dram_ctrl.cc revision 10405
19243SN/A/*
210206Sandreas.hansson@arm.com * Copyright (c) 2010-2014 ARM Limited
39243SN/A * All rights reserved
49243SN/A *
59243SN/A * The license below extends only to copyright in the software and shall
69243SN/A * not be construed as granting a license to any other intellectual
79243SN/A * property including but not limited to intellectual property relating
89243SN/A * to a hardware implementation of the functionality of the software
99243SN/A * licensed hereunder.  You may use the software subject to the license
109243SN/A * terms below provided that you ensure that this notice is replicated
119243SN/A * unmodified and in its entirety in all distributions of the software,
129243SN/A * modified or unmodified, in source code or in binary form.
139243SN/A *
149831SN/A * Copyright (c) 2013 Amin Farmahini-Farahani
159831SN/A * All rights reserved.
169831SN/A *
179243SN/A * Redistribution and use in source and binary forms, with or without
189243SN/A * modification, are permitted provided that the following conditions are
199243SN/A * met: redistributions of source code must retain the above copyright
209243SN/A * notice, this list of conditions and the following disclaimer;
219243SN/A * redistributions in binary form must reproduce the above copyright
229243SN/A * notice, this list of conditions and the following disclaimer in the
239243SN/A * documentation and/or other materials provided with the distribution;
249243SN/A * neither the name of the copyright holders nor the names of its
259243SN/A * contributors may be used to endorse or promote products derived from
269243SN/A * this software without specific prior written permission.
279243SN/A *
289243SN/A * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
299243SN/A * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
309243SN/A * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
319243SN/A * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
329243SN/A * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
339243SN/A * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
349243SN/A * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
359243SN/A * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
369243SN/A * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
379243SN/A * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
389243SN/A * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
399243SN/A *
409243SN/A * Authors: Andreas Hansson
419243SN/A *          Ani Udipi
429967SN/A *          Neha Agarwal
439243SN/A */
449243SN/A
4510146Sandreas.hansson@arm.com#include "base/bitfield.hh"
469356SN/A#include "base/trace.hh"
4710146Sandreas.hansson@arm.com#include "debug/DRAM.hh"
4810247Sandreas.hansson@arm.com#include "debug/DRAMPower.hh"
4910208Sandreas.hansson@arm.com#include "debug/DRAMState.hh"
509352SN/A#include "debug/Drain.hh"
5110146Sandreas.hansson@arm.com#include "mem/dram_ctrl.hh"
529814SN/A#include "sim/system.hh"
539243SN/A
549243SN/Ausing namespace std;
559243SN/A
5610146Sandreas.hansson@arm.comDRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
579243SN/A    AbstractMemory(p),
589243SN/A    port(name() + ".port", *this),
599243SN/A    retryRdReq(false), retryWrReq(false),
6010211Sandreas.hansson@arm.com    busState(READ),
6110208Sandreas.hansson@arm.com    nextReqEvent(this), respondEvent(this), activateEvent(this),
6210208Sandreas.hansson@arm.com    prechargeEvent(this), refreshEvent(this), powerEvent(this),
6310208Sandreas.hansson@arm.com    drainManager(NULL),
649831SN/A    deviceBusWidth(p->device_bus_width), burstLength(p->burst_length),
659831SN/A    deviceRowBufferSize(p->device_rowbuffer_size),
669831SN/A    devicesPerRank(p->devices_per_rank),
679831SN/A    burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8),
689831SN/A    rowBufferSize(devicesPerRank * deviceRowBufferSize),
6910140SN/A    columnsPerRowBuffer(rowBufferSize / burstSize),
7010286Sandreas.hansson@arm.com    columnsPerStripe(range.granularity() / burstSize),
719243SN/A    ranksPerChannel(p->ranks_per_channel),
7210394Swendy.elsasser@arm.com    bankGroupsPerRank(p->bank_groups_per_rank),
7310394Swendy.elsasser@arm.com    bankGroupArch(p->bank_groups_per_rank > 0),
749566SN/A    banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0),
759243SN/A    readBufferSize(p->read_buffer_size),
769243SN/A    writeBufferSize(p->write_buffer_size),
7710140SN/A    writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0),
7810140SN/A    writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0),
7910147Sandreas.hansson@arm.com    minWritesPerSwitch(p->min_writes_per_switch),
8010147Sandreas.hansson@arm.com    writesThisTime(0), readsThisTime(0),
8110393Swendy.elsasser@arm.com    tCK(p->tCK), tWTR(p->tWTR), tRTW(p->tRTW), tCS(p->tCS), tBURST(p->tBURST),
8210394Swendy.elsasser@arm.com    tCCD_L(p->tCCD_L), tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS),
8310394Swendy.elsasser@arm.com    tWR(p->tWR), tRTP(p->tRTP), tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD),
8410394Swendy.elsasser@arm.com    tRRD_L(p->tRRD_L), tXAW(p->tXAW), activationLimit(p->activation_limit),
859243SN/A    memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
869243SN/A    pageMgmt(p->page_policy),
8710141SN/A    maxAccessesPerRow(p->max_accesses_per_row),
889726SN/A    frontendLatency(p->static_frontend_latency),
899726SN/A    backendLatency(p->static_backend_latency),
9010208Sandreas.hansson@arm.com    busBusyUntil(0), refreshDueAt(0), refreshState(REF_IDLE),
9110208Sandreas.hansson@arm.com    pwrStateTrans(PWR_IDLE), pwrState(PWR_IDLE), prevArrival(0),
9210393Swendy.elsasser@arm.com    nextReqTime(0), pwrStateTick(0), numBanksActive(0),
9310393Swendy.elsasser@arm.com    activeRank(0)
949243SN/A{
959243SN/A    // create the bank states based on the dimensions of the ranks and
969243SN/A    // banks
979243SN/A    banks.resize(ranksPerChannel);
989969SN/A    actTicks.resize(ranksPerChannel);
999243SN/A    for (size_t c = 0; c < ranksPerChannel; ++c) {
1009243SN/A        banks[c].resize(banksPerRank);
1019969SN/A        actTicks[c].resize(activationLimit, 0);
1029243SN/A    }
1039243SN/A
10410246Sandreas.hansson@arm.com    // set the bank indices
10510246Sandreas.hansson@arm.com    for (int r = 0; r < ranksPerChannel; r++) {
10610246Sandreas.hansson@arm.com        for (int b = 0; b < banksPerRank; b++) {
10710246Sandreas.hansson@arm.com            banks[r][b].rank = r;
10810246Sandreas.hansson@arm.com            banks[r][b].bank = b;
10910394Swendy.elsasser@arm.com            if (bankGroupArch) {
11010394Swendy.elsasser@arm.com                // Simply assign lower bits to bank group in order to
11110394Swendy.elsasser@arm.com                // rotate across bank groups as banks are incremented
11210394Swendy.elsasser@arm.com                // e.g. with 4 banks per bank group and 16 banks total:
11310394Swendy.elsasser@arm.com                //    banks 0,4,8,12  are in bank group 0
11410394Swendy.elsasser@arm.com                //    banks 1,5,9,13  are in bank group 1
11510394Swendy.elsasser@arm.com                //    banks 2,6,10,14 are in bank group 2
11610394Swendy.elsasser@arm.com                //    banks 3,7,11,15 are in bank group 3
11710394Swendy.elsasser@arm.com                banks[r][b].bankgr = b % bankGroupsPerRank;
11810394Swendy.elsasser@arm.com            } else {
11910394Swendy.elsasser@arm.com                // No bank groups; simply assign to bank number
12010394Swendy.elsasser@arm.com                banks[r][b].bankgr = b;
12110394Swendy.elsasser@arm.com            }
12210246Sandreas.hansson@arm.com        }
12310246Sandreas.hansson@arm.com    }
12410246Sandreas.hansson@arm.com
12510140SN/A    // perform a basic check of the write thresholds
12610140SN/A    if (p->write_low_thresh_perc >= p->write_high_thresh_perc)
12710140SN/A        fatal("Write buffer low threshold %d must be smaller than the "
12810140SN/A              "high threshold %d\n", p->write_low_thresh_perc,
12910140SN/A              p->write_high_thresh_perc);
1309243SN/A
1319243SN/A    // determine the rows per bank by looking at the total capacity
1329567SN/A    uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size());
1339243SN/A
1349243SN/A    DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
1359243SN/A            AbstractMemory::size());
1369831SN/A
1379831SN/A    DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n",
1389831SN/A            rowBufferSize, columnsPerRowBuffer);
1399831SN/A
1409831SN/A    rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel);
1419243SN/A
14210286Sandreas.hansson@arm.com    // a bit of sanity checks on the interleaving
1439566SN/A    if (range.interleaved()) {
1449566SN/A        if (channels != range.stripes())
14510143SN/A            fatal("%s has %d interleaved address stripes but %d channel(s)\n",
1469566SN/A                  name(), range.stripes(), channels);
1479566SN/A
14810136SN/A        if (addrMapping == Enums::RoRaBaChCo) {
1499831SN/A            if (rowBufferSize != range.granularity()) {
15010286Sandreas.hansson@arm.com                fatal("Channel interleaving of %s doesn't match RoRaBaChCo "
15110136SN/A                      "address map\n", name());
1529566SN/A            }
15310286Sandreas.hansson@arm.com        } else if (addrMapping == Enums::RoRaBaCoCh ||
15410286Sandreas.hansson@arm.com                   addrMapping == Enums::RoCoRaBaCh) {
15510286Sandreas.hansson@arm.com            // for the interleavings with channel bits in the bottom,
15610286Sandreas.hansson@arm.com            // if the system uses a channel striping granularity that
15710286Sandreas.hansson@arm.com            // is larger than the DRAM burst size, then map the
15810286Sandreas.hansson@arm.com            // sequential accesses within a stripe to a number of
15910286Sandreas.hansson@arm.com            // columns in the DRAM, effectively placing some of the
16010286Sandreas.hansson@arm.com            // lower-order column bits as the least-significant bits
16110286Sandreas.hansson@arm.com            // of the address (above the ones denoting the burst size)
16210286Sandreas.hansson@arm.com            assert(columnsPerStripe >= 1);
16310286Sandreas.hansson@arm.com
16410286Sandreas.hansson@arm.com            // channel striping has to be done at a granularity that
16510286Sandreas.hansson@arm.com            // is equal or larger to a cache line
16610286Sandreas.hansson@arm.com            if (system()->cacheLineSize() > range.granularity()) {
16710286Sandreas.hansson@arm.com                fatal("Channel interleaving of %s must be at least as large "
16810286Sandreas.hansson@arm.com                      "as the cache line size\n", name());
1699669SN/A            }
17010286Sandreas.hansson@arm.com
17110286Sandreas.hansson@arm.com            // ...and equal or smaller than the row-buffer size
17210286Sandreas.hansson@arm.com            if (rowBufferSize < range.granularity()) {
17310286Sandreas.hansson@arm.com                fatal("Channel interleaving of %s must be at most as large "
17410286Sandreas.hansson@arm.com                      "as the row-buffer size\n", name());
17510286Sandreas.hansson@arm.com            }
17610286Sandreas.hansson@arm.com            // this is essentially the check above, so just to be sure
17710286Sandreas.hansson@arm.com            assert(columnsPerStripe <= columnsPerRowBuffer);
1789566SN/A        }
1799566SN/A    }
18010207Sandreas.hansson@arm.com
18110207Sandreas.hansson@arm.com    // some basic sanity checks
18210207Sandreas.hansson@arm.com    if (tREFI <= tRP || tREFI <= tRFC) {
18310207Sandreas.hansson@arm.com        fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n",
18410207Sandreas.hansson@arm.com              tREFI, tRP, tRFC);
18510207Sandreas.hansson@arm.com    }
18610394Swendy.elsasser@arm.com
18710394Swendy.elsasser@arm.com    // basic bank group architecture checks ->
18810394Swendy.elsasser@arm.com    if (bankGroupArch) {
18910394Swendy.elsasser@arm.com        // must have at least one bank per bank group
19010394Swendy.elsasser@arm.com        if (bankGroupsPerRank > banksPerRank) {
19110394Swendy.elsasser@arm.com            fatal("banks per rank (%d) must be equal to or larger than "
19210394Swendy.elsasser@arm.com                  "banks groups per rank (%d)\n",
19310394Swendy.elsasser@arm.com                  banksPerRank, bankGroupsPerRank);
19410394Swendy.elsasser@arm.com        }
19510394Swendy.elsasser@arm.com        // must have same number of banks in each bank group
19610394Swendy.elsasser@arm.com        if ((banksPerRank % bankGroupsPerRank) != 0) {
19710394Swendy.elsasser@arm.com            fatal("Banks per rank (%d) must be evenly divisible by bank groups "
19810394Swendy.elsasser@arm.com                  "per rank (%d) for equal banks per bank group\n",
19910394Swendy.elsasser@arm.com                  banksPerRank, bankGroupsPerRank);
20010394Swendy.elsasser@arm.com        }
20110394Swendy.elsasser@arm.com        // tCCD_L should be greater than minimal, back-to-back burst delay
20210394Swendy.elsasser@arm.com        if (tCCD_L <= tBURST) {
20310394Swendy.elsasser@arm.com            fatal("tCCD_L (%d) should be larger than tBURST (%d) when "
20410394Swendy.elsasser@arm.com                  "bank groups per rank (%d) is greater than 1\n",
20510394Swendy.elsasser@arm.com                  tCCD_L, tBURST, bankGroupsPerRank);
20610394Swendy.elsasser@arm.com        }
20710394Swendy.elsasser@arm.com        // tRRD_L is greater than minimal, same bank group ACT-to-ACT delay
20810394Swendy.elsasser@arm.com        if (tRRD_L <= tRRD) {
20910394Swendy.elsasser@arm.com            fatal("tRRD_L (%d) should be larger than tRRD (%d) when "
21010394Swendy.elsasser@arm.com                  "bank groups per rank (%d) is greater than 1\n",
21110394Swendy.elsasser@arm.com                  tRRD_L, tRRD, bankGroupsPerRank);
21210394Swendy.elsasser@arm.com        }
21310394Swendy.elsasser@arm.com    }
21410394Swendy.elsasser@arm.com
2159243SN/A}
2169243SN/A
2179243SN/Avoid
21810146Sandreas.hansson@arm.comDRAMCtrl::init()
21910140SN/A{
22010140SN/A    if (!port.isConnected()) {
22110146Sandreas.hansson@arm.com        fatal("DRAMCtrl %s is unconnected!\n", name());
22210140SN/A    } else {
22310140SN/A        port.sendRangeChange();
22410140SN/A    }
22510140SN/A}
22610140SN/A
22710140SN/Avoid
22810146Sandreas.hansson@arm.comDRAMCtrl::startup()
2299243SN/A{
23010143SN/A    // update the start tick for the precharge accounting to the
23110143SN/A    // current tick
23210208Sandreas.hansson@arm.com    pwrStateTick = curTick();
23310143SN/A
23410206Sandreas.hansson@arm.com    // shift the bus busy time sufficiently far ahead that we never
