dram_ctrl.cc revision 11189
112326Sar4jc@virginia.edu/*
212326Sar4jc@virginia.edu * Copyright (c) 2010-2015 ARM Limited
312326Sar4jc@virginia.edu * All rights reserved
412326Sar4jc@virginia.edu *
512326Sar4jc@virginia.edu * The license below extends only to copyright in the software and shall
612326Sar4jc@virginia.edu * not be construed as granting a license to any other intellectual
712326Sar4jc@virginia.edu * property including but not limited to intellectual property relating
812326Sar4jc@virginia.edu * to a hardware implementation of the functionality of the software
912326Sar4jc@virginia.edu * licensed hereunder.  You may use the software subject to the license
1012326Sar4jc@virginia.edu * terms below provided that you ensure that this notice is replicated
1112326Sar4jc@virginia.edu * unmodified and in its entirety in all distributions of the software,
1212326Sar4jc@virginia.edu * modified or unmodified, in source code or in binary form.
1312326Sar4jc@virginia.edu *
1412326Sar4jc@virginia.edu * Copyright (c) 2013 Amin Farmahini-Farahani
1512326Sar4jc@virginia.edu * All rights reserved.
1612326Sar4jc@virginia.edu *
1712326Sar4jc@virginia.edu * Redistribution and use in source and binary forms, with or without
1812326Sar4jc@virginia.edu * modification, are permitted provided that the following conditions are
1912326Sar4jc@virginia.edu * met: redistributions of source code must retain the above copyright
2012326Sar4jc@virginia.edu * notice, this list of conditions and the following disclaimer;
2112326Sar4jc@virginia.edu * redistributions in binary form must reproduce the above copyright
2212326Sar4jc@virginia.edu * notice, this list of conditions and the following disclaimer in the
2312326Sar4jc@virginia.edu * documentation and/or other materials provided with the distribution;
2412326Sar4jc@virginia.edu * neither the name of the copyright holders nor the names of its
2512326Sar4jc@virginia.edu * contributors may be used to endorse or promote products derived from
2612326Sar4jc@virginia.edu * this software without specific prior written permission.
2712326Sar4jc@virginia.edu *
2812326Sar4jc@virginia.edu * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
2912326Sar4jc@virginia.edu * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
3012326Sar4jc@virginia.edu * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
3112326Sar4jc@virginia.edu * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
3212309Sar4jc@virginia.edu * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
3312309Sar4jc@virginia.edu * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
3412309Sar4jc@virginia.edu * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
3512309Sar4jc@virginia.edu * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
3612309Sar4jc@virginia.edu * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
3712309Sar4jc@virginia.edu * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
3812309Sar4jc@virginia.edu * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
3912309Sar4jc@virginia.edu *
4012309Sar4jc@virginia.edu * Authors: Andreas Hansson
4112309Sar4jc@virginia.edu *          Ani Udipi
4212309Sar4jc@virginia.edu *          Neha Agarwal
4312309Sar4jc@virginia.edu *          Omar Naji
4412309Sar4jc@virginia.edu */
4512309Sar4jc@virginia.edu
4612309Sar4jc@virginia.edu#include "base/bitfield.hh"
4712309Sar4jc@virginia.edu#include "base/trace.hh"
4812309Sar4jc@virginia.edu#include "debug/DRAM.hh"
4912309Sar4jc@virginia.edu#include "debug/DRAMPower.hh"
5012309Sar4jc@virginia.edu#include "debug/DRAMState.hh"
5112309Sar4jc@virginia.edu#include "debug/Drain.hh"
5212309Sar4jc@virginia.edu#include "mem/dram_ctrl.hh"
5312309Sar4jc@virginia.edu#include "sim/system.hh"
5412309Sar4jc@virginia.edu
5512309Sar4jc@virginia.eduusing namespace std;
5612309Sar4jc@virginia.eduusing namespace Data;
5712309Sar4jc@virginia.edu
5812309Sar4jc@virginia.eduDRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
5912614Sgabeblack@google.com    AbstractMemory(p),
6012614Sgabeblack@google.com    port(name() + ".port", *this), isTimingMode(false),
6112614Sgabeblack@google.com    retryRdReq(false), retryWrReq(false),
6212614Sgabeblack@google.com    busState(READ),
6312614Sgabeblack@google.com    nextReqEvent(this), respondEvent(this),
6412614Sgabeblack@google.com    deviceSize(p->device_size),
6512309Sar4jc@virginia.edu    deviceBusWidth(p->device_bus_width), burstLength(p->burst_length),
6612309Sar4jc@virginia.edu    deviceRowBufferSize(p->device_rowbuffer_size),
6712309Sar4jc@virginia.edu    devicesPerRank(p->devices_per_rank),
6812309Sar4jc@virginia.edu    burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8),
6912309Sar4jc@virginia.edu    rowBufferSize(devicesPerRank * deviceRowBufferSize),
7012309Sar4jc@virginia.edu    columnsPerRowBuffer(rowBufferSize / burstSize),
7112309Sar4jc@virginia.edu    columnsPerStripe(range.interleaved() ? range.granularity() / burstSize : 1),
7212309Sar4jc@virginia.edu    ranksPerChannel(p->ranks_per_channel),
7312309Sar4jc@virginia.edu    bankGroupsPerRank(p->bank_groups_per_rank),
7412309Sar4jc@virginia.edu    bankGroupArch(p->bank_groups_per_rank > 0),
7512309Sar4jc@virginia.edu    banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0),
7612309Sar4jc@virginia.edu    readBufferSize(p->read_buffer_size),
7712309Sar4jc@virginia.edu    writeBufferSize(p->write_buffer_size),
7812309Sar4jc@virginia.edu    writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0),
7912309Sar4jc@virginia.edu    writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0),
8012309Sar4jc@virginia.edu    minWritesPerSwitch(p->min_writes_per_switch),
8112309Sar4jc@virginia.edu    writesThisTime(0), readsThisTime(0),
8212309Sar4jc@virginia.edu    tCK(p->tCK), tWTR(p->tWTR), tRTW(p->tRTW), tCS(p->tCS), tBURST(p->tBURST),
8312309Sar4jc@virginia.edu    tCCD_L(p->tCCD_L), tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS),
8412482Sgabeblack@google.com    tWR(p->tWR), tRTP(p->tRTP), tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD),
8512482Sgabeblack@google.com    tRRD_L(p->tRRD_L), tXAW(p->tXAW), activationLimit(p->activation_limit),
8612482Sgabeblack@google.com    memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
8712482Sgabeblack@google.com    pageMgmt(p->page_policy),
8812482Sgabeblack@google.com    maxAccessesPerRow(p->max_accesses_per_row),
8912309Sar4jc@virginia.edu    frontendLatency(p->static_frontend_latency),
9012309Sar4jc@virginia.edu    backendLatency(p->static_backend_latency),
9112482Sgabeblack@google.com    busBusyUntil(0), prevArrival(0),
9212309Sar4jc@virginia.edu    nextReqTime(0), activeRank(0), timeStampOffset(0)
9312309Sar4jc@virginia.edu{
9412309Sar4jc@virginia.edu    // sanity check the ranks since we rely on bit slicing for the
9512309Sar4jc@virginia.edu    // address decoding
9612309Sar4jc@virginia.edu    fatal_if(!isPowerOf2(ranksPerChannel), "DRAM rank count of %d is not "
9712309Sar4jc@virginia.edu             "allowed, must be a power of two\n", ranksPerChannel);
9812482Sgabeblack@google.com
9912309Sar4jc@virginia.edu    fatal_if(!isPowerOf2(burstSize), "DRAM burst size %d is not allowed, "
10012309Sar4jc@virginia.edu             "must be a power of two\n", burstSize);
10112309Sar4jc@virginia.edu
10212309Sar4jc@virginia.edu    for (int i = 0; i < ranksPerChannel; i++) {
10312309Sar4jc@virginia.edu        Rank* rank = new Rank(*this, p);
10412482Sgabeblack@google.com        ranks.push_back(rank);
10512309Sar4jc@virginia.edu
10612309Sar4jc@virginia.edu        rank->actTicks.resize(activationLimit, 0);
10712309Sar4jc@virginia.edu        rank->banks.resize(banksPerRank);
10812309Sar4jc@virginia.edu        rank->rank = i;
10912309Sar4jc@virginia.edu
11012309Sar4jc@virginia.edu        for (int b = 0; b < banksPerRank; b++) {
11112309Sar4jc@virginia.edu            rank->banks[b].bank = b;
11212309Sar4jc@virginia.edu            // GDDR addressing of banks to BG is linear.
11312309Sar4jc@virginia.edu            // Here we assume that all DRAM generations address bank groups as
11412309Sar4jc@virginia.edu            // follows:
11512309Sar4jc@virginia.edu            if (bankGroupArch) {
11612309Sar4jc@virginia.edu                // Simply assign lower bits to bank group in order to
11712309Sar4jc@virginia.edu                // rotate across bank groups as banks are incremented
11812309Sar4jc@virginia.edu                // e.g. with 4 banks per bank group and 16 banks total:
11912309Sar4jc@virginia.edu                //    banks 0,4,8,12  are in bank group 0
12012309Sar4jc@virginia.edu                //    banks 1,5,9,13  are in bank group 1
12112309Sar4jc@virginia.edu                //    banks 2,6,10,14 are in bank group 2
12212309Sar4jc@virginia.edu                //    banks 3,7,11,15 are in bank group 3
12312309Sar4jc@virginia.edu                rank->banks[b].bankgr = b % bankGroupsPerRank;
12412309Sar4jc@virginia.edu            } else {
12512309Sar4jc@virginia.edu                // No bank groups; simply assign to bank number
12612309Sar4jc@virginia.edu                rank->banks[b].bankgr = b;
12712309Sar4jc@virginia.edu            }
12812309Sar4jc@virginia.edu        }
129    }
130
131    // perform a basic check of the write thresholds
132    if (p->write_low_thresh_perc >= p->write_high_thresh_perc)
133        fatal("Write buffer low threshold %d must be smaller than the "
134              "high threshold %d\n", p->write_low_thresh_perc,
135              p->write_high_thresh_perc);
136
137    // determine the rows per bank by looking at the total capacity
138    uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size());
139
140    // determine the dram actual capacity from the DRAM config in Mbytes
141    uint64_t deviceCapacity = deviceSize / (1024 * 1024) * devicesPerRank *
142        ranksPerChannel;
143
144    // if actual DRAM size does not match memory capacity in system warn!
