dram_ctrl.cc revision 9349
1/*
2 * Copyright (c) 2010-2012 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Andreas Hansson
38 *          Ani Udipi
39 */
40
41#include "debug/DRAM.hh"
42#include "debug/DRAMWR.hh"
43#include "mem/simple_dram.hh"
44#include "sim/stat_control.hh"
45
46using namespace std;
47
48SimpleDRAM::SimpleDRAM(const SimpleDRAMParams* p) :
49    AbstractMemory(p),
50    port(name() + ".port", *this),
51    retryRdReq(false), retryWrReq(false),
52    rowHitFlag(false), stopReads(false),
53    writeEvent(this), respondEvent(this),
54    refreshEvent(this), nextReqEvent(this), drainManager(NULL),
55    bytesPerCacheLine(0),
56    linesPerRowBuffer(p->lines_per_rowbuffer),
57    ranksPerChannel(p->ranks_per_channel),
58    banksPerRank(p->banks_per_rank), rowsPerBank(0),
59    readBufferSize(p->read_buffer_size),
60    writeBufferSize(p->write_buffer_size),
61    writeThresholdPerc(p->write_thresh_perc),
62    tWTR(p->tWTR), tBURST(p->tBURST),
63    tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP),
64    tRFC(p->tRFC), tREFI(p->tREFI),
65    memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
66    pageMgmt(p->page_policy),
67    busBusyUntil(0), prevdramaccess(0), writeStartTime(0),
68    prevArrival(0), numReqs(0)
69{
70    // create the bank states based on the dimensions of the ranks and
71    // banks
72    banks.resize(ranksPerChannel);
73    for (size_t c = 0; c < ranksPerChannel; ++c) {
74        banks[c].resize(banksPerRank);
75    }
76
77    // round the write threshold percent to a whole number of entries
78    // in the buffer
79    writeThreshold = writeBufferSize * writeThresholdPerc / 100.0;
80}
81
82void
83SimpleDRAM::init()
84{
85    if (!port.isConnected()) {
86        fatal("SimpleDRAM %s is unconnected!\n", name());
87    } else {
88        port.sendRangeChange();
89    }
90
91    // get the cache line size from the connected port
92    bytesPerCacheLine = port.peerBlockSize();
93
94    // we could deal with plenty options here, but for now do a quick
95    // sanity check
96    if (bytesPerCacheLine != 64 && bytesPerCacheLine != 32)
97        panic("Unexpected cache line size %d", bytesPerCacheLine);
98
99    // determine the rows per bank by looking at the total capacity
100    uint64_t capacity = AbstractMemory::size();
101    uint64_t i = 1;
102    while (i < 64 && capacity > ((1 << i))) {
103        ++i;
104    }
105
106    // rounded up to nearest power of two
107    DPRINTF(DRAM, "i is %lld\n", i);
108    capacity = 1 << i;
109
110    DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
111            AbstractMemory::size());
112    rowsPerBank = capacity / (bytesPerCacheLine * linesPerRowBuffer *
113                              banksPerRank * ranksPerChannel);
114
115}
116
117void
118SimpleDRAM::startup()
119{
120    // print the configuration of the controller
121    printParams();
122
123    // kick off the refresh
124    schedule(&refreshEvent, curTick() + tREFI);
125}
126
127
128Tick
129SimpleDRAM::recvAtomic(PacketPtr pkt)
130{
131    DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
132
133    // do the actual memory access and turn the packet into a response
134    access(pkt);
135
136    Tick latency = 0;
137    if (!pkt->memInhibitAsserted() && pkt->hasData()) {
138        // this value is not supposed to be accurate, just enough to
139        // keep things going, mimic a closed page
140        latency = tRP + tRCD + tCL;
141    }
142    return latency;
143}
144
145bool
146SimpleDRAM::readQueueFull() const
147{
148    DPRINTF(DRAM, "Read queue limit %d current size %d\n",
149            readBufferSize, dramReadQueue.size() + dramRespQueue.size());
150
151    return (dramReadQueue.size() + dramRespQueue.size()) == readBufferSize;
152}
153
154bool
155SimpleDRAM::writeQueueFull() const
156{
157    DPRINTF(DRAM, "Write queue limit %d current size %d\n",
158            writeBufferSize, dramWriteQueue.size());
159    return dramWriteQueue.size() == writeBufferSize;
160}
161
162
163SimpleDRAM::DRAMPacket*
164SimpleDRAM::decodeAddr(PacketPtr pkt)
165{
166    uint8_t rank;
167    uint16_t bank;
168    uint16_t row;
169
170    Addr addr = pkt->getAddr();
171    Addr temp = addr;
172
173    // truncate the address to the access granularity
174    addr = addr / bytesPerCacheLine;
175
176    if (addrMapping == Enums::openmap) {
177        addr = addr / linesPerRowBuffer;
178
179        bank = addr % banksPerRank;
180        addr = addr / banksPerRank;
181
182        rank = addr % ranksPerChannel;
183        addr = addr / ranksPerChannel;
184
185        row = addr % rowsPerBank;
186        addr = addr / rowsPerBank;
187    } else if (addrMapping == Enums::closemap) {