23510206Sandreas.hansson@arm.com    // have to worry about negative values when computing the time for
23610206Sandreas.hansson@arm.com    // the next request, this will add an insignificant bubble at the
23710206Sandreas.hansson@arm.com    // start of simulation
23810206Sandreas.hansson@arm.com    busBusyUntil = curTick() + tRP + tRCD + tCL;
23910206Sandreas.hansson@arm.com
24010207Sandreas.hansson@arm.com    // kick off the refresh, and give ourselves enough time to
24110207Sandreas.hansson@arm.com    // precharge
24210207Sandreas.hansson@arm.com    schedule(refreshEvent, curTick() + tREFI - tRP);
2439243SN/A}
2449243SN/A
2459243SN/ATick
24610146Sandreas.hansson@arm.comDRAMCtrl::recvAtomic(PacketPtr pkt)
2479243SN/A{
2489243SN/A    DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
2499243SN/A
2509243SN/A    // do the actual memory access and turn the packet into a response
2519243SN/A    access(pkt);
2529243SN/A
2539243SN/A    Tick latency = 0;
2549243SN/A    if (!pkt->memInhibitAsserted() && pkt->hasData()) {
2559243SN/A        // this value is not supposed to be accurate, just enough to
2569243SN/A        // keep things going, mimic a closed page
2579243SN/A        latency = tRP + tRCD + tCL;
2589243SN/A    }
2599243SN/A    return latency;
2609243SN/A}
2619243SN/A
2629243SN/Abool
26310146Sandreas.hansson@arm.comDRAMCtrl::readQueueFull(unsigned int neededEntries) const
2649243SN/A{
2659831SN/A    DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n",
2669831SN/A            readBufferSize, readQueue.size() + respQueue.size(),
2679831SN/A            neededEntries);
2689243SN/A
2699831SN/A    return
2709831SN/A        (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize;
2719243SN/A}
2729243SN/A
2739243SN/Abool
27410146Sandreas.hansson@arm.comDRAMCtrl::writeQueueFull(unsigned int neededEntries) const
2759243SN/A{
2769831SN/A    DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n",
2779831SN/A            writeBufferSize, writeQueue.size(), neededEntries);
2789831SN/A    return (writeQueue.size() + neededEntries) > writeBufferSize;
2799243SN/A}
2809243SN/A
28110146Sandreas.hansson@arm.comDRAMCtrl::DRAMPacket*
28210146Sandreas.hansson@arm.comDRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size,
28310143SN/A                       bool isRead)
2849243SN/A{
2859669SN/A    // decode the address based on the address mapping scheme, with
28610136SN/A    // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and
28710136SN/A    // channel, respectively
2889243SN/A    uint8_t rank;
2899967SN/A    uint8_t bank;
29010245Sandreas.hansson@arm.com    // use a 64-bit unsigned during the computations as the row is
29110245Sandreas.hansson@arm.com    // always the top bits, and check before creating the DRAMPacket
29210245Sandreas.hansson@arm.com    uint64_t row;
2939243SN/A
29410286Sandreas.hansson@arm.com    // truncate the address to a DRAM burst, which makes it unique to
29510286Sandreas.hansson@arm.com    // a specific column, row, bank, rank and channel
2969831SN/A    Addr addr = dramPktAddr / burstSize;
2979243SN/A
2989491SN/A    // we have removed the lowest order address bits that denote the
2999831SN/A    // position within the column
30010136SN/A    if (addrMapping == Enums::RoRaBaChCo) {
3019491SN/A        // the lowest order bits denote the column to ensure that
3029491SN/A        // sequential cache lines occupy the same row
3039831SN/A        addr = addr / columnsPerRowBuffer;
3049243SN/A
3059669SN/A        // take out the channel part of the address
3069566SN/A        addr = addr / channels;
3079566SN/A
3089669SN/A        // after the channel bits, get the bank bits to interleave
3099669SN/A        // over the banks
3109669SN/A        bank = addr % banksPerRank;
3119669SN/A        addr = addr / banksPerRank;
3129669SN/A
3139669SN/A        // after the bank, we get the rank bits which thus interleaves
3149669SN/A        // over the ranks
3159669SN/A        rank = addr % ranksPerChannel;
3169669SN/A        addr = addr / ranksPerChannel;
3179669SN/A
3189669SN/A        // lastly, get the row bits
3199669SN/A        row = addr % rowsPerBank;
3209669SN/A        addr = addr / rowsPerBank;
32110136SN/A    } else if (addrMapping == Enums::RoRaBaCoCh) {
32210286Sandreas.hansson@arm.com        // take out the lower-order column bits
32310286Sandreas.hansson@arm.com        addr = addr / columnsPerStripe;
32410286Sandreas.hansson@arm.com
3259669SN/A        // take out the channel part of the address
3269669SN/A        addr = addr / channels;
3279669SN/A
32810286Sandreas.hansson@arm.com        // next, the higher-order column bites
32910286Sandreas.hansson@arm.com        addr = addr / (columnsPerRowBuffer / columnsPerStripe);
3309669SN/A
3319669SN/A        // after the column bits, we get the bank bits to interleave
3329491SN/A        // over the banks
3339243SN/A        bank = addr % banksPerRank;
3349243SN/A        addr = addr / banksPerRank;
3359243SN/A
3369491SN/A        // after the bank, we get the rank bits which thus interleaves
3379491SN/A        // over the ranks
3389243SN/A        rank = addr % ranksPerChannel;
3399243SN/A        addr = addr / ranksPerChannel;
3409243SN/A
3419491SN/A        // lastly, get the row bits
3429243SN/A        row = addr % rowsPerBank;
3439243SN/A        addr = addr / rowsPerBank;
34410136SN/A    } else if (addrMapping == Enums::RoCoRaBaCh) {
3459491SN/A        // optimise for closed page mode and utilise maximum
3469491SN/A        // parallelism of the DRAM (at the cost of power)
3479491SN/A
34810286Sandreas.hansson@arm.com        // take out the lower-order column bits
34910286Sandreas.hansson@arm.com        addr = addr / columnsPerStripe;
35010286Sandreas.hansson@arm.com
3519566SN/A        // take out the channel part of the address, not that this has
3529566SN/A        // to match with how accesses are interleaved between the
3539566SN/A        // controllers in the address mapping
3549566SN/A        addr = addr / channels;
3559566SN/A
3569491SN/A        // start with the bank bits, as this provides the maximum
3579491SN/A        // opportunity for parallelism between requests
3589243SN/A        bank = addr % banksPerRank;
3599243SN/A        addr = addr / banksPerRank;
3609243SN/A
3619491SN/A        // next get the rank bits
3629243SN/A        rank = addr % ranksPerChannel;
3639243SN/A        addr = addr / ranksPerChannel;
3649243SN/A
36510286Sandreas.hansson@arm.com        // next, the higher-order column bites
36610286Sandreas.hansson@arm.com        addr = addr / (columnsPerRowBuffer / columnsPerStripe);
3679243SN/A
3689491SN/A        // lastly, get the row bits
3699243SN/A        row = addr % rowsPerBank;
3709243SN/A        addr = addr / rowsPerBank;
3719243SN/A    } else
3729243SN/A        panic("Unknown address mapping policy chosen!");
3739243SN/A
3749243SN/A    assert(rank < ranksPerChannel);
3759243SN/A    assert(bank < banksPerRank);
3769243SN/A    assert(row < rowsPerBank);
37710245Sandreas.hansson@arm.com    assert(row < Bank::NO_ROW);
3789243SN/A
3799243SN/A    DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
3809831SN/A            dramPktAddr, rank, bank, row);
3819243SN/A
3829243SN/A    // create the corresponding DRAM packet with the entry time and
3839567SN/A    // ready time set to the current tick, the latter will be updated
3849567SN/A    // later
3859967SN/A    uint16_t bank_id = banksPerRank * rank + bank;
3869967SN/A    return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr,
3879967SN/A                          size, banks[rank][bank]);
3889243SN/A}
3899243SN/A
3909243SN/Avoid
39110146Sandreas.hansson@arm.comDRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount)
3929243SN/A{
3939243SN/A    // only add to the read queue here. whenever the request is
3949243SN/A    // eventually done, set the readyTime, and call schedule()
3959243SN/A    assert(!pkt->isWrite());
3969243SN/A
3979831SN/A    assert(pktCount != 0);
3989831SN/A
3999831SN/A    // if the request size is larger than burst size, the pkt is split into
4009831SN/A    // multiple DRAM packets
4019831SN/A    // Note if the pkt starting address is not aligened to burst size, the
4029831SN/A    // address of first DRAM packet is kept unaliged. Subsequent DRAM packets
4039831SN/A    // are aligned to burst size boundaries. This is to ensure we accurately
4049831SN/A    // check read packets against packets in write queue.
4059243SN/A    Addr addr = pkt->getAddr();
4069831SN/A    unsigned pktsServicedByWrQ = 0;
4079831SN/A    BurstHelper* burst_helper = NULL;
4089831SN/A    for (int cnt = 0; cnt < pktCount; ++cnt) {
4099831SN/A        unsigned size = std::min((addr | (burstSize - 1)) + 1,
4109831SN/A                        pkt->getAddr() + pkt->getSize()) - addr;
4119831SN/A        readPktSize[ceilLog2(size)]++;
4129831SN/A        readBursts++;
4139243SN/A
4149831SN/A        // First check write buffer to see if the data is already at
4159831SN/A        // the controller
4169831SN/A        bool foundInWrQ = false;
4179833SN/A        for (auto i = writeQueue.begin(); i != writeQueue.end(); ++i) {
4189832SN/A            // check if the read is subsumed in the write entry we are
4199832SN/A            // looking at
4209832SN/A            if ((*i)->addr <= addr &&
4219832SN/A                (addr + size) <= ((*i)->addr + (*i)->size)) {
4229831SN/A                foundInWrQ = true;
4239831SN/A                servicedByWrQ++;
4249831SN/A                pktsServicedByWrQ++;
4259831SN/A                DPRINTF(DRAM, "Read to addr %lld with size %d serviced by "
4269831SN/A                        "write queue\n", addr, size);
4279975SN/A                bytesReadWrQ += burstSize;
4289831SN/A                break;
4299831SN/A            }
4309243SN/A        }
4319831SN/A
4329831SN/A        // If not found in the write q, make a DRAM packet and
4339831SN/A        // push it onto the read queue
4349831SN/A        if (!foundInWrQ) {
4359831SN/A
4369831SN/A            // Make the burst helper for split packets
4379831SN/A            if (pktCount > 1 && burst_helper == NULL) {
4389831SN/A                DPRINTF(DRAM, "Read to addr %lld translates to %d "
4399831SN/A                        "dram requests\n", pkt->getAddr(), pktCount);
4409831SN/A                burst_helper = new BurstHelper(pktCount);
4419831SN/A            }
4429831SN/A
4439966SN/A            DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true);
4449831SN/A            dram_pkt->burstHelper = burst_helper;
4459831SN/A
4469831SN/A            assert(!readQueueFull(1));
4479831SN/A            rdQLenPdf[readQueue.size() + respQueue.size()]++;
4489831SN/A
4499831SN/A            DPRINTF(DRAM, "Adding to read queue\n");
4509831SN/A
4519831SN/A            readQueue.push_back(dram_pkt);
4529831SN/A
4539831SN/A            // Update stats
4549831SN/A            avgRdQLen = readQueue.size() + respQueue.size();
4559831SN/A        }
4569831SN/A
4579831SN/A        // Starting address of next dram pkt (aligend to burstSize boundary)
4589831SN/A        addr = (addr | (burstSize - 1)) + 1;
4599243SN/A    }
4609243SN/A
4619831SN/A    // If all packets are serviced by write queue, we send the repsonse back
4629831SN/A    if (pktsServicedByWrQ == pktCount) {
4639831SN/A        accessAndRespond(pkt, frontendLatency);
4649831SN/A        return;
4659831SN/A    }
4669243SN/A
4679831SN/A    // Update how many split packets are serviced by write queue
4689831SN/A    if (burst_helper != NULL)
4699831SN/A        burst_helper->burstsServiced = pktsServicedByWrQ;
4709243SN/A
47110206Sandreas.hansson@arm.com    // If we are not already scheduled to get a request out of the
47210206Sandreas.hansson@arm.com    // queue, do so now
47310206Sandreas.hansson@arm.com    if (!nextReqEvent.scheduled()) {
4749567SN/A        DPRINTF(DRAM, "Request scheduled immediately\n");
4759567SN/A        schedule(nextReqEvent, curTick());
4769243SN/A    }
4779243SN/A}
4789243SN/A
4799243SN/Avoid
48010146Sandreas.hansson@arm.comDRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount)
4819243SN/A{
4829243SN/A    // only add to the write queue here. whenever the request is
4839243SN/A    // eventually done, set the readyTime, and call schedule()
4849243SN/A    assert(pkt->isWrite());
4859243SN/A
4869831SN/A    // if the request size is larger than burst size, the pkt is split into
4879831SN/A    // multiple DRAM packets
4889831SN/A    Addr addr = pkt->getAddr();
4899831SN/A    for (int cnt = 0; cnt < pktCount; ++cnt) {
4909831SN/A        unsigned size = std::min((addr | (burstSize - 1)) + 1,
4919831SN/A                        pkt->getAddr() + pkt->getSize()) - addr;
4929831SN/A        writePktSize[ceilLog2(size)]++;
4939831SN/A        writeBursts++;
4949243SN/A
4959832SN/A        // see if we can merge with an existing item in the write
4969838SN/A        // queue and keep track of whether we have merged or not so we
4979838SN/A        // can stop at that point and also avoid enqueueing a new
4989838SN/A        // request
4999832SN/A        bool merged = false;
5009832SN/A        auto w = writeQueue.begin();
5019243SN/A
5029832SN/A        while(!merged && w != writeQueue.end()) {
5039832SN/A            // either of the two could be first, if they are the same
5049832SN/A            // it does not matter which way we go
5059832SN/A            if ((*w)->addr >= addr) {
5069838SN/A                // the existing one starts after the new one, figure
5079838SN/A                // out where the new one ends with respect to the
5089838SN/A                // existing one
5099832SN/A                if ((addr + size) >= ((*w)->addr + (*w)->size)) {
5109832SN/A                    // check if the existing one is completely
5119832SN/A                    // subsumed in the new one
5129832SN/A                    DPRINTF(DRAM, "Merging write covering existing burst\n");
5139832SN/A                    merged = true;
5149832SN/A                    // update both the address and the size
5159832SN/A                    (*w)->addr = addr;
5169832SN/A                    (*w)->size = size;
5179832SN/A                } else if ((addr + size) >= (*w)->addr &&
5189832SN/A                           ((*w)->addr + (*w)->size - addr) <= burstSize) {
5199832SN/A                    // the new one is just before or partially
5209832SN/A                    // overlapping with the existing one, and together
5219832SN/A                    // they fit within a burst
5229832SN/A                    DPRINTF(DRAM, "Merging write before existing burst\n");
5239832SN/A                    merged = true;
5249832SN/A                    // the existing queue item needs to be adjusted with
5259832SN/A                    // respect to both address and size
52610047SN/A                    (*w)->size = (*w)->addr + (*w)->size - addr;