145    if (deviceCapacity != capacity / (1024 * 1024))
146        warn("DRAM device capacity (%d Mbytes) does not match the "
147             "address range assigned (%d Mbytes)\n", deviceCapacity,
148             capacity / (1024 * 1024));
149
150    DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
151            AbstractMemory::size());
152
153    DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n",
154            rowBufferSize, columnsPerRowBuffer);
155
156    rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel);
157
158    // some basic sanity checks
159    if (tREFI <= tRP || tREFI <= tRFC) {
160        fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n",
161              tREFI, tRP, tRFC);
162    }
163
164    // basic bank group architecture checks ->
165    if (bankGroupArch) {
166        // must have at least one bank per bank group
167        if (bankGroupsPerRank > banksPerRank) {
168            fatal("banks per rank (%d) must be equal to or larger than "
169                  "banks groups per rank (%d)\n",
170                  banksPerRank, bankGroupsPerRank);
171        }
172        // must have same number of banks in each bank group
173        if ((banksPerRank % bankGroupsPerRank) != 0) {
174            fatal("Banks per rank (%d) must be evenly divisible by bank groups "
175                  "per rank (%d) for equal banks per bank group\n",
176                  banksPerRank, bankGroupsPerRank);
177        }
178        // tCCD_L should be greater than minimal, back-to-back burst delay
179        if (tCCD_L <= tBURST) {
180            fatal("tCCD_L (%d) should be larger than tBURST (%d) when "
181                  "bank groups per rank (%d) is greater than 1\n",
182                  tCCD_L, tBURST, bankGroupsPerRank);
183        }
184        // tRRD_L is greater than minimal, same bank group ACT-to-ACT delay
185        // some datasheets might specify it equal to tRRD
186        if (tRRD_L < tRRD) {
187            fatal("tRRD_L (%d) should be larger than tRRD (%d) when "
188                  "bank groups per rank (%d) is greater than 1\n",
189                  tRRD_L, tRRD, bankGroupsPerRank);
190        }
191    }
192
193}
194
195void
196DRAMCtrl::init()
197{
198    AbstractMemory::init();
199
200   if (!port.isConnected()) {
201        fatal("DRAMCtrl %s is unconnected!\n", name());
202    } else {
203        port.sendRangeChange();
204    }
205
206    // a bit of sanity checks on the interleaving, save it for here to
207    // ensure that the system pointer is initialised
208    if (range.interleaved()) {
209        if (channels != range.stripes())
210            fatal("%s has %d interleaved address stripes but %d channel(s)\n",
211                  name(), range.stripes(), channels);
212
213        if (addrMapping == Enums::RoRaBaChCo) {
214            if (rowBufferSize != range.granularity()) {
215                fatal("Channel interleaving of %s doesn't match RoRaBaChCo "
216                      "address map\n", name());
217            }
218        } else if (addrMapping == Enums::RoRaBaCoCh ||
219                   addrMapping == Enums::RoCoRaBaCh) {
220            // for the interleavings with channel bits in the bottom,
221            // if the system uses a channel striping granularity that
222            // is larger than the DRAM burst size, then map the
223            // sequential accesses within a stripe to a number of
224            // columns in the DRAM, effectively placing some of the
225            // lower-order column bits as the least-significant bits
226            // of the address (above the ones denoting the burst size)
227            assert(columnsPerStripe >= 1);
228
229            // channel striping has to be done at a granularity that
230            // is equal or larger to a cache line
231            if (system()->cacheLineSize() > range.granularity()) {
232                fatal("Channel interleaving of %s must be at least as large "
233                      "as the cache line size\n", name());
234            }
235
236            // ...and equal or smaller than the row-buffer size
237            if (rowBufferSize < range.granularity()) {
238                fatal("Channel interleaving of %s must be at most as large "
239                      "as the row-buffer size\n", name());
240            }
241            // this is essentially the check above, so just to be sure
242            assert(columnsPerStripe <= columnsPerRowBuffer);
243        }
244    }
245}
246
247void
248DRAMCtrl::startup()
249{
250    // remember the memory system mode of operation
251    isTimingMode = system()->isTimingMode();
252
253    if (isTimingMode) {
254        // timestamp offset should be in clock cycles for DRAMPower
255        timeStampOffset = divCeil(curTick(), tCK);
256
257        // update the start tick for the precharge accounting to the
258        // current tick
259        for (auto r : ranks) {
260            r->startup(curTick() + tREFI - tRP);
261        }
262
263        // shift the bus busy time sufficiently far ahead that we never
264        // have to worry about negative values when computing the time for
265        // the next request, this will add an insignificant bubble at the
266        // start of simulation
267        busBusyUntil = curTick() + tRP + tRCD + tCL;
268    }
269}
270
271Tick
272DRAMCtrl::recvAtomic(PacketPtr pkt)
273{
274    DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
275
276    // do the actual memory access and turn the packet into a response
277    access(pkt);
278
279    Tick latency = 0;
280    if (!pkt->memInhibitAsserted() && pkt->hasData()) {
281        // this value is not supposed to be accurate, just enough to
282        // keep things going, mimic a closed page
283        latency = tRP + tRCD + tCL;
284    }
285    return latency;
286}
287
288bool
289DRAMCtrl::readQueueFull(unsigned int neededEntries) const
290{
291    DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n",
292            readBufferSize, readQueue.size() + respQueue.size(),
293            neededEntries);
294
295    return
296        (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize;
297}
298
299bool
300DRAMCtrl::writeQueueFull(unsigned int neededEntries) const
301{
302    DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n",
303            writeBufferSize, writeQueue.size(), neededEntries);
304    return (writeQueue.size() + neededEntries) > writeBufferSize;
305}
306
307DRAMCtrl::DRAMPacket*
308DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size,
309                       bool isRead)
310{
311    // decode the address based on the address mapping scheme, with
312    // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and
313    // channel, respectively
314    uint8_t rank;
315    uint8_t bank;
316    // use a 64-bit unsigned during the computations as the row is
317    // always the top bits, and check before creating the DRAMPacket
318    uint64_t row;
319
320    // truncate the address to a DRAM burst, which makes it unique to
321    // a specific column, row, bank, rank and channel
322    Addr addr = dramPktAddr / burstSize;
323
324    // we have removed the lowest order address bits that denote the
325    // position within the column
326    if (addrMapping == Enums::RoRaBaChCo) {
327        // the lowest order bits denote the column to ensure that
328        // sequential cache lines occupy the same row
329        addr = addr / columnsPerRowBuffer;
330
331        // take out the channel part of the address
332        addr = addr / channels;
333
334        // after the channel bits, get the bank bits to interleave
335        // over the banks
336        bank = addr % banksPerRank;
337        addr = addr / banksPerRank;
338
339        // after the bank, we get the rank bits which thus interleaves
340        // over the ranks
341        rank = addr % ranksPerChannel;
342        addr = addr / ranksPerChannel;
343
344        // lastly, get the row bits, no need to remove them from addr
345        row = addr % rowsPerBank;
346    } else if (addrMapping == Enums::RoRaBaCoCh) {
347        // take out the lower-order column bits
348        addr = addr / columnsPerStripe;
349
350        // take out the channel part of the address
351        addr = addr / channels;
352
353        // next, the higher-order column bites
354        addr = addr / (columnsPerRowBuffer / columnsPerStripe);
355
356        // after the column bits, we get the bank bits to interleave
357        // over the banks
358        bank = addr % banksPerRank;
359        addr = addr / banksPerRank;
360
361        // after the bank, we get the rank bits which thus interleaves
362        // over the ranks
363        rank = addr % ranksPerChannel;
364        addr = addr / ranksPerChannel;
365
366        // lastly, get the row bits, no need to remove them from addr
367        row = addr % rowsPerBank;
368    } else if (addrMapping == Enums::RoCoRaBaCh) {
369        // optimise for closed page mode and utilise maximum
370        // parallelism of the DRAM (at the cost of power)
371
372        // take out the lower-order column bits
373        addr = addr / columnsPerStripe;
374
375        // take out the channel part of the address, not that this has
376        // to match with how accesses are interleaved between the
377        // controllers in the address mapping
378        addr = addr / channels;
379
380        // start with the bank bits, as this provides the maximum
381        // opportunity for parallelism between requests
382        bank = addr % banksPerRank;
383        addr = addr / banksPerRank;
384
385        // next get the rank bits
386        rank = addr % ranksPerChannel;
387        addr = addr / ranksPerChannel;
388
389        // next, the higher-order column bites
390        addr = addr / (columnsPerRowBuffer / columnsPerStripe);
391
392        // lastly, get the row bits, no need to remove them from addr
393        row = addr % rowsPerBank;
394    } else
395        panic("Unknown address mapping policy chosen!");
396
397    assert(rank < ranksPerChannel);
398    assert(bank < banksPerRank);
399    assert(row < rowsPerBank);
400    assert(row < Bank::NO_ROW);
401
402    DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
403            dramPktAddr, rank, bank, row);
404
405    // create the corresponding DRAM packet with the entry time and
406    // ready time set to the current tick, the latter will be updated
407    // later
408    uint16_t bank_id = banksPerRank * rank + bank;
409    return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr,
410                          size, ranks[rank]->banks[bank], *ranks[rank]);
411}
412
413void
414DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount)
415{
416    // only add to the read queue here. whenever the request is
417    // eventually done, set the readyTime, and call schedule()
418    assert(!pkt->isWrite());
419
420    assert(pktCount != 0);
421
422    // if the request size is larger than burst size, the pkt is split into
423    // multiple DRAM packets
424    // Note if the pkt starting address is not aligened to burst size, the
425    // address of first DRAM packet is kept unaliged. Subsequent DRAM packets
426    // are aligned to burst size boundaries. This is to ensure we accurately
427    // check read packets against packets in write queue.