188        bank = addr % banksPerRank;
189        addr = addr / banksPerRank;
190
191        rank = addr % ranksPerChannel;
192        addr = addr / ranksPerChannel;
193
194        addr = addr / linesPerRowBuffer;
195
196        row = addr % rowsPerBank;
197        addr = addr / rowsPerBank;
198    } else
199        panic("Unknown address mapping policy chosen!");
200
201    assert(rank < ranksPerChannel);
202    assert(bank < banksPerRank);
203    assert(row < rowsPerBank);
204
205    DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
206            temp, rank, bank, row);
207
208    // create the corresponding DRAM packet with the entry time and
209    // ready time set to the current tick, they will be updated later
210    DRAMPacket* dram_pkt = new DRAMPacket(pkt, rank, bank, row, temp,
211                                          banks[rank][bank]);
212
213    return dram_pkt;
214}
215
216void
217SimpleDRAM::addToReadQueue(PacketPtr pkt)
218{
219    // only add to the read queue here. whenever the request is
220    // eventually done, set the readyTime, and call schedule()
221    assert(!pkt->isWrite());
222
223    // First check write buffer to see if the data is already at
224    // the controller
225    std::list<DRAMPacket*>::const_iterator i;
226    Addr addr = pkt->getAddr();
227
228    // @todo: add size check
229    for (i = dramWriteQueue.begin();  i != dramWriteQueue.end(); ++i) {
230        if ((*i)->addr == addr){
231            servicedByWrQ++;
232            DPRINTF(DRAM,"Serviced by write Q\n");
233            bytesRead += bytesPerCacheLine;
234            bytesConsumedRd += pkt->getSize();
235            accessAndRespond(pkt);
236            return;
237        }
238    }
239
240    DRAMPacket* dram_pkt = decodeAddr(pkt);
241
242    assert(dramReadQueue.size() + dramRespQueue.size() < readBufferSize);
243    rdQLenPdf[dramReadQueue.size() + dramRespQueue.size()]++;
244
245    DPRINTF(DRAM, "Adding to read queue\n");
246
247    dramReadQueue.push_back(dram_pkt);
248
249    // Update stats
250    uint32_t bank_id = banksPerRank * dram_pkt->rank + dram_pkt->bank;
251    assert(bank_id < ranksPerChannel * banksPerRank);
252    perBankRdReqs[bank_id]++;
253
254    avgRdQLen = dramReadQueue.size() + dramRespQueue.size();
255
256    // Special case where no arbitration is required between requests
257    if (!nextReqEvent.scheduled() && !stopReads) {
258        DPRINTF(DRAM, "Request %lld - need to schedule immediately");
259        schedule(&nextReqEvent, curTick() + 1);
260    }
261}
262
263void
264SimpleDRAM::processWriteEvent()
265{
266    assert(!dramWriteQueue.empty());
267    uint32_t numWritesThisTime = 0;
268
269    DPRINTF(DRAMWR, "Beginning DRAM Writes\n");
270    Tick temp1 M5_VAR_USED = std::max(curTick(), busBusyUntil);
271    Tick temp2 M5_VAR_USED = std::max(curTick(), maxBankFreeAt());
272
273    // @todo: are there any dangers with the untimed while loop?
274    while (!dramWriteQueue.empty()) {
275        if (numWritesThisTime > writeThreshold)
276            break;
277
278        chooseNextWrite();
279        DRAMPacket* dram_pkt = dramWriteQueue.front();
280        // What's the earlier the request can be put on the bus
281        Tick schedTime = std::max(curTick(), busBusyUntil);
282
283        DPRINTF(DRAMWR, "Asking for latency estimate at %lld\n",
284                schedTime + tBURST);
285
286        pair<Tick, Tick> lat = estimateLatency(dram_pkt, schedTime + tBURST);
287        Tick accessLat = lat.second;
288
289        // look at the rowHitFlag set by estimateLatency
290
291        // @todo: Race condition here where another packet gives rise
292        // to another call to estimateLatency in the meanwhile?
293        if (rowHitFlag)
294            writeRowHits++;
295
296        Bank& bank = dram_pkt->bank_ref;
297
298        if (pageMgmt == Enums::open) {
299            bank.openRow = dram_pkt->row;
300            bank.freeAt = schedTime + tBURST + accessLat;
301
302            if (!rowHitFlag)
303                bank.tRASDoneAt = bank.freeAt + tRP;
304
305        } else if (pageMgmt == Enums::close) {
306            bank.freeAt = schedTime + tBURST + accessLat + tRP + tRP;
307            DPRINTF(DRAMWR, "processWriteEvent::bank.freeAt for "
308                    "banks_id %d is %lld\n",
309                    dram_pkt->rank * banksPerRank + dram_pkt->bank,
310                    bank.freeAt);
311        } else
312            panic("Unknown page management policy chosen\n");
313
314        // @todo: As of now, write goes on the databus asap, maybe
315        // be held up at bank. May want to change it to delay the
316        // schedTime itself.
