPolicy == Enums::frfcfs) {
678
679        for (i = dramReadQueue.begin() ; i != dramReadQueue.end() ; ++i) {
680            dram_pkt = *i;
681            const Bank& bank = dram_pkt->bank_ref;
682            if (bank.openRow == dram_pkt->row) { //FR part
683                DPRINTF(DRAM, "Row buffer hit\n");
684                dramReadQueue.erase(i);
685                dramReadQueue.push_front(dram_pkt);
686                break;
687            } else { //FCFS part
688                ;
689            }
690
691        }
692
693    } else
694        panic("No scheduling policy chosen!\n");
695
696
697    DPRINTF(DRAM,"chooseNextReq(): Chosen something, returning True\n");
698    return true;
699}
700
701void
702SimpleDRAM::accessAndRespond(PacketPtr pkt)
703{
704    DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
705
706    bool needsResponse = pkt->needsResponse();
707    // do the actual memory access which also turns the packet into a
708    // response
709    access(pkt);
710
711    // turn packet around to go back to requester if response expected
712    if (needsResponse) {
713        // access already turned the packet into a response
714        assert(pkt->isResponse());
715
716        // queue the packet in the response queue to be sent out the
717        // next tick
718        port.schedTimingResp(pkt, curTick() + 1);
719    } else {
720    }
721
722    DPRINTF(DRAM, "Done\n");
723
724    return;
725}
726
727pair<Tick, Tick>
728SimpleDRAM::estimateLatency(DRAMPacket* dram_pkt, Tick inTime)
729{
730    // If a request reaches a bank at tick 'inTime', how much time
731    // *after* that does it take to finish the request, depending
732    // on bank status and page open policy. Note that this method
733    // considers only the time taken for the actual read or write
734    // to complete, NOT any additional time thereafter for tRAS or
735    // tRP.
736    Tick accLat = 0;
737    Tick bankLat = 0;
738    rowHitFlag = false;
739
740    const Bank& bank = dram_pkt->bank_ref;
741    if (pageMgmt == Enums::open) { // open-page policy
742        if (bank.openRow == dram_pkt->row) {
743            // When we have a row-buffer hit,
744            // we don't care about tRAS having expired or not,
745            // but do care about bank being free for access
746            rowHitFlag = true;
747
748            if (bank.freeAt < inTime) {
749               // CAS latency only
750               accLat += tCL;
751               bankLat += tCL;
752            } else {
753                accLat += 0;
754                bankLat += 0;
755            }
756
757        } else {
758            // Row-buffer miss, need to close existing row
759            // once tRAS has expired, then open the new one,
760            // then add cas latency.
761            Tick freeTime = std::max(bank.tRASDoneAt, bank.freeAt);
762
763            if (freeTime > inTime)
764               accLat += freeTime - inTime;
765
766            accLat += tRP + tRCD + tCL;
767            bankLat += tRP + tRCD + tCL;
768        }
769    } else if (pageMgmt == Enums::close) {
770
771        // With a close page policy, no notion of
772        // bank.tRASDoneAt
773        if (bank.freeAt > inTime)
774            accLat += bank.freeAt - inTime;
775
776        // page already closed, simply open the row, and
777        // add cas latency
778        accLat += tRCD + tCL;
779        bankLat += tRCD + tCL;
780    } else
781        panic("No page management policy chosen\n");
782
783    DPRINTF(DRAM, "Returning %lld from estimateLatency()\n",accLat);
784
785    return make_pair(bankLat, accLat);
786}
787
788void
789SimpleDRAM::processNextReqEvent()
790{
791    scheduleNextReq();
792}
793
794void
795SimpleDRAM::doDRAMAccess(DRAMPacket* dram_pkt)
796{
797
798    DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
799            dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
800
801    assert(curTick() >= prevdramaccess);
802    prevdramaccess = curTick();
803
804    // estimate the bank and access latency
805    pair<Tick, Tick> lat = estimateLatency(dram_pkt, curTick());
806    Tick bankLat = lat.first;
807    Tick accessLat = lat.second;
808
809    // This request was woken up at this time based on a prior call
810    // to estimateLatency(). However, between then and now, both the
811    // accessLatency and/or busBusyUntil may have changed. We need
812    // to correct for that.