428    Addr addr = pkt->getAddr();
429    unsigned pktsServicedByWrQ = 0;
430    BurstHelper* burst_helper = NULL;
431    for (int cnt = 0; cnt < pktCount; ++cnt) {
432        unsigned size = std::min((addr | (burstSize - 1)) + 1,
433                        pkt->getAddr() + pkt->getSize()) - addr;
434        readPktSize[ceilLog2(size)]++;
435        readBursts++;
436
437        // First check write buffer to see if the data is already at
438        // the controller
439        bool foundInWrQ = false;
440        Addr burst_addr = burstAlign(addr);
441        // if the burst address is not present then there is no need
442        // looking any further
443        if (isInWriteQueue.find(burst_addr) != isInWriteQueue.end()) {
444            for (const auto& p : writeQueue) {
445                // check if the read is subsumed in the write queue
446                // packet we are looking at
447                if (p->addr <= addr && (addr + size) <= (p->addr + p->size)) {
448                    foundInWrQ = true;
449                    servicedByWrQ++;
450                    pktsServicedByWrQ++;
451                    DPRINTF(DRAM, "Read to addr %lld with size %d serviced by "
452                            "write queue\n", addr, size);
453                    bytesReadWrQ += burstSize;
454                    break;
455                }
456            }
457        }
458
459        // If not found in the write q, make a DRAM packet and
460        // push it onto the read queue
461        if (!foundInWrQ) {
462
463            // Make the burst helper for split packets
464            if (pktCount > 1 && burst_helper == NULL) {
465                DPRINTF(DRAM, "Read to addr %lld translates to %d "
466                        "dram requests\n", pkt->getAddr(), pktCount);
467                burst_helper = new BurstHelper(pktCount);
468            }
469
470            DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true);
471            dram_pkt->burstHelper = burst_helper;
472
473            assert(!readQueueFull(1));
474            rdQLenPdf[readQueue.size() + respQueue.size()]++;
475
476            DPRINTF(DRAM, "Adding to read queue\n");
477
478            readQueue.push_back(dram_pkt);
479
480            // Update stats
481            avgRdQLen = readQueue.size() + respQueue.size();
482        }
483
484        // Starting address of next dram pkt (aligend to burstSize boundary)
485        addr = (addr | (burstSize - 1)) + 1;
486    }
487
488    // If all packets are serviced by write queue, we send the repsonse back
489    if (pktsServicedByWrQ == pktCount) {
490        accessAndRespond(pkt, frontendLatency);
491        return;
492    }
493
494    // Update how many split packets are serviced by write queue
495    if (burst_helper != NULL)
496        burst_helper->burstsServiced = pktsServicedByWrQ;
497
498    // If we are not already scheduled to get a request out of the
499    // queue, do so now
500    if (!nextReqEvent.scheduled()) {
501        DPRINTF(DRAM, "Request scheduled immediately\n");
502        schedule(nextReqEvent, curTick());
503    }
504}
505
506void
507DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount)
508{
509    // only add to the write queue here. whenever the request is
510    // eventually done, set the readyTime, and call schedule()
511    assert(pkt->isWrite());
512
513    // if the request size is larger than burst size, the pkt is split into
514    // multiple DRAM packets
515    Addr addr = pkt->getAddr();
516    for (int cnt = 0; cnt < pktCount; ++cnt) {
517        unsigned size = std::min((addr | (burstSize - 1)) + 1,
518                        pkt->getAddr() + pkt->getSize()) - addr;
519        writePktSize[ceilLog2(size)]++;
520        writeBursts++;
521
522        // see if we can merge with an existing item in the write
523        // queue and keep track of whether we have merged or not
524        bool merged = isInWriteQueue.find(burstAlign(addr)) !=
525            isInWriteQueue.end();
526
527        // if the item was not merged we need to create a new write
528        // and enqueue it
529        if (!merged) {
530            DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false);
531
532            assert(writeQueue.size() < writeBufferSize);
533            wrQLenPdf[writeQueue.size()]++;
534
535            DPRINTF(DRAM, "Adding to write queue\n");
536
537            writeQueue.push_back(dram_pkt);
538            isInWriteQueue.insert(burstAlign(addr));
539            assert(writeQueue.size() == isInWriteQueue.size());
540
541            // Update stats
542            avgWrQLen = writeQueue.size();
543        } else {
544            DPRINTF(DRAM, "Merging write burst with existing queue entry\n");
545
546            // keep track of the fact that this burst effectively
547            // disappeared as it was merged with an existing one
548            mergedWrBursts++;
549        }
550
551        // Starting address of next dram pkt (aligend to burstSize boundary)
552        addr = (addr | (burstSize - 1)) + 1;
553    }
554
555    // we do not wait for the writes to be send to the actual memory,
556    // but instead take responsibility for the consistency here and
557    // snoop the write queue for any upcoming reads
558    // @todo, if a pkt size is larger than burst size, we might need a
559    // different front end latency
560    accessAndRespond(pkt, frontendLatency);
561
562    // If we are not already scheduled to get a request out of the
563    // queue, do so now
564    if (!nextReqEvent.scheduled()) {
565        DPRINTF(DRAM, "Request scheduled immediately\n");
566        schedule(nextReqEvent, curTick());
567    }
568}
569
570void
571DRAMCtrl::printQs() const {
572    DPRINTF(DRAM, "===READ QUEUE===\n\n");
573    for (auto i = readQueue.begin() ;  i != readQueue.end() ; ++i) {
574        DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
575    }
576    DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
577    for (auto i = respQueue.begin() ;  i != respQueue.end() ; ++i) {
578        DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
579    }
580    DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
581    for (auto i = writeQueue.begin() ;  i != writeQueue.end() ; ++i) {
582        DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
583    }
584}
585
586bool
587DRAMCtrl::recvTimingReq(PacketPtr pkt)
588{
589    /// @todo temporary hack to deal with memory corruption issues until
590    /// 4-phase transactions are complete
591    for (int x = 0; x < pendingDelete.size(); x++)
592        delete pendingDelete[x];
593    pendingDelete.clear();
594
595    // This is where we enter from the outside world
596    DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n",
597            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
598
599    // simply drop inhibited packets and clean evictions
600    if (pkt->memInhibitAsserted() ||
601        pkt->cmd == MemCmd::CleanEvict) {
602        DPRINTF(DRAM, "Inhibited packet or clean evict -- Dropping it now\n");
603        pendingDelete.push_back(pkt);
604        return true;
605    }
606
607    // Calc avg gap between requests
608    if (prevArrival != 0) {
609        totGap += curTick() - prevArrival;
610    }
611    prevArrival = curTick();
612
613
614    // Find out how many dram packets a pkt translates to
615    // If the burst size is equal or larger than the pkt size, then a pkt
616    // translates to only one dram packet. Otherwise, a pkt translates to
617    // multiple dram packets
618    unsigned size = pkt->getSize();
619    unsigned offset = pkt->getAddr() & (burstSize - 1);
620    unsigned int dram_pkt_count = divCeil(offset + size, burstSize);
621
622    // check local buffers and do not accept if full
623    if (pkt->isRead()) {
624        assert(size != 0);
625        if (readQueueFull(dram_pkt_count)) {
626            DPRINTF(DRAM, "Read queue full, not accepting\n");
627            // remember that we have to retry this port
628            retryRdReq = true;
629            numRdRetry++;
630            return false;
631        } else {
632            addToReadQueue(pkt, dram_pkt_count);
633            readReqs++;
634            bytesReadSys += size;
635        }
636    } else if (pkt->isWrite()) {
637        assert(size != 0);
638        if (writeQueueFull(dram_pkt_count)) {
639            DPRINTF(DRAM, "Write queue full, not accepting\n");
640            // remember that we have to retry this port
641            retryWrReq = true;
642            numWrRetry++;
643            return false;
644        } else {
645            addToWriteQueue(pkt, dram_pkt_count);
646            writeReqs++;
647            bytesWrittenSys += size;
648        }
649    } else {
650        DPRINTF(DRAM,"Neither read nor write, ignore timing\n");
651        neitherReadNorWrite++;
652        accessAndRespond(pkt, 1);
653    }
654
655    return true;
656}
657
658void
659DRAMCtrl::processRespondEvent()
660{
661    DPRINTF(DRAM,
662            "processRespondEvent(): Some req has reached its readyTime\n");
663
664    DRAMPacket* dram_pkt = respQueue.front();
665
666    if (dram_pkt->burstHelper) {
667        // it is a split packet
668        dram_pkt->burstHelper->burstsServiced++;
669        if (dram_pkt->burstHelper->burstsServiced ==
670            dram_pkt->burstHelper->burstCount) {
671            // we have now serviced all children packets of a system packet
672            // so we can now respond to the requester
673            // @todo we probably want to have a different front end and back
674            // end latency for split packets
675            accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
676            delete dram_pkt->burstHelper;
677            dram_pkt->burstHelper = NULL;
678        }
679    } else {
680        // it is not a split packet
681        accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
682    }
683
684    delete respQueue.front();
685    respQueue.pop_front();
686
687    if (!respQueue.empty()) {
688        assert(respQueue.front()->readyTime >= curTick());
689        assert(!respondEvent.scheduled());
690        schedule(respondEvent, respQueue.front()->readyTime);
691    } else {
692        // if there is nothing left in any queue, signal a drain
693        if (drainState() == DrainState::Draining &&
694            writeQueue.empty() && readQueue.empty()) {
695
696            DPRINTF(Drain, "DRAM controller done draining\n");
697            signalDrainDone();
698        }
699    }
700
701    // We have made a location in the queue available at this point,
702    // so if there is a read that was forced to wait, retry now
703    if (retryRdReq) {
704        retryRdReq = false;
705        port.sendRetryReq();
706    }
707}
708
709bool
710DRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue, Tick extra_col_delay)
711{
712    // This method does the arbitration between requests. The chosen
713    // packet is simply moved to the head of the queue. The other
714    // methods know that this is the place to look. For example, with
715    // FCFS, this method does nothing
716    assert(!queue.empty());
717
718    // bool to indicate if a packet to an available rank is found
719    bool found_packet = false;
720    if (queue.size() == 1) {
721        DRAMPacket* dram_pkt = queue.front();
722        // available rank corresponds to state refresh idle
723        if (ranks[dram_pkt->rank]->isAvailable()) {
724            found_packet = true;
725            DPRINTF(DRAM, "Single request, going to a free rank\n");
726        } else {
727            DPRINTF(DRAM, "Single request, going to a busy rank\n");
728        }
729        return found_packet;
730    }
731
732    if (memSchedPolicy == Enums::fcfs) {
733        // check if there is a packet going to a free rank
734        for(auto i = queue.begin(); i != queue.end() ; ++i) {
735            DRAMPacket* dram_pkt = *i;
736            if (ranks[dram_pkt->rank]->isAvailable()) {
737                queue.erase(i);
738                queue.push_front(dram_pkt);
739                found_packet = true;
740                break;
741            }
742        }
743    } else if (memSchedPolicy == Enums::frfcfs) {
744        found_packet = reorderQueue(queue, extra_col_delay);
745    } else
746        panic("No scheduling policy chosen\n");
747    return found_packet;
748}
749
750bool
751DRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue, Tick extra_col_delay)
752{
753    // Only determine this if needed
754    uint64_t earliest_banks = 0;
755    bool hidden_bank_prep = false;
756
757    // search for seamless row hits first, if no seamless row hit is
758    // found then determine if there are other packets that can be issued
759    // without incurring additional bus delay due to bank timing
760    // Will select closed rows first to enable more open row possibilies
761    // in future selections
762    bool found_hidden_bank = false;
763
764    // remember if we found a row hit, not seamless, but bank prepped
765    // and ready
766    bool found_prepped_pkt = false;
767
768    // if we have no row hit, prepped or not, and no seamless packet,
769    // just go for the earliest possible
770    bool found_earliest_pkt = false;
771
772    auto selected_pkt_it = queue.end();
773
774    // time we need to issue a column command to be seamless
775    const Tick min_col_at = std::max(busBusyUntil - tCL + extra_col_delay,
776                                     curTick());
777
778    for (auto i = queue.begin(); i != queue.end() ; ++i) {
779        DRAMPacket* dram_pkt = *i;
780        const Bank& bank = dram_pkt->bankRef;
781
782        // check if rank is available, if not, jump to the next packet
783        if (dram_pkt->rankRef.isAvailable()) {
784            // check if it is a row hit
785            if (bank.openRow == dram_pkt->row) {
786                // no additional rank-to-rank or same bank-group
787                // delays, or we switched read/write and might as well
788                // go for the row hit
789                if (bank.colAllowedAt <= min_col_at) {
790                    // FCFS within the hits, giving priority to
791                    // commands that can issue seamlessly, without
792                    // additional delay, such as same rank accesses
793                    // and/or different bank-group accesses
794                    DPRINTF(DRAM, "Seamless row buffer hit\n");
795                    selected_pkt_it = i;
796                    // no need to look through the remaining queue entries
797                    break;
798                } else if (!found_hidden_bank && !found_prepped_pkt) {
799                    // if we did not find a packet to a closed row that can
800                    // issue the bank commands without incurring delay, and
801                    // did not yet find a packet to a prepped row, remember
802                    // the current one
803                    selected_pkt_it = i;
804                    found_prepped_pkt = true;
805                    DPRINTF(DRAM, "Prepped row buffer hit\n");
806                }
807            } else if (!found_earliest_pkt) {
808                // if we have not initialised the bank status, do it
809                // now, and only once per scheduling decisions
810                if (earliest_banks == 0) {
811                    // determine entries with earliest bank delay
812                    pair<uint64_t, bool> bankStatus =
813                        minBankPrep(queue, min_col_at);
814                    earliest_banks = bankStatus.first;
815                    hidden_bank_prep = bankStatus.second;
816                }
817
818                // bank is amongst first available banks
819                // minBankPrep will give priority to packets that can
820                // issue seamlessly
821                if (bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) {
822                    found_earliest_pkt = true;
823                    found_hidden_bank = hidden_bank_prep;
824
825                    // give priority to packets that can issue
826                    // bank commands 'behind the scenes'
827                    // any additional delay if any will be due to
828                    // col-to-col command requirements
829                    if (hidden_bank_prep || !found_prepped_pkt)
830                        selected_pkt_it = i;
831                }
832            }
833        }
834    }
835
836    if (selected_pkt_it != queue.end()) {
837        DRAMPacket* selected_pkt = *selected_pkt_it;
838        queue.erase(selected_pkt_it);
839        queue.push_front(selected_pkt);
840        return true;
841    }
842
843    return false;
844}
845
846void
847DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency)
848{
849    DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
850
851    bool needsResponse = pkt->needsResponse();
852    // do the actual memory access which also turns the packet into a
853    // response
854    access(pkt);
855
856    // turn packet around to go back to requester if response expected
857    if (needsResponse) {
858        // access already turned the packet into a response
859        assert(pkt->isResponse());
860        // response_time consumes the static latency and is charged also
861        // with headerDelay that takes into account the delay provided by
862        // the xbar and also the payloadDelay that takes into account the
863        // number of data beats.