317        busBusyUntil = schedTime + tBURST;
318        DPRINTF(DRAMWR,"Done writing to address %lld\n",dram_pkt->addr);
319
320
321        DPRINTF(DRAMWR,"schedtime is %lld, tBURST is %lld, "
322                "busbusyuntil is %lld\n",
323                schedTime, tBURST, busBusyUntil);
324
325        dramWriteQueue.pop_front();
326        delete dram_pkt;
327
328        numWritesThisTime++;
329    }
330
331    DPRINTF(DRAMWR, "Completed %d writes, bus busy for %lld ticks,"\
332            "banks busy for %lld ticks\n", numWritesThisTime,
333            busBusyUntil - temp1, maxBankFreeAt() - temp2);
334
335    // Update stats
336    avgWrQLen = dramWriteQueue.size();
337
338    // turn the bus back around for reads again
339    busBusyUntil += tWTR;
340    stopReads = false;
341
342    if (retryWrReq) {
343        retryWrReq = false;
344        port.sendRetry();
345    }
346
347    // if there is nothing left in any queue, signal a drain
348    if (dramWriteQueue.empty() && dramReadQueue.empty() &&
349        dramRespQueue.empty () && drainManager) {
350        drainManager->signalDrainDone();
351        drainManager = NULL;
352    }
353
354    // Once you're done emptying the write queue, check if there's
355    // anything in the read queue, and call schedule if required
356    schedule(&nextReqEvent, busBusyUntil);
357}
358
359void
360SimpleDRAM::triggerWrites()
361{
362    DPRINTF(DRAM, "Writes triggered at %lld\n", curTick());
363    // Flag variable to stop any more read scheduling
364    stopReads = true;
365
366    writeStartTime = std::max(busBusyUntil, curTick()) + tWTR;
367
368    DPRINTF(DRAM, "Writes scheduled at %lld\n", writeStartTime);
369
370    assert(writeStartTime >= curTick());
371    assert(!writeEvent.scheduled());
372    schedule(&writeEvent, writeStartTime);
373}
374
375void
376SimpleDRAM::addToWriteQueue(PacketPtr pkt)
377{
378    // only add to the write queue here. whenever the request is
379    // eventually done, set the readyTime, and call schedule()
380    assert(pkt->isWrite());
381
382    DRAMPacket* dram_pkt = decodeAddr(pkt);
383
384    assert(dramWriteQueue.size() < writeBufferSize);
385    wrQLenPdf[dramWriteQueue.size()]++;
386
387    DPRINTF(DRAM, "Adding to write queue\n");
388
389    dramWriteQueue.push_back(dram_pkt);
390
391    // Update stats
392    uint32_t bank_id = banksPerRank * dram_pkt->rank + dram_pkt->bank;
393    assert(bank_id < ranksPerChannel * banksPerRank);
394    perBankWrReqs[bank_id]++;
395
396    avgWrQLen = dramWriteQueue.size();
397
398    // we do not wait for the writes to be send to the actual memory,
399    // but instead take responsibility for the consistency here and
400    // snoop the write queue for any upcoming reads
401
402    bytesConsumedWr += pkt->getSize();
403    bytesWritten += bytesPerCacheLine;
404    accessAndRespond(pkt);
405
406    // If your write buffer is starting to fill up, drain it!
407    if (dramWriteQueue.size() > writeThreshold  && !stopReads){
408        triggerWrites();
409    }
410}
411
412void
413SimpleDRAM::printParams() const
414{
415    // Sanity check print of important parameters
416    DPRINTF(DRAM,
417            "Memory controller %s physical organization\n"      \
418            "Bytes per cacheline  %d\n"                         \
419            "Lines per row buffer %d\n"                         \
420            "Rows  per bank       %d\n"                         \
421            "Banks per rank       %d\n"                         \
422            "Ranks per channel    %d\n"                         \
423            "Total mem capacity   %u\n",
424            name(), bytesPerCacheLine ,linesPerRowBuffer, rowsPerBank,
425            banksPerRank, ranksPerChannel, bytesPerCacheLine *
426            linesPerRowBuffer * rowsPerBank * banksPerRank * ranksPerChannel);
427
428    string scheduler =  memSchedPolicy == Enums::fcfs ? "FCFS" : "FR-FCFS";
429    string address_mapping = addrMapping == Enums::openmap ? "OPENMAP" :
430        "CLOSEMAP";
431    string page_policy = pageMgmt == Enums::open ? "OPEN" : "CLOSE";
432
433    DPRINTF(DRAM,
434            "Memory controller %s characteristics\n"    \
435            "Read buffer size     %d\n"                 \
436            "Write buffer size    %d\n"                 \
437            "Write buffer thresh  %d\n"                 \
438            "Scheduler            %s\n"                 \
439            "Address mapping      %s\n"                 \
440            "Page policy          %s\n",
441            name(), readBufferSize, writeBufferSize, writeThreshold,
442            scheduler, address_mapping, page_policy);
443
444    DPRINTF(DRAM, "Memory controller %s timing specs\n" \
445            "tRCD    %d ticks\n"                        \
446            "tCL     %d ticks\n"                        \
447            "tRP     %d ticks\n"                        \
448            "tBURST  %d ticks\n"                        \
449            "tRFC    %d ticks\n"                        \
450            "tREFI   %d ticks\n"                        \
451            "tWTR    %d ticks\n",
452            name(), tRCD, tCL, tRP, tBURST, tRFC, tREFI, tWTR);
453}
454
455void
456SimpleDRAM::printQs() const {
457
458    list<DRAMPacket*>::const_iterator i;
459
460    DPRINTF(DRAM, "===READ QUEUE===\n\n");
461    for (i = dramReadQueue.begin() ;  i != dramReadQueue.end() ; ++i) {
462        DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
463    }
464    DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
465    for (i = dramRespQueue.begin() ;  i != dramRespQueue.end() ; ++i) {
466        DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
467    }
468    DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
469    for (i = dramWriteQueue.begin() ;  i != dramWriteQueue.end() ; ++i) {