813
814    Tick addDelay = (curTick() + accessLat < busBusyUntil) ?
815        busBusyUntil - (curTick() + accessLat) : 0;
816
817    Bank& bank = dram_pkt->bank_ref;
818
819    // Update bank state
820    if (pageMgmt == Enums::open) {
821        bank.openRow = dram_pkt->row;
822        bank.freeAt = curTick() + addDelay + accessLat;
823        // If you activated a new row do to this access, the next access
824        // will have to respect tRAS for this bank. Assume tRAS ~= 3 * tRP
825        if (!rowHitFlag)
826            bank.tRASDoneAt = bank.freeAt + tRP;
827
828    } else if (pageMgmt == Enums::close) { // accounting for tRAS also
829        // assuming that tRAS ~= 3 * tRP, and tRAS ~= 4 * tRP, as is common
830        // (refer Jacob/Ng/Wang and Micron datasheets)
831        bank.freeAt = curTick() + addDelay + accessLat + tRP + tRP;
832        DPRINTF(DRAM,"doDRAMAccess::bank.freeAt is %lld\n",bank.freeAt);
833    } else
834        panic("No page management policy chosen\n");
835
836    // Update request parameters
837    dram_pkt->readyTime = curTick() + addDelay + accessLat + tBURST;
838
839
840    DPRINTF(DRAM, "Req %lld: curtick is %lld accessLat is %d " \
841                  "readytime is %lld busbusyuntil is %lld. " \
842                  "Scheduling at readyTime\n", dram_pkt->addr,
843                   curTick(), accessLat, dram_pkt->readyTime, busBusyUntil);
844
845    // Make sure requests are not overlapping on the databus
846    assert (dram_pkt->readyTime - busBusyUntil >= tBURST);
847
848    // Update bus state
849    busBusyUntil = dram_pkt->readyTime;
850
851    DPRINTF(DRAM,"Access time is %lld\n",
852            dram_pkt->readyTime - dram_pkt->entryTime);
853
854    // Update stats
855    totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
856    totBankLat += bankLat;
857    totBusLat += tBURST;
858    totQLat += dram_pkt->readyTime - dram_pkt->entryTime - bankLat - tBURST;
859
860    if (rowHitFlag)
861        readRowHits++;
862
863    // At this point we're done dealing with the request
864    // It will be moved to a separate response queue with a
865    // correct readyTime, and eventually be sent back at that
866    //time
867    moveToRespQ();
868
869    // The absolute soonest you have to start thinking about the
870    // next request is the longest access time that can occur before
871    // busBusyUntil. Assuming you need to meet tRAS, then precharge,
872    // open a new row, and access, it is ~4*tRCD.
873
874
875    Tick newTime = (busBusyUntil > 4 * tRCD) ?
876                   std::max(busBusyUntil - 4 * tRCD, curTick()) :
877                   curTick();
878
879    if (!nextReqEvent.scheduled() && !stopReads){
880        schedule(&nextReqEvent, newTime);
881    } else {
882        if (newTime < nextReqEvent.when())
883            reschedule(&nextReqEvent, newTime);
884    }
885
886
887}
888
889void
890SimpleDRAM::moveToRespQ()
891{
892    // Remove from read queue
893    DRAMPacket* dram_pkt = dramReadQueue.front();
894    dramReadQueue.pop_front();
895
896    // Insert into response queue sorted by readyTime
897    // It will be sent back to the requestor at its
898    // readyTime
899    if (dramRespQueue.empty()) {
900        dramRespQueue.push_front(dram_pkt);
901        assert(!respondEvent.scheduled());
902        assert(dram_pkt->readyTime >= curTick());
903        schedule(&respondEvent, dram_pkt->readyTime);
904    } else {
905        bool done = false;
906        std::list<DRAMPacket*>::iterator i = dramRespQueue.begin();
907        while (!done && i != dramRespQueue.end()) {
908            if ((*i)->readyTime > dram_pkt->readyTime) {
909                dramRespQueue.insert(i, dram_pkt);
910                done = true;
911            }