864        Tick response_time = curTick() + static_latency + pkt->headerDelay +
865                             pkt->payloadDelay;
866        // Here we reset the timing of the packet before sending it out.
867        pkt->headerDelay = pkt->payloadDelay = 0;
868
869        // queue the packet in the response queue to be sent out after
870        // the static latency has passed
871        port.schedTimingResp(pkt, response_time);
872    } else {
873        // @todo the packet is going to be deleted, and the DRAMPacket
874        // is still having a pointer to it
875        pendingDelete.push_back(pkt);
876    }
877
878    DPRINTF(DRAM, "Done\n");
879
880    return;
881}
882
883void
884DRAMCtrl::activateBank(Rank& rank_ref, Bank& bank_ref,
885                       Tick act_tick, uint32_t row)
886{
887    assert(rank_ref.actTicks.size() == activationLimit);
888
889    DPRINTF(DRAM, "Activate at tick %d\n", act_tick);
890
891    // update the open row
892    assert(bank_ref.openRow == Bank::NO_ROW);
893    bank_ref.openRow = row;
894
895    // start counting anew, this covers both the case when we
896    // auto-precharged, and when this access is forced to
897    // precharge
898    bank_ref.bytesAccessed = 0;
899    bank_ref.rowAccesses = 0;
900
901    ++rank_ref.numBanksActive;
902    assert(rank_ref.numBanksActive <= banksPerRank);
903
904    DPRINTF(DRAM, "Activate bank %d, rank %d at tick %lld, now got %d active\n",
905            bank_ref.bank, rank_ref.rank, act_tick,
906            ranks[rank_ref.rank]->numBanksActive);
907
908    rank_ref.power.powerlib.doCommand(MemCommand::ACT, bank_ref.bank,
909                                      divCeil(act_tick, tCK) -
910                                      timeStampOffset);
911
912    DPRINTF(DRAMPower, "%llu,ACT,%d,%d\n", divCeil(act_tick, tCK) -
913            timeStampOffset, bank_ref.bank, rank_ref.rank);
914
915    // The next access has to respect tRAS for this bank
916    bank_ref.preAllowedAt = act_tick + tRAS;
917
918    // Respect the row-to-column command delay
919    bank_ref.colAllowedAt = std::max(act_tick + tRCD, bank_ref.colAllowedAt);
920
921    // start by enforcing tRRD
922    for(int i = 0; i < banksPerRank; i++) {
923        // next activate to any bank in this rank must not happen
924        // before tRRD
925        if (bankGroupArch && (bank_ref.bankgr == rank_ref.banks[i].bankgr)) {
926            // bank group architecture requires longer delays between
927            // ACT commands within the same bank group.  Use tRRD_L
928            // in this case
929            rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD_L,
930                                             rank_ref.banks[i].actAllowedAt);
931        } else {
932            // use shorter tRRD value when either
933            // 1) bank group architecture is not supportted
934            // 2) bank is in a different bank group
935            rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD,
936                                             rank_ref.banks[i].actAllowedAt);
937        }
938    }
939
940    // next, we deal with tXAW, if the activation limit is disabled
941    // then we directly schedule an activate power event
942    if (!rank_ref.actTicks.empty()) {
943        // sanity check
944        if (rank_ref.actTicks.back() &&
945           (act_tick - rank_ref.actTicks.back()) < tXAW) {
946            panic("Got %d activates in window %d (%llu - %llu) which "
947                  "is smaller than %llu\n", activationLimit, act_tick -
948                  rank_ref.actTicks.back(), act_tick,
949                  rank_ref.actTicks.back(), tXAW);
950        }
951
952        // shift the times used for the book keeping, the last element
953        // (highest index) is the oldest one and hence the lowest value
954        rank_ref.actTicks.pop_back();
955
956        // record an new activation (in the future)
957        rank_ref.actTicks.push_front(act_tick);
958
959        // cannot activate more than X times in time window tXAW, push the
960        // next one (the X + 1'st activate) to be tXAW away from the
961        // oldest in our window of X
962        if (rank_ref.actTicks.back() &&
963           (act_tick - rank_ref.actTicks.back()) < tXAW) {
964            DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate "
965                    "no earlier than %llu\n", activationLimit,
966                    rank_ref.actTicks.back() + tXAW);
967            for(int j = 0; j < banksPerRank; j++)
968                // next activate must not happen before end of window
969                rank_ref.banks[j].actAllowedAt =
970                    std::max(rank_ref.actTicks.back() + tXAW,
971                             rank_ref.banks[j].actAllowedAt);
972        }
973    }
974
975    // at the point when this activate takes place, make sure we
976    // transition to the active power state
977    if (!rank_ref.activateEvent.scheduled())
978        schedule(rank_ref.activateEvent, act_tick);
979    else if (rank_ref.activateEvent.when() > act_tick)
980        // move it sooner in time
981        reschedule(rank_ref.activateEvent, act_tick);
982}
983
984void
985DRAMCtrl::prechargeBank(Rank& rank_ref, Bank& bank, Tick pre_at, bool trace)
986{
987    // make sure the bank has an open row
988    assert(bank.openRow != Bank::NO_ROW);
989
990    // sample the bytes per activate here since we are closing
991    // the page
992    bytesPerActivate.sample(bank.bytesAccessed);
993
994    bank.openRow = Bank::NO_ROW;
995
996    // no precharge allowed before this one
997    bank.preAllowedAt = pre_at;
998
999    Tick pre_done_at = pre_at + tRP;
1000
1001    bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at);
1002
1003    assert(rank_ref.numBanksActive != 0);
1004    --rank_ref.numBanksActive;
1005
1006    DPRINTF(DRAM, "Precharging bank %d, rank %d at tick %lld, now got "
1007            "%d active\n", bank.bank, rank_ref.rank, pre_at,
1008            rank_ref.numBanksActive);
1009
1010    if (trace) {
1011
1012        rank_ref.power.powerlib.doCommand(MemCommand::PRE, bank.bank,
1013                                                divCeil(pre_at, tCK) -
1014                                                timeStampOffset);
1015        DPRINTF(DRAMPower, "%llu,PRE,%d,%d\n", divCeil(pre_at, tCK) -
1016                timeStampOffset, bank.bank, rank_ref.rank);
1017    }
1018    // if we look at the current number of active banks we might be
1019    // tempted to think the DRAM is now idle, however this can be
1020    // undone by an activate that is scheduled to happen before we
1021    // would have reached the idle state, so schedule an event and
1022    // rather check once we actually make it to the point in time when
1023    // the (last) precharge takes place
1024    if (!rank_ref.prechargeEvent.scheduled())
1025        schedule(rank_ref.prechargeEvent, pre_done_at);
1026    else if (rank_ref.prechargeEvent.when() < pre_done_at)
1027        reschedule(rank_ref.prechargeEvent, pre_done_at);
1028}
1029
1030void
1031DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
1032{
1033    DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
1034            dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
1035
1036    // get the rank
1037    Rank& rank = dram_pkt->rankRef;
1038
1039    // get the bank
1040    Bank& bank = dram_pkt->bankRef;
1041
1042    // for the state we need to track if it is a row hit or not
1043    bool row_hit = true;
1044
1045    // respect any constraints on the command (e.g. tRCD or tCCD)
1046    Tick cmd_at = std::max(bank.colAllowedAt, curTick());
1047
1048    // Determine the access latency and update the bank state
1049    if (bank.openRow == dram_pkt->row) {
1050        // nothing to do
1051    } else {
1052        row_hit = false;
1053
1054        // If there is a page open, precharge it.