5279832SN/A                    (*w)->addr = addr;
5289832SN/A                }
5299832SN/A            } else {
5309838SN/A                // the new one starts after the current one, figure
5319838SN/A                // out where the existing one ends with respect to the
5329838SN/A                // new one
5339832SN/A                if (((*w)->addr + (*w)->size) >= (addr + size)) {
5349832SN/A                    // check if the new one is completely subsumed in the
5359832SN/A                    // existing one
5369832SN/A                    DPRINTF(DRAM, "Merging write into existing burst\n");
5379832SN/A                    merged = true;
5389832SN/A                    // no adjustments necessary
5399832SN/A                } else if (((*w)->addr + (*w)->size) >= addr &&
5409832SN/A                           (addr + size - (*w)->addr) <= burstSize) {
5419832SN/A                    // the existing one is just before or partially
5429832SN/A                    // overlapping with the new one, and together
5439832SN/A                    // they fit within a burst
5449832SN/A                    DPRINTF(DRAM, "Merging write after existing burst\n");
5459832SN/A                    merged = true;
5469832SN/A                    // the address is right, and only the size has
5479832SN/A                    // to be adjusted
5489832SN/A                    (*w)->size = addr + size - (*w)->addr;
5499832SN/A                }
5509832SN/A            }
5519832SN/A            ++w;
5529832SN/A        }
5539243SN/A
5549832SN/A        // if the item was not merged we need to create a new write
5559832SN/A        // and enqueue it
5569832SN/A        if (!merged) {
5579966SN/A            DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false);
5589243SN/A
5599832SN/A            assert(writeQueue.size() < writeBufferSize);
5609832SN/A            wrQLenPdf[writeQueue.size()]++;
5619243SN/A
5629832SN/A            DPRINTF(DRAM, "Adding to write queue\n");
5639831SN/A
5649832SN/A            writeQueue.push_back(dram_pkt);
5659831SN/A
5669832SN/A            // Update stats
5679832SN/A            avgWrQLen = writeQueue.size();
5689977SN/A        } else {
5699977SN/A            // keep track of the fact that this burst effectively
5709977SN/A            // disappeared as it was merged with an existing one
5719977SN/A            mergedWrBursts++;
5729832SN/A        }
5739832SN/A
5749831SN/A        // Starting address of next dram pkt (aligend to burstSize boundary)
5759831SN/A        addr = (addr | (burstSize - 1)) + 1;
5769831SN/A    }
5779243SN/A
5789243SN/A    // we do not wait for the writes to be send to the actual memory,
5799243SN/A    // but instead take responsibility for the consistency here and
5809243SN/A    // snoop the write queue for any upcoming reads
5819831SN/A    // @todo, if a pkt size is larger than burst size, we might need a
5829831SN/A    // different front end latency
5839726SN/A    accessAndRespond(pkt, frontendLatency);
5849243SN/A
58510206Sandreas.hansson@arm.com    // If we are not already scheduled to get a request out of the
58610206Sandreas.hansson@arm.com    // queue, do so now
58710206Sandreas.hansson@arm.com    if (!nextReqEvent.scheduled()) {
58810206Sandreas.hansson@arm.com        DPRINTF(DRAM, "Request scheduled immediately\n");
58910206Sandreas.hansson@arm.com        schedule(nextReqEvent, curTick());
5909243SN/A    }
5919243SN/A}
5929243SN/A
5939243SN/Avoid
59410146Sandreas.hansson@arm.comDRAMCtrl::printQs() const {
5959243SN/A    DPRINTF(DRAM, "===READ QUEUE===\n\n");
5969833SN/A    for (auto i = readQueue.begin() ;  i != readQueue.end() ; ++i) {
5979243SN/A        DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
5989243SN/A    }
5999243SN/A    DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
6009833SN/A    for (auto i = respQueue.begin() ;  i != respQueue.end() ; ++i) {
6019243SN/A        DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
6029243SN/A    }
6039243SN/A    DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
6049833SN/A    for (auto i = writeQueue.begin() ;  i != writeQueue.end() ; ++i) {
6059243SN/A        DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
6069243SN/A    }
6079243SN/A}
6089243SN/A
6099243SN/Abool
61010146Sandreas.hansson@arm.comDRAMCtrl::recvTimingReq(PacketPtr pkt)
6119243SN/A{
6129349SN/A    /// @todo temporary hack to deal with memory corruption issues until
6139349SN/A    /// 4-phase transactions are complete
6149349SN/A    for (int x = 0; x < pendingDelete.size(); x++)
6159349SN/A        delete pendingDelete[x];
6169349SN/A    pendingDelete.clear();
6179349SN/A
6189243SN/A    // This is where we enter from the outside world
6199567SN/A    DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n",
6209831SN/A            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
6219243SN/A
6229567SN/A    // simply drop inhibited packets for now
6239567SN/A    if (pkt->memInhibitAsserted()) {
62410143SN/A        DPRINTF(DRAM, "Inhibited packet -- Dropping it now\n");
6259567SN/A        pendingDelete.push_back(pkt);
6269567SN/A        return true;
6279567SN/A    }
6289243SN/A
6299243SN/A    // Calc avg gap between requests
6309243SN/A    if (prevArrival != 0) {
6319243SN/A        totGap += curTick() - prevArrival;
6329243SN/A    }
6339243SN/A    prevArrival = curTick();
6349243SN/A
6359831SN/A
6369831SN/A    // Find out how many dram packets a pkt translates to
6379831SN/A    // If the burst size is equal or larger than the pkt size, then a pkt
6389831SN/A    // translates to only one dram packet. Otherwise, a pkt translates to
6399831SN/A    // multiple dram packets
6409243SN/A    unsigned size = pkt->getSize();
6419831SN/A    unsigned offset = pkt->getAddr() & (burstSize - 1);
6429831SN/A    unsigned int dram_pkt_count = divCeil(offset + size, burstSize);
6439243SN/A
6449243SN/A    // check local buffers and do not accept if full
6459243SN/A    if (pkt->isRead()) {
6469567SN/A        assert(size != 0);
6479831SN/A        if (readQueueFull(dram_pkt_count)) {
6489567SN/A            DPRINTF(DRAM, "Read queue full, not accepting\n");
6499243SN/A            // remember that we have to retry this port
6509243SN/A            retryRdReq = true;
6519243SN/A            numRdRetry++;
6529243SN/A            return false;
6539243SN/A        } else {
6549831SN/A            addToReadQueue(pkt, dram_pkt_count);
6559243SN/A            readReqs++;
6569977SN/A            bytesReadSys += size;
6579243SN/A        }
6589243SN/A    } else if (pkt->isWrite()) {
6599567SN/A        assert(size != 0);
6609831SN/A        if (writeQueueFull(dram_pkt_count)) {
6619567SN/A            DPRINTF(DRAM, "Write queue full, not accepting\n");
6629243SN/A            // remember that we have to retry this port
6639243SN/A            retryWrReq = true;
6649243SN/A            numWrRetry++;
6659243SN/A            return false;
6669243SN/A        } else {
6679831SN/A            addToWriteQueue(pkt, dram_pkt_count);
6689243SN/A            writeReqs++;
6699977SN/A            bytesWrittenSys += size;
6709243SN/A        }
6719243SN/A    } else {
6729243SN/A        DPRINTF(DRAM,"Neither read nor write, ignore timing\n");
6739243SN/A        neitherReadNorWrite++;
6749726SN/A        accessAndRespond(pkt, 1);
6759243SN/A    }
6769243SN/A
6779243SN/A    return true;
6789243SN/A}
6799243SN/A
6809243SN/Avoid
68110146Sandreas.hansson@arm.comDRAMCtrl::processRespondEvent()
6829243SN/A{
6839243SN/A    DPRINTF(DRAM,
6849243SN/A            "processRespondEvent(): Some req has reached its readyTime\n");
6859243SN/A
6869831SN/A    DRAMPacket* dram_pkt = respQueue.front();
6879243SN/A
6889831SN/A    if (dram_pkt->burstHelper) {
6899831SN/A        // it is a split packet
6909831SN/A        dram_pkt->burstHelper->burstsServiced++;
6919831SN/A        if (dram_pkt->burstHelper->burstsServiced ==
69210143SN/A            dram_pkt->burstHelper->burstCount) {
6939831SN/A            // we have now serviced all children packets of a system packet
6949831SN/A            // so we can now respond to the requester
6959831SN/A            // @todo we probably want to have a different front end and back
6969831SN/A            // end latency for split packets
6979831SN/A            accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
6989831SN/A            delete dram_pkt->burstHelper;
6999831SN/A            dram_pkt->burstHelper = NULL;
7009831SN/A        }
7019831SN/A    } else {
7029831SN/A        // it is not a split packet
7039831SN/A        accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
7049831SN/A    }
7059243SN/A
7069831SN/A    delete respQueue.front();
7079831SN/A    respQueue.pop_front();
7089243SN/A
7099831SN/A    if (!respQueue.empty()) {
7109831SN/A        assert(respQueue.front()->readyTime >= curTick());
7119831SN/A        assert(!respondEvent.scheduled());
7129831SN/A        schedule(respondEvent, respQueue.front()->readyTime);
7139831SN/A    } else {
7149831SN/A        // if there is nothing left in any queue, signal a drain
7159831SN/A        if (writeQueue.empty() && readQueue.empty() &&
7169831SN/A            drainManager) {
7179831SN/A            drainManager->signalDrainDone();
7189831SN/A            drainManager = NULL;
7199831SN/A        }
7209831SN/A    }
7219567SN/A
7229831SN/A    // We have made a location in the queue available at this point,
7239831SN/A    // so if there is a read that was forced to wait, retry now
7249831SN/A    if (retryRdReq) {
7259831SN/A        retryRdReq = false;
7269831SN/A        port.sendRetry();
7279831SN/A    }
7289243SN/A}
7299243SN/A
7309243SN/Avoid
73110393Swendy.elsasser@arm.comDRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue, bool switched_cmd_type)
7329243SN/A{
73310206Sandreas.hansson@arm.com    // This method does the arbitration between requests. The chosen
73410206Sandreas.hansson@arm.com    // packet is simply moved to the head of the queue. The other
73510206Sandreas.hansson@arm.com    // methods know that this is the place to look. For example, with
73610206Sandreas.hansson@arm.com    // FCFS, this method does nothing
73710206Sandreas.hansson@arm.com    assert(!queue.empty());
7389243SN/A
73910206Sandreas.hansson@arm.com    if (queue.size() == 1) {
74010206Sandreas.hansson@arm.com        DPRINTF(DRAM, "Single request, nothing to do\n");
7419243SN/A        return;
7429243SN/A    }
7439243SN/A
7449243SN/A    if (memSchedPolicy == Enums::fcfs) {
7459243SN/A        // Do nothing, since the correct request is already head
7469243SN/A    } else if (memSchedPolicy == Enums::frfcfs) {
74710393Swendy.elsasser@arm.com        reorderQueue(queue, switched_cmd_type);
7489243SN/A    } else
7499243SN/A        panic("No scheduling policy chosen\n");
7509243SN/A}
7519243SN/A
7529243SN/Avoid
75310393Swendy.elsasser@arm.comDRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue, bool switched_cmd_type)
7549974SN/A{
7559974SN/A    // Only determine this when needed
7569974SN/A    uint64_t earliest_banks = 0;
7579974SN/A
7589974SN/A    // Search for row hits first, if no row hit is found then schedule the
7599974SN/A    // packet to one of the earliest banks available
7609974SN/A    bool found_earliest_pkt = false;
76110393Swendy.elsasser@arm.com    bool found_prepped_diff_rank_pkt = false;
7629974SN/A    auto selected_pkt_it = queue.begin();
7639974SN/A
7649974SN/A    for (auto i = queue.begin(); i != queue.end() ; ++i) {
7659974SN/A        DRAMPacket* dram_pkt = *i;
7669974SN/A        const Bank& bank = dram_pkt->bankRef;
7679974SN/A        // Check if it is a row hit
7689974SN/A        if (bank.openRow == dram_pkt->row) {
76910393Swendy.elsasser@arm.com            if (dram_pkt->rank == activeRank || switched_cmd_type) {
77010393Swendy.elsasser@arm.com                // FCFS within the hits, giving priority to commands
77110393Swendy.elsasser@arm.com                // that access the same rank as the previous burst
77210393Swendy.elsasser@arm.com                // to minimize bus turnaround delays
77310393Swendy.elsasser@arm.com                // Only give rank prioity when command type is not changing
77410393Swendy.elsasser@arm.com                DPRINTF(DRAM, "Row buffer hit\n");
77510393Swendy.elsasser@arm.com                selected_pkt_it = i;
77610393Swendy.elsasser@arm.com                break;
77710393Swendy.elsasser@arm.com            } else if (!found_prepped_diff_rank_pkt) {
77810393Swendy.elsasser@arm.com                // found row hit for command on different rank than prev burst
77910393Swendy.elsasser@arm.com                selected_pkt_it = i;
78010393Swendy.elsasser@arm.com                found_prepped_diff_rank_pkt = true;
78110393Swendy.elsasser@arm.com            }
78210393Swendy.elsasser@arm.com        } else if (!found_earliest_pkt & !found_prepped_diff_rank_pkt) {
78310393Swendy.elsasser@arm.com            // No row hit and
78410393Swendy.elsasser@arm.com            // haven't found an entry with a row hit to a new rank
7859974SN/A            if (earliest_banks == 0)
78610393Swendy.elsasser@arm.com                // Determine entries with earliest bank prep delay
78710393Swendy.elsasser@arm.com                // Function will give priority to commands that access the
78810393Swendy.elsasser@arm.com                // same rank as previous burst and can prep the bank seamlessly
78910393Swendy.elsasser@arm.com                earliest_banks = minBankPrep(queue, switched_cmd_type);
79010211Sandreas.hansson@arm.com
79110393Swendy.elsasser@arm.com            // FCFS - Bank is first available bank
79210393Swendy.elsasser@arm.com            if (bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) {
7939974SN/A                // Remember the packet to be scheduled to one of the earliest
79410211Sandreas.hansson@arm.com                // banks available, FCFS amongst the earliest banks
7959974SN/A                selected_pkt_it = i;
7969974SN/A                found_earliest_pkt = true;
7979974SN/A            }
7989974SN/A        }
7999974SN/A    }
8009974SN/A
8019974SN/A    DRAMPacket* selected_pkt = *selected_pkt_it;
8029974SN/A    queue.erase(selected_pkt_it);
8039974SN/A    queue.push_front(selected_pkt);
8049974SN/A}
8059974SN/A
8069974SN/Avoid
80710146Sandreas.hansson@arm.comDRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency)
8089243SN/A{
8099243SN/A    DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
8109243SN/A
8119243SN/A    bool needsResponse = pkt->needsResponse();
8129243SN/A    // do the actual memory access which also turns the packet into a
8139243SN/A    // response
8149243SN/A    access(pkt);
8159243SN/A
8169243SN/A    // turn packet around to go back to requester if response expected
8179243SN/A    if (needsResponse) {
8189243SN/A        // access already turned the packet into a response