912            ++i;
913        }
914
915        if (!done)
916            dramRespQueue.push_back(dram_pkt);
917
918        assert(respondEvent.scheduled());
919
920        if (dramRespQueue.front()->readyTime < respondEvent.when()) {
921            assert(dramRespQueue.front()->readyTime >= curTick());
922            reschedule(&respondEvent, dramRespQueue.front()->readyTime);
923        }
924    }
925
926    if (retryRdReq) {
927         retryRdReq = false;
928         port.sendRetry();
929     }
930}
931
932void
933SimpleDRAM::scheduleNextReq()
934{
935    DPRINTF(DRAM, "Reached scheduleNextReq()\n");
936
937    // Figure out which request goes next, and move it to front()
938    if (!chooseNextReq()) {
939        // In the case there is no read request to go next, see if we
940        // are asked to drain, and if so trigger writes, this also
941        // ensures that if we hit the write limit we will do this
942        // multiple times until we are completely drained
943        if (drainManager && !dramWriteQueue.empty() && !writeEvent.scheduled())
944            triggerWrites();
945    } else {
946        doDRAMAccess(dramReadQueue.front());
947    }
948}
949
950Tick
951SimpleDRAM::maxBankFreeAt() const
952{
953    Tick banksFree = 0;
954
955    for(int i = 0; i < ranksPerChannel; i++)
956        for(int j = 0; j < banksPerRank; j++)
957            banksFree = std::max(banks[i][j].freeAt, banksFree);
958
959    return banksFree;
960}
961
962void
963SimpleDRAM::processRefreshEvent()
964{
965    DPRINTF(DRAM, "Refreshing at tick %ld\n", curTick());
966
967    Tick banksFree = std::max(curTick(), maxBankFreeAt()) + tRFC;
968
969    for(int i = 0; i < ranksPerChannel; i++)
970        for(int j = 0; j < banksPerRank; j++)
971            banks[i][j].freeAt = banksFree;
972
973    schedule(&refreshEvent, curTick() + tREFI);
974}
975
976void
977SimpleDRAM::regStats()
978{
979    using namespace Stats;
980
981    AbstractMemory::regStats();
982
983    readReqs
984        .name(name() + ".readReqs")
985        .desc("Total number of read requests seen");
986
987    writeReqs
988        .name(name() + ".writeReqs")
989        .desc("Total number of write requests seen");
990
991    servicedByWrQ
992        .name(name() + ".servicedByWrQ")
993        .desc("Number of read reqs serviced by write Q");
994
995    cpuReqs
996        .name(name() + ".cpureqs")
997        .desc("Reqs generatd by CPU via cache - shady");
998
999    neitherReadNorWrite
1000        .name(name() + ".neitherReadNorWrite")
1001        .desc("Reqs where no action is needed");
1002
1003    perBankRdReqs
1004        .init(banksPerRank * ranksPerChannel)
1005        .name(name() + ".perBankRdReqs")
1006        .desc("Track reads on a per bank basis");
1007
1008    perBankWrReqs
1009        .init(banksPerRank * ranksPerChannel)
1010        .name(name() + ".perBankWrReqs")
1011        .desc("Track writes on a per bank basis");
1012
1013    avgRdQLen
1014        .name(name() + ".avgRdQLen")
1015        .desc("Average read queue length over time")
1016        .precision(2);
1017
1018    avgWrQLen
1019        .name(name() + ".avgWrQLen")
1020        .desc("Average write queue length over time")
1021        .precision(2);
1022
1023    totQLat
1024        .name(name() + ".totQLat")
1025        .desc("Total cycles spent in queuing delays");
1026
1027    totBankLat
1028        .name(name() + ".totBankLat")
1029        .desc("Total cycles spent in bank access");
1030
1031    totBusLat
1032        .name(name() + ".totBusLat")
1033        .desc("Total cycles spent in databus access");
1034
1035    totMemAccLat
1036        .name(name() + ".totMemAccLat")
1037        .desc("Sum of mem lat for all requests");
1038
1039    avgQLat
1040        .name(name() + ".avgQLat")