1055        if (bank.openRow != Bank::NO_ROW) {
1056            prechargeBank(rank, bank, std::max(bank.preAllowedAt, curTick()));
1057        }
1058
1059        // next we need to account for the delay in activating the
1060        // page
1061        Tick act_tick = std::max(bank.actAllowedAt, curTick());
1062
1063        // Record the activation and deal with all the global timing
1064        // constraints caused be a new activation (tRRD and tXAW)
1065        activateBank(rank, bank, act_tick, dram_pkt->row);
1066
1067        // issue the command as early as possible
1068        cmd_at = bank.colAllowedAt;
1069    }
1070
1071    // we need to wait until the bus is available before we can issue
1072    // the command
1073    cmd_at = std::max(cmd_at, busBusyUntil - tCL);
1074
1075    // update the packet ready time
1076    dram_pkt->readyTime = cmd_at + tCL + tBURST;
1077
1078    // only one burst can use the bus at any one point in time
1079    assert(dram_pkt->readyTime - busBusyUntil >= tBURST);
1080
1081    // update the time for the next read/write burst for each
1082    // bank (add a max with tCCD/tCCD_L here)
1083    Tick cmd_dly;
1084    for(int j = 0; j < ranksPerChannel; j++) {
1085        for(int i = 0; i < banksPerRank; i++) {
1086            // next burst to same bank group in this rank must not happen
1087            // before tCCD_L.  Different bank group timing requirement is
1088            // tBURST; Add tCS for different ranks
1089            if (dram_pkt->rank == j) {
1090                if (bankGroupArch &&
1091                   (bank.bankgr == ranks[j]->banks[i].bankgr)) {
1092                    // bank group architecture requires longer delays between
1093                    // RD/WR burst commands to the same bank group.
1094                    // Use tCCD_L in this case
1095                    cmd_dly = tCCD_L;
1096                } else {
1097                    // use tBURST (equivalent to tCCD_S), the shorter
1098                    // cas-to-cas delay value, when either:
1099                    // 1) bank group architecture is not supportted
1100                    // 2) bank is in a different bank group
1101                    cmd_dly = tBURST;
1102                }
1103            } else {
1104                // different rank is by default in a different bank group
1105                // use tBURST (equivalent to tCCD_S), which is the shorter
1106                // cas-to-cas delay in this case
1107                // Add tCS to account for rank-to-rank bus delay requirements
1108                cmd_dly = tBURST + tCS;
1109            }
1110            ranks[j]->banks[i].colAllowedAt = std::max(cmd_at + cmd_dly,
1111                                             ranks[j]->banks[i].colAllowedAt);
1112        }
1113    }
1114
1115    // Save rank of current access
1116    activeRank = dram_pkt->rank;
1117
1118    // If this is a write, we also need to respect the write recovery
1119    // time before a precharge, in the case of a read, respect the
1120    // read to precharge constraint
1121    bank.preAllowedAt = std::max(bank.preAllowedAt,
1122                                 dram_pkt->isRead ? cmd_at + tRTP :
1123                                 dram_pkt->readyTime + tWR);
1124
1125    // increment the bytes accessed and the accesses per row
1126    bank.bytesAccessed += burstSize;
1127    ++bank.rowAccesses;
1128
1129    // if we reached the max, then issue with an auto-precharge
1130    bool auto_precharge = pageMgmt == Enums::close ||
1131        bank.rowAccesses == maxAccessesPerRow;
1132
1133    // if we did not hit the limit, we might still want to
1134    // auto-precharge
1135    if (!auto_precharge &&
1136        (pageMgmt == Enums::open_adaptive ||
1137         pageMgmt == Enums::close_adaptive)) {
1138        // a twist on the open and close page policies:
1139        // 1) open_adaptive page policy does not blindly keep the
1140        // page open, but close it if there are no row hits, and there
1141        // are bank conflicts in the queue
1142        // 2) close_adaptive page policy does not blindly close the
1143        // page, but closes it only if there are no row hits in the queue.
1144        // In this case, only force an auto precharge when there
1145        // are no same page hits in the queue
1146        bool got_more_hits = false;
1147        bool got_bank_conflict = false;
1148
1149        // either look at the read queue or write queue
1150        const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue :
1151            writeQueue;
1152        auto p = queue.begin();
1153        // make sure we are not considering the packet that we are
1154        // currently dealing with (which is the head of the queue)
1155        ++p;
1156
1157        // keep on looking until we find a hit or reach the end of the queue
1158        // 1) if a hit is found, then both open and close adaptive policies keep
1159        // the page open
1160        // 2) if no hit is found, got_bank_conflict is set to true if a bank
1161        // conflict request is waiting in the queue
1162        while (!got_more_hits && p != queue.end()) {
1163            bool same_rank_bank = (dram_pkt->rank == (*p)->rank) &&
1164                (dram_pkt->bank == (*p)->bank);
1165            bool same_row = dram_pkt->row == (*p)->row;
1166            got_more_hits |= same_rank_bank && same_row;
1167            got_bank_conflict |= same_rank_bank && !same_row;
1168            ++p;
1169        }
1170
1171        // auto pre-charge when either
1172        // 1) open_adaptive policy, we have not got any more hits, and
1173        //    have a bank conflict
1174        // 2) close_adaptive policy and we have not got any more hits
1175        auto_precharge = !got_more_hits &&
1176            (got_bank_conflict || pageMgmt == Enums::close_adaptive);
1177    }
1178
1179    // DRAMPower trace command to be written
1180    std::string mem_cmd = dram_pkt->isRead ? "RD" : "WR";
1181
1182    // MemCommand required for DRAMPower library
1183    MemCommand::cmds command = (mem_cmd == "RD") ? MemCommand::RD :
1184                                                   MemCommand::WR;
1185
1186    // if this access should use auto-precharge, then we are
1187    // closing the row
1188    if (auto_precharge) {
1189        // if auto-precharge push a PRE command at the correct tick to the
1190        // list used by DRAMPower library to calculate power
1191        prechargeBank(rank, bank, std::max(curTick(), bank.preAllowedAt));
1192
1193        DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId);
1194    }
1195
1196    // Update bus state
1197    busBusyUntil = dram_pkt->readyTime;
1198
1199    DPRINTF(DRAM, "Access to %lld, ready at %lld bus busy until %lld.\n",
1200            dram_pkt->addr, dram_pkt->readyTime, busBusyUntil);
1201
1202    dram_pkt->rankRef.power.powerlib.doCommand(command, dram_pkt->bank,
1203                                                 divCeil(cmd_at, tCK) -
1204                                                 timeStampOffset);
1205
1206    DPRINTF(DRAMPower, "%llu,%s,%d,%d\n", divCeil(cmd_at, tCK) -
1207            timeStampOffset, mem_cmd, dram_pkt->bank, dram_pkt->rank);
1208
1209    // Update the minimum timing between the requests, this is a
1210    // conservative estimate of when we have to schedule the next
1211    // request to not introduce any unecessary bubbles. In most cases
1212    // we will wake up sooner than we have to.
1213    nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
1214
1215    // Update the stats and schedule the next request
1216    if (dram_pkt->isRead) {
1217        ++readsThisTime;
1218        if (row_hit)
1219            readRowHits++;
1220        bytesReadDRAM += burstSize;
1221        perBankRdBursts[dram_pkt->bankId]++;
1222
1223        // Update latency stats
1224        totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
1225        totBusLat += tBURST;
1226        totQLat += cmd_at - dram_pkt->entryTime;
1227    } else {
1228        ++writesThisTime;
1229        if (row_hit)
1230            writeRowHits++;
1231        bytesWritten += burstSize;
1232        perBankWrBursts[dram_pkt->bankId]++;
1233    }
1234}
1235
1236void
1237DRAMCtrl::processNextReqEvent()
1238{
1239    int busyRanks = 0;
1240    for (auto r : ranks) {
1241        if (!r->isAvailable()) {
1242            // rank is busy refreshing
1243            busyRanks++;
1244
1245            // let the rank know that if it was waiting to drain, it
1246            // is now done and ready to proceed
1247            r->checkDrainDone();
1248        }
1249    }
1250
1251    if (busyRanks == ranksPerChannel) {
1252        // if all ranks are refreshing wait for them to finish
1253        // and stall this state machine without taking any further
1254        // action, and do not schedule a new nextReqEvent
1255        return;
1256    }
1257
1258    // pre-emptively set to false.  Overwrite if in READ_TO_WRITE
1259    // or WRITE_TO_READ state
1260    bool switched_cmd_type = false;
1261    if (busState == READ_TO_WRITE) {
1262        DPRINTF(DRAM, "Switching to writes after %d reads with %d reads "
1263                "waiting\n", readsThisTime, readQueue.size());
1264
1265        // sample and reset the read-related stats as we are now
1266        // transitioning to writes, and all reads are done
1267        rdPerTurnAround.sample(readsThisTime);
1268        readsThisTime = 0;
1269
1270        // now proceed to do the actual writes
1271        busState = WRITE;
1272        switched_cmd_type = true;
1273    } else if (busState == WRITE_TO_READ) {
1274        DPRINTF(DRAM, "Switching to reads after %d writes with %d writes "
1275                "waiting\n", writesThisTime, writeQueue.size());
1276
1277        wrPerTurnAround.sample(writesThisTime);
1278        writesThisTime = 0;
1279
1280        busState = READ;
1281        switched_cmd_type = true;
1282    }
1283
1284    // when we get here it is either a read or a write
1285    if (busState == READ) {
1286
1287        // track if we should switch or not
1288        bool switch_to_writes = false;
1289
1290        if (readQueue.empty()) {
1291            // In the case there is no read request to go next,
1292            // trigger writes if we have passed the low threshold (or
1293            // if we are draining)
1294            if (!writeQueue.empty() &&
1295                (drainState() == DrainState::Draining ||
1296                 writeQueue.size() > writeLowThreshold)) {
1297
1298                switch_to_writes = true;
1299            } else {
1300                // check if we are drained
1301                if (drainState() == DrainState::Draining &&
1302                    respQueue.empty()) {
1303
1304                    DPRINTF(Drain, "DRAM controller done draining\n");
1305                    signalDrainDone();
1306                }
1307
1308                // nothing to do, not even any point in scheduling an
1309                // event for the next request
1310                return;
1311            }
1312        } else {
1313            // bool to check if there is a read to a free rank
1314            bool found_read = false;
1315
1316            // Figure out which read request goes next, and move it to the
1317            // front of the read queue
1318            // If we are changing command type, incorporate the minimum
1319            // bus turnaround delay which will be tCS (different rank) case
1320            found_read = chooseNext(readQueue,
1321                             switched_cmd_type ? tCS : 0);
1322
1323            // if no read to an available rank is found then return
1324            // at this point. There could be writes to the available ranks
1325            // which are above the required threshold. However, to
1326            // avoid adding more complexity to the code, return and wait
1327            // for a refresh event to kick things into action again.