8199243SN/A        assert(pkt->isResponse());
8209243SN/A
8219549SN/A        // @todo someone should pay for this
82210405Sandreas.hansson@arm.com        pkt->firstWordDelay = pkt->lastWordDelay = 0;
8239549SN/A
8249726SN/A        // queue the packet in the response queue to be sent out after
8259726SN/A        // the static latency has passed
8269726SN/A        port.schedTimingResp(pkt, curTick() + static_latency);
8279243SN/A    } else {
8289587SN/A        // @todo the packet is going to be deleted, and the DRAMPacket
8299587SN/A        // is still having a pointer to it
8309587SN/A        pendingDelete.push_back(pkt);
8319243SN/A    }
8329243SN/A
8339243SN/A    DPRINTF(DRAM, "Done\n");
8349243SN/A
8359243SN/A    return;
8369243SN/A}
8379243SN/A
8389243SN/Avoid
83910246Sandreas.hansson@arm.comDRAMCtrl::activateBank(Bank& bank, Tick act_tick, uint32_t row)
8409488SN/A{
84110246Sandreas.hansson@arm.com    // get the rank index from the bank
84210246Sandreas.hansson@arm.com    uint8_t rank = bank.rank;
84310246Sandreas.hansson@arm.com
8449969SN/A    assert(actTicks[rank].size() == activationLimit);
8459488SN/A
8469488SN/A    DPRINTF(DRAM, "Activate at tick %d\n", act_tick);
8479488SN/A
84810207Sandreas.hansson@arm.com    // update the open row
84910246Sandreas.hansson@arm.com    assert(bank.openRow == Bank::NO_ROW);
85010246Sandreas.hansson@arm.com    bank.openRow = row;
85110207Sandreas.hansson@arm.com
85210207Sandreas.hansson@arm.com    // start counting anew, this covers both the case when we
85310207Sandreas.hansson@arm.com    // auto-precharged, and when this access is forced to
85410207Sandreas.hansson@arm.com    // precharge
85510246Sandreas.hansson@arm.com    bank.bytesAccessed = 0;
85610246Sandreas.hansson@arm.com    bank.rowAccesses = 0;
85710207Sandreas.hansson@arm.com
85810207Sandreas.hansson@arm.com    ++numBanksActive;
85910207Sandreas.hansson@arm.com    assert(numBanksActive <= banksPerRank * ranksPerChannel);
86010207Sandreas.hansson@arm.com
86110247Sandreas.hansson@arm.com    DPRINTF(DRAM, "Activate bank %d, rank %d at tick %lld, now got %d active\n",
86210247Sandreas.hansson@arm.com            bank.bank, bank.rank, act_tick, numBanksActive);
86310247Sandreas.hansson@arm.com
86410247Sandreas.hansson@arm.com    DPRINTF(DRAMPower, "%llu,ACT,%d,%d\n", divCeil(act_tick, tCK), bank.bank,
86510247Sandreas.hansson@arm.com            bank.rank);
8669975SN/A
86710211Sandreas.hansson@arm.com    // The next access has to respect tRAS for this bank
86810246Sandreas.hansson@arm.com    bank.preAllowedAt = act_tick + tRAS;
86910211Sandreas.hansson@arm.com
87010211Sandreas.hansson@arm.com    // Respect the row-to-column command delay
87110394Swendy.elsasser@arm.com    bank.colAllowedAt = std::max(act_tick + tRCD, bank.colAllowedAt);
87210211Sandreas.hansson@arm.com
8739971SN/A    // start by enforcing tRRD
8749971SN/A    for(int i = 0; i < banksPerRank; i++) {
87510210Sandreas.hansson@arm.com        // next activate to any bank in this rank must not happen
87610210Sandreas.hansson@arm.com        // before tRRD
87710394Swendy.elsasser@arm.com        if (bankGroupArch && (bank.bankgr == banks[rank][i].bankgr)) {
87810394Swendy.elsasser@arm.com            // bank group architecture requires longer delays between
87910394Swendy.elsasser@arm.com            // ACT commands within the same bank group.  Use tRRD_L
88010394Swendy.elsasser@arm.com            // in this case
88110394Swendy.elsasser@arm.com            banks[rank][i].actAllowedAt = std::max(act_tick + tRRD_L,
88210394Swendy.elsasser@arm.com                                                   banks[rank][i].actAllowedAt);
88310394Swendy.elsasser@arm.com        } else {
88410394Swendy.elsasser@arm.com            // use shorter tRRD value when either
88510394Swendy.elsasser@arm.com            // 1) bank group architecture is not supportted
88610394Swendy.elsasser@arm.com            // 2) bank is in a different bank group
88710394Swendy.elsasser@arm.com            banks[rank][i].actAllowedAt = std::max(act_tick + tRRD,
88810394Swendy.elsasser@arm.com                                                   banks[rank][i].actAllowedAt);
88910394Swendy.elsasser@arm.com        }
8909971SN/A    }
89110208Sandreas.hansson@arm.com
8929971SN/A    // next, we deal with tXAW, if the activation limit is disabled
8939971SN/A    // then we are done
8949969SN/A    if (actTicks[rank].empty())
8959824SN/A        return;
8969824SN/A
8979488SN/A    // sanity check
8989969SN/A    if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) {
89910210Sandreas.hansson@arm.com        panic("Got %d activates in window %d (%llu - %llu) which is smaller "
90010210Sandreas.hansson@arm.com              "than %llu\n", activationLimit, act_tick - actTicks[rank].back(),
90110210Sandreas.hansson@arm.com              act_tick, actTicks[rank].back(), tXAW);
9029488SN/A    }
9039488SN/A
9049488SN/A    // shift the times used for the book keeping, the last element
9059488SN/A    // (highest index) is the oldest one and hence the lowest value
9069969SN/A    actTicks[rank].pop_back();
9079488SN/A
9089488SN/A    // record an new activation (in the future)
9099969SN/A    actTicks[rank].push_front(act_tick);
9109488SN/A
9119488SN/A    // cannot activate more than X times in time window tXAW, push the
9129488SN/A    // next one (the X + 1'st activate) to be tXAW away from the
9139488SN/A    // oldest in our window of X
9149969SN/A    if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) {
9159488SN/A        DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate no earlier "
91610210Sandreas.hansson@arm.com                "than %llu\n", activationLimit, actTicks[rank].back() + tXAW);
9179488SN/A            for(int j = 0; j < banksPerRank; j++)
9189488SN/A                // next activate must not happen before end of window
91910210Sandreas.hansson@arm.com                banks[rank][j].actAllowedAt =
92010210Sandreas.hansson@arm.com                    std::max(actTicks[rank].back() + tXAW,
92110210Sandreas.hansson@arm.com                             banks[rank][j].actAllowedAt);
9229488SN/A    }
92310208Sandreas.hansson@arm.com
92410208Sandreas.hansson@arm.com    // at the point when this activate takes place, make sure we
92510208Sandreas.hansson@arm.com    // transition to the active power state
92610208Sandreas.hansson@arm.com    if (!activateEvent.scheduled())
92710208Sandreas.hansson@arm.com        schedule(activateEvent, act_tick);
92810208Sandreas.hansson@arm.com    else if (activateEvent.when() > act_tick)
92910208Sandreas.hansson@arm.com        // move it sooner in time
93010208Sandreas.hansson@arm.com        reschedule(activateEvent, act_tick);
93110208Sandreas.hansson@arm.com}
93210208Sandreas.hansson@arm.com
93310208Sandreas.hansson@arm.comvoid
93410208Sandreas.hansson@arm.comDRAMCtrl::processActivateEvent()
93510208Sandreas.hansson@arm.com{
93610208Sandreas.hansson@arm.com    // we should transition to the active state as soon as any bank is active
93710208Sandreas.hansson@arm.com    if (pwrState != PWR_ACT)
93810208Sandreas.hansson@arm.com        // note that at this point numBanksActive could be back at
93910208Sandreas.hansson@arm.com        // zero again due to a precharge scheduled in the future
94010208Sandreas.hansson@arm.com        schedulePowerEvent(PWR_ACT, curTick());
9419488SN/A}
9429488SN/A
9439488SN/Avoid
94410247Sandreas.hansson@arm.comDRAMCtrl::prechargeBank(Bank& bank, Tick pre_at, bool trace)
94510207Sandreas.hansson@arm.com{
94610207Sandreas.hansson@arm.com    // make sure the bank has an open row
94710207Sandreas.hansson@arm.com    assert(bank.openRow != Bank::NO_ROW);
94810207Sandreas.hansson@arm.com
94910207Sandreas.hansson@arm.com    // sample the bytes per activate here since we are closing
95010207Sandreas.hansson@arm.com    // the page
95110207Sandreas.hansson@arm.com    bytesPerActivate.sample(bank.bytesAccessed);
95210207Sandreas.hansson@arm.com
95310207Sandreas.hansson@arm.com    bank.openRow = Bank::NO_ROW;
95410207Sandreas.hansson@arm.com
95510214Sandreas.hansson@arm.com    // no precharge allowed before this one
95610214Sandreas.hansson@arm.com    bank.preAllowedAt = pre_at;
95710214Sandreas.hansson@arm.com
95810211Sandreas.hansson@arm.com    Tick pre_done_at = pre_at + tRP;
95910211Sandreas.hansson@arm.com
96010211Sandreas.hansson@arm.com    bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at);
96110207Sandreas.hansson@arm.com
96210207Sandreas.hansson@arm.com    assert(numBanksActive != 0);
96310207Sandreas.hansson@arm.com    --numBanksActive;
96410207Sandreas.hansson@arm.com
96510247Sandreas.hansson@arm.com    DPRINTF(DRAM, "Precharging bank %d, rank %d at tick %lld, now got "
96610247Sandreas.hansson@arm.com            "%d active\n", bank.bank, bank.rank, pre_at, numBanksActive);
96710247Sandreas.hansson@arm.com
96810247Sandreas.hansson@arm.com    if (trace)
96910247Sandreas.hansson@arm.com        DPRINTF(DRAMPower, "%llu,PRE,%d,%d\n", divCeil(pre_at, tCK),
97010247Sandreas.hansson@arm.com                bank.bank, bank.rank);
97110207Sandreas.hansson@arm.com
97210208Sandreas.hansson@arm.com    // if we look at the current number of active banks we might be
97310208Sandreas.hansson@arm.com    // tempted to think the DRAM is now idle, however this can be
97410208Sandreas.hansson@arm.com    // undone by an activate that is scheduled to happen before we
97510208Sandreas.hansson@arm.com    // would have reached the idle state, so schedule an event and
97610208Sandreas.hansson@arm.com    // rather check once we actually make it to the point in time when
97710208Sandreas.hansson@arm.com    // the (last) precharge takes place
97810208Sandreas.hansson@arm.com    if (!prechargeEvent.scheduled())
97910211Sandreas.hansson@arm.com        schedule(prechargeEvent, pre_done_at);
98010211Sandreas.hansson@arm.com    else if (prechargeEvent.when() < pre_done_at)
98110211Sandreas.hansson@arm.com        reschedule(prechargeEvent, pre_done_at);
98210208Sandreas.hansson@arm.com}
98310208Sandreas.hansson@arm.com
98410208Sandreas.hansson@arm.comvoid
98510208Sandreas.hansson@arm.comDRAMCtrl::processPrechargeEvent()
98610208Sandreas.hansson@arm.com{
98710207Sandreas.hansson@arm.com    // if we reached zero, then special conditions apply as we track
98810207Sandreas.hansson@arm.com    // if all banks are precharged for the power models
98910207Sandreas.hansson@arm.com    if (numBanksActive == 0) {
99010208Sandreas.hansson@arm.com        // we should transition to the idle state when the last bank
99110208Sandreas.hansson@arm.com        // is precharged
99210208Sandreas.hansson@arm.com        schedulePowerEvent(PWR_IDLE, curTick());
99310207Sandreas.hansson@arm.com    }
99410207Sandreas.hansson@arm.com}
99510207Sandreas.hansson@arm.com
99610207Sandreas.hansson@arm.comvoid
99710146Sandreas.hansson@arm.comDRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
9989243SN/A{
9999243SN/A    DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
10009243SN/A            dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
10019243SN/A
100210211Sandreas.hansson@arm.com    // get the bank
10039967SN/A    Bank& bank = dram_pkt->bankRef;
10049243SN/A
100510211Sandreas.hansson@arm.com    // for the state we need to track if it is a row hit or not
100610211Sandreas.hansson@arm.com    bool row_hit = true;
100710211Sandreas.hansson@arm.com
100810211Sandreas.hansson@arm.com    // respect any constraints on the command (e.g. tRCD or tCCD)
100910211Sandreas.hansson@arm.com    Tick cmd_at = std::max(bank.colAllowedAt, curTick());
101010211Sandreas.hansson@arm.com
101110211Sandreas.hansson@arm.com    // Determine the access latency and update the bank state
101210211Sandreas.hansson@arm.com    if (bank.openRow == dram_pkt->row) {
101310211Sandreas.hansson@arm.com        // nothing to do
101410209Sandreas.hansson@arm.com    } else {
101510211Sandreas.hansson@arm.com        row_hit = false;
101610211Sandreas.hansson@arm.com
101710209Sandreas.hansson@arm.com        // If there is a page open, precharge it.
101810209Sandreas.hansson@arm.com        if (bank.openRow != Bank::NO_ROW) {
101910211Sandreas.hansson@arm.com            prechargeBank(bank, std::max(bank.preAllowedAt, curTick()));
10209488SN/A        }
10219973SN/A
102210211Sandreas.hansson@arm.com        // next we need to account for the delay in activating the
102310211Sandreas.hansson@arm.com        // page
102410211Sandreas.hansson@arm.com        Tick act_tick = std::max(bank.actAllowedAt, curTick());
10259973SN/A
102610210Sandreas.hansson@arm.com        // Record the activation and deal with all the global timing
102710210Sandreas.hansson@arm.com        // constraints caused be a new activation (tRRD and tXAW)
102810246Sandreas.hansson@arm.com        activateBank(bank, act_tick, dram_pkt->row);
102910210Sandreas.hansson@arm.com
103010211Sandreas.hansson@arm.com        // issue the command as early as possible
103110211Sandreas.hansson@arm.com        cmd_at = bank.colAllowedAt;
103210209Sandreas.hansson@arm.com    }
103310209Sandreas.hansson@arm.com
103410211Sandreas.hansson@arm.com    // we need to wait until the bus is available before we can issue
103510211Sandreas.hansson@arm.com    // the command
103610211Sandreas.hansson@arm.com    cmd_at = std::max(cmd_at, busBusyUntil - tCL);
103710211Sandreas.hansson@arm.com
103810211Sandreas.hansson@arm.com    // update the packet ready time
103910211Sandreas.hansson@arm.com    dram_pkt->readyTime = cmd_at + tCL + tBURST;
104010211Sandreas.hansson@arm.com
104110211Sandreas.hansson@arm.com    // only one burst can use the bus at any one point in time
104210211Sandreas.hansson@arm.com    assert(dram_pkt->readyTime - busBusyUntil >= tBURST);
104310211Sandreas.hansson@arm.com
104410394Swendy.elsasser@arm.com    // update the time for the next read/write burst for each
104510394Swendy.elsasser@arm.com    // bank (add a max with tCCD/tCCD_L here)
104610394Swendy.elsasser@arm.com    Tick cmd_dly;
104710394Swendy.elsasser@arm.com    for(int j = 0; j < ranksPerChannel; j++) {
104810394Swendy.elsasser@arm.com        for(int i = 0; i < banksPerRank; i++) {
104910394Swendy.elsasser@arm.com            // next burst to same bank group in this rank must not happen
105010394Swendy.elsasser@arm.com            // before tCCD_L.  Different bank group timing requirement is
105110394Swendy.elsasser@arm.com            // tBURST; Add tCS for different ranks
105210394Swendy.elsasser@arm.com            if (dram_pkt->rank == j) {
105310394Swendy.elsasser@arm.com                if (bankGroupArch && (bank.bankgr == banks[j][i].bankgr)) {
105410394Swendy.elsasser@arm.com                    // bank group architecture requires longer delays between
105510394Swendy.elsasser@arm.com                    // RD/WR burst commands to the same bank group.