1041        .desc("Average queueing delay per request")
1042        .precision(2);
1043
1044    avgQLat = totQLat / (readReqs - servicedByWrQ);
1045
1046    avgBankLat
1047        .name(name() + ".avgBankLat")
1048        .desc("Average bank access latency per request")
1049        .precision(2);
1050
1051    avgBankLat = totBankLat / (readReqs - servicedByWrQ);
1052
1053    avgBusLat
1054        .name(name() + ".avgBusLat")
1055        .desc("Average bus latency per request")
1056        .precision(2);
1057
1058    avgBusLat = totBusLat / (readReqs - servicedByWrQ);
1059
1060    avgMemAccLat
1061        .name(name() + ".avgMemAccLat")
1062        .desc("Average memory access latency")
1063        .precision(2);
1064
1065    avgMemAccLat = totMemAccLat / (readReqs - servicedByWrQ);
1066
1067    numRdRetry
1068        .name(name() + ".numRdRetry")
1069        .desc("Number of times rd buffer was full causing retry");
1070
1071    numWrRetry
1072        .name(name() + ".numWrRetry")
1073        .desc("Number of times wr buffer was full causing retry");
1074
1075    readRowHits
1076        .name(name() + ".readRowHits")
1077        .desc("Number of row buffer hits during reads");
1078
1079    writeRowHits
1080        .name(name() + ".writeRowHits")
1081        .desc("Number of row buffer hits during writes");
1082
1083    readRowHitRate
1084        .name(name() + ".readRowHitRate")
1085        .desc("Row buffer hit rate for reads")
1086        .precision(2);
1087
1088    readRowHitRate = (readRowHits / (readReqs - servicedByWrQ)) * 100;
1089
1090    writeRowHitRate
1091        .name(name() + ".writeRowHitRate")
1092        .desc("Row buffer hit rate for writes")
1093        .precision(2);
1094
1095    writeRowHitRate = (writeRowHits / writeReqs) * 100;
1096
1097    readPktSize
1098        .init(log2(bytesPerCacheLine)+3)
1099        .name(name() + ".readPktSize")
1100        .desc("Categorize read packet sizes");
1101
1102     writePktSize
1103        .init(log2(bytesPerCacheLine)+3)
1104        .name(name() + ".writePktSize")
1105        .desc("categorize write packet sizes");
1106
1107     neitherPktSize
1108        .init(log2(bytesPerCacheLine)+3)
1109        .name(name() + ".neitherpktsize")
1110        .desc("categorize neither packet sizes");
1111
1112     rdQLenPdf
1113        .init(readBufferSize + 1)
1114        .name(name() + ".rdQLenPdf")
1115        .desc("What read queue length does an incoming req see");
1116
1117     wrQLenPdf
1118        .init(writeBufferSize + 1)
1119        .name(name() + ".wrQLenPdf")
1120        .desc("What write queue length does an incoming req see");
1121
1122
1123    bytesRead
1124        .name(name() + ".bytesRead")
1125        .desc("Total number of bytes read from memory");
1126
1127    bytesWritten
1128        .name(name() + ".bytesWritten")
1129        .desc("Total number of bytes written to memory");
1130
1131    bytesConsumedRd
1132        .name(name() + ".bytesConsumedRd")
1133        .desc("bytesRead derated as per pkt->getSize()");
1134
1135    bytesConsumedWr
1136        .name(name() + ".bytesConsumedWr")
1137        .desc("bytesWritten derated as per pkt->getSize()");
1138
1139    avgRdBW
1140        .name(name() + ".avgRdBW")
1141        .desc("Average achieved read bandwidth in MB/s")
1142        .precision(2);
1143
1144    avgRdBW = (bytesRead / 1000000) / simSeconds;
1145
1146    avgWrBW
1147        .name(name() + ".avgWrBW")
1148        .desc("Average achieved write bandwidth in MB/s")
1149        .precision(2);
1150
1151    avgWrBW = (bytesWritten / 1000000) / simSeconds;
1152
1153    avgConsumedRdBW
1154        .name(name() + ".avgConsumedRdBW")
1155        .desc("Average consumed read bandwidth in MB/s")
1156        .precision(2);
1157