470        DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
471    }
472}
473
474bool
475SimpleDRAM::recvTimingReq(PacketPtr pkt)
476{
477    /// @todo temporary hack to deal with memory corruption issues until
478    /// 4-phase transactions are complete
479    for (int x = 0; x < pendingDelete.size(); x++)
480        delete pendingDelete[x];
481    pendingDelete.clear();
482
483
484    // This is where we enter from the outside world
485    DPRINTF(DRAM, "Inside recvTimingReq: request %s addr %lld size %d\n",
486            pkt->cmdString(),pkt->getAddr(), pkt->getSize());
487
488   int index;
489
490   if (pkt->getSize() == bytesPerCacheLine)
491       cpuReqs++;
492
493   if (numReqs % 1000000 == 0)
494       printQs();
495
496    // Calc avg gap between requests
497    if (prevArrival != 0) {
498        totGap += curTick() - prevArrival;
499    }
500    prevArrival = curTick();
501
502    // simply drop inhibited packets for now
503    if (pkt->memInhibitAsserted()) {
504        DPRINTF(DRAM,"Inhibited packet -- Dropping it now\n");
505        pendingDelete.push_back(pkt);
506        return true;
507    }
508
509    unsigned size = pkt->getSize();
510    if (size > bytesPerCacheLine)
511        panic("Request size %d is greater than cache line size %d",
512              size, bytesPerCacheLine);
513
514    if (size == 0)
515        index = log2(bytesPerCacheLine) + 1;
516    else
517        index = log2(size);
518
519    if (size != 0 && (1 << index) != size)
520        index = log2(bytesPerCacheLine) + 2;
521
522    // @todo: Do we really want to do all this before the packet is
523    // actually accepted?
524
525    /* Index 0 - Size 1 byte
526       Index 1 - Size 2 bytes
527       Index 2 - Size 4 bytes
528         .
529         .
530       Index 6 - Size 64 bytes
531       Index 7 - Size 0 bytes
532       Index 8 - Non-power-of-2 size */
533
534    if (pkt->isRead())
535        readPktSize[index]++;
536    else if (pkt->isWrite())
537        writePktSize[index]++;
538    else
539        neitherPktSize[index]++;
540
541    // check local buffers and do not accept if full
542    if (pkt->isRead()) {
543        if (readQueueFull()) {
544            DPRINTF(DRAM,"Read queue full, not accepting\n");
545            // remember that we have to retry this port
546            retryRdReq = true;
547            numRdRetry++;
548            return false;
549        } else {
550            addToReadQueue(pkt);
551            readReqs++;
552            numReqs++;
553        }
554    } else if (pkt->isWrite()) {
555        if (writeQueueFull()) {
556            DPRINTF(DRAM,"Write queue full, not accepting\n");
557            // remember that we have to retry this port
558            retryWrReq = true;
559            numWrRetry++;
560            return false;
561        } else {
562            addToWriteQueue(pkt);
563            writeReqs++;
564            numReqs++;
565        }
566    } else {
567        DPRINTF(DRAM,"Neither read nor write, ignore timing\n");
568        neitherReadNorWrite++;
569        accessAndRespond(pkt);
570    }
571
572
573    retryRdReq = false;
574    retryWrReq = false;
575    return true;
576}
577
578void
579SimpleDRAM::processRespondEvent()
580{
581    DPRINTF(DRAM,
582            "processRespondEvent(): Some req has reached its readyTime\n");
583
584     PacketPtr pkt = dramRespQueue.front()->pkt;
585
586     // Actually responds to the requestor
587     bytesConsumedRd += pkt->getSize();
588     bytesRead += bytesPerCacheLine;
589     accessAndRespond(pkt);
590
591     DRAMPacket* dram_pkt = dramRespQueue.front();
592     dramRespQueue.pop_front();
593     delete dram_pkt;
594
595     // Update stats
596     avgRdQLen = dramReadQueue.size() + dramRespQueue.size();
597
598     if (!dramRespQueue.empty()){
599         assert(dramRespQueue.front()->readyTime >= curTick());
600         assert(!respondEvent.scheduled());
601         schedule(&respondEvent, dramRespQueue.front()->readyTime);
602     } else {
603         // if there is nothing left in any queue, signal a drain
604         if (dramWriteQueue.empty() && dramReadQueue.empty() &&
605             drainManager) {
606             drainManager->signalDrainDone();
607             drainManager = NULL;
608         }
609     }
610}
611
612void
613SimpleDRAM::chooseNextWrite()
614{
615    // This method does the arbitration between requests. The chosen
616    // packet is simply moved to the head of the queue. The other
617    // methods know that this is the place to look. For example, with
618    // FCFS, this method does nothing
619    assert(!dramWriteQueue.empty());
620
621    if (dramWriteQueue.size() == 1) {
622        DPRINTF(DRAMWR, "chooseNextWrite(): Single element, nothing to do\n");
623        return;
624    }
625
626    if (memSchedPolicy == Enums::fcfs) {
627
628        // Do nothing, since the correct request is already head
629
630    } else if (memSchedPolicy == Enums::frfcfs) {
631
632        list<DRAMPacket*>::iterator i = dramWriteQueue.begin();
633        bool foundRowHit = false;
634        while (!foundRowHit && i != dramWriteQueue.end()) {
635            DRAMPacket* dram_pkt = *i;
636            const Bank& bank = dram_pkt->bank_ref;
637            if (bank.openRow == dram_pkt->row) { //FR part
638                DPRINTF(DRAMWR,"Row buffer hit\n");
639                dramWriteQueue.erase(i);
640                dramWriteQueue.push_front(dram_pkt);
641                foundRowHit = true;
642            } else { //FCFS part
643                ;
644            }
645            ++i;
646        }
647
648    } else
649        panic("No scheduling policy chosen\n");
650
651    DPRINTF(DRAMWR, "chooseNextWrite(): Something chosen\n");
652}
653
654bool
655SimpleDRAM::chooseNextReq()
656{
657    // This method does the arbitration between requests.