105610394Swendy.elsasser@arm.com                    // Use tCCD_L in this case
105710394Swendy.elsasser@arm.com                    cmd_dly = tCCD_L;
105810394Swendy.elsasser@arm.com                } else {
105910394Swendy.elsasser@arm.com                    // use tBURST (equivalent to tCCD_S), the shorter
106010394Swendy.elsasser@arm.com                    // cas-to-cas delay value, when either:
106110394Swendy.elsasser@arm.com                    // 1) bank group architecture is not supportted
106210394Swendy.elsasser@arm.com                    // 2) bank is in a different bank group
106310394Swendy.elsasser@arm.com                    cmd_dly = tBURST;
106410394Swendy.elsasser@arm.com                }
106510394Swendy.elsasser@arm.com            } else {
106610394Swendy.elsasser@arm.com                // different rank is by default in a different bank group
106710394Swendy.elsasser@arm.com                // use tBURST (equivalent to tCCD_S), which is the shorter
106810394Swendy.elsasser@arm.com                // cas-to-cas delay in this case
106910394Swendy.elsasser@arm.com                // Add tCS to account for rank-to-rank bus delay requirements
107010394Swendy.elsasser@arm.com                cmd_dly = tBURST + tCS;
107110394Swendy.elsasser@arm.com            }
107210394Swendy.elsasser@arm.com            banks[j][i].colAllowedAt = std::max(cmd_at + cmd_dly,
107310394Swendy.elsasser@arm.com                                                banks[j][i].colAllowedAt);
107410394Swendy.elsasser@arm.com        }
107510394Swendy.elsasser@arm.com    }
107610211Sandreas.hansson@arm.com
107710393Swendy.elsasser@arm.com    // Save rank of current access
107810393Swendy.elsasser@arm.com    activeRank = dram_pkt->rank;
107910393Swendy.elsasser@arm.com
108010212Sandreas.hansson@arm.com    // If this is a write, we also need to respect the write recovery
108110212Sandreas.hansson@arm.com    // time before a precharge, in the case of a read, respect the
108210212Sandreas.hansson@arm.com    // read to precharge constraint
108310212Sandreas.hansson@arm.com    bank.preAllowedAt = std::max(bank.preAllowedAt,
108410212Sandreas.hansson@arm.com                                 dram_pkt->isRead ? cmd_at + tRTP :
108510212Sandreas.hansson@arm.com                                 dram_pkt->readyTime + tWR);
108610210Sandreas.hansson@arm.com
108710209Sandreas.hansson@arm.com    // increment the bytes accessed and the accesses per row
108810209Sandreas.hansson@arm.com    bank.bytesAccessed += burstSize;
108910209Sandreas.hansson@arm.com    ++bank.rowAccesses;
109010209Sandreas.hansson@arm.com
109110209Sandreas.hansson@arm.com    // if we reached the max, then issue with an auto-precharge
109210209Sandreas.hansson@arm.com    bool auto_precharge = pageMgmt == Enums::close ||
109310209Sandreas.hansson@arm.com        bank.rowAccesses == maxAccessesPerRow;
109410209Sandreas.hansson@arm.com
109510209Sandreas.hansson@arm.com    // if we did not hit the limit, we might still want to
109610209Sandreas.hansson@arm.com    // auto-precharge
109710209Sandreas.hansson@arm.com    if (!auto_precharge &&
109810209Sandreas.hansson@arm.com        (pageMgmt == Enums::open_adaptive ||
109910209Sandreas.hansson@arm.com         pageMgmt == Enums::close_adaptive)) {
110010209Sandreas.hansson@arm.com        // a twist on the open and close page policies:
110110209Sandreas.hansson@arm.com        // 1) open_adaptive page policy does not blindly keep the
110210209Sandreas.hansson@arm.com        // page open, but close it if there are no row hits, and there
110310209Sandreas.hansson@arm.com        // are bank conflicts in the queue
110410209Sandreas.hansson@arm.com        // 2) close_adaptive page policy does not blindly close the
110510209Sandreas.hansson@arm.com        // page, but closes it only if there are no row hits in the queue.
110610209Sandreas.hansson@arm.com        // In this case, only force an auto precharge when there
110710209Sandreas.hansson@arm.com        // are no same page hits in the queue
110810209Sandreas.hansson@arm.com        bool got_more_hits = false;
110910209Sandreas.hansson@arm.com        bool got_bank_conflict = false;
111010209Sandreas.hansson@arm.com
111110209Sandreas.hansson@arm.com        // either look at the read queue or write queue
111210209Sandreas.hansson@arm.com        const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue :
111310209Sandreas.hansson@arm.com            writeQueue;
111410209Sandreas.hansson@arm.com        auto p = queue.begin();
111510209Sandreas.hansson@arm.com        // make sure we are not considering the packet that we are
111610209Sandreas.hansson@arm.com        // currently dealing with (which is the head of the queue)
111710209Sandreas.hansson@arm.com        ++p;
111810209Sandreas.hansson@arm.com
111910209Sandreas.hansson@arm.com        // keep on looking until we have found required condition or
112010209Sandreas.hansson@arm.com        // reached the end
112110209Sandreas.hansson@arm.com        while (!(got_more_hits &&
112210209Sandreas.hansson@arm.com                 (got_bank_conflict || pageMgmt == Enums::close_adaptive)) &&
112310209Sandreas.hansson@arm.com               p != queue.end()) {
112410209Sandreas.hansson@arm.com            bool same_rank_bank = (dram_pkt->rank == (*p)->rank) &&
112510209Sandreas.hansson@arm.com                (dram_pkt->bank == (*p)->bank);
112610209Sandreas.hansson@arm.com            bool same_row = dram_pkt->row == (*p)->row;
112710209Sandreas.hansson@arm.com            got_more_hits |= same_rank_bank && same_row;
112810209Sandreas.hansson@arm.com            got_bank_conflict |= same_rank_bank && !same_row;
11299973SN/A            ++p;
113010141SN/A        }
113110141SN/A
113210209Sandreas.hansson@arm.com        // auto pre-charge when either
113310209Sandreas.hansson@arm.com        // 1) open_adaptive policy, we have not got any more hits, and
113410209Sandreas.hansson@arm.com        //    have a bank conflict
113510209Sandreas.hansson@arm.com        // 2) close_adaptive policy and we have not got any more hits
113610209Sandreas.hansson@arm.com        auto_precharge = !got_more_hits &&
113710209Sandreas.hansson@arm.com            (got_bank_conflict || pageMgmt == Enums::close_adaptive);
113810209Sandreas.hansson@arm.com    }
113910142SN/A
114010247Sandreas.hansson@arm.com    // DRAMPower trace command to be written
114110247Sandreas.hansson@arm.com    std::string mem_cmd = dram_pkt->isRead ? "RD" : "WR";
114210247Sandreas.hansson@arm.com
114310209Sandreas.hansson@arm.com    // if this access should use auto-precharge, then we are
114410209Sandreas.hansson@arm.com    // closing the row
114510209Sandreas.hansson@arm.com    if (auto_precharge) {
114610247Sandreas.hansson@arm.com        prechargeBank(bank, std::max(curTick(), bank.preAllowedAt), false);
114710247Sandreas.hansson@arm.com
114810247Sandreas.hansson@arm.com        mem_cmd.append("A");
11499973SN/A
115010209Sandreas.hansson@arm.com        DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId);
115110209Sandreas.hansson@arm.com    }
11529963SN/A
11539243SN/A    // Update bus state
11549243SN/A    busBusyUntil = dram_pkt->readyTime;
11559243SN/A
115610211Sandreas.hansson@arm.com    DPRINTF(DRAM, "Access to %lld, ready at %lld bus busy until %lld.\n",
115710211Sandreas.hansson@arm.com            dram_pkt->addr, dram_pkt->readyTime, busBusyUntil);
11589243SN/A
115910247Sandreas.hansson@arm.com    DPRINTF(DRAMPower, "%llu,%s,%d,%d\n", divCeil(cmd_at, tCK), mem_cmd,
116010247Sandreas.hansson@arm.com            dram_pkt->bank, dram_pkt->rank);
116110247Sandreas.hansson@arm.com
116210206Sandreas.hansson@arm.com    // Update the minimum timing between the requests, this is a
116310206Sandreas.hansson@arm.com    // conservative estimate of when we have to schedule the next
116410206Sandreas.hansson@arm.com    // request to not introduce any unecessary bubbles. In most cases
116510206Sandreas.hansson@arm.com    // we will wake up sooner than we have to.
116610206Sandreas.hansson@arm.com    nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
11679972SN/A
116810206Sandreas.hansson@arm.com    // Update the stats and schedule the next request
11699977SN/A    if (dram_pkt->isRead) {
117010147Sandreas.hansson@arm.com        ++readsThisTime;
117110211Sandreas.hansson@arm.com        if (row_hit)
11729977SN/A            readRowHits++;
11739977SN/A        bytesReadDRAM += burstSize;
11749977SN/A        perBankRdBursts[dram_pkt->bankId]++;
117510206Sandreas.hansson@arm.com
117610206Sandreas.hansson@arm.com        // Update latency stats
117710206Sandreas.hansson@arm.com        totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
117810206Sandreas.hansson@arm.com        totBusLat += tBURST;
117910211Sandreas.hansson@arm.com        totQLat += cmd_at - dram_pkt->entryTime;
11809977SN/A    } else {
118110147Sandreas.hansson@arm.com        ++writesThisTime;
118210211Sandreas.hansson@arm.com        if (row_hit)
11839977SN/A            writeRowHits++;
11849977SN/A        bytesWritten += burstSize;
11859977SN/A        perBankWrBursts[dram_pkt->bankId]++;
11869243SN/A    }
11879243SN/A}
11889243SN/A
11899243SN/Avoid
119010206Sandreas.hansson@arm.comDRAMCtrl::processNextReqEvent()
11919243SN/A{
119210393Swendy.elsasser@arm.com    // pre-emptively set to false.  Overwrite if in READ_TO_WRITE
119310393Swendy.elsasser@arm.com    // or WRITE_TO_READ state
119410393Swendy.elsasser@arm.com    bool switched_cmd_type = false;
119510206Sandreas.hansson@arm.com    if (busState == READ_TO_WRITE) {
119610206Sandreas.hansson@arm.com        DPRINTF(DRAM, "Switching to writes after %d reads with %d reads "
119710206Sandreas.hansson@arm.com                "waiting\n", readsThisTime, readQueue.size());
11989243SN/A
119910206Sandreas.hansson@arm.com        // sample and reset the read-related stats as we are now
120010206Sandreas.hansson@arm.com        // transitioning to writes, and all reads are done
120110206Sandreas.hansson@arm.com        rdPerTurnAround.sample(readsThisTime);
120210206Sandreas.hansson@arm.com        readsThisTime = 0;
120310206Sandreas.hansson@arm.com
120410206Sandreas.hansson@arm.com        // now proceed to do the actual writes
120510206Sandreas.hansson@arm.com        busState = WRITE;
120610393Swendy.elsasser@arm.com        switched_cmd_type = true;
120710206Sandreas.hansson@arm.com    } else if (busState == WRITE_TO_READ) {
120810206Sandreas.hansson@arm.com        DPRINTF(DRAM, "Switching to reads after %d writes with %d writes "
120910206Sandreas.hansson@arm.com                "waiting\n", writesThisTime, writeQueue.size());
121010206Sandreas.hansson@arm.com
121110206Sandreas.hansson@arm.com        wrPerTurnAround.sample(writesThisTime);
121210206Sandreas.hansson@arm.com        writesThisTime = 0;
121310206Sandreas.hansson@arm.com
121410206Sandreas.hansson@arm.com        busState = READ;
121510393Swendy.elsasser@arm.com        switched_cmd_type = true;
121610206Sandreas.hansson@arm.com    }
121710206Sandreas.hansson@arm.com
121810207Sandreas.hansson@arm.com    if (refreshState != REF_IDLE) {
121910207Sandreas.hansson@arm.com        // if a refresh waiting for this event loop to finish, then hand
122010207Sandreas.hansson@arm.com        // over now, and do not schedule a new nextReqEvent
122110207Sandreas.hansson@arm.com        if (refreshState == REF_DRAIN) {
122210207Sandreas.hansson@arm.com            DPRINTF(DRAM, "Refresh drain done, now precharging\n");
122310207Sandreas.hansson@arm.com
122410207Sandreas.hansson@arm.com            refreshState = REF_PRE;
122510207Sandreas.hansson@arm.com
122610207Sandreas.hansson@arm.com            // hand control back to the refresh event loop
122710207Sandreas.hansson@arm.com            schedule(refreshEvent, curTick());
122810207Sandreas.hansson@arm.com        }
122910207Sandreas.hansson@arm.com
123010207Sandreas.hansson@arm.com        // let the refresh finish before issuing any further requests
123110207Sandreas.hansson@arm.com        return;
123210207Sandreas.hansson@arm.com    }
123310207Sandreas.hansson@arm.com
123410206Sandreas.hansson@arm.com    // when we get here it is either a read or a write
123510206Sandreas.hansson@arm.com    if (busState == READ) {
123610206Sandreas.hansson@arm.com
123710206Sandreas.hansson@arm.com        // track if we should switch or not
123810206Sandreas.hansson@arm.com        bool switch_to_writes = false;
123910206Sandreas.hansson@arm.com
124010206Sandreas.hansson@arm.com        if (readQueue.empty()) {
124110206Sandreas.hansson@arm.com            // In the case there is no read request to go next,
124210206Sandreas.hansson@arm.com            // trigger writes if we have passed the low threshold (or
124310206Sandreas.hansson@arm.com            // if we are draining)
124410206Sandreas.hansson@arm.com            if (!writeQueue.empty() &&
124510206Sandreas.hansson@arm.com                (drainManager || writeQueue.size() > writeLowThreshold)) {
124610206Sandreas.hansson@arm.com
124710206Sandreas.hansson@arm.com                switch_to_writes = true;
124810206Sandreas.hansson@arm.com            } else {
124910206Sandreas.hansson@arm.com                // check if we are drained
125010206Sandreas.hansson@arm.com                if (respQueue.empty () && drainManager) {