1158    avgConsumedRdBW = (bytesConsumedRd / 1000000) / simSeconds;
1159
1160    avgConsumedWrBW
1161        .name(name() + ".avgConsumedWrBW")
1162        .desc("Average consumed write bandwidth in MB/s")
1163        .precision(2);
1164
1165    avgConsumedWrBW = (bytesConsumedWr / 1000000) / simSeconds;
1166
1167    peakBW
1168        .name(name() + ".peakBW")
1169        .desc("Theoretical peak bandwidth in MB/s")
1170        .precision(2);
1171
1172    peakBW = (SimClock::Frequency / tBURST) * bytesPerCacheLine / 1000000;
1173
1174    busUtil
1175        .name(name() + ".busUtil")
1176        .desc("Data bus utilization in percentage")
1177        .precision(2);
1178
1179    busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
1180
1181    totGap
1182        .name(name() + ".totGap")
1183        .desc("Total gap between requests");
1184
1185    avgGap
1186        .name(name() + ".avgGap")
1187        .desc("Average gap between requests")
1188        .precision(2);
1189
1190    avgGap = totGap / (readReqs + writeReqs);
1191}
1192
1193void
1194SimpleDRAM::recvFunctional(PacketPtr pkt)
1195{
1196    // rely on the abstract memory
1197    functionalAccess(pkt);
1198}
1199
1200BaseSlavePort&
1201SimpleDRAM::getSlavePort(const string &if_name, PortID idx)
1202{
1203    if (if_name != "port") {
1204        return MemObject::getSlavePort(if_name, idx);
1205    } else {
1206        return port;
1207    }
1208}
1209
1210unsigned int
1211SimpleDRAM::drain(DrainManager *dm)
1212{
1213    unsigned int count = port.drain(dm);
1214
1215    // if there is anything in any of our internal queues, keep track
1216    // of that as well
1217    if (!(dramWriteQueue.empty() && dramReadQueue.empty() &&
1218          dramRespQueue.empty())) {
1219        DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
1220                " resp: %d\n", dramWriteQueue.size(), dramReadQueue.size(),
1221                dramRespQueue.size());
1222        ++count;
1223        drainManager = dm;
1224        // the only part that is not drained automatically over time
1225        // is the write queue, thus trigger writes if there are any
1226        // waiting and no reads waiting, otherwise wait until the
1227        // reads are done
1228        if (dramReadQueue.empty() && !dramWriteQueue.empty() &&
1229            !writeEvent.scheduled())
1230            triggerWrites();
1231    }
1232
1233    if (count)
1234        setDrainState(Drainable::Draining);
1235    else
1236        setDrainState(Drainable::Drained);
1237    return count;
1238}
1239
1240SimpleDRAM::MemoryPort::MemoryPort(const std::string& name, SimpleDRAM& _memory)
1241    : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
1242      memory(_memory)
1243{ }
1244
1245AddrRangeList
1246SimpleDRAM::MemoryPort::getAddrRanges() const
1247{
1248    AddrRangeList ranges;
1249    ranges.push_back(memory.getAddrRange());
1250    return ranges;
1251}
1252
1253void
1254SimpleDRAM::MemoryPort::recvFunctional(PacketPtr pkt)
1255{
1256    pkt->pushLabel(memory.name());
1257
1258    if (!queue.checkFunctional(pkt)) {
1259        // Default implementation of SimpleTimingPort::recvFunctional()
1260        // calls recvAtomic() and throws away the latency; we can save a
1261        // little here by just not calculating the latency.
1262        memory.recvFunctional(pkt);
1263    }
1264
1265    pkt->popLabel();
1266}
1267
1268Tick
1269SimpleDRAM::MemoryPort::recvAtomic(PacketPtr pkt)
1270{
1271    return memory.recvAtomic(pkt);
1272}
1273
1274bool
1275SimpleDRAM::MemoryPort::recvTimingReq(PacketPtr pkt)
1276{
1277    // pass it to the memory controller
1278    return memory.recvTimingReq(pkt);
1279}
1280
1281SimpleDRAM*
1282SimpleDRAMParams::create()
1283{
1284    return new SimpleDRAM(this);
1285}
1286