658    // The chosen packet is simply moved to the head of the
659    // queue. The other methods know that this is the place
660    // to look. For example, with FCFS, this method does nothing
661    list<DRAMPacket*>::iterator i;
662    DRAMPacket* dram_pkt;
663
664    if (dramReadQueue.empty()){
665        DPRINTF(DRAM, "chooseNextReq(): Returning False\n");
666        return false;
667    }
668
669    if (dramReadQueue.size() == 1)
670        return true;
671
672    if (memSchedPolicy == Enums::fcfs) {
673
674        // Do nothing, since the correct request is already head
675
676    } else if (memSchedPolicy == Enums::frfcfs) {
677
678        for (i = dramReadQueue.begin() ; i != dramReadQueue.end() ; ++i) {
679            dram_pkt = *i;
680            const Bank& bank = dram_pkt->bank_ref;
681            if (bank.openRow == dram_pkt->row) { //FR part
682                DPRINTF(DRAM, "Row buffer hit\n");
683                dramReadQueue.erase(i);
684                dramReadQueue.push_front(dram_pkt);
685                break;
686            } else { //FCFS part
687                ;
688            }
689
690        }
691
692    } else
693        panic("No scheduling policy chosen!\n");
694
695
696    DPRINTF(DRAM,"chooseNextReq(): Chosen something, returning True\n");
697    return true;
698}
699
700void
701SimpleDRAM::accessAndRespond(PacketPtr pkt)
702{
703    DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
704
705    bool needsResponse = pkt->needsResponse();
706    // do the actual memory access which also turns the packet into a
707    // response
708    access(pkt);
709
710    // turn packet around to go back to requester if response expected
711    if (needsResponse) {
712        // access already turned the packet into a response
713        assert(pkt->isResponse());
714
715        // queue the packet in the response queue to be sent out the
716        // next tick
717        port.schedTimingResp(pkt, curTick() + 1);
718    } else {
719    }
720
721    DPRINTF(DRAM, "Done\n");
722
723    return;
724}
725
726pair<Tick, Tick>
727SimpleDRAM::estimateLatency(DRAMPacket* dram_pkt, Tick inTime)
728{
729    // If a request reaches a bank at tick 'inTime', how much time
730    // *after* that does it take to finish the request, depending
731    // on bank status and page open policy. Note that this method
732    // considers only the time taken for the actual read or write
733    // to complete, NOT any additional time thereafter for tRAS or
734    // tRP.
735    Tick accLat = 0;
736    Tick bankLat = 0;
737    rowHitFlag = false;
738
739    const Bank& bank = dram_pkt->bank_ref;
740    if (pageMgmt == Enums::open) { // open-page policy
741        if (bank.openRow == dram_pkt->row) {
742            // When we have a row-buffer hit,
743            // we don't care about tRAS having expired or not,
744            // but do care about bank being free for access
745            rowHitFlag = true;
746
747            if (bank.freeAt < inTime) {
748               // CAS latency only
749               accLat += tCL;
750               bankLat += tCL;
751            } else {
752                accLat += 0;
753                bankLat += 0;
754            }
755
756        } else {
757            // Row-buffer miss, need to close existing row
758            // once tRAS has expired, then open the new one,
759            // then add cas latency.
760            Tick freeTime = std::max(bank.tRASDoneAt, bank.freeAt);
761
762            if (freeTime > inTime)
763               accLat += freeTime - inTime;
764
765            accLat += tRP + tRCD + tCL;
766            bankLat += tRP + tRCD + tCL;
767        }
768    } else if (pageMgmt == Enums::close) {
769
770        // With a close page policy, no notion of
771        // bank.tRASDoneAt
772        if (bank.freeAt > inTime)
773            accLat += bank.freeAt - inTime;
774
775        // page already closed, simply open the row, and
776        // add cas latency
777        accLat += tRCD + tCL;
778        bankLat += tRCD + tCL;
779    } else
780        panic("No page management policy chosen\n");
781
782    DPRINTF(DRAM, "Returning %lld from estimateLatency()\n",accLat);
783
784    return make_pair(bankLat, accLat);
785}
786
787void
788SimpleDRAM::processNextReqEvent()
789{
790    scheduleNextReq();
791}
792
793void
794SimpleDRAM::doDRAMAccess(DRAMPacket* dram_pkt)
795{
796
797    DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
798            dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
799
800    assert(curTick() >= prevdramaccess);
801    prevdramaccess = curTick();
802
803    // estimate the bank and access latency
804    pair<Tick, Tick> lat = estimateLatency(dram_pkt, curTick());
805    Tick bankLat = lat.first;
806    Tick accessLat = lat.second;
807
808    // This request was woken up at this time based on a prior call
809    // to estimateLatency(). However, between then and now, both the
810    // accessLatency and/or busBusyUntil may have changed. We need
811    // to correct for that.