125110206Sandreas.hansson@arm.com                    drainManager->signalDrainDone();
125210206Sandreas.hansson@arm.com                    drainManager = NULL;
125310206Sandreas.hansson@arm.com                }
125410206Sandreas.hansson@arm.com
125510206Sandreas.hansson@arm.com                // nothing to do, not even any point in scheduling an
125610206Sandreas.hansson@arm.com                // event for the next request
125710206Sandreas.hansson@arm.com                return;
125810206Sandreas.hansson@arm.com            }
125910206Sandreas.hansson@arm.com        } else {
126010206Sandreas.hansson@arm.com            // Figure out which read request goes next, and move it to the
126110206Sandreas.hansson@arm.com            // front of the read queue
126210393Swendy.elsasser@arm.com            chooseNext(readQueue, switched_cmd_type);
126310206Sandreas.hansson@arm.com
126410215Sandreas.hansson@arm.com            DRAMPacket* dram_pkt = readQueue.front();
126510215Sandreas.hansson@arm.com
126610393Swendy.elsasser@arm.com            // here we get a bit creative and shift the bus busy time not
126710393Swendy.elsasser@arm.com            // just the tWTR, but also a CAS latency to capture the fact
126810393Swendy.elsasser@arm.com            // that we are allowed to prepare a new bank, but not issue a
126910393Swendy.elsasser@arm.com            // read command until after tWTR, in essence we capture a
127010393Swendy.elsasser@arm.com            // bubble on the data bus that is tWTR + tCL
127110394Swendy.elsasser@arm.com            if (switched_cmd_type && dram_pkt->rank == activeRank) {
127210394Swendy.elsasser@arm.com                busBusyUntil += tWTR + tCL;
127310393Swendy.elsasser@arm.com            }
127410393Swendy.elsasser@arm.com
127510215Sandreas.hansson@arm.com            doDRAMAccess(dram_pkt);
127610206Sandreas.hansson@arm.com
127710206Sandreas.hansson@arm.com            // At this point we're done dealing with the request
127810215Sandreas.hansson@arm.com            readQueue.pop_front();
127910215Sandreas.hansson@arm.com
128010215Sandreas.hansson@arm.com            // sanity check
128110215Sandreas.hansson@arm.com            assert(dram_pkt->size <= burstSize);
128210215Sandreas.hansson@arm.com            assert(dram_pkt->readyTime >= curTick());
128310215Sandreas.hansson@arm.com
128410215Sandreas.hansson@arm.com            // Insert into response queue. It will be sent back to the
128510215Sandreas.hansson@arm.com            // requestor at its readyTime
128610215Sandreas.hansson@arm.com            if (respQueue.empty()) {
128710215Sandreas.hansson@arm.com                assert(!respondEvent.scheduled());
128810215Sandreas.hansson@arm.com                schedule(respondEvent, dram_pkt->readyTime);
128910215Sandreas.hansson@arm.com            } else {
129010215Sandreas.hansson@arm.com                assert(respQueue.back()->readyTime <= dram_pkt->readyTime);
129110215Sandreas.hansson@arm.com                assert(respondEvent.scheduled());
129210215Sandreas.hansson@arm.com            }
129310215Sandreas.hansson@arm.com
129410215Sandreas.hansson@arm.com            respQueue.push_back(dram_pkt);
129510206Sandreas.hansson@arm.com
129610206Sandreas.hansson@arm.com            // we have so many writes that we have to transition
129710206Sandreas.hansson@arm.com            if (writeQueue.size() > writeHighThreshold) {
129810206Sandreas.hansson@arm.com                switch_to_writes = true;
129910206Sandreas.hansson@arm.com            }
130010206Sandreas.hansson@arm.com        }
130110206Sandreas.hansson@arm.com
130210206Sandreas.hansson@arm.com        // switching to writes, either because the read queue is empty
130310206Sandreas.hansson@arm.com        // and the writes have passed the low threshold (or we are
130410206Sandreas.hansson@arm.com        // draining), or because the writes hit the hight threshold
130510206Sandreas.hansson@arm.com        if (switch_to_writes) {
130610206Sandreas.hansson@arm.com            // transition to writing
130710206Sandreas.hansson@arm.com            busState = READ_TO_WRITE;
130810206Sandreas.hansson@arm.com        }
13099352SN/A    } else {
131010393Swendy.elsasser@arm.com        chooseNext(writeQueue, switched_cmd_type);
131110206Sandreas.hansson@arm.com        DRAMPacket* dram_pkt = writeQueue.front();
131210206Sandreas.hansson@arm.com        // sanity check
131310206Sandreas.hansson@arm.com        assert(dram_pkt->size <= burstSize);
131410393Swendy.elsasser@arm.com
131510394Swendy.elsasser@arm.com        // add a bubble to the data bus, as defined by the
131610394Swendy.elsasser@arm.com        // tRTW when access is to the same rank as previous burst
131710394Swendy.elsasser@arm.com        // Different rank timing is handled with tCS, which is
131810394Swendy.elsasser@arm.com        // applied to colAllowedAt
131910394Swendy.elsasser@arm.com        if (switched_cmd_type && dram_pkt->rank == activeRank) {
132010394Swendy.elsasser@arm.com            busBusyUntil += tRTW;
132110393Swendy.elsasser@arm.com        }
132210393Swendy.elsasser@arm.com
132310206Sandreas.hansson@arm.com        doDRAMAccess(dram_pkt);
132410206Sandreas.hansson@arm.com
132510206Sandreas.hansson@arm.com        writeQueue.pop_front();
132610206Sandreas.hansson@arm.com        delete dram_pkt;
132710206Sandreas.hansson@arm.com
132810206Sandreas.hansson@arm.com        // If we emptied the write queue, or got sufficiently below the
132910206Sandreas.hansson@arm.com        // threshold (using the minWritesPerSwitch as the hysteresis) and
133010206Sandreas.hansson@arm.com        // are not draining, or we have reads waiting and have done enough
133110206Sandreas.hansson@arm.com        // writes, then switch to reads.
133210206Sandreas.hansson@arm.com        if (writeQueue.empty() ||
133310206Sandreas.hansson@arm.com            (writeQueue.size() + minWritesPerSwitch < writeLowThreshold &&
133410206Sandreas.hansson@arm.com             !drainManager) ||
133510206Sandreas.hansson@arm.com            (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) {
133610206Sandreas.hansson@arm.com            // turn the bus back around for reads again
133710206Sandreas.hansson@arm.com            busState = WRITE_TO_READ;
133810206Sandreas.hansson@arm.com
133910206Sandreas.hansson@arm.com            // note that the we switch back to reads also in the idle
134010206Sandreas.hansson@arm.com            // case, which eventually will check for any draining and
134110206Sandreas.hansson@arm.com            // also pause any further scheduling if there is really
134210206Sandreas.hansson@arm.com            // nothing to do
134310206Sandreas.hansson@arm.com        }
134410206Sandreas.hansson@arm.com    }
134510206Sandreas.hansson@arm.com
134610206Sandreas.hansson@arm.com    schedule(nextReqEvent, std::max(nextReqTime, curTick()));
134710206Sandreas.hansson@arm.com
134810206Sandreas.hansson@arm.com    // If there is space available and we have writes waiting then let
134910206Sandreas.hansson@arm.com    // them retry. This is done here to ensure that the retry does not
135010206Sandreas.hansson@arm.com    // cause a nextReqEvent to be scheduled before we do so as part of
135110206Sandreas.hansson@arm.com    // the next request processing
135210206Sandreas.hansson@arm.com    if (retryWrReq && writeQueue.size() < writeBufferSize) {
135310206Sandreas.hansson@arm.com        retryWrReq = false;
135410206Sandreas.hansson@arm.com        port.sendRetry();
13559352SN/A    }
13569243SN/A}
13579243SN/A
13589967SN/Auint64_t
135910393Swendy.elsasser@arm.comDRAMCtrl::minBankPrep(const deque<DRAMPacket*>& queue,
136010393Swendy.elsasser@arm.com                      bool switched_cmd_type) const
13619967SN/A{
13629967SN/A    uint64_t bank_mask = 0;
136310211Sandreas.hansson@arm.com    Tick min_act_at = MaxTick;
13649967SN/A
136510393Swendy.elsasser@arm.com    uint64_t bank_mask_same_rank = 0;
136610393Swendy.elsasser@arm.com    Tick min_act_at_same_rank = MaxTick;
136710393Swendy.elsasser@arm.com
136810393Swendy.elsasser@arm.com    // Give precedence to commands that access same rank as previous command
136910393Swendy.elsasser@arm.com    bool same_rank_match = false;
137010393Swendy.elsasser@arm.com
137110393Swendy.elsasser@arm.com    // determine if we have queued transactions targetting the
13729967SN/A    // bank in question
13739967SN/A    vector<bool> got_waiting(ranksPerChannel * banksPerRank, false);
13749967SN/A    for (auto p = queue.begin(); p != queue.end(); ++p) {
13759967SN/A        got_waiting[(*p)->bankId] = true;
13769967SN/A    }
13779967SN/A
13789967SN/A    for (int i = 0; i < ranksPerChannel; i++) {
13799967SN/A        for (int j = 0; j < banksPerRank; j++) {
138010211Sandreas.hansson@arm.com            uint8_t bank_id = i * banksPerRank + j;
138110211Sandreas.hansson@arm.com
13829967SN/A            // if we have waiting requests for the bank, and it is
13839967SN/A            // amongst the first available, update the mask
138410211Sandreas.hansson@arm.com            if (got_waiting[bank_id]) {
138510211Sandreas.hansson@arm.com                // simplistic approximation of when the bank can issue
138610211Sandreas.hansson@arm.com                // an activate, ignoring any rank-to-rank switching
138710393Swendy.elsasser@arm.com                // cost in this calculation
138810211Sandreas.hansson@arm.com                Tick act_at = banks[i][j].openRow == Bank::NO_ROW ?
138910211Sandreas.hansson@arm.com                    banks[i][j].actAllowedAt :
139010211Sandreas.hansson@arm.com                    std::max(banks[i][j].preAllowedAt, curTick()) + tRP;
139110211Sandreas.hansson@arm.com
139210393Swendy.elsasser@arm.com                // prioritize commands that access the
139310393Swendy.elsasser@arm.com                // same rank as previous burst
139410393Swendy.elsasser@arm.com                // Calculate bank mask separately for the case and
139510393Swendy.elsasser@arm.com                // evaluate after loop iterations complete
139610393Swendy.elsasser@arm.com                if (i == activeRank && ranksPerChannel > 1) {
139710393Swendy.elsasser@arm.com                    if (act_at <= min_act_at_same_rank) {
139810393Swendy.elsasser@arm.com                        // reset same rank bank mask if new minimum is found
139910393Swendy.elsasser@arm.com                        // and previous minimum could not immediately send ACT
140010393Swendy.elsasser@arm.com                        if (act_at < min_act_at_same_rank &&
140110393Swendy.elsasser@arm.com                            min_act_at_same_rank > curTick())
140210393Swendy.elsasser@arm.com                            bank_mask_same_rank = 0;
140310393Swendy.elsasser@arm.com
140410393Swendy.elsasser@arm.com                        // Set flag indicating that a same rank
140510393Swendy.elsasser@arm.com                        // opportunity was found
140610393Swendy.elsasser@arm.com                        same_rank_match = true;
140710393Swendy.elsasser@arm.com
140810393Swendy.elsasser@arm.com                        // set the bit corresponding to the available bank
140910393Swendy.elsasser@arm.com                        replaceBits(bank_mask_same_rank, bank_id, bank_id, 1);
141010393Swendy.elsasser@arm.com                        min_act_at_same_rank = act_at;
141110393Swendy.elsasser@arm.com                    }
141210393Swendy.elsasser@arm.com                } else {
141310393Swendy.elsasser@arm.com                    if (act_at <= min_act_at) {
141410393Swendy.elsasser@arm.com                        // reset bank mask if new minimum is found
141510393Swendy.elsasser@arm.com                        // and either previous minimum could not immediately send ACT
141610393Swendy.elsasser@arm.com                        if (act_at < min_act_at && min_act_at > curTick())
141710393Swendy.elsasser@arm.com                            bank_mask = 0;
141810393Swendy.elsasser@arm.com                        // set the bit corresponding to the available bank
141910393Swendy.elsasser@arm.com                        replaceBits(bank_mask, bank_id, bank_id, 1);
142010393Swendy.elsasser@arm.com                        min_act_at = act_at;
142110393Swendy.elsasser@arm.com                    }
142210211Sandreas.hansson@arm.com                }
14239967SN/A            }
14249967SN/A        }
14259967SN/A    }
142610211Sandreas.hansson@arm.com
142710393Swendy.elsasser@arm.com    // Determine the earliest time when the next burst can issue based
142810393Swendy.elsasser@arm.com    // on the current busBusyUntil delay.
142910393Swendy.elsasser@arm.com    // Offset by tRCD to correlate with ACT timing variables
143010393Swendy.elsasser@arm.com    Tick min_cmd_at = busBusyUntil - tCL - tRCD;
143110393Swendy.elsasser@arm.com
143210393Swendy.elsasser@arm.com    // Prioritize same rank accesses that can issue B2B
143310393Swendy.elsasser@arm.com    // Only optimize for same ranks when the command type
143410393Swendy.elsasser@arm.com    // does not change; do not want to unnecessarily incur tWTR
143510393Swendy.elsasser@arm.com    //
143610393Swendy.elsasser@arm.com    // Resulting FCFS prioritization Order is:
143710393Swendy.elsasser@arm.com    // 1) Commands that access the same rank as previous burst
143810393Swendy.elsasser@arm.com    //    and can prep the bank seamlessly.