1328            if (!found_read)
1329                return;
1330
1331            DRAMPacket* dram_pkt = readQueue.front();
1332            assert(dram_pkt->rankRef.isAvailable());
1333            // here we get a bit creative and shift the bus busy time not
1334            // just the tWTR, but also a CAS latency to capture the fact
1335            // that we are allowed to prepare a new bank, but not issue a
1336            // read command until after tWTR, in essence we capture a
1337            // bubble on the data bus that is tWTR + tCL
1338            if (switched_cmd_type && dram_pkt->rank == activeRank) {
1339                busBusyUntil += tWTR + tCL;
1340            }
1341
1342            doDRAMAccess(dram_pkt);
1343
1344            // At this point we're done dealing with the request
1345            readQueue.pop_front();
1346
1347            // sanity check
1348            assert(dram_pkt->size <= burstSize);
1349            assert(dram_pkt->readyTime >= curTick());
1350
1351            // Insert into response queue. It will be sent back to the
1352            // requestor at its readyTime
1353            if (respQueue.empty()) {
1354                assert(!respondEvent.scheduled());
1355                schedule(respondEvent, dram_pkt->readyTime);
1356            } else {
1357                assert(respQueue.back()->readyTime <= dram_pkt->readyTime);
1358                assert(respondEvent.scheduled());
1359            }
1360
1361            respQueue.push_back(dram_pkt);
1362
1363            // we have so many writes that we have to transition
1364            if (writeQueue.size() > writeHighThreshold) {
1365                switch_to_writes = true;
1366            }
1367        }
1368
1369        // switching to writes, either because the read queue is empty
1370        // and the writes have passed the low threshold (or we are
1371        // draining), or because the writes hit the hight threshold
1372        if (switch_to_writes) {
1373            // transition to writing
1374            busState = READ_TO_WRITE;
1375        }
1376    } else {
1377        // bool to check if write to free rank is found
1378        bool found_write = false;
1379
1380        // If we are changing command type, incorporate the minimum
1381        // bus turnaround delay
1382        found_write = chooseNext(writeQueue,
1383                                 switched_cmd_type ? std::min(tRTW, tCS) : 0);
1384
1385        // if no writes to an available rank are found then return.
1386        // There could be reads to the available ranks. However, to avoid
1387        // adding more complexity to the code, return at this point and wait
1388        // for a refresh event to kick things into action again.
1389        if (!found_write)
1390            return;
1391
1392        DRAMPacket* dram_pkt = writeQueue.front();
1393        assert(dram_pkt->rankRef.isAvailable());
1394        // sanity check
1395        assert(dram_pkt->size <= burstSize);
1396
1397        // add a bubble to the data bus, as defined by the
1398        // tRTW when access is to the same rank as previous burst
1399        // Different rank timing is handled with tCS, which is
1400        // applied to colAllowedAt
1401        if (switched_cmd_type && dram_pkt->rank == activeRank) {
1402            busBusyUntil += tRTW;
1403        }
1404
1405        doDRAMAccess(dram_pkt);
1406
1407        writeQueue.pop_front();
1408        isInWriteQueue.erase(burstAlign(dram_pkt->addr));
1409        delete dram_pkt;
1410
1411        // If we emptied the write queue, or got sufficiently below the
1412        // threshold (using the minWritesPerSwitch as the hysteresis) and
1413        // are not draining, or we have reads waiting and have done enough
1414        // writes, then switch to reads.
1415        if (writeQueue.empty() ||
1416            (writeQueue.size() + minWritesPerSwitch < writeLowThreshold &&
1417             drainState() != DrainState::Draining) ||
1418            (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) {
1419            // turn the bus back around for reads again
1420            busState = WRITE_TO_READ;
1421
1422            // note that the we switch back to reads also in the idle
1423            // case, which eventually will check for any draining and
1424            // also pause any further scheduling if there is really
1425            // nothing to do
1426        }
1427    }
1428    // It is possible that a refresh to another rank kicks things back into
1429    // action before reaching this point.
1430    if (!nextReqEvent.scheduled())
1431        schedule(nextReqEvent, std::max(nextReqTime, curTick()));
1432
1433    // If there is space available and we have writes waiting then let
1434    // them retry. This is done here to ensure that the retry does not
1435    // cause a nextReqEvent to be scheduled before we do so as part of
1436    // the next request processing
1437    if (retryWrReq && writeQueue.size() < writeBufferSize) {
1438        retryWrReq = false;
1439        port.sendRetryReq();
1440    }
1441}
1442
1443pair<uint64_t, bool>
1444DRAMCtrl::minBankPrep(const deque<DRAMPacket*>& queue,
1445                      Tick min_col_at) const
1446{
1447    uint64_t bank_mask = 0;
1448    Tick min_act_at = MaxTick;
1449
1450    // latest Tick for which ACT can occur without incurring additoinal
1451    // delay on the data bus
1452    const Tick hidden_act_max = std::max(min_col_at - tRCD, curTick());
1453
1454    // Flag condition when burst can issue back-to-back with previous burst
1455    bool found_seamless_bank = false;
1456
1457    // Flag condition when bank can be opened without incurring additional
1458    // delay on the data bus
1459    bool hidden_bank_prep = false;
1460
1461    // determine if we have queued transactions targetting the
1462    // bank in question
1463    vector<bool> got_waiting(ranksPerChannel * banksPerRank, false);
1464    for (const auto& p : queue) {
1465        if(p->rankRef.isAvailable())
1466            got_waiting[p->bankId] = true;
1467    }
1468
1469    // Find command with optimal bank timing
1470    // Will prioritize commands that can issue seamlessly.
1471    for (int i = 0; i < ranksPerChannel; i++) {
1472        for (int j = 0; j < banksPerRank; j++) {
1473            uint16_t bank_id = i * banksPerRank + j;
1474
1475            // if we have waiting requests for the bank, and it is
1476            // amongst the first available, update the mask
1477            if (got_waiting[bank_id]) {
1478                // make sure this rank is not currently refreshing.
1479                assert(ranks[i]->isAvailable());
1480                // simplistic approximation of when the bank can issue
1481                // an activate, ignoring any rank-to-rank switching
1482                // cost in this calculation
1483                Tick act_at = ranks[i]->banks[j].openRow == Bank::NO_ROW ?
1484                    std::max(ranks[i]->banks[j].actAllowedAt, curTick()) :
1485                    std::max(ranks[i]->banks[j].preAllowedAt, curTick()) + tRP;
1486
1487                // When is the earliest the R/W burst can issue?
1488                Tick col_at = std::max(ranks[i]->banks[j].colAllowedAt,
1489                                       act_at + tRCD);
1490
1491                // bank can issue burst back-to-back (seamlessly) with
1492                // previous burst
1493                bool new_seamless_bank = col_at <= min_col_at;
1494
1495                // if we found a new seamless bank or we have no
1496                // seamless banks, and got a bank with an earlier
1497                // activate time, it should be added to the bit mask
1498                if (new_seamless_bank ||
1499                    (!found_seamless_bank && act_at <= min_act_at)) {
1500                    // if we did not have a seamless bank before, and
1501                    // we do now, reset the bank mask, also reset it
1502                    // if we have not yet found a seamless bank and
1503                    // the activate time is smaller than what we have
1504                    // seen so far
1505                    if (!found_seamless_bank &&
1506                        (new_seamless_bank || act_at < min_act_at)) {
1507                        bank_mask = 0;
1508                    }
1509
1510                    found_seamless_bank |= new_seamless_bank;
1511
1512                    // ACT can occur 'behind the scenes'
1513                    hidden_bank_prep = act_at <= hidden_act_max;
1514
1515                    // set the bit corresponding to the available bank
1516                    replaceBits(bank_mask, bank_id, bank_id, 1);
1517                    min_act_at = act_at;
1518                }
1519            }
1520        }
1521    }
1522
1523    return make_pair(bank_mask, hidden_bank_prep);
1524}
1525
1526DRAMCtrl::Rank::Rank(DRAMCtrl& _memory, const DRAMCtrlParams* _p)
1527    : EventManager(&_memory), memory(_memory),
1528      pwrStateTrans(PWR_IDLE), pwrState(PWR_IDLE), pwrStateTick(0),
1529      refreshState(REF_IDLE), refreshDueAt(0),
1530      power(_p, false), numBanksActive(0),
1531      activateEvent(*this), prechargeEvent(*this),
1532      refreshEvent(*this), powerEvent(*this)
1533{ }
1534
1535void
1536DRAMCtrl::Rank::startup(Tick ref_tick)
1537{
1538    assert(ref_tick > curTick());
1539
1540    pwrStateTick = curTick();
1541
1542    // kick off the refresh, and give ourselves enough time to
1543    // precharge
1544    schedule(refreshEvent, ref_tick);
1545}
1546
1547void
1548DRAMCtrl::Rank::suspend()
1549{
1550    deschedule(refreshEvent);
1551}
1552
1553void
1554DRAMCtrl::Rank::checkDrainDone()
1555{
1556    // if this rank was waiting to drain it is now able to proceed to
1557    // precharge
1558    if (refreshState == REF_DRAIN) {
1559        DPRINTF(DRAM, "Refresh drain done, now precharging\n");
1560
1561        refreshState = REF_PRE;
1562
1563        // hand control back to the refresh event loop
1564        schedule(refreshEvent, curTick());
1565    }
1566}
1567
1568void
1569DRAMCtrl::Rank::processActivateEvent()
1570{
1571    // we should transition to the active state as soon as any bank is active
1572    if (pwrState != PWR_ACT)
1573        // note that at this point numBanksActive could be back at
1574        // zero again due to a precharge scheduled in the future
1575        schedulePowerEvent(PWR_ACT, curTick());
1576}
1577
1578void
1579DRAMCtrl::Rank::processPrechargeEvent()
1580{
1581    // if we reached zero, then special conditions apply as we track
1582    // if all banks are precharged for the power models
1583    if (numBanksActive == 0) {
1584        // we should transition to the idle state when the last bank
1585        // is precharged
1586        schedulePowerEvent(PWR_IDLE, curTick());
1587    }
1588}
1589
1590void
1591DRAMCtrl::Rank::processRefreshEvent()
1592{
1593    // when first preparing the refresh, remember when it was due
1594    if (refreshState == REF_IDLE) {
1595        // remember when the refresh is due
1596        refreshDueAt = curTick();
1597
1598        // proceed to drain
1599        refreshState = REF_DRAIN;
1600
1601        DPRINTF(DRAM, "Refresh due\n");
1602    }
1603
1604    // let any scheduled read or write to the same rank go ahead,