812
813    Tick addDelay = (curTick() + accessLat < busBusyUntil) ?
814        busBusyUntil - (curTick() + accessLat) : 0;
815
816    Bank& bank = dram_pkt->bank_ref;
817
818    // Update bank state
819    if (pageMgmt == Enums::open) {
820        bank.openRow = dram_pkt->row;
821        bank.freeAt = curTick() + addDelay + accessLat;
822        // If you activated a new row do to this access, the next access
823        // will have to respect tRAS for this bank. Assume tRAS ~= 3 * tRP
824        if (!rowHitFlag)
825            bank.tRASDoneAt = bank.freeAt + tRP;
826
827    } else if (pageMgmt == Enums::close) { // accounting for tRAS also
828        // assuming that tRAS ~= 3 * tRP, and tRAS ~= 4 * tRP, as is common
829        // (refer Jacob/Ng/Wang and Micron datasheets)
830        bank.freeAt = curTick() + addDelay + accessLat + tRP + tRP;
831        DPRINTF(DRAM,"doDRAMAccess::bank.freeAt is %lld\n",bank.freeAt);
832    } else
833        panic("No page management policy chosen\n");
834
835    // Update request parameters
836    dram_pkt->readyTime = curTick() + addDelay + accessLat + tBURST;
837
838
839    DPRINTF(DRAM, "Req %lld: curtick is %lld accessLat is %d " \
840                  "readytime is %lld busbusyuntil is %lld. " \
841                  "Scheduling at readyTime\n", dram_pkt->addr,
842                   curTick(), accessLat, dram_pkt->readyTime, busBusyUntil);
843
844    // Make sure requests are not overlapping on the databus
845    assert (dram_pkt->readyTime - busBusyUntil >= tBURST);
846
847    // Update bus state
848    busBusyUntil = dram_pkt->readyTime;
849
850    DPRINTF(DRAM,"Access time is %lld\n",
851            dram_pkt->readyTime - dram_pkt->entryTime);
852
853    // Update stats
854    totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
855    totBankLat += bankLat;
856    totBusLat += tBURST;
857    totQLat += dram_pkt->readyTime - dram_pkt->entryTime - bankLat - tBURST;
858
859    if (rowHitFlag)
860        readRowHits++;
861
862    // At this point we're done dealing with the request
863    // It will be moved to a separate response queue with a
864    // correct readyTime, and eventually be sent back at that
865    //time
866    moveToRespQ();
867
868    // The absolute soonest you have to start thinking about the
869    // next request is the longest access time that can occur before
870    // busBusyUntil. Assuming you need to meet tRAS, then precharge,
871    // open a new row, and access, it is ~4*tRCD.
872
873
874    Tick newTime = (busBusyUntil > 4 * tRCD) ?
875                   std::max(busBusyUntil - 4 * tRCD, curTick()) :
876                   curTick();
877
878    if (!nextReqEvent.scheduled() && !stopReads){
879        schedule(&nextReqEvent, newTime);
880    } else {
881        if (newTime < nextReqEvent.when())
882            reschedule(&nextReqEvent, newTime);
883    }
884
885
886}
887
888void
889SimpleDRAM::moveToRespQ()
890{
891    // Remove from read queue
892    DRAMPacket* dram_pkt = dramReadQueue.front();
893    dramReadQueue.pop_front();
894
895    // Insert into response queue sorted by readyTime
896    // It will be sent back to the requestor at its
897    // readyTime
898    if (dramRespQueue.empty()) {
899        dramRespQueue.push_front(dram_pkt);
900        assert(!respondEvent.scheduled());
901        assert(dram_pkt->readyTime >= curTick());
902        schedule(&respondEvent, dram_pkt->readyTime);
903    } else {
904        bool done = false;
905        std::list<DRAMPacket*>::iterator i = dramRespQueue.begin();
906        while (!done && i != dramRespQueue.end()) {
907            if ((*i)->readyTime > dram_pkt->readyTime) {
908                dramRespQueue.insert(i, dram_pkt);
909                done = true;
910            }
911            ++i;
912        }
913
914        if (!done)
915            dramRespQueue.push_back(dram_pkt);
916
917        assert(respondEvent.scheduled());
918
919        if (dramRespQueue.front()->readyTime < respondEvent.when()) {
920            assert(dramRespQueue.front()->readyTime >= curTick());
921            reschedule(&respondEvent, dramRespQueue.front()->readyTime);
922        }
923    }
924
925    if (retryRdReq) {
926         retryRdReq = false;
927         port.sendRetry();
928     }
929}
930
931void
932SimpleDRAM::scheduleNextReq()
933{
934    DPRINTF(DRAM, "Reached scheduleNextReq()\n");
935
936    // Figure out which request goes next, and move it to front()
937    if (!chooseNextReq())
938        return;
939
940    doDRAMAccess(dramReadQueue.front());
941}
942
943
944
945
946Tick
947SimpleDRAM::maxBankFreeAt() const
948{
949    Tick banksFree = 0;
950
951    for(int i = 0; i < ranksPerChannel; i++)