143910393Swendy.elsasser@arm.com    // 2) Commands (any rank) with earliest bank prep
144010393Swendy.elsasser@arm.com    if (!switched_cmd_type && same_rank_match &&
144110393Swendy.elsasser@arm.com        min_act_at_same_rank <= min_cmd_at) {
144210393Swendy.elsasser@arm.com        bank_mask = bank_mask_same_rank;
144310393Swendy.elsasser@arm.com    }
144410393Swendy.elsasser@arm.com
14459967SN/A    return bank_mask;
14469967SN/A}
14479967SN/A
14489243SN/Avoid
144910146Sandreas.hansson@arm.comDRAMCtrl::processRefreshEvent()
14509243SN/A{
145110207Sandreas.hansson@arm.com    // when first preparing the refresh, remember when it was due
145210207Sandreas.hansson@arm.com    if (refreshState == REF_IDLE) {
145310207Sandreas.hansson@arm.com        // remember when the refresh is due
145410207Sandreas.hansson@arm.com        refreshDueAt = curTick();
14559243SN/A
145610207Sandreas.hansson@arm.com        // proceed to drain
145710207Sandreas.hansson@arm.com        refreshState = REF_DRAIN;
14589243SN/A
145910207Sandreas.hansson@arm.com        DPRINTF(DRAM, "Refresh due\n");
146010207Sandreas.hansson@arm.com    }
146110207Sandreas.hansson@arm.com
146210207Sandreas.hansson@arm.com    // let any scheduled read or write go ahead, after which it will
146310207Sandreas.hansson@arm.com    // hand control back to this event loop
146410207Sandreas.hansson@arm.com    if (refreshState == REF_DRAIN) {
146510207Sandreas.hansson@arm.com        if (nextReqEvent.scheduled()) {
146610207Sandreas.hansson@arm.com            // hand control over to the request loop until it is
146710207Sandreas.hansson@arm.com            // evaluated next
146810207Sandreas.hansson@arm.com            DPRINTF(DRAM, "Refresh awaiting draining\n");
146910207Sandreas.hansson@arm.com
147010207Sandreas.hansson@arm.com            return;
147110207Sandreas.hansson@arm.com        } else {
147210207Sandreas.hansson@arm.com            refreshState = REF_PRE;
147310207Sandreas.hansson@arm.com        }
147410207Sandreas.hansson@arm.com    }
147510207Sandreas.hansson@arm.com
147610207Sandreas.hansson@arm.com    // at this point, ensure that all banks are precharged
147710207Sandreas.hansson@arm.com    if (refreshState == REF_PRE) {
147810208Sandreas.hansson@arm.com        // precharge any active bank if we are not already in the idle
147910208Sandreas.hansson@arm.com        // state
148010208Sandreas.hansson@arm.com        if (pwrState != PWR_IDLE) {
148110214Sandreas.hansson@arm.com            // at the moment, we use a precharge all even if there is
148210214Sandreas.hansson@arm.com            // only a single bank open
148310208Sandreas.hansson@arm.com            DPRINTF(DRAM, "Precharging all\n");
148410214Sandreas.hansson@arm.com
148510214Sandreas.hansson@arm.com            // first determine when we can precharge
148610214Sandreas.hansson@arm.com            Tick pre_at = curTick();
148710214Sandreas.hansson@arm.com            for (int i = 0; i < ranksPerChannel; i++) {
148810214Sandreas.hansson@arm.com                for (int j = 0; j < banksPerRank; j++) {
148910214Sandreas.hansson@arm.com                    // respect both causality and any existing bank
149010214Sandreas.hansson@arm.com                    // constraints, some banks could already have a
149110214Sandreas.hansson@arm.com                    // (auto) precharge scheduled
149210214Sandreas.hansson@arm.com                    pre_at = std::max(banks[i][j].preAllowedAt, pre_at);
149310214Sandreas.hansson@arm.com                }
149410214Sandreas.hansson@arm.com            }
149510214Sandreas.hansson@arm.com
149610214Sandreas.hansson@arm.com            // make sure all banks are precharged, and for those that
149710214Sandreas.hansson@arm.com            // already are, update their availability
149810214Sandreas.hansson@arm.com            Tick act_allowed_at = pre_at + tRP;
149910214Sandreas.hansson@arm.com
150010208Sandreas.hansson@arm.com            for (int i = 0; i < ranksPerChannel; i++) {
150110208Sandreas.hansson@arm.com                for (int j = 0; j < banksPerRank; j++) {
150210208Sandreas.hansson@arm.com                    if (banks[i][j].openRow != Bank::NO_ROW) {
150310247Sandreas.hansson@arm.com                        prechargeBank(banks[i][j], pre_at, false);
150410214Sandreas.hansson@arm.com                    } else {
150510214Sandreas.hansson@arm.com                        banks[i][j].actAllowedAt =
150610214Sandreas.hansson@arm.com                            std::max(banks[i][j].actAllowedAt, act_allowed_at);
150710214Sandreas.hansson@arm.com                        banks[i][j].preAllowedAt =
150810214Sandreas.hansson@arm.com                            std::max(banks[i][j].preAllowedAt, pre_at);
150910208Sandreas.hansson@arm.com                    }
151010207Sandreas.hansson@arm.com                }
151110247Sandreas.hansson@arm.com
151210247Sandreas.hansson@arm.com                // at the moment this affects all ranks
151310247Sandreas.hansson@arm.com                DPRINTF(DRAMPower, "%llu,PREA,0,%d\n", divCeil(pre_at, tCK),
151410247Sandreas.hansson@arm.com                        i);
151510207Sandreas.hansson@arm.com            }
151610208Sandreas.hansson@arm.com        } else {
151710208Sandreas.hansson@arm.com            DPRINTF(DRAM, "All banks already precharged, starting refresh\n");
151810208Sandreas.hansson@arm.com
151910208Sandreas.hansson@arm.com            // go ahead and kick the power state machine into gear if
152010208Sandreas.hansson@arm.com            // we are already idle
152110208Sandreas.hansson@arm.com            schedulePowerEvent(PWR_REF, curTick());
15229975SN/A        }
15239975SN/A
152410208Sandreas.hansson@arm.com        refreshState = REF_RUN;
152510208Sandreas.hansson@arm.com        assert(numBanksActive == 0);
15269243SN/A
152710208Sandreas.hansson@arm.com        // wait for all banks to be precharged, at which point the
152810208Sandreas.hansson@arm.com        // power state machine will transition to the idle state, and
152910208Sandreas.hansson@arm.com        // automatically move to a refresh, at that point it will also
153010208Sandreas.hansson@arm.com        // call this method to get the refresh event loop going again
153110207Sandreas.hansson@arm.com        return;
153210207Sandreas.hansson@arm.com    }
153310207Sandreas.hansson@arm.com
153410207Sandreas.hansson@arm.com    // last but not least we perform the actual refresh
153510207Sandreas.hansson@arm.com    if (refreshState == REF_RUN) {
153610207Sandreas.hansson@arm.com        // should never get here with any banks active
153710207Sandreas.hansson@arm.com        assert(numBanksActive == 0);
153810208Sandreas.hansson@arm.com        assert(pwrState == PWR_REF);
153910207Sandreas.hansson@arm.com
154010211Sandreas.hansson@arm.com        Tick ref_done_at = curTick() + tRFC;
154110207Sandreas.hansson@arm.com
154210207Sandreas.hansson@arm.com        for (int i = 0; i < ranksPerChannel; i++) {
154310207Sandreas.hansson@arm.com            for (int j = 0; j < banksPerRank; j++) {
154410211Sandreas.hansson@arm.com                banks[i][j].actAllowedAt = ref_done_at;
154510207Sandreas.hansson@arm.com            }
154610247Sandreas.hansson@arm.com
154710247Sandreas.hansson@arm.com            // at the moment this affects all ranks
154810247Sandreas.hansson@arm.com            DPRINTF(DRAMPower, "%llu,REF,0,%d\n", divCeil(curTick(), tCK), i);
154910207Sandreas.hansson@arm.com        }
155010207Sandreas.hansson@arm.com
155110207Sandreas.hansson@arm.com        // make sure we did not wait so long that we cannot make up
155210207Sandreas.hansson@arm.com        // for it
155310211Sandreas.hansson@arm.com        if (refreshDueAt + tREFI < ref_done_at) {
155410207Sandreas.hansson@arm.com            fatal("Refresh was delayed so long we cannot catch up\n");
155510207Sandreas.hansson@arm.com        }
155610207Sandreas.hansson@arm.com
155710207Sandreas.hansson@arm.com        // compensate for the delay in actually performing the refresh
155810207Sandreas.hansson@arm.com        // when scheduling the next one
155910207Sandreas.hansson@arm.com        schedule(refreshEvent, refreshDueAt + tREFI - tRP);
156010207Sandreas.hansson@arm.com
156110208Sandreas.hansson@arm.com        assert(!powerEvent.scheduled());
156210207Sandreas.hansson@arm.com
156310208Sandreas.hansson@arm.com        // move to the idle power state once the refresh is done, this
156410208Sandreas.hansson@arm.com        // will also move the refresh state machine to the refresh
156510208Sandreas.hansson@arm.com        // idle state
156610211Sandreas.hansson@arm.com        schedulePowerEvent(PWR_IDLE, ref_done_at);
156710207Sandreas.hansson@arm.com
156810208Sandreas.hansson@arm.com        DPRINTF(DRAMState, "Refresh done at %llu and next refresh at %llu\n",
156910211Sandreas.hansson@arm.com                ref_done_at, refreshDueAt + tREFI);
157010208Sandreas.hansson@arm.com    }
157110208Sandreas.hansson@arm.com}
157210208Sandreas.hansson@arm.com
157310208Sandreas.hansson@arm.comvoid
157410208Sandreas.hansson@arm.comDRAMCtrl::schedulePowerEvent(PowerState pwr_state, Tick tick)
157510208Sandreas.hansson@arm.com{
157610208Sandreas.hansson@arm.com    // respect causality
157710208Sandreas.hansson@arm.com    assert(tick >= curTick());
157810208Sandreas.hansson@arm.com
157910208Sandreas.hansson@arm.com    if (!powerEvent.scheduled()) {
158010208Sandreas.hansson@arm.com        DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n",
158110208Sandreas.hansson@arm.com                tick, pwr_state);
158210208Sandreas.hansson@arm.com
158310208Sandreas.hansson@arm.com        // insert the new transition
158410208Sandreas.hansson@arm.com        pwrStateTrans = pwr_state;
158510208Sandreas.hansson@arm.com
158610208Sandreas.hansson@arm.com        schedule(powerEvent, tick);
158710208Sandreas.hansson@arm.com    } else {
158810208Sandreas.hansson@arm.com        panic("Scheduled power event at %llu to state %d, "
158910208Sandreas.hansson@arm.com              "with scheduled event at %llu to %d\n", tick, pwr_state,
159010208Sandreas.hansson@arm.com              powerEvent.when(), pwrStateTrans);
159110208Sandreas.hansson@arm.com    }
159210208Sandreas.hansson@arm.com}
159310208Sandreas.hansson@arm.com
159410208Sandreas.hansson@arm.comvoid
159510208Sandreas.hansson@arm.comDRAMCtrl::processPowerEvent()
159610208Sandreas.hansson@arm.com{
159710208Sandreas.hansson@arm.com    // remember where we were, and for how long
159810208Sandreas.hansson@arm.com    Tick duration = curTick() - pwrStateTick;
159910208Sandreas.hansson@arm.com    PowerState prev_state = pwrState;
160010208Sandreas.hansson@arm.com
160110208Sandreas.hansson@arm.com    // update the accounting
160210208Sandreas.hansson@arm.com    pwrStateTime[prev_state] += duration;
160310208Sandreas.hansson@arm.com
160410208Sandreas.hansson@arm.com    pwrState = pwrStateTrans;
160510208Sandreas.hansson@arm.com    pwrStateTick = curTick();
160610208Sandreas.hansson@arm.com
160710208Sandreas.hansson@arm.com    if (pwrState == PWR_IDLE) {
160810208Sandreas.hansson@arm.com        DPRINTF(DRAMState, "All banks precharged\n");
160910208Sandreas.hansson@arm.com
161010208Sandreas.hansson@arm.com        // if we were refreshing, make sure we start scheduling requests again
161110208Sandreas.hansson@arm.com        if (prev_state == PWR_REF) {
161210208Sandreas.hansson@arm.com            DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration);
161310208Sandreas.hansson@arm.com            assert(pwrState == PWR_IDLE);
161410208Sandreas.hansson@arm.com
161510208Sandreas.hansson@arm.com            // kick things into action again
161610208Sandreas.hansson@arm.com            refreshState = REF_IDLE;
161710208Sandreas.hansson@arm.com            assert(!nextReqEvent.scheduled());
161810208Sandreas.hansson@arm.com            schedule(nextReqEvent, curTick());
161910208Sandreas.hansson@arm.com        } else {
162010208Sandreas.hansson@arm.com            assert(prev_state == PWR_ACT);
162110208Sandreas.hansson@arm.com
162210208Sandreas.hansson@arm.com            // if we have a pending refresh, and are now moving to
162310208Sandreas.hansson@arm.com            // the idle state, direclty transition to a refresh
162410208Sandreas.hansson@arm.com            if (refreshState == REF_RUN) {
162510208Sandreas.hansson@arm.com                // there should be nothing waiting at this point
162610208Sandreas.hansson@arm.com                assert(!powerEvent.scheduled());
162710208Sandreas.hansson@arm.com
162810208Sandreas.hansson@arm.com                // update the state in zero time and proceed below
162910208Sandreas.hansson@arm.com                pwrState = PWR_REF;
163010208Sandreas.hansson@arm.com            }
163110208Sandreas.hansson@arm.com        }
163210208Sandreas.hansson@arm.com    }
163310208Sandreas.hansson@arm.com
163410208Sandreas.hansson@arm.com    // we transition to the refresh state, let the refresh state
163510208Sandreas.hansson@arm.com    // machine know of this state update and let it deal with the
163610208Sandreas.hansson@arm.com    // scheduling of the next power state transition as well as the
163710208Sandreas.hansson@arm.com    // following refresh
163810208Sandreas.hansson@arm.com    if (pwrState == PWR_REF) {
163910208Sandreas.hansson@arm.com        DPRINTF(DRAMState, "Refreshing\n");
164010208Sandreas.hansson@arm.com        // kick the refresh event loop into action again, and that
164110208Sandreas.hansson@arm.com        // in turn will schedule a transition to the idle power
164210208Sandreas.hansson@arm.com        // state once the refresh is done
164310208Sandreas.hansson@arm.com        assert(refreshState == REF_RUN);
164410208Sandreas.hansson@arm.com        processRefreshEvent();
164510207Sandreas.hansson@arm.com    }
16469243SN/A}
16479243SN/A
16489243SN/Avoid
164910146Sandreas.hansson@arm.comDRAMCtrl::regStats()
16509243SN/A{
16519243SN/A    using namespace Stats;
16529243SN/A
16539243SN/A    AbstractMemory::regStats();
16549243SN/A
16559243SN/A    readReqs
16569243SN/A        .name(name() + ".readReqs")
16579977SN/A        .desc("Number of read requests accepted");
16589243SN/A
16599243SN/A    writeReqs
16609243SN/A        .name(name() + ".writeReqs")
16619977SN/A        .desc("Number of write requests accepted");
16629831SN/A
16639831SN/A    readBursts