1605    // after which it will
1606    // hand control back to this event loop
1607    if (refreshState == REF_DRAIN) {
1608        // if a request is at the moment being handled and this request is
1609        // accessing the current rank then wait for it to finish
1610        if ((rank == memory.activeRank)
1611            && (memory.nextReqEvent.scheduled())) {
1612            // hand control over to the request loop until it is
1613            // evaluated next
1614            DPRINTF(DRAM, "Refresh awaiting draining\n");
1615
1616            return;
1617        } else {
1618            refreshState = REF_PRE;
1619        }
1620    }
1621
1622    // at this point, ensure that all banks are precharged
1623    if (refreshState == REF_PRE) {
1624        // precharge any active bank if we are not already in the idle
1625        // state
1626        if (pwrState != PWR_IDLE) {
1627            // at the moment, we use a precharge all even if there is
1628            // only a single bank open
1629            DPRINTF(DRAM, "Precharging all\n");
1630
1631            // first determine when we can precharge
1632            Tick pre_at = curTick();
1633
1634            for (auto &b : banks) {
1635                // respect both causality and any existing bank
1636                // constraints, some banks could already have a
1637                // (auto) precharge scheduled
1638                pre_at = std::max(b.preAllowedAt, pre_at);
1639            }
1640
1641            // make sure all banks per rank are precharged, and for those that
1642            // already are, update their availability
1643            Tick act_allowed_at = pre_at + memory.tRP;
1644
1645            for (auto &b : banks) {
1646                if (b.openRow != Bank::NO_ROW) {
1647                    memory.prechargeBank(*this, b, pre_at, false);
1648                } else {
1649                    b.actAllowedAt = std::max(b.actAllowedAt, act_allowed_at);
1650                    b.preAllowedAt = std::max(b.preAllowedAt, pre_at);
1651                }
1652            }
1653
1654            // precharge all banks in rank
1655            power.powerlib.doCommand(MemCommand::PREA, 0,
1656                                     divCeil(pre_at, memory.tCK) -
1657                                     memory.timeStampOffset);
1658
1659            DPRINTF(DRAMPower, "%llu,PREA,0,%d\n",
1660                    divCeil(pre_at, memory.tCK) -
1661                            memory.timeStampOffset, rank);
1662        } else {
1663            DPRINTF(DRAM, "All banks already precharged, starting refresh\n");
1664
1665            // go ahead and kick the power state machine into gear if
1666            // we are already idle
1667            schedulePowerEvent(PWR_REF, curTick());
1668        }
1669
1670        refreshState = REF_RUN;
1671        assert(numBanksActive == 0);
1672
1673        // wait for all banks to be precharged, at which point the
1674        // power state machine will transition to the idle state, and
1675        // automatically move to a refresh, at that point it will also
1676        // call this method to get the refresh event loop going again
1677        return;
1678    }
1679
1680    // last but not least we perform the actual refresh
1681    if (refreshState == REF_RUN) {
1682        // should never get here with any banks active
1683        assert(numBanksActive == 0);
1684        assert(pwrState == PWR_REF);
1685
1686        Tick ref_done_at = curTick() + memory.tRFC;
1687
1688        for (auto &b : banks) {
1689            b.actAllowedAt = ref_done_at;
1690        }
1691
1692        // at the moment this affects all ranks
1693        power.powerlib.doCommand(MemCommand::REF, 0,
1694                                 divCeil(curTick(), memory.tCK) -
1695                                 memory.timeStampOffset);
1696
1697        // at the moment sort the list of commands and update the counters
1698        // for DRAMPower libray when doing a refresh
1699        sort(power.powerlib.cmdList.begin(),
1700             power.powerlib.cmdList.end(), DRAMCtrl::sortTime);
1701
1702        // update the counters for DRAMPower, passing false to
1703        // indicate that this is not the last command in the
1704        // list. DRAMPower requires this information for the
1705        // correct calculation of the background energy at the end
1706        // of the simulation. Ideally we would want to call this
1707        // function with true once at the end of the
1708        // simulation. However, the discarded energy is extremly
1709        // small and does not effect the final results.
1710        power.powerlib.updateCounters(false);
1711
1712        // call the energy function
1713        power.powerlib.calcEnergy();
1714
1715        // Update the stats
1716        updatePowerStats();
1717
1718        DPRINTF(DRAMPower, "%llu,REF,0,%d\n", divCeil(curTick(), memory.tCK) -
1719                memory.timeStampOffset, rank);
1720
1721        // make sure we did not wait so long that we cannot make up
1722        // for it
1723        if (refreshDueAt + memory.tREFI < ref_done_at) {
1724            fatal("Refresh was delayed so long we cannot catch up\n");
1725        }
1726
1727        // compensate for the delay in actually performing the refresh
1728        // when scheduling the next one
1729        schedule(refreshEvent, refreshDueAt + memory.tREFI - memory.tRP);
1730
1731        assert(!powerEvent.scheduled());
1732
1733        // move to the idle power state once the refresh is done, this
1734        // will also move the refresh state machine to the refresh
1735        // idle state
1736        schedulePowerEvent(PWR_IDLE, ref_done_at);
1737
1738        DPRINTF(DRAMState, "Refresh done at %llu and next refresh at %llu\n",
1739                ref_done_at, refreshDueAt + memory.tREFI);
1740    }
1741}
1742
1743void
1744DRAMCtrl::Rank::schedulePowerEvent(PowerState pwr_state, Tick tick)
1745{
1746    // respect causality
1747    assert(tick >= curTick());
1748
1749    if (!powerEvent.scheduled()) {
1750        DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n",
1751                tick, pwr_state);
1752
1753        // insert the new transition
1754        pwrStateTrans = pwr_state;
1755
1756        schedule(powerEvent, tick);
1757    } else {
1758        panic("Scheduled power event at %llu to state %d, "
1759              "with scheduled event at %llu to %d\n", tick, pwr_state,
1760              powerEvent.when(), pwrStateTrans);
1761    }
1762}
1763
1764void
1765DRAMCtrl::Rank::processPowerEvent()
1766{
1767    // remember where we were, and for how long
1768    Tick duration = curTick() - pwrStateTick;
1769    PowerState prev_state = pwrState;
1770
1771    // update the accounting
1772    pwrStateTime[prev_state] += duration;
1773
1774    pwrState = pwrStateTrans;
1775    pwrStateTick = curTick();
1776
1777    if (pwrState == PWR_IDLE) {
1778        DPRINTF(DRAMState, "All banks precharged\n");
1779
1780        // if we were refreshing, make sure we start scheduling requests again
1781        if (prev_state == PWR_REF) {
1782            DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration);
1783            assert(pwrState == PWR_IDLE);
1784
1785            // kick things into action again
1786            refreshState = REF_IDLE;
1787            // a request event could be already scheduled by the state
1788            // machine of the other rank
1789            if (!memory.nextReqEvent.scheduled())
1790                schedule(memory.nextReqEvent, curTick());
1791        } else {
1792            assert(prev_state == PWR_ACT);
1793
1794            // if we have a pending refresh, and are now moving to
1795            // the idle state, direclty transition to a refresh
1796            if (refreshState == REF_RUN) {
1797                // there should be nothing waiting at this point
1798                assert(!powerEvent.scheduled());
1799
1800                // update the state in zero time and proceed below
1801                pwrState = PWR_REF;
1802            }
1803        }
1804    }
1805
1806    // we transition to the refresh state, let the refresh state
1807    // machine know of this state update and let it deal with the
1808    // scheduling of the next power state transition as well as the
1809    // following refresh
1810    if (pwrState == PWR_REF) {
1811        DPRINTF(DRAMState, "Refreshing\n");
1812        // kick the refresh event loop into action again, and that
1813        // in turn will schedule a transition to the idle power
1814        // state once the refresh is done
1815        assert(refreshState == REF_RUN);
1816        processRefreshEvent();
1817    }
1818}
1819
1820void
1821DRAMCtrl::Rank::updatePowerStats()
1822{
1823    // Get the energy and power from DRAMPower
1824    Data::MemoryPowerModel::Energy energy =
1825        power.powerlib.getEnergy();
1826    Data::MemoryPowerModel::Power rank_power =
1827        power.powerlib.getPower();
1828
1829    actEnergy = energy.act_energy * memory.devicesPerRank;
1830    preEnergy = energy.pre_energy * memory.devicesPerRank;
1831    readEnergy = energy.read_energy * memory.devicesPerRank;
1832    writeEnergy = energy.write_energy * memory.devicesPerRank;
1833    refreshEnergy = energy.ref_energy * memory.devicesPerRank;
1834    actBackEnergy = energy.act_stdby_energy * memory.devicesPerRank;
1835    preBackEnergy = energy.pre_stdby_energy * memory.devicesPerRank;
1836    totalEnergy = energy.total_energy * memory.devicesPerRank;
1837    averagePower = rank_power.average_power * memory.devicesPerRank;
1838}
1839
1840void
1841DRAMCtrl::Rank::regStats()
1842{
1843    using namespace Stats;
1844
1845    pwrStateTime
1846        .init(5)
1847        .name(name() + ".memoryStateTime")
1848        .desc("Time in different power states");
1849    pwrStateTime.subname(0, "IDLE");
1850    pwrStateTime.subname(1, "REF");
1851    pwrStateTime.subname(2, "PRE_PDN");
1852    pwrStateTime.subname(3, "ACT");
1853    pwrStateTime.subname(4, "ACT_PDN");
1854
1855    actEnergy
1856        .name(name() + ".actEnergy")
1857        .desc("Energy for activate commands per rank (pJ)");
1858
1859    preEnergy
1860        .name(name() + ".preEnergy")
1861        .desc("Energy for precharge commands per rank (pJ)");
1862
1863    readEnergy
1864        .name(name() + ".readEnergy")
1865        .desc("Energy for read commands per rank (pJ)");
1866
1867    writeEnergy
1868        .name(name() + ".writeEnergy")
1869        .desc("Energy for write commands per rank (pJ)");
1870
1871    refreshEnergy
1872        .name(name() + ".refreshEnergy")
1873        .desc("Energy for refresh commands per rank (pJ)");
1874
1875    actBackEnergy
1876        .name(name() + ".actBackEnergy")
1877        .desc("Energy for active background per rank (pJ)");
1878
1879    preBackEnergy
1880        .name(name() + ".preBackEnergy")
1881        .desc("Energy for precharge background per rank (pJ)");
1882
1883    totalEnergy
1884        .name(name() + ".totalEnergy")
1885        .desc("Total energy per rank (pJ)");
1886
1887    averagePower
1888        .name(name() + ".averagePower")
1889        .desc("Core power per rank (mW)");
1890}
1891void
1892DRAMCtrl::regStats()