952        for(int j = 0; j < banksPerRank; j++)
953            banksFree = std::max(banks[i][j].freeAt, banksFree);
954
955    return banksFree;
956}
957
958void
959SimpleDRAM::processRefreshEvent()
960{
961    DPRINTF(DRAM, "Refreshing at tick %ld\n", curTick());
962
963    Tick banksFree = std::max(curTick(), maxBankFreeAt()) + tRFC;
964
965    for(int i = 0; i < ranksPerChannel; i++)
966        for(int j = 0; j < banksPerRank; j++)
967            banks[i][j].freeAt = banksFree;
968
969    schedule(&refreshEvent, curTick() + tREFI);
970}
971
972void
973SimpleDRAM::regStats()
974{
975    using namespace Stats;
976
977    AbstractMemory::regStats();
978
979    readReqs
980        .name(name() + ".readReqs")
981        .desc("Total number of read requests seen");
982
983    writeReqs
984        .name(name() + ".writeReqs")
985        .desc("Total number of write requests seen");
986
987    servicedByWrQ
988        .name(name() + ".servicedByWrQ")
989        .desc("Number of read reqs serviced by write Q");
990
991    cpuReqs
992        .name(name() + ".cpureqs")
993        .desc("Reqs generatd by CPU via cache - shady");
994
995    neitherReadNorWrite
996        .name(name() + ".neitherReadNorWrite")
997        .desc("Reqs where no action is needed");
998
999    perBankRdReqs
1000        .init(banksPerRank * ranksPerChannel)
1001        .name(name() + ".perBankRdReqs")
1002        .desc("Track reads on a per bank basis");
1003
1004    perBankWrReqs
1005        .init(banksPerRank * ranksPerChannel)
1006        .name(name() + ".perBankWrReqs")
1007        .desc("Track writes on a per bank basis");
1008
1009    avgRdQLen
1010        .name(name() + ".avgRdQLen")
1011        .desc("Average read queue length over time")
1012        .precision(2);
1013
1014    avgWrQLen
1015        .name(name() + ".avgWrQLen")
1016        .desc("Average write queue length over time")
1017        .precision(2);
1018
1019    totQLat
1020        .name(name() + ".totQLat")
1021        .desc("Total cycles spent in queuing delays");
1022
1023    totBankLat
1024        .name(name() + ".totBankLat")
1025        .desc("Total cycles spent in bank access");
1026
1027    totBusLat
1028        .name(name() + ".totBusLat")
1029        .desc("Total cycles spent in databus access");
1030
1031    totMemAccLat
1032        .name(name() + ".totMemAccLat")
1033        .desc("Sum of mem lat for all requests");
1034
1035    avgQLat
1036        .name(name() + ".avgQLat")
1037        .desc("Average queueing delay per request")
1038        .precision(2);
1039
1040    avgQLat = totQLat / (readReqs - servicedByWrQ);
1041
1042    avgBankLat
1043        .name(name() + ".avgBankLat")
1044        .desc("Average bank access latency per request")
1045        .precision(2);
1046
1047    avgBankLat = totBankLat / (readReqs - servicedByWrQ);
1048
1049    avgBusLat
1050        .name(name() + ".avgBusLat")
1051        .desc("Average bus latency per request")
1052        .precision(2);
1053
1054    avgBusLat = totBusLat / (readReqs - servicedByWrQ);
1055
1056    avgMemAccLat
1057        .name(name() + ".avgMemAccLat")
1058        .desc("Average memory access latency")
1059        .precision(2);
1060
1061    avgMemAccLat = totMemAccLat / (readReqs - servicedByWrQ);
1062
1063    numRdRetry
1064        .name(name() + ".numRdRetry")
1065        .desc("Number of times rd buffer was full causing retry");
1066
1067    numWrRetry
1068        .name(name() + ".numWrRetry")
1069        .desc("Number of times wr buffer was full causing retry");
1070
1071    readRowHits
1072        .name(name() + ".readRowHits")
1073        .desc("Number of row buffer hits during reads");
1074
1075    writeRowHits
1076        .name(name() + ".writeRowHits")
1077        .desc("Number of row buffer hits during writes");
1078
1079    readRowHitRate
1080        .name(name() + ".readRowHitRate")
1081        .desc("Row buffer hit rate for reads")
1082        .precision(2);
1083
1084    readRowHitRate = (readRowHits / (readReqs - servicedByWrQ)) * 100;
1085
1086    writeRowHitRate
1087        .name(name() + ".writeRowHitRate")
1088        .desc("Row buffer hit rate for writes")
1089        .precision(2);
1090
1091    writeRowHitRate = (writeRowHits / writeReqs) * 100;
1092
1093    readPktSize
1094        .init(log2(bytesPerCacheLine)+3)
1095        .name(name() + ".readPktSize")
1096        .desc("Categorize read packet sizes");
1097
1098     writePktSize
1099        .init(log2(bytesPerCacheLine)+3)
1100        .name(name() + ".writePktSize")
1101        .desc("categorize write packet sizes");
1102
1103     neitherPktSize
1104        .init(log2(bytesPerCacheLine)+3)
1105        .name(name() + ".neitherpktsize")
1106        .desc("categorize neither packet sizes");