16649831SN/A        .name(name() + ".readBursts")
16659977SN/A        .desc("Number of DRAM read bursts, "
16669977SN/A              "including those serviced by the write queue");
16679831SN/A
16689831SN/A    writeBursts
16699831SN/A        .name(name() + ".writeBursts")
16709977SN/A        .desc("Number of DRAM write bursts, "
16719977SN/A              "including those merged in the write queue");
16729243SN/A
16739243SN/A    servicedByWrQ
16749243SN/A        .name(name() + ".servicedByWrQ")
16759977SN/A        .desc("Number of DRAM read bursts serviced by the write queue");
16769977SN/A
16779977SN/A    mergedWrBursts
16789977SN/A        .name(name() + ".mergedWrBursts")
16799977SN/A        .desc("Number of DRAM write bursts merged with an existing one");
16809243SN/A
16819243SN/A    neitherReadNorWrite
16829977SN/A        .name(name() + ".neitherReadNorWriteReqs")
16839977SN/A        .desc("Number of requests that are neither read nor write");
16849243SN/A
16859977SN/A    perBankRdBursts
16869243SN/A        .init(banksPerRank * ranksPerChannel)
16879977SN/A        .name(name() + ".perBankRdBursts")
16889977SN/A        .desc("Per bank write bursts");
16899243SN/A
16909977SN/A    perBankWrBursts
16919243SN/A        .init(banksPerRank * ranksPerChannel)
16929977SN/A        .name(name() + ".perBankWrBursts")
16939977SN/A        .desc("Per bank write bursts");
16949243SN/A
16959243SN/A    avgRdQLen
16969243SN/A        .name(name() + ".avgRdQLen")
16979977SN/A        .desc("Average read queue length when enqueuing")
16989243SN/A        .precision(2);
16999243SN/A
17009243SN/A    avgWrQLen
17019243SN/A        .name(name() + ".avgWrQLen")
17029977SN/A        .desc("Average write queue length when enqueuing")
17039243SN/A        .precision(2);
17049243SN/A
17059243SN/A    totQLat
17069243SN/A        .name(name() + ".totQLat")
17079977SN/A        .desc("Total ticks spent queuing");
17089243SN/A
17099243SN/A    totBusLat
17109243SN/A        .name(name() + ".totBusLat")
17119977SN/A        .desc("Total ticks spent in databus transfers");
17129243SN/A
17139243SN/A    totMemAccLat
17149243SN/A        .name(name() + ".totMemAccLat")
17159977SN/A        .desc("Total ticks spent from burst creation until serviced "
17169977SN/A              "by the DRAM");
17179243SN/A
17189243SN/A    avgQLat
17199243SN/A        .name(name() + ".avgQLat")
17209977SN/A        .desc("Average queueing delay per DRAM burst")
17219243SN/A        .precision(2);
17229243SN/A
17239831SN/A    avgQLat = totQLat / (readBursts - servicedByWrQ);
17249243SN/A
17259243SN/A    avgBusLat
17269243SN/A        .name(name() + ".avgBusLat")
17279977SN/A        .desc("Average bus latency per DRAM burst")
17289243SN/A        .precision(2);
17299243SN/A
17309831SN/A    avgBusLat = totBusLat / (readBursts - servicedByWrQ);
17319243SN/A
17329243SN/A    avgMemAccLat
17339243SN/A        .name(name() + ".avgMemAccLat")
17349977SN/A        .desc("Average memory access latency per DRAM burst")
17359243SN/A        .precision(2);
17369243SN/A
17379831SN/A    avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ);
17389243SN/A
17399243SN/A    numRdRetry
17409243SN/A        .name(name() + ".numRdRetry")
17419977SN/A        .desc("Number of times read queue was full causing retry");
17429243SN/A
17439243SN/A    numWrRetry
17449243SN/A        .name(name() + ".numWrRetry")
17459977SN/A        .desc("Number of times write queue was full causing retry");
17469243SN/A
17479243SN/A    readRowHits
17489243SN/A        .name(name() + ".readRowHits")
17499243SN/A        .desc("Number of row buffer hits during reads");
17509243SN/A
17519243SN/A    writeRowHits
17529243SN/A        .name(name() + ".writeRowHits")
17539243SN/A        .desc("Number of row buffer hits during writes");
17549243SN/A
17559243SN/A    readRowHitRate
17569243SN/A        .name(name() + ".readRowHitRate")
17579243SN/A        .desc("Row buffer hit rate for reads")
17589243SN/A        .precision(2);
17599243SN/A
17609831SN/A    readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100;
17619243SN/A
17629243SN/A    writeRowHitRate
17639243SN/A        .name(name() + ".writeRowHitRate")
17649243SN/A        .desc("Row buffer hit rate for writes")
17659243SN/A        .precision(2);
17669243SN/A
17679977SN/A    writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100;
17689243SN/A
17699243SN/A    readPktSize
17709831SN/A        .init(ceilLog2(burstSize) + 1)
17719243SN/A        .name(name() + ".readPktSize")
17729977SN/A        .desc("Read request sizes (log2)");
17739243SN/A
17749243SN/A     writePktSize
17759831SN/A        .init(ceilLog2(burstSize) + 1)
17769243SN/A        .name(name() + ".writePktSize")
17779977SN/A        .desc("Write request sizes (log2)");
17789243SN/A
17799243SN/A     rdQLenPdf
17809567SN/A        .init(readBufferSize)
17819243SN/A        .name(name() + ".rdQLenPdf")
17829243SN/A        .desc("What read queue length does an incoming req see");
17839243SN/A
17849243SN/A     wrQLenPdf
17859567SN/A        .init(writeBufferSize)
17869243SN/A        .name(name() + ".wrQLenPdf")
17879243SN/A        .desc("What write queue length does an incoming req see");
17889243SN/A
17899727SN/A     bytesPerActivate
179010141SN/A         .init(maxAccessesPerRow)
17919727SN/A         .name(name() + ".bytesPerActivate")
17929727SN/A         .desc("Bytes accessed per row activation")
17939727SN/A         .flags(nozero);
17949243SN/A
179510147Sandreas.hansson@arm.com     rdPerTurnAround
179610147Sandreas.hansson@arm.com         .init(readBufferSize)
179710147Sandreas.hansson@arm.com         .name(name() + ".rdPerTurnAround")
179810147Sandreas.hansson@arm.com         .desc("Reads before turning the bus around for writes")
179910147Sandreas.hansson@arm.com         .flags(nozero);
180010147Sandreas.hansson@arm.com
180110147Sandreas.hansson@arm.com     wrPerTurnAround
180210147Sandreas.hansson@arm.com         .init(writeBufferSize)
180310147Sandreas.hansson@arm.com         .name(name() + ".wrPerTurnAround")
180410147Sandreas.hansson@arm.com         .desc("Writes before turning the bus around for reads")
180510147Sandreas.hansson@arm.com         .flags(nozero);
180610147Sandreas.hansson@arm.com
18079975SN/A    bytesReadDRAM
18089975SN/A        .name(name() + ".bytesReadDRAM")
18099975SN/A        .desc("Total number of bytes read from DRAM");
18109975SN/A
18119975SN/A    bytesReadWrQ
18129975SN/A        .name(name() + ".bytesReadWrQ")
18139975SN/A        .desc("Total number of bytes read from write queue");
18149243SN/A
18159243SN/A    bytesWritten
18169243SN/A        .name(name() + ".bytesWritten")
18179977SN/A        .desc("Total number of bytes written to DRAM");
18189243SN/A
18199977SN/A    bytesReadSys
18209977SN/A        .name(name() + ".bytesReadSys")
18219977SN/A        .desc("Total read bytes from the system interface side");
18229243SN/A
18239977SN/A    bytesWrittenSys
18249977SN/A        .name(name() + ".bytesWrittenSys")
18259977SN/A        .desc("Total written bytes from the system interface side");
18269243SN/A
18279243SN/A    avgRdBW
18289243SN/A        .name(name() + ".avgRdBW")
18299977SN/A        .desc("Average DRAM read bandwidth in MiByte/s")
18309243SN/A        .precision(2);
18319243SN/A
18329977SN/A    avgRdBW = (bytesReadDRAM / 1000000) / simSeconds;
18339243SN/A
18349243SN/A    avgWrBW
18359243SN/A        .name(name() + ".avgWrBW")
18369977SN/A        .desc("Average achieved write bandwidth in MiByte/s")
18379243SN/A        .precision(2);
18389243SN/A
18399243SN/A    avgWrBW = (bytesWritten / 1000000) / simSeconds;
18409243SN/A
18419977SN/A    avgRdBWSys
18429977SN/A        .name(name() + ".avgRdBWSys")
18439977SN/A        .desc("Average system read bandwidth in MiByte/s")
18449243SN/A        .precision(2);
18459243SN/A
18469977SN/A    avgRdBWSys = (bytesReadSys / 1000000) / simSeconds;
18479243SN/A
18489977SN/A    avgWrBWSys
18499977SN/A        .name(name() + ".avgWrBWSys")
18509977SN/A        .desc("Average system write bandwidth in MiByte/s")
18519243SN/A        .precision(2);
18529243SN/A
18539977SN/A    avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds;
18549243SN/A
18559243SN/A    peakBW
18569243SN/A        .name(name() + ".peakBW")
18579977SN/A        .desc("Theoretical peak bandwidth in MiByte/s")
18589243SN/A        .precision(2);
18599243SN/A
18609831SN/A    peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000;
18619243SN/A
18629243SN/A    busUtil
18639243SN/A        .name(name() + ".busUtil")
18649243SN/A        .desc("Data bus utilization in percentage")
18659243SN/A        .precision(2);
18669243SN/A
18679243SN/A    busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
18689243SN/A
18699243SN/A    totGap
18709243SN/A        .name(name() + ".totGap")
18719243SN/A        .desc("Total gap between requests");
18729243SN/A
18739243SN/A    avgGap
18749243SN/A        .name(name() + ".avgGap")
18759243SN/A        .desc("Average gap between requests")
18769243SN/A        .precision(2);
18779243SN/A
18789243SN/A    avgGap = totGap / (readReqs + writeReqs);
18799975SN/A
18809975SN/A    // Stats for DRAM Power calculation based on Micron datasheet
18819975SN/A    busUtilRead
18829975SN/A        .name(name() + ".busUtilRead")
18839975SN/A        .desc("Data bus utilization in percentage for reads")
18849975SN/A        .precision(2);
18859975SN/A
18869975SN/A    busUtilRead = avgRdBW / peakBW * 100;
18879975SN/A
18889975SN/A    busUtilWrite
18899975SN/A        .name(name() + ".busUtilWrite")
18909975SN/A        .desc("Data bus utilization in percentage for writes")
18919975SN/A        .precision(2);
18929975SN/A
18939975SN/A    busUtilWrite = avgWrBW / peakBW * 100;
18949975SN/A
18959975SN/A    pageHitRate
18969975SN/A        .name(name() + ".pageHitRate")
18979975SN/A        .desc("Row buffer hit rate, read and write combined")
18989975SN/A        .precision(2);
18999975SN/A
19009977SN/A    pageHitRate = (writeRowHits + readRowHits) /
19019977SN/A        (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100;
19029975SN/A
190310208Sandreas.hansson@arm.com    pwrStateTime
190410208Sandreas.hansson@arm.com        .init(5)
190510208Sandreas.hansson@arm.com        .name(name() + ".memoryStateTime")
190610208Sandreas.hansson@arm.com        .desc("Time in different power states");
190710208Sandreas.hansson@arm.com    pwrStateTime.subname(0, "IDLE");
190810208Sandreas.hansson@arm.com    pwrStateTime.subname(1, "REF");
190910208Sandreas.hansson@arm.com    pwrStateTime.subname(2, "PRE_PDN");
191010208Sandreas.hansson@arm.com    pwrStateTime.subname(3, "ACT");
191110208Sandreas.hansson@arm.com    pwrStateTime.subname(4, "ACT_PDN");
19129243SN/A}
19139243SN/A
19149243SN/Avoid
191510146Sandreas.hansson@arm.comDRAMCtrl::recvFunctional(PacketPtr pkt)
19169243SN/A{
19179243SN/A    // rely on the abstract memory
19189243SN/A    functionalAccess(pkt);
19199243SN/A}
19209243SN/A
19219294SN/ABaseSlavePort&
192210146Sandreas.hansson@arm.comDRAMCtrl::getSlavePort(const string &if_name, PortID idx)
19239243SN/A{
19249243SN/A    if (if_name != "port") {
19259243SN/A        return MemObject::getSlavePort(if_name, idx);
19269243SN/A    } else {
19279243SN/A        return port;
19289243SN/A    }
19299243SN/A}
19309243SN/A
19319243SN/Aunsigned int
193210146Sandreas.hansson@arm.comDRAMCtrl::drain(DrainManager *dm)
19339243SN/A{
19349342SN/A    unsigned int count = port.drain(dm);
19359243SN/A
19369243SN/A    // if there is anything in any of our internal queues, keep track
19379243SN/A    // of that as well
19389567SN/A    if (!(writeQueue.empty() && readQueue.empty() &&
19399567SN/A          respQueue.empty())) {
19409352SN/A        DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
19419567SN/A                " resp: %d\n", writeQueue.size(), readQueue.size(),
19429567SN/A                respQueue.size());
19439243SN/A        ++count;
19449342SN/A        drainManager = dm;
194510206Sandreas.hansson@arm.com
19469352SN/A        // the only part that is not drained automatically over time
194710206Sandreas.hansson@arm.com        // is the write queue, thus kick things into action if needed
194810206Sandreas.hansson@arm.com        if (!writeQueue.empty() && !nextReqEvent.scheduled()) {
194910206Sandreas.hansson@arm.com            schedule(nextReqEvent, curTick());
195010206Sandreas.hansson@arm.com        }
19519243SN/A    }
19529243SN/A
19539243SN/A    if (count)
19549342SN/A        setDrainState(Drainable::Draining);
19559243SN/A    else
19569342SN/A        setDrainState(Drainable::Drained);
19579243SN/A    return count;
19589243SN/A}
19599243SN/A
196010146Sandreas.hansson@arm.comDRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory)
19619243SN/A    : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
19629243SN/A      memory(_memory)
19639243SN/A{ }
19649243SN/A
19659243SN/AAddrRangeList
196610146Sandreas.hansson@arm.comDRAMCtrl::MemoryPort::getAddrRanges() const
19679243SN/A{
19689243SN/A    AddrRangeList ranges;
19699243SN/A    ranges.push_back(memory.getAddrRange());
19709243SN/A    return ranges;
19719243SN/A}
19729243SN/A
19739243SN/Avoid
197410146Sandreas.hansson@arm.comDRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt)
19759243SN/A{
19769243SN/A    pkt->pushLabel(memory.name());
19779243SN/A
19789243SN/A    if (!queue.checkFunctional(pkt)) {
19799243SN/A        // Default implementation of SimpleTimingPort::recvFunctional()
19809243SN/A        // calls recvAtomic() and throws away the latency; we can save a
19819243SN/A        // little here by just not calculating the latency.
19829243SN/A        memory.recvFunctional(pkt);
19839243SN/A    }
19849243SN/A
19859243SN/A    pkt->popLabel();
19869243SN/A}
19879243SN/A
19889243SN/ATick
198910146Sandreas.hansson@arm.comDRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt)
19909243SN/A{
19919243SN/A    return memory.recvAtomic(pkt);
19929243SN/A}
19939243SN/A
19949243SN/Abool
199510146Sandreas.hansson@arm.comDRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt)
19969243SN/A{
19979243SN/A    // pass it to the memory controller
19989243SN/A    return memory.recvTimingReq(pkt);
19999243SN/A}
20009243SN/A
200110146Sandreas.hansson@arm.comDRAMCtrl*
200210146Sandreas.hansson@arm.comDRAMCtrlParams::create()
20039243SN/A{
200410146Sandreas.hansson@arm.com    return new DRAMCtrl(this);
20059243SN/A}
2006