1893{
1894    using namespace Stats;
1895
1896    AbstractMemory::regStats();
1897
1898    for (auto r : ranks) {
1899        r->regStats();
1900    }
1901
1902    readReqs
1903        .name(name() + ".readReqs")
1904        .desc("Number of read requests accepted");
1905
1906    writeReqs
1907        .name(name() + ".writeReqs")
1908        .desc("Number of write requests accepted");
1909
1910    readBursts
1911        .name(name() + ".readBursts")
1912        .desc("Number of DRAM read bursts, "
1913              "including those serviced by the write queue");
1914
1915    writeBursts
1916        .name(name() + ".writeBursts")
1917        .desc("Number of DRAM write bursts, "
1918              "including those merged in the write queue");
1919
1920    servicedByWrQ
1921        .name(name() + ".servicedByWrQ")
1922        .desc("Number of DRAM read bursts serviced by the write queue");
1923
1924    mergedWrBursts
1925        .name(name() + ".mergedWrBursts")
1926        .desc("Number of DRAM write bursts merged with an existing one");
1927
1928    neitherReadNorWrite
1929        .name(name() + ".neitherReadNorWriteReqs")
1930        .desc("Number of requests that are neither read nor write");
1931
1932    perBankRdBursts
1933        .init(banksPerRank * ranksPerChannel)
1934        .name(name() + ".perBankRdBursts")
1935        .desc("Per bank write bursts");
1936
1937    perBankWrBursts
1938        .init(banksPerRank * ranksPerChannel)
1939        .name(name() + ".perBankWrBursts")
1940        .desc("Per bank write bursts");
1941
1942    avgRdQLen
1943        .name(name() + ".avgRdQLen")
1944        .desc("Average read queue length when enqueuing")
1945        .precision(2);
1946
1947    avgWrQLen
1948        .name(name() + ".avgWrQLen")
1949        .desc("Average write queue length when enqueuing")
1950        .precision(2);
1951
1952    totQLat
1953        .name(name() + ".totQLat")
1954        .desc("Total ticks spent queuing");
1955
1956    totBusLat
1957        .name(name() + ".totBusLat")
1958        .desc("Total ticks spent in databus transfers");
1959
1960    totMemAccLat
1961        .name(name() + ".totMemAccLat")
1962        .desc("Total ticks spent from burst creation until serviced "
1963              "by the DRAM");
1964
1965    avgQLat
1966        .name(name() + ".avgQLat")
1967        .desc("Average queueing delay per DRAM burst")
1968        .precision(2);
1969
1970    avgQLat = totQLat / (readBursts - servicedByWrQ);
1971
1972    avgBusLat
1973        .name(name() + ".avgBusLat")
1974        .desc("Average bus latency per DRAM burst")
1975        .precision(2);
1976
1977    avgBusLat = totBusLat / (readBursts - servicedByWrQ);
1978
1979    avgMemAccLat
1980        .name(name() + ".avgMemAccLat")
1981        .desc("Average memory access latency per DRAM burst")
1982        .precision(2);
1983
1984    avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ);
1985
1986    numRdRetry
1987        .name(name() + ".numRdRetry")
1988        .desc("Number of times read queue was full causing retry");
1989
1990    numWrRetry
1991        .name(name() + ".numWrRetry")
1992        .desc("Number of times write queue was full causing retry");
1993
1994    readRowHits
1995        .name(name() + ".readRowHits")
1996        .desc("Number of row buffer hits during reads");
1997
1998    writeRowHits
1999        .name(name() + ".writeRowHits")
2000        .desc("Number of row buffer hits during writes");
2001
2002    readRowHitRate
2003        .name(name() + ".readRowHitRate")
2004        .desc("Row buffer hit rate for reads")
2005        .precision(2);
2006
2007    readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100;
2008
2009    writeRowHitRate
2010        .name(name() + ".writeRowHitRate")
2011        .desc("Row buffer hit rate for writes")
2012        .precision(2);
2013
2014    writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100;
2015
2016    readPktSize
2017        .init(ceilLog2(burstSize) + 1)
2018        .name(name() + ".readPktSize")
2019        .desc("Read request sizes (log2)");
2020
2021     writePktSize
2022        .init(ceilLog2(burstSize) + 1)
2023        .name(name() + ".writePktSize")
2024        .desc("Write request sizes (log2)");
2025
2026     rdQLenPdf
2027        .init(readBufferSize)
2028        .name(name() + ".rdQLenPdf")
2029        .desc("What read queue length does an incoming req see");
2030
2031     wrQLenPdf
2032        .init(writeBufferSize)
2033        .name(name() + ".wrQLenPdf")
2034        .desc("What write queue length does an incoming req see");
2035
2036     bytesPerActivate
2037         .init(maxAccessesPerRow)
2038         .name(name() + ".bytesPerActivate")
2039         .desc("Bytes accessed per row activation")
2040         .flags(nozero);
2041
2042     rdPerTurnAround
2043         .init(readBufferSize)
2044         .name(name() + ".rdPerTurnAround")
2045         .desc("Reads before turning the bus around for writes")
2046         .flags(nozero);
2047
2048     wrPerTurnAround
2049         .init(writeBufferSize)
2050         .name(name() + ".wrPerTurnAround")
2051         .desc("Writes before turning the bus around for reads")
2052         .flags(nozero);
2053
2054    bytesReadDRAM
2055        .name(name() + ".bytesReadDRAM")
2056        .desc("Total number of bytes read from DRAM");
2057
2058    bytesReadWrQ
2059        .name(name() + ".bytesReadWrQ")
2060        .desc("Total number of bytes read from write queue");
2061
2062    bytesWritten
2063        .name(name() + ".bytesWritten")
2064        .desc("Total number of bytes written to DRAM");
2065
2066    bytesReadSys
2067        .name(name() + ".bytesReadSys")
2068        .desc("Total read bytes from the system interface side");
2069
2070    bytesWrittenSys
2071        .name(name() + ".bytesWrittenSys")
2072        .desc("Total written bytes from the system interface side");
2073
2074    avgRdBW
2075        .name(name() + ".avgRdBW")
2076        .desc("Average DRAM read bandwidth in MiByte/s")
2077        .precision(2);
2078
2079    avgRdBW = (bytesReadDRAM / 1000000) / simSeconds;
2080
2081    avgWrBW
2082        .name(name() + ".avgWrBW")
2083        .desc("Average achieved write bandwidth in MiByte/s")
2084        .precision(2);
2085
2086    avgWrBW = (bytesWritten / 1000000) / simSeconds;
2087
2088    avgRdBWSys
2089        .name(name() + ".avgRdBWSys")
2090        .desc("Average system read bandwidth in MiByte/s")
2091        .precision(2);
2092
2093    avgRdBWSys = (bytesReadSys / 1000000) / simSeconds;
2094
2095    avgWrBWSys
2096        .name(name() + ".avgWrBWSys")
2097        .desc("Average system write bandwidth in MiByte/s")
2098        .precision(2);
2099
2100    avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds;
2101
2102    peakBW
2103        .name(name() + ".peakBW")
2104        .desc("Theoretical peak bandwidth in MiByte/s")
2105        .precision(2);
2106
2107    peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000;
2108
2109    busUtil
2110        .name(name() + ".busUtil")
2111        .desc("Data bus utilization in percentage")
2112        .precision(2);
2113    busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
2114
2115    totGap
2116        .name(name() + ".totGap")
2117        .desc("Total gap between requests");
2118
2119    avgGap
2120        .name(name() + ".avgGap")
2121        .desc("Average gap between requests")
2122        .precision(2);
2123
2124    avgGap = totGap / (readReqs + writeReqs);
2125
2126    // Stats for DRAM Power calculation based on Micron datasheet
2127    busUtilRead
2128        .name(name() + ".busUtilRead")
2129        .desc("Data bus utilization in percentage for reads")
2130        .precision(2);
2131
2132    busUtilRead = avgRdBW / peakBW * 100;
2133
2134    busUtilWrite
2135        .name(name() + ".busUtilWrite")
2136        .desc("Data bus utilization in percentage for writes")
2137        .precision(2);
2138
2139    busUtilWrite = avgWrBW / peakBW * 100;
2140
2141    pageHitRate
2142        .name(name() + ".pageHitRate")
2143        .desc("Row buffer hit rate, read and write combined")
2144        .precision(2);
2145
2146    pageHitRate = (writeRowHits + readRowHits) /
2147        (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100;
2148}
2149
2150void
2151DRAMCtrl::recvFunctional(PacketPtr pkt)
2152{
2153    // rely on the abstract memory
2154    functionalAccess(pkt);
2155}
2156
2157BaseSlavePort&
2158DRAMCtrl::getSlavePort(const string &if_name, PortID idx)
2159{
2160    if (if_name != "port") {
2161        return MemObject::getSlavePort(if_name, idx);
2162    } else {
2163        return port;
2164    }
2165}
2166
2167DrainState
2168DRAMCtrl::drain()
2169{
2170    // if there is anything in any of our internal queues, keep track
2171    // of that as well
2172    if (!(writeQueue.empty() && readQueue.empty() && respQueue.empty())) {
2173        DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
2174                " resp: %d\n", writeQueue.size(), readQueue.size(),
2175                respQueue.size());
2176
2177        // the only part that is not drained automatically over time
2178        // is the write queue, thus kick things into action if needed
2179        if (!writeQueue.empty() && !nextReqEvent.scheduled()) {
2180            schedule(nextReqEvent, curTick());
2181        }
2182        return DrainState::Draining;
2183    } else {
2184        return DrainState::Drained;
2185    }
2186}
2187
2188void
2189DRAMCtrl::drainResume()
2190{
2191    if (!isTimingMode && system()->isTimingMode()) {
2192        // if we switched to timing mode, kick things into action,
2193        // and behave as if we restored from a checkpoint
2194        startup();
2195    } else if (isTimingMode && !system()->isTimingMode()) {
2196        // if we switch from timing mode, stop the refresh events to
2197        // not cause issues with KVM
2198        for (auto r : ranks) {
2199            r->suspend();
2200        }
2201    }
2202
2203    // update the mode
2204    isTimingMode = system()->isTimingMode();
2205}
2206
2207DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory)
2208    : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
2209      memory(_memory)
2210{ }
2211
2212AddrRangeList
2213DRAMCtrl::MemoryPort::getAddrRanges() const
2214{
2215    AddrRangeList ranges;
2216    ranges.push_back(memory.getAddrRange());
2217    return ranges;
2218}
2219
2220void
2221DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt)
2222{
2223    pkt->pushLabel(memory.name());
2224
2225    if (!queue.checkFunctional(pkt)) {
2226        // Default implementation of SimpleTimingPort::recvFunctional()
2227        // calls recvAtomic() and throws away the latency; we can save a
2228        // little here by just not calculating the latency.
2229        memory.recvFunctional(pkt);
2230    }
2231
2232    pkt->popLabel();
2233}
2234
2235Tick
2236DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt)
2237{
2238    return memory.recvAtomic(pkt);
2239}
2240
2241bool
2242DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt)
2243{
2244    // pass it to the memory controller
2245    return memory.recvTimingReq(pkt);
2246}
2247
2248DRAMCtrl*
2249DRAMCtrlParams::create()
2250{
2251    return new DRAMCtrl(this);
2252}
2253