1107
1108     rdQLenPdf
1109        .init(readBufferSize + 1)
1110        .name(name() + ".rdQLenPdf")
1111        .desc("What read queue length does an incoming req see");
1112
1113     wrQLenPdf
1114        .init(writeBufferSize + 1)
1115        .name(name() + ".wrQLenPdf")
1116        .desc("What write queue length does an incoming req see");
1117
1118
1119    bytesRead
1120        .name(name() + ".bytesRead")
1121        .desc("Total number of bytes read from memory");
1122
1123    bytesWritten
1124        .name(name() + ".bytesWritten")
1125        .desc("Total number of bytes written to memory");
1126
1127    bytesConsumedRd
1128        .name(name() + ".bytesConsumedRd")
1129        .desc("bytesRead derated as per pkt->getSize()");
1130
1131    bytesConsumedWr
1132        .name(name() + ".bytesConsumedWr")
1133        .desc("bytesWritten derated as per pkt->getSize()");
1134
1135    avgRdBW
1136        .name(name() + ".avgRdBW")
1137        .desc("Average achieved read bandwidth in MB/s")
1138        .precision(2);
1139
1140    avgRdBW = (bytesRead / 1000000) / simSeconds;
1141
1142    avgWrBW
1143        .name(name() + ".avgWrBW")
1144        .desc("Average achieved write bandwidth in MB/s")
1145        .precision(2);
1146
1147    avgWrBW = (bytesWritten / 1000000) / simSeconds;
1148
1149    avgConsumedRdBW
1150        .name(name() + ".avgConsumedRdBW")
1151        .desc("Average consumed read bandwidth in MB/s")
1152        .precision(2);
1153
1154    avgConsumedRdBW = (bytesConsumedRd / 1000000) / simSeconds;
1155
1156    avgConsumedWrBW
1157        .name(name() + ".avgConsumedWrBW")
1158        .desc("Average consumed write bandwidth in MB/s")
1159        .precision(2);
1160
1161    avgConsumedWrBW = (bytesConsumedWr / 1000000) / simSeconds;
1162
1163    peakBW
1164        .name(name() + ".peakBW")
1165        .desc("Theoretical peak bandwidth in MB/s")
1166        .precision(2);
1167
1168    peakBW = (SimClock::Frequency / tBURST) * bytesPerCacheLine / 1000000;
1169
1170    busUtil
1171        .name(name() + ".busUtil")
1172        .desc("Data bus utilization in percentage")
1173        .precision(2);
1174
1175    busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
1176
1177    totGap
1178        .name(name() + ".totGap")
1179        .desc("Total gap between requests");
1180
1181    avgGap
1182        .name(name() + ".avgGap")
1183        .desc("Average gap between requests")
1184        .precision(2);
1185
1186    avgGap = totGap / (readReqs + writeReqs);
1187}
1188
1189void
1190SimpleDRAM::recvFunctional(PacketPtr pkt)
1191{
1192    // rely on the abstract memory
1193    functionalAccess(pkt);
1194}
1195
1196BaseSlavePort&
1197SimpleDRAM::getSlavePort(const string &if_name, PortID idx)
1198{
1199    if (if_name != "port") {
1200        return MemObject::getSlavePort(if_name, idx);
1201    } else {
1202        return port;
1203    }
1204}
1205
1206unsigned int
1207SimpleDRAM::drain(DrainManager *dm)
1208{
1209    unsigned int count = port.drain(dm);
1210
1211    // if there is anything in any of our internal queues, keep track
1212    // of that as well
1213    if (!(dramWriteQueue.empty() && dramReadQueue.empty() &&
1214          dramRespQueue.empty())) {
1215        ++count;
1216        drainManager = dm;
1217    }
1218
1219    if (count)
1220        setDrainState(Drainable::Draining);
1221    else
1222        setDrainState(Drainable::Drained);
1223    return count;
1224}
1225
1226SimpleDRAM::MemoryPort::MemoryPort(const std::string& name, SimpleDRAM& _memory)
1227    : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
1228      memory(_memory)
1229{ }
1230
1231AddrRangeList
1232SimpleDRAM::MemoryPort::getAddrRanges() const
1233{
1234    AddrRangeList ranges;
1235    ranges.push_back(memory.getAddrRange());
1236    return ranges;
1237}
1238
1239void
1240SimpleDRAM::MemoryPort::recvFunctional(PacketPtr pkt)
1241{
1242    pkt->pushLabel(memory.name());
1243
1244    if (!queue.checkFunctional(pkt)) {
1245        // Default implementation of SimpleTimingPort::recvFunctional()
1246        // calls recvAtomic() and throws away the latency; we can save a
1247        // little here by just not calculating the latency.
1248        memory.recvFunctional(pkt);
1249    }
1250
1251    pkt->popLabel();
1252}
1253
1254Tick
1255SimpleDRAM::MemoryPort::recvAtomic(PacketPtr pkt)
1256{
1257    return memory.recvAtomic(pkt);
1258}
1259
1260bool
1261SimpleDRAM::MemoryPort::recvTimingReq(PacketPtr pkt)
1262{
1263    // pass it to the memory controller
1264    return memory.recvTimingReq(pkt);
1265}
1266
1267SimpleDRAM*
1268SimpleDRAMParams::create()
1269{
1270    return new SimpleDRAM(this);
1271}